The cataclysmic stellar explosion SN 1987A, visible to naked eye, was the nearest and brightest supernova witnessed since the invention of the telescope four centuries ago. This volume deals with supernovae and their remnants, in terms of exceptional phenomena that produce and release high-energy nuclei and particles. Marking the thirty years anniversary of SN 1987A, the proceedings of IAU Symposium 331 introduce our accumulating knowledge on these central sources in many active fields of investigation: stellar evolution and the diversity of supernova progenitors and their properties, explosive nucleosynthesis and particle acceleration in the most extreme environments known to physics, and the long-standing issues about the origins of heavy nuclei in the Universe and of cosmic rays. Through its interdisciplinary approach, this volume also sheds light on the open issues related to these topics and emphasizes topics of future interest with upcoming multi-wavelength and multi-messenger facilities.

Proceedings of the International Astronomical Union

Editor in Chief: Dr Piero Benvenuti

This series contains the proceedings of major scientific meetings held by the International Astronomical Union. Each volume contains a series of articles on a topic of current interest in astronomy, giving a timely overview of research in the field. With contributions by leading scientists, these books are at a level suitable for research astronomers and graduate students.
COVER ILLUSTRATION: Celebrating the 30th anniversary of SN 1987A: a multiwavelength view

SUPERNova 1987A: 30 YEARS LATER - COSMIC RAYS AND Nuclei FROM SUPERNovaE AND THEIR AFTERMATHS

PROCEEDINGS OF THE 331st SYMPOSIUM OF THE INTERNATIONAL ASTRONOMICAL UNION HELD IN SAINT-GILLES-LES-BAINS, LA REUNION ISLAND, FRANCE FEBRUARY 20–24, 2017

Edited by

ALEXANDRE MARCOWITH
LUPM, France

MATTHIEU RENAUD
LUPM, France

GLORIA DUBNER
IAFE, Argentina

ALAK RAY
TIFR, India

and

ANDREÏ BYKOV
IOFFE, Russia
Table of Contents

Preface .. ix

The Organizing Committee .. xi

Conference Photograph .. xii

Participants .. xiii

Progenitors of Core-Collapse Supernovae. 1
 R. Hirschi, D. Arnett, A. Cristini, C. Georgy, C. Meakin & I. Walkington

Evolution & Explosion of Massive Stars Leading to IIP-IIL SNe with MESA &
SNEC ... 11
 S. Das & A. Ray

Unveiling the structure of the progenitors of type-IIP Supernovae through multi-
waveband observations. ... 17
 F. K. Sutaria, A. Ray, S. Bose & B. Kumar

Radio and X-ray observations of supernovae in dense environments 23
 P. Chandra

Outbursts from evolved massive stars: SN 2015bh and its relatives 33
 C. C. Thöne, A. de Ugarte Postigo & J. Groh

The diversity of GRBs and their SNe: Observations from the 10.4m GTC. 39
 A. de Ugarte Postigo, C. Thöne, Z. Cano, D. A. Kann, L. Izzo,
 R. S. Ramírez, K. Bensch & A. Sagues

Radioactive decay of GRB-SNe at late-times. 45
 K. Misra & A. S. Fruchter

Properties of X-ray emission of an aspherical shock breakout 51
 Y. Ohtani, A. Suzuki, T. Shigeyama & M. Tanaka

Supernova 1986J: a Neutron Star or Black Hole in the Centre? 57
 M. F. Bietenholz

Constraining pulsar birth properties with supernova X-ray observations 63
 Y. A. Gallant, R. Bandiera, N. Bucciantini & E. Amato

Constraints on environs around SN 2011fe and SN 2014J from radio modeling and
observations .. 69
 E. Kundu, P. Lundqvist & M. A. Pérez-Torres

Spatial distribution of different subtypes of core-collapse and thermonuclear supernovae in the galaxies 75
 D. Yu. Tsvetkov & N. N. Pavlyuk

CSI in Supernova Remnants .. 81
 Y.-H. Chu

Downloaded from https://www.cambridge.org/core; IP address: 52.11.211.149, on 14 Nov 2019 at 22:23:36, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1743921317006640
Contents

Diagnostics of the Supernova Engine 86
 C. L. Fryer, C. Ellinger, P. A. Young & G. Vance

Aspherical Supernovae and Oblique Shock Breakout 96
 N. Afsariardchi & C. D. Matzner

Linking three-dimensional core-collapse supernova simulations with observations 101
 A. Wongwathanarat

Core-Collapse Supernova Simulations including Neutrino Interactions from the Virial EOS ... 107
 E. O’Connor, C. J. Horowitz, Z. Lin & S. Couch

Incidence of stellar rotation on the explosion mechanism of massive stars 113
 R. Kazeroni, J. Guilet & T. Foglizzo

How to form a millisecond magnetar? Magnetic field amplification in protoneutron stars. ... 119
 J. Guilet, E. Müller, H.-T. Janka, T. Rembiasz, M. Obergaulinger,
 P. Cerdá-Durán & M.-A. Aloy

Magnetically assisted explosions of weakly magnetized stars 125
 H. Sawai & S. Yamada

A minority view on the majority: A personal meeting summary on the explosion mechanism of supernovae. .. 131
 N. Soker

The infancy of supernova remnants: evolving a supernova into its remnant in 3D 141
 M. Gabler, H.-T. Janka & A. Wongwathanarat

Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A. 148
 H.-T. Janka, M. Gabler & A. Wongwathanarat

Gamma-ray line measurements from supernova explosions 157
 R. Diehl

Supernova remnants dynamics .. 164
 A. Decourchelle

MHD Simulation of Supernova Remnants 174
 D. Wu, M. F. Zhang, S. S. Shan & W. W. Tian

MUSE Integral Field Observations of the Oxygen-rich SNR 1E 0102.2-7219 178
 P. Ghavamian & T. Sukhbold

High-resolution imaging of SNR IC443 and W44 with the Sardinia Radio Telescope 184
 E. Egron, A. Pellizzoni, M. N. Iacolina, S. Loru, M. Marongiu, S. Righini,
 M. Cardillo, A. Giuliani, S. Mulas, G. Murtas & D. Simeone

High-resolution spectral imaging of SNR W44 and IC443 at 22 GHz with the Sardinia Radio Telescope 190
 S. Loru, A. Pellizzoni, E. Egron, N. Iacolina, S. Righini, M. Marongiu,
 S. Mulas, G. Murtas, D. Simeone, M. Pilia, M. Bachetti, A. Trois, R. Ricci,
 A. Melis & R. Concule
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence for a wide electron spectra scatter among different SNR regions from high radio-frequency observations</td>
<td>194</td>
</tr>
<tr>
<td>Low frequency radio counterparts of HESS J1731−347 a.k.a SNR G353.6−0.7</td>
<td>201</td>
</tr>
<tr>
<td>A. J. Nayana & P. Chandra</td>
<td></td>
</tr>
<tr>
<td>Detecting Thermal X-Ray Emission and Proper Motions in RX J1713.7−3946</td>
<td>206</td>
</tr>
<tr>
<td>Searching for Young Type Ia Supernova Remnants in M83</td>
<td>213</td>
</tr>
<tr>
<td>C.-J. Li, Y.-H. Chu & P.-S. Ou</td>
<td></td>
</tr>
<tr>
<td>Measuring distances to Galactic SNRs using the red clump stars</td>
<td>216</td>
</tr>
<tr>
<td>Cosmic ray astroparticle physics: current status and future perspectives</td>
<td>220</td>
</tr>
<tr>
<td>F. Donato</td>
<td></td>
</tr>
<tr>
<td>Supernova Remnant-Cosmic Ray connection: a modern view</td>
<td>230</td>
</tr>
<tr>
<td>G. Mortino</td>
<td></td>
</tr>
<tr>
<td>X-ray Synchrotron Polarization from Turbulent Plasmas in Supernova Remnants</td>
<td>242</td>
</tr>
<tr>
<td>M. G. Baring</td>
<td></td>
</tr>
<tr>
<td>Balmer-dominated shocks in Tycho’s SNR: omnipresence of CRs</td>
<td>248</td>
</tr>
<tr>
<td>Cosmic-Ray Lithium Production in the Nova Ejecta</td>
<td>254</td>
</tr>
<tr>
<td>N. Kawanaka & S. Yanagita</td>
<td></td>
</tr>
<tr>
<td>Bridging the gap between supernovae and their remnants through multi-dimensional hydrodynamic modeling</td>
<td>258</td>
</tr>
<tr>
<td>S. Orlando, M. Miceli & O. Petruk</td>
<td></td>
</tr>
<tr>
<td>Linking supernovae and supernova remnants. Time-dependent injection in SN1987A and gamma-ray spectrum of IC443</td>
<td>268</td>
</tr>
<tr>
<td>O. Petruk, S. Orlando & M. Miceli</td>
<td></td>
</tr>
<tr>
<td>The Radio Remnant of Supernova 1987A — A Broader View</td>
<td>274</td>
</tr>
<tr>
<td>G. Zanardo, L. Staveley-Smith, C.-Y. Ng, R. Indebetouw, M. Matsuura, B. M. Gaensler & A. K. Tzioumis</td>
<td></td>
</tr>
<tr>
<td>X-raying the evolution of SN 1987A</td>
<td>284</td>
</tr>
<tr>
<td>V. L. Kashyap, D. van Dyk, K. McKeough, F. Primini, D. Jerius, A. Gowrishankar, A. Siemiginowska & A. Zezas</td>
<td></td>
</tr>
<tr>
<td>High-Resolution Observations of Dust in SN 1987A</td>
<td>290</td>
</tr>
<tr>
<td>P. Cigan, H. Gomez & M. Matsuura</td>
<td></td>
</tr>
</tbody>
</table>
Contents

ALMA observations of Molecules in Supernova 1987A

M. Matsuura, R. Indebetouw, S. Woosley, V. Bujarrabal, F. J. Abellán,
R. McCray, J. Kamenetzky, C. Fransson, M. J. Barlow, H. L. Gomez,
P. Cigan, I. De Looze, J. Spyromilio, L. Staveley-Smith, G. Zanardo,
P. Roche, J. Larsson, S. Viti, J. Th. van Loon, J. C. Wheeler, M. Baes,
R. Chevalier, P. Lundqvist, J. M. Marcaide, E. Dwek, M. Meixner,
C.-Y. Ng, G. Sonneborn & J. Yates

Measuring the dust content and formation in SN 1987A using detailed radiative
transfer modelling.

M. Baes, P. Camps, P. J. Cigan, C. L. Fryer, M. Matsuura & S. Verstocken

The role of the diffusive protons in the gamma-ray emission of SNR RX J1713.7—
3946

X. Zhang & Y. Chen

The GeV Gamma-Ray Emission Detected by Fermi-LAT Adjacent to SNR Kesteven

B. Liu, Y. Chen, X. Zhang, G.-Y. Zhang, Y. Xing & T. G. Pannuti

Investigating the region of 3C 397 in High Energy Gamma rays

P. Battacharjee, P. Majumdar, T. Ergin, L. Saha & P. S. Joarder

Disentangling hadronic from leptonic emission in the composite SNR G326.3-1.8

J. Devin, F. Acero, J. Ballet on behalf of the Fermi-LAT collaboration

Upper Limits on Gamma-ray Emission from Supernovae Serendipitously Observed
with H.E.S.S.

R. Simoni, N. Maxted, M. Renaud & J. Vink On behalf of the H.E.S.S. Collaboration

Multimessenger Predictions from 3D General-Relativistic Core-Collapse Supernovae Models

K. Kotake, T. Kuroda & K. Hayama

ANTARES and KM3NeT programs for the supernova neutrino detection

V. Kulikovskiy on behalf of the ANTAres and KM3NeT collaborations

Synergy SKA - CTA: Supernova remnants as cosmic accelerators.

A. Ingallinera, C. Trigilio, G. Umana, P. Leto, C. Buemi, F. Schillirò,
F. Bufano, S. Riggi & F. Cavallaro

The e-ASTROGAM space mission: a major step forward for supernova physics

V. Tatischeff, R. Diehl & A. De Angelis, on behalf of the e-ASTROGAM Collaboration

Author index

357
Preface

Supernovae, along with their remnants, are pivotal in many active fields of research as the key sources of cosmic high-energy particles and heavy elements, the privileged sites of cosmic dust formation, and the primary agents of chemical and dynamical evolution of galaxies. The precise observational studies of type Ia supernovae at cosmological distances recently challenged fundamental physics with the dark energy concept. The bright transient phenomenae associated with supernovae are among the rare celestial events visible with the naked eye. Yet, many open issues still need to be deeply explored such as the nature of the supernova progenitors and the final stages of stellar evolution, the explosion mechanisms and the associated nucleosynthesis, the shock acceleration processes and the long standing question of the origin of cosmic rays.

A bright “new star” appeared in the Large Magellanic Cloud on the 23rd of February, 1987, at 07:35 UT, manifesting itself firstly in the form of a burst of neutrinos, a few hours before its first light reached the Earth. Sanduleak \(-69^\circ 202 \), a blue supergiant in the outskirts of the Tarantula Nebula in the Large Magellanic Cloud had just imploded. The resulting stellar explosion named SN 1987A, visible to naked eye, has been the nearest and brightest supernova witnessed since the invention of the telescope four centuries ago. Thanks to the wealth of multi-wavelength information collected in the course of thirty years of investigation, including the unique detection of MeV neutrinos associated with a core-collapse supernova, SN 1987A became the first case enabling to make significant progress in all of these above-mentioned fundamental topics in modern astrophysics.

At the occasion of the thirtieth anniversary of this “supernova of a lifetime”, this IAUS 331 Symposium aimed at bringing together different communities in order to collate the accumulating knowledge on these explosive events and their remnants and shed further light on the open questions through an interdisciplinary approach. Such a meeting was then thought as the opportunity to make the link between the stellar progenitors and the multi-wavelength and multi-messenger manifestation of their aftermaths in terms of extreme sources of high-energy particles and nuclei. Therefore, several, interconnected, themes have been identified: (1) massive stars as supernova progenitors; (2) explosion mechanisms; (3) supernova properties, outcomes and impacts; (4) multi-wavelength and multi-messenger data on supernovae and their remnants, and (5) “SN 1987A, 30 years later” allowing for these diverse topics to be discussed at once, and hence for bridges among them to be built.

Following endorsement and sponsoring by IAU Commissions and Divisions and subsequent approval by the IAU Executive Committee in May 2016, speakers were invited and the different communities informed. Positive feedback translated into 19 invited review papers, 55 oral contributions and a dozen of posters, with the participation of nearly a hundred astronomers from 22 countries worldwide. The meeting location in La Réunion Island, a French overseas department in the Indian Ocean, has allowed a greater participation by scientists from Asia in particular (India, China, Japan, Taiwan), but also from South Africa and Australia, aside from the possibility it offered to stargaze within the wonders of the Southern Hemisphere.
It is a great pleasure to acknowledge the financial support of our sponsors listed on page xxi of these Proceedings, and the active support of the members of the Scientific and Local Organizing Committees in making this Symposium possible, and in the end, a great success.

To conclude, our hope would be threefold:
- may these Proceedings be found useful to anyone interested in supernovae and their remnants. As a healthy consequence of the rapid developments currently experienced in these lively fields of research,
- may their scientific contents become outdated in the horizon of the next decennial anniversary of SN 1987A. In particular, given that the probability of sighting the next Galactic supernova in our lifetimes is, though small, non null,
- may such an exceptional, eagerly awaited, event bring us as many unexpected discoveries and trigger as much excitement as SN 1987A and its historical predecessors in the Milky Way did.

Astonishing Light Burst At Night Emerges...

Matthieu Renaud and Alexandre Marcowith, SOC/LOC co-chairs

_Les Avirons & Montpellier, France, June 9, 2017*
THE ORGANIZING COMMITTEE

Scientific
A. Marcowith (France, co-chair) M. Renaud (France, co-chair)
G. Dubner (Argentina, co-chair) A. Ray (India, co-chair)
A. Bykov (Russia, co-chair) E. Amato (Italy)
A. Bamba (Japan) R. Chevalier (USA)
R. Diehl (Germany) F. Harrison (USA)
H.-T. Janka (Germany) M. Lemoine-Goumard (France)
G. Meynet (Switzerland) S. Safi-Harb (Canada)
S. J. Smartt (UK) P. A. Whitelock (South Africa)

Local
S. Colaïocco M.-H. Grondin
A. Lèbre A. Marcowith (co-chair)
A. Peyrot M. Renaud (co-chair)

Acknowledgements
The symposium is sponsored and supported by the IAU Divisions G: Stars and Stellar Physics (coordinating division), D: High Energy Phenomena and Fundamental Physics and B: Facilities, Technologies and Data Science; and by the IAU Commissions G2 (Massive Stars), G3 (Stellar Evolution), D1 (Gravitational Wave Astrophysics), B1 (Computational Astrophysics), and B4 (Radio Astronomy).

The Local Organizing Committee operated under the auspices of the Laboratoire Univers et Particules de Montpellier (CNRS, Univ. Montpellier).

Funding by the
International Astronomical Union IAU,
Centre National de la Recherche Scientifique CNRS,
Université de Montpellier UM,
Laboratoire Univers et Particules de Montpellier LUPM,
Société Française d’Astronomie et d’Astrophysique SF2A,
Société Française de Physique SFP,
Programme National Hautes Energies PNHE,
Programme National de Physique Stellaire PNPS,
Programme National de Physique et Chimie du Milieu Interstellaire PCMI,
Programme National de Cosmologie et Galaxies PNCG,
LabEx Origines, Constituants et EVolution de l’Univers OCEVU,
Observatoire de Recherche Méditerranéen de l’Environnement OSU-OREME,
and
Regional Council of La Réunion,
is gratefully acknowledged.