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1. Introduction

Let p be a rational prime and let N be a positive integer which is prime to p. We fix an
algebraic closure Q, of Q, and denote its p-adic completion by C,,. Let Wy be the weight
space for GLs g, which is a rigid analytic variety over Q, such that the set of C,-valued
points Wg (C,) is identified with the set of continuous homomorphisms Z; — C;.

In [15, 12], Coleman and Mazur and Buzzard defined a rigid analytic curve Cy with
a morphism & : Cy — Wy such that the set of C,-valued points Cn (Cp) is in bijection
with the set of normalized overconvergent elliptic eigenforms of tame level N which are of
finite slopes, in such a way that the eigenform f corresponding to a point € Cn (C,) is of
weight k(z). The curve Cy is called the Coleman—Mazur eigencurve, and it has played an
important role in arithmetic geometry, since it turned out to be useful to control p-adic
congruences of elliptic modular forms. After their construction of the eigencurve, much
progress has been made to generalize it to the case of automorphic forms on algebraic
groups other than GLy . Now we have, for various algebraic groups G over a number
field, a similar rigid analytic variety £ to the Coleman-Mazur eigencurve over a weight
space W¢ for G, which is called the eigenvariety for G.

Despite their importance, we still do not know much about the geometry of eigenvari-
eties. For example, we do not even know if an eigenvariety has finitely many irreducible
components. One of the topics of active research is the smoothness of eigenvarieties at
classical points. For the Coleman—Mazur eigencurve, we know the smoothness at classical
points in many cases [6, 8, 30, 32]. Bellaiche and Chenevier [7] studied tangent spaces of
their eigenvariety for unitary groups at certain classical points, and applied it to showing
the nonvanishing of a Bloch—Kato Selmer group. On the other hand, Bellaiche proved the
nonsmoothness of the eigenvariety for U(3) at classical points [5]. It is natural to think
that such geometric information of eigenvarieties is related to deep p-adic properties of
automorphic forms.

Another interesting topic, which this paper is concerned with, is the properness of
eigenvarieties over weight spaces. Since eigenvarieties are not of finite type over weight
spaces, they are not proper in the usual sense. Instead, we consider the following geometric
interpretation of the nonexistence of holes: Let D¢, = Sp(C,(T')) be the closed unit disc
centered at the origin O and let DXP =Dc, \ {O} be the punctured disc. For any quasi-
separated rigid analytic variety &', we write Xc, for the base extension of X' to Sp(C,).
Suppose that we have a commutative diagram of rigid analytic varieties

X
D¢, — &,

|

De, — = WE,
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where the vertical arrows are the natural maps. Then we say that the eigenvariety &£ is
proper if there exists a morphism D¢, — ¢, such that the diagram is still commutative
with this morphism added. Roughly speaking, this means that any family of overcon-
vergent eigenforms of finite slopes on G parametrized by the punctured disc can always
be extended to the puncture. However, note that what eigenvarieties parametrize are in
general not eigenforms themselves but eigensystems occurring in the space of overconver-
gent automorphic forms. We also note that the naive interpretation of the nonexistence
of holes — that any p-adically convergent sequence of overconvergent eigenforms of finite
slopes converges to an overconvergent eigenform of finite slope — is false [16, Theorem 2.1].

For the properness of the Coleman—Mazur eigencurve Cp, Buzzard and Calegari first
proved the properness of C for the case where p=2 and N =1 [13]. It was followed by
Calegari’s result [14] on the properness of Cxy at integral weights: he showed the existence
of the map D¢, — Cn,c, as in the definition of properness if the image of the puncture
O in the weight space corresponds to a classical weight. One of the key points of their
proofs is to show that any nonzero overconvergent elliptic eigenform of infinite slope does
not converge on a certain region of a modular curve, while any overconvergent elliptic
eigenform of finite slope does converge on a larger region. In [13], they deduced the former
from the theory of canonical subgroups, especially a behavior of the U,-correspondence
for elliptic curves with Hodge height p/(p+ 1), and the latter is a consequence of a
standard analytic continuation argument via the U,-operator. Recently, the properness
of the Coleman—Mazur eigencurve was proved in full generality by Diao and Liu [22] using
p-adic Hodge theory, especially the theory of trianguline p-adic representations in families.

For algebraic groups other than G'Ls g, the properness of eigenvarieties has not been
known. Note that in Diao and Liu’s proof of the properness of the Coleman—Mazur
eigencurve, in order to apply p-adic Hodge theory it seems crucial that we have a Galois
representation, not just a Galois pseudorepresentation, over (the normalization of) the
eigencurve. This is a consequence of the fact that we can convert pseudorepresentations
into representations over smooth rigid analytic curves [15, remark after Theorem 5.1.2].
Thus, at present, it is unclear if their proof can be generalized to show the properness of
eigenvarieties of dimension greater than 1 on the components where the residual Galois
representations attached to automorphic forms are absolutely reducible.

The aim of this paper is to generalize the method of Buzzard and Calegari to the
case of Hilbert modular forms and to obtain the properness of the Hilbert eigenvariety
constructed by Andreatta, Iovita, and Pilloni [4] at integral weights in some cases.

To state the main theorem, we fix some notation. For any totally real number field F
with ring of integers O, put G = Resp/g(GL2) and T = Resp,, /z(Gw). Let K/Q, be a
finite extension such that F ® K splits completely. Let W be the weight space for G
over K as in [4, §4.1]. By definition, we have

W€ =Spf (O [[T(2,) x 23]])"™

and the set of C,-valued points WY (C,) can be identified with the set of pairs of
continuous characters

v:T(Zy) = Cp, w:Zy —Cy.
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We say that the weight (v,w) is 1-integral if its restriction to 1+p(Or ® Z,,) X (14 pZ,)
comes from an algebraic character T x Gy, — Gy,. This restriction corresponds to a pair

((kg)ﬁ,ko) of a tuple (kﬁ)ﬁ of integers indexed by the set of embeddings 8 : F — K and

an integer kyg. We say that a l-integral weight is 1-doubly even if every kg and kg are
divisible by 4. Then the main theorem in this paper is the following:

Theorem 1.1 (Theorem 5.1). Let F be a totally real number field which is unramified
over p. Let K/Q, be a finite extension in Qp such that F ® K splits completely. Let
N >4 be an integer prime to p. Let € — W be the Hilbert eigenvariety of tame level N
constructed in [/, §5], which is defined over a finite extension of K.

Suppose that for any prime ideal p of F' dividing p, the residue degree f, of p satisfies
fo <2 (resp., p splits completely in F) if p is odd (resp., even). Then & is proper at
1-integral (resp., 1-doubly even) weights. Namely, any commutative diagram of rigid
analytic varieties over Cp,

X LP
D¢, —¢c,

D, R G
Cp " Cp
can be filled with the dotted arrow if ¥(O) corresponds to a 1-integral (resp., 1-doubly
even) weight.

For the proof, we basically follow the idea of Buzzard and Calegari [13, 14]. Thus the
key step in our case is also to show that any nonzero overconvergent Hilbert eigenform f
of 1-integral weight and infinite slope does not converge on the locus where all the partial
Hodge heights are no more than 1/(p+1) in a Hilbert modular variety.

Let us explain briefly how to show this nonconvergence property, following [13]. For
simplicity, we assume that f is of integral weight, namely the weight (v,w) corresponds
to an algebraic character T x Gy, — Gy,. For any Hilbert—-Blumenthal abelian variety
(HBAV) A with an Op-action over the ring of integers Oy, of a finite extension L/K, we
say that a finite flat closed Op-subgroup scheme H of A over Of, is p-cyclic if its generic
fiber is étale locally isomorphic to the constant group scheme Op /pOp. We say that A is
critical if every -Hodge height of A is equal to p/(p+1) for any embedding §: F — K.
Then, for any critical A and any p-cyclic subgroup scheme H of A, the quotient A/H
has the canonical subgroup A[p]/H of level 1 and its S-Hodge heights are all 1/(p+1)
[29, Proposition 6.1]. This is where the assumption on residue degrees is used in the most
crucial way. It is unclear if the claim holds without this assumption: at least, we have a
counterexample of a similar assertion for truncated Barsotti-Tate groups if we drop the
assumption on f, [29, Remark 6.2].

Consider the Hilbert modular variety classifying pairs (A,H) of an HBAV A and its
p-cyclic subgroup scheme H. Let U be the locus where H is the canonical subgroup
of A. Another thing we need here is to show that for any (A,7) with A critical, the
corresponding point [(4,7)] of the Hilbert modular variety has a connected admissible
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affinoid open neighborhood intersecting U/ such that, if an overconvergent Hilbert
eigenform f of integral weight converges on the locus where all the S-Hodge heights
are <1/(p+1), then we can evaluate U, f on this neighborhood (Proposition 3.7). This
implies that if f is in addition of infinite slope, then we have (U,f)(A,H) =0 for any
critical A and any p-cyclic subgroup scheme H. From this, by a combinatorial argument
(Lemma 5.2), we obtain f(A/H,A[p]/H) =0 for any such (A,H), which yields f =0,
and the nonconvergence property follows. It seems that this argument using a connected
neighborhood cannot be generalized immediately to the case where f is not of locally
algebraic weight, since in this case U, f is defined only on the locus U (even after taking
a finite étale cover) and it cannot be evaluated for any critical A.

Note that sheaves of overconvergent Hilbert modular forms of [4] are defined on the
locus in the Hilbert modular variety where canonical subgroups exist. However, the theory
of canonical subgroups used in [4] does not give the existence locus which is enough large
to contain critical HBAVs unless p is sufficiently large. Instead, we use [29, Theorem 8.1],
which enables us to enlarge the locus where sheaves of overconvergent Hilbert modular
forms are defined from the original locus given in [4], and to include the case of p < 5 in
the main theorem.

What the Hilbert eigenvariety £ of [4] parametrizes are eigensystems in the space
of overconvergent Hilbert modular forms. Thus, to follow the strategy of Buzzard and
Calegari to reduce properness to the nonconvergence property of overconvergent modular
forms, we have to convert a family of eigensystems of finite slopes, or a morphism from a
rigid analytic variety to &, into a family of eigenforms and vice versa. The latter direction
can be treated (Proposition 2.7) as in the proof of [7, Proposition 7.2.8]. For the former
direction, we first prove that any family of eigensystems over any smooth rigid analytic
variety over C, can be lifted locally to a family of eigenforms (Proposition 2.5). This can
be considered as a version of Deligne and Serre’s lifting lemma [21, Lemme 6.11]. Then
we glue the local eigenforms using a weak multiplicity one result, after we normalize the
local eigenforms with respect to the first g-expansion coefficient (Proposition 4.15). This
use of weak multiplicity one and normalization via a g-expansion coefficient hinders us
from generalizing the main theorem to the case of G\Spy,, where sheaves of overconvergent
Siegel modular forms and the Siegel eigenvariety are constructed in a similar way [3].

Once we have a family of overconvergent Hilbert eigenforms f of finite slopes
parametrized by Dép associated to the family of eigensystems ¢ : Dép — &, we extend
its domain of definition in the Hilbert modular variety as large as possible by an analytic
continuation using the Up-operator. Since the Hecke eigenvalues are of absolute values
bounded by 1, we can show that g-expansion defines a rigid analytic function around a
cusp parametrized by Dép which is of absolute value bounded by 1. Such a function
automatically extends to the puncture, and a gluing shows that f also extends to
the puncture (Proposition 4.19). Since we analytically continued f to a large region,
the specialization f(O) at the puncture is also defined over the same large region. Thus
the nonconvergence property of eigenforms of infinite slope implies that f(O) is also of
finite slope, which gives us an extended map D¢, — Ec, -

The organization of this paper is as follows. In §2, we recall Buzzard’s eigenvariety
machine [12], on which the construction of the Hilbert eigenvariety in [4] relies, and we
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prove results to convert a family of eigensystems into local eigenforms and vice versa. In
83, we recall the definition of overconvergent Hilbert modular forms and the construction
of the Hilbert eigenvariety, both due to Andreatta, Iovita, and Pilloni [4], including
generalizations of some of their results to the case over C,. We also give a connected
neighborhood of any critical point in a Hilbert modular variety, which is one of the key
ingredients of the proof of Theorem 1.1. In §4, we prove properties of the g-expansion
for overconvergent Hilbert modular forms. These are used to produce a global eigenform
by gluing local eigenforms obtained from a family of eigensystems, and also to extend a
family of overconvergent Hilbert eigenforms over the punctured unit disc to the puncture.
Combining these results, we prove Theorem 1.1 in §5.

2. Lemmata on Buzzard’s eigenvariety

Let p be a rational prime and let K be a finite extension of Q, in Qp. In this section,
we establish two lemmata on Buzzard’s eigenvariety machine [12]. In the first lemma, we
show that any family of Hecke eigensystems over a smooth rigid analytic variety over C,
lifts locally to a family of eigenforms. The second one enables us to convert any family of
Hecke eigensystems of finite slopes over a reduced rigid analytic variety into a morphism
to the eigenvariety.

2.1. Buzzard’s eigenvariety machine

First we briefly recall the construction of Buzzard’s eigenvariety. Let R be a reduced
K-affinoid algebra. Let M be a Banach R-module satisfying the condition (Pr) of [12,
§2]. We write End%™ (M) for the R-algebra of continuous R-endomorphisms of M. Let T
be a commutative K-algebra endowed with a K-algebra homomorphism T — End§s™ (M).
Let ¢ be an element of T. Suppose that ¢ acts on M as a compact operator. We call such
a quadruple (R,M,T,¢) an input datum for the eigenvariety machine over K.

For such M and M’, a continuous R-linear T-module homomorphism « : M’ — M
is called a primitive link if there exists a compact R-linear T-module homomorphism
¢: M — M’ such that ¢ acts on M as coc and it acts on M’ as coa. A continuous
R-linear T-module homomorphism « : M’ — M is called a link if it is the composite of a
finite number of primitive links.

Let P(T)=1+4)_,-,cxT" be the characteristic power series of ¢ acting on M, which is
an element of the ring R{{T'}} of entire functions over R. The spectral variety Z, for ¢ is
the closed analytic subvariety of Sp(R) x A! defined by P(T). We denote the projection
Zy — Sp(R) by f.

The eigenvariety £ associated to (R,M,T,¢) is the rigid analytic variety over Z,, defined
as follows: let C be the set of admissible affinoid open subsets Y of Zy4 satisfying the
condition that there exists an affinoid subdomain X of Sp(R) such that Y C f~(X) and
the map Y — X induced by f is finite and surjective. We can show that C is an admissible
covering of Z, [12, §4, Theorem], and we refer to C as the canonical admissible covering
of Z¢.

Let Y = Sp(B) be an element of C and let X = Sp(A) be as before. Suppose that X is
connected. Then the A-algebra B is projective of constant rank d. In the ring of entire
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functions A{{T'}} over A, we can show that P(T) can be written as P(T) = Q(T)S(T)
with some S(T) € A{{T}} and a polynomial Q(T") of degree d over A with constant term
1, and that we have a natural isomorphism A[T]/(Q(T)) ~ B. Put Q*(T) =TQ (T ).
By the Riesz theory [12, Theorem 3.3], the restriction M4 of M to X = Sp(A) can
be uniquely decomposed as M4 = N @ F, where N is a projective A-module of rank d
such that Q*(¢) acts on N as the zero map and it acts on F' as an isomorphism. Since
Q*(0) #0, the operator ¢ is invertible on N. Let T(Y") be the A-subalgebra of End%™ (N)
generated by the image of T. Then the A-algebra T(Y) is finite and thus a K-affinoid
algebra. Moreover, we have a natural A-algebra homomorphism A[T]/(Q(T)) ~B —T(Y)
sending T to (¢|y)~ L. Put £(Y) =Sp(T(Y)). If X is not connected, by decomposing X
into connected components as X =[], X; we put £(Y) =][,€ (Y|x,). Then these local
pieces can be glued along the admissible covering C and define the eigenvariety £ — Z4
(12, §5]. By [12, Lemma 5.3], the rigid analytic varieties £ and Zy4 are separated.

By the construction, the natural map & — Zy4 is finite and the structure morphism
€ — Sp(R) is locally (with respect to both the source and the target) finite. Moreover, we
have a K-algebra homomorphism T — O(€) such that, for any admissible affinoid open
subset V of Z,, the induced map T®x O(V) — O(€|y) is surjective.

In some cases we can glue this construction to define the eigenvariety over a nonaffinoid
base space. Let W be a reduced rigid analytic variety over K. Let T be a commutative
K-algebra and let ¢ be an element of T. Suppose that for any admissible affinoid open
subset X C W, we are given a Banach O(X)-module Mx satisfying condition (Pr) with
a K-algebra homomorphism T — End‘é’(n)t()(M x) such that the image of ¢ is a compact
operator. Suppose also that for any admissible affinoid open subsets X; C Xo C W, we
have a continuous O(X1)-module homomorphism a : My, — Mx,®0x,)O(X1), which is
a link and satisfies a cocycle condition. Then the eigenvarieties for (O(X),Mx,T,$) can
be patched into the eigenvariety &€ — Zy — W [12, Construction 5.7], where Z; denotes
the spectral variety over W constructed by gluing the spectral varieties over X.

Let L/K be an extension of complete valuation fields (of height 1). For any quasi-
separated rigid analytic variety & over K and any coherent Ox-module F, we can define
base extensions Xy := XY@y L and F of X and F functorially (see [10, Section 9.3.6]
and [17, §3.1]). If the extension L/K is finite, then they are just the fiber product and
the pullback in the usual sense. Otherwise, it seems unclear if it has usual properties as
a fiber product: for an open immersion j: U — X, what we know in this case is that
the base extension jr : Uy — X is also an open immersion if j is quasi-compact (for
example, if X is quasi-separated and U is an admissible affinoid open subset) or a Zariski
open immersion. At any rate, [10, Proposition 9.3.6/1 and Corollary 9.3.6/2] imply that
the base extension takes any admissible affinoid covering of X to that of X;. We write
the set of L-valued points X1, (L) also as X'(L).

Let (R,M,T,¢) be an input datum for the eigenvariety machine over K and let £ — Z4
be the associated eigenvariety over X = Sp(R). We say that a K-algebra homomorphism
A:T — L is an L-valued eigensystem in M if there exist an element € X (L) given by
a K-algebra homomorphism z* : R — L and a nonzero element m of M®p .~ L such that
we have hm = A\(h)m for any h € T. It is said to be of finite slope if A(¢) # 0. Then there
exists a natural bijection between £(L) and the set of L-valued eigensystems A in M of
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finite slopes [12, Lemma 5.9]. We state the following lemma for reference, which is in fact
shown in [12]:

Lemma 2.1. Let (R,M,T,p) be an input datum for the eigenvariety machine over K
and let £ — Zy be the associated eigenvariety over X = Sp(R). Let L/K be an extension
of complete valuation fields and take z € E(L). Let x € X (L) and y € Zg(L) be the images
of z. Let A\: T — L be the L-valued eigensystem in M corresponding to z. Let m be a
nonzero element of M&g . L satisfying hm = A(h)m for any h € T. Take an admissible
affinoid open subset V in the canonical admissible covering of Zy satisfying y € V(L).
Write f(V) = Sp(A). Suppose f(V) is connected. Let P(T) be the characteristic power
series of ¢ acting on M. Let Q(T) be the factor of P(T) in A{{T}} associated to V and
let Mg = N®F be the corresponding decomposition of M 4, as before. Then we have the
following:

(1) A(h) =h(z) in L, where h(z) is the specialization at z of the image of h by the map
T — O(€).

(2) The decomposition
M®Ryw*L =N®Aa,q L@F@A@*L

is the one corresponding to the factor Q. (T) of P.(T), where P,(T) and Q.(T) are
the images of P(T) and Q(T) in L{{T}} by x*, respectively.

(3) Qa(A(@)™') =0 and m € N® 4+ L.

Proof. The first assertion follows from the proof of [12, Lemma 5.9]. The second
one follows from [12, Lemma 2.13] and the uniqueness of the decomposition in [12,
Theorem 3.3]. For the third one, note that the definition of the map £(V) — V implies
Q: (M9)™!) = Q1(M(¢)) = 0. Since Qi(¢)m = Q%1(A(¢))m = 0, the second assertion
implies m € N® 4, 5+ L. O

2.2. Lifting lemma a la Deligne and Serre

In this subsection, we consider the problem of converting a family of eigensystems into
a family of eigenforms. First we show a local lemma in the following setting: Let L be
a complete valuation field which is algebraically closed. Let (A,N,T,S,¢) be a tuple
consisting of

an L-affinoid algebra A,

a projective A-module N of finite rank,

a finite A-algebra T equipped with an A-algebra homomorphism 7' — End 4 (N),
an L-affinoid algebra S which is an integral domain, and

a homomorphism ¢ : T'— S of L-affinoid algebras.

For any = € Sp(S), we write m,, for the associated maximal ideal of S.

Lemma 2.2. Let L be a complete valuation field which is algebraically closed. Let
(A,N,T,S,p) be a tuple as before. Assume that for any x € Sp(S), the induced map

p(=)(): T = S/my
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is an S/my-valued eigensystem in N. Namely, we assume that for any x € Sp(S), there
exists a nonzero element f, € N ®4S/my satisfying (h®1)fr = (1@ p(h)(x))fs for any
heT.

(1) There exists a nonzero element F' € N®4 S satisfying (h®@1)F = (1®p(h))F for
any heT.

(2) Assume moreover that S is a principal ideal domain. We write F(x) for the image
of Fin N ®a S/m,. Then there exists F as in (1) satisfying F(x) # 0 for any
x € Sp(9).

Proof. Put P =Ker(p:T — S), which is a prime ideal of T. Consider the multiplication
map p:T®aT/P — T/P, and put

Q=Ker(u) =Ker(T@,T/P—>T/P —S).

Then the ideal @ is a minimal prime ideal. Indeed, since the A-algebra T is finite, the
T/P-algebra T ®4 T/P is also finite, and thus the latter ring is a finite extension of a
quotient of T/ P. Since the quotient (T'®4 T/P)/Q is isomorphic to T/P, we have the
inequality

dim(T/P) > dim(T ®4 T/P) > ht(Q) + dim(T/P),

which implies ht(Q) = 0.

The ideals n, = ¢~ !(m;) and n’, = (pou)~1(m,) are maximal ideals of the rings T and
T®4T/P, respectively. We write 71, for the inverse image of m, by the map T/P — S,
which is also a maximal ideal. Via the map 1® p: T®4T/P —-T®4 S, theringT®4T/P
acts on N ®4 S/m, for any = € Sp(S).

First we claim that n), = Annpg ,7/p(fz). Since 7, is a maximal ideal and f, # 0,
it is enough to show 7, C Annpg,r/p(fz). Since L is algebraically closed, the ideal
Im(n, ®4T/P)+1Im(T ® 4 7,) is a maximal ideal contained in 7}, and thus they are
equal. For any h € T, we denote its image in T'//P by h. Take elements h € T and h’ € n,.
We have (h@h') f, = 0. On the other hand, we also have (b’ ®1) f, = (1®¢(h')(z)) f =0
by assumption. This implies (h' ® ﬁ) f= =0, and the claim follows.

Next we claim that the localization (N ®4T/P)g of the T®4T/P-module N®4T/P
at @ is nonzero. Suppose the contrary. Since the T®4 T/P-module N ® o T/P is finite,
we can find s ¢ Q satisfying s(N ®4 T/P) = 0. Take any x € Sp(S). We have s(N ®4
T/n,)=0. Since L is algebraically closed, we have L =T /n, = S/m,, and we also see
that s(N ®4 S/m;) = 0. In particular, we have sf, =0 and s € Annpg ,7/p(fs) = 0.
Thus we obtain

se () m= () (o) ma)=(po)™ | () ma

z€Sp(S) z€Sp(S) z€Sp(S)

The assumption that S is a reduced L-affinoid algebra implies

ﬂ mg = 0.

z€Sp(S)
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Hence s € Ker(¢ou) = @, which is a contradiction.

Therefore we obtain @ € Supprg ,7/p(N ®4T/P). Since @ is a minimal prime ideal,
it is also contained in Asspg ,r/p(N ®4T/P). Namely, the prime ideal @ is written as
Q = Annpg , 7/ p(G) with some nonzero element G of N ®4T/P. Since the A-module N
is projective, the natural map 1®p: N®4T/P — N®4 .S is an injection. Thus the image
F = (1®¢)(G) is nonzero. Moreover, since h®1—1®h € Q for any h € T, we have the
equality (h®1)G = (1®h) G. Hence we obtain (h®1)F = (1@ ¢(h))F, and assertion (1)
follows.

Now assume that S is a principal ideal domain. Then each maximal ideal m, of S is
generated by a single element t¢,. Put

S(F) = {x € Sp(S) | F(z) = 0}.

Since the A-module N is projective and the Krull dimension of S is no more than 1, we
see that X(F) is a finite set. For any x € 3(F), the element F lies in Ker(N®4.5 - N®4
S/my) =mz(N ®45). By Krull’s intersection theorem, there exists a positive integer ¢,
satisfying F € t& (N ®4 S)\t&eTH(N®4 S). Put F =t¢* H with some nonzero element H
of N®4S. We have H(x) # 0 and X(H) C X(F). Since the S-module N ®4 S is torsion
free, the element H also satisfies (h®@1)H = (1® ¢(h))H for any h € T. Repeating this,
we can find F' as in assertion (1) satisfying X(F') = 0. O

Remark 2.3. Let Sp(S) be a connected affinoid subdomain of the unit disc D¢, =
Sp(C,(T)). Note that C,(T) is a principal ideal domain, since it is a unique factorization
domain of Krull dimension 1. [10, Proposition 7.2.2/1] implies that S is a regular ring of
Krull dimension no more than 1 such that every maximal ideal is principal. Since Sp(S)
is connected, we see that S is a principal ideal domain. Hence the assumption of Lemma
2.2(2) is satisfied in this case.

We say that a rigid analytic variety X is principally refined if any admissible covering of
X has a refinement by an admissible affinoid covering X = J,;.; U; such that the affinoid
algebra of each affinoid open subset U; in the refined covering is a principal ideal domain.

Remark 2.4. Remark 2.3 implies that any open subvariety of D¢, is principally refined.

For the eigenvariety associated to an input datum (R,M,T,¢), Lemma 2.2 implies the
following proposition:

Proposition 2.5. Let (R,M,T,¢) be an input datum for the eigenvariety machine over
K and let € — Zy — Sp(R) be the associated eigenvariety. Let L/K be an extension of
complete valuation fields such that L is algebraically closed. Let X be a smooth rigid
analytic variety over L and let ¢ : X — & = EQ L be a morphism of rigid analytic
varieties over L.

(1) There exist an admissible affinoid covering X = J;c;U; and a nonzero element
F, € M&RrO(U;) for each i € I satisfying (h@1)F; = (1® ¢*(h))F; for any h € T,
where * : T — O(E) — O(U;) is the map induced by .
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(2) Assume moreover that X is principally refined. We write k(x) for the residue field
of x € U; and F;(x) for the image of F; in M®gk(x). Then we can find F; as in
(1) satisfying F;(z) # 0 for any x € U;.

Proof. Let C be the canonical admissible covering of Zy. For any V' € C, we have the
K-affinoid variety £(V') = Sp(T(V)), as before. Then £ = Jy, . E(V)r is an admissible
affinoid covering of &;,. Let f: Z; — Sp(R) be the natural projection and write f(V) =
Sp(A). For any V € C such that f(V') is connected, take an admissible affinoid covering
0 " (E(V)1) = Usey, Ui such that U; = Sp(S;) is connected for any i € Iy. From the
construction of the eigenvariety, we have a natural decomposition M&rA =N @ F into
closed A-submodules N and F. Note that the A-module N is finite and projective. Since
the complete tensor product commutes with the direct sum, the S;-module N ®4 S; is a
submodule of M&rS;.

For any i € Iy, consider the natural map ¢* : T — T(V) — S;. We denote the map
T(V) — S; also by ¢*. For any x € U; = Sp(S;), the composite Sp(k(x)) — U; — &L
corresponds to a k(z)-valued eigensystem of T in M of finite slope. Namely, there exists
a nonzero element g, of M@rk(r) = N®ak(z) ® F&ak(z) satisfying (h®1)g, = (1®
©*(h)(x))gs for any h € T and (¢®1)g, # 0. Lemma 2.1(3) implies g, € N®4k(x). Since
U; is connected and smooth, the ring S; is an integral domain. Applying Lemma 2.2(1)
to the tuple (A®KL7N®KL,T(V)®KL,S},§0*®1), we obtain a nonzero element G; €
N®aS; = (N®KL) ®A®KLSi satisfying (h®1)G; = (1®¢*(h))G; for any h € T. Setting
F; to be the image of G; by the injection N ® 4 S; — M&rS; assertion (1) follows.

For assertion (2), by assumption we may assume that each S; is a principal domain.
Then Lemma 2.2(2) allows us to find G; satisfying in addition G;(z) # 0 for any x € U;.
Since we have a commutative diagram

N®aSi—— M®RrS;

| |

such that the horizontal arrows are injective, we obtain F;(z) # 0 for any x € U;. O

2.3. Bellaiche and Chenevier’s argument

Let (R,M,T,¢) be an input datum for the eigenvariety machine over K and let &€ — Z4 —
Sp(R) be the associated eigenvariety. Let L/K be an extension of complete valuation
fields. Put R;, = R®xL. Let X be a rigid analytic variety over L equipped with a
morphism «: X — Sp(Ry,). For any x € X, we have a natural ring homomorphism x*(z) :
R — k(x). A ring homomorphism ¢ : T — O(X) is said to be a family of eigensystems in
M over X if, for any = € X, there exists a nonzero element f, of M®R7K*(J)k(:ﬂ) such that
(h®@1)fy =(1®@p(h)(x))fs for any h € T. It is said to be of finite slopes if p(¢)(x) # 0 for
any € X. This is the same as saying that ¢(¢) € O(X)*. In this subsection, we show
that we can convert a family of eigensystems of finite slopes over a reduced base space
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into a morphism to the eigenvariety, following [7, Proposition 7.2.8]. First we recall the
following lemma:

Lemma 2.6.

(1) Let f: X =Y be a morphism of rigid analytic varieties over L with X reduced. Let
Z be a closed analytic subvariety of Y. Suppose f(X) C Z. Then f factors through
Z.

(2) Let f,f": X =Y be two morphisms of rigid analytic varieties over L with X reduced
and Y separated. Suppose that these morphisms define the same map between the
underlying sets. Then f= f'.

Proof. For the first assertion, we may assume that X = Sp(R1), ¥ = Sp(R2), and Z =
Sp(Ry/I) for some ideal I of Ry. Consider the associated ring homomorphism f*: Ry — R
and put J = Ker(f*). By assumption, every maximal ideal m of Ry satisfies (f*)~*(m)D1I.
Since R is Jacobson and reduced, we obtain

meESp(R1) meESp(R1)

Hence assertion (1) follows. Assertion (2) follows from the first one applied to (f,f’):
X =Y xrY and the diagonal Y - Y x Y. O

Proposition 2.7. Let (R,M,T,¢) be an input datum for the eigenvariety machine over
K and let € — Zy — Sp(R) be the associated eigenvariety. Let L/K be an extension of
complete valuation fields. Let X be a reduced rigid analytic variety over L equipped with a
morphism k: X — Sp(Ry). Suppose that we have a family of eigensystems of finite slopes
¢: T — O(X) in M over X. Then there exists a unique morphism ® : X — &, such that
the diagram

X—<D>5L

RNy
Sp(RL)

is commutative and, for any x € X, the eigensystem over k(x) corresponding to
Sp(k(z)) —» X 2 &5, is the map o(=)(x): T — k().

Proof. Let C be the canonical admissible covering of Z,. Take any V = Sp(B) € C and
put f(V)=Sp(A) as in the proof of Proposition 2.5. Let I be a finite subset of T such
that its image in T(V) is a system of generators of the finite B-algebra T(V'). We denote
by A{,L the affine space over V; = V&g L whose variables are indexed by I. We have a
morphism of rigid analytic varieties

ivii:EV)L = Ay, 2z (h(2)her-

From the definition of I, we see that the map iy ; is a closed immersion.
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On the other hand, we also have a morphism of rigid analytic varieties
p:X — Sp(Ryr) X AlL, T (m(x),go(cb)_l(x)) .

Let P(T) € R{{T}} be the characteristic power series of ¢ acting on M. For any x € X, let
P,(T) be the image of P(T) in k(x){{T}} by the map «*(z): R — k(z). By [12, Lemma
2.13], it is the characteristic power series of ¢ acting on M®R7K*(x)k(:c). By assumption,
there exists a nonzero element g, of M® R, i~ (x) k() satisfying

(h®1)ge = (1@ ¢(h)())gs-

Then Lemma 2.1(3) implies P, (¢(¢)(x)~") = 0. Using the assumption that X is reduced
and Lemma 2.6(1), we see that the morphism p factors through Zy .

For any V € C, put Xy, = pu~1(Vz). For any I as before, we consider the morphism of
rigid analytic varieties over V7,

Jviri Xv, = AL, x> (p(h)(2)ner-

By [12, Lemma 5.9] and Lemma 2.1(1), for any = € Xy, there exists a unique point
2z € E(k(x)) satistying p(h)(x) = h(z,) for any h € T. We claim that z, € £(V) . Indeed,
we may assume that f(V) is connected. Let Q(T") be the factor of P(T) corresponding to V
and let Q. (7T) be its image by x*(z). Let N be the direct summand of M4 corresponding
to V. For any = € Xy, , we have pu(z) € Vi, and Q, (¢ (¢7!) (2)) = Q% (¢(¢)(x)) = 0. Hence
Q%(d)g: =0 and thus g, € N ®4 k(x). From the proof of [12, Lemma 5.9], this implies
zz € E(V)r, and the claim follows.

In particular, we have jy j(z) = iv, 1(2;) for any z € Xy, and thus jy ;(Xy,) C
iv,1(E(V)p). Since iy  is a closed immersion and Xy, is reduced, Lemma 2.6(1) yields
a unique morphism ®y ;: Xy, — (V) over Vi which makes the following diagram

commutative:
Sy g
Xy, —=&(V)1
. fiv,l
v, 1

We claim that the morphism @y ; is independent of the choice of a finite subset I of T as
before. Indeed, for any = € Xy, , we have &y (x) =i},"; (jv,1(2)) = 2,, which depends only
on z. Since X is reduced and & is separated, Lemma 2.6(2) implies the claim. Moreover,
for the same reason we can glue the morphisms ®y ; along V' € C and obtain a morphism
®: X — & Since the requirement on ® in the proposition is the same as ®(z) = z,, it is
satisfied by the morphism ® we have constructed. Lemma 2.6(2) ensures uniqueness. [

3. Hilbert eigenvariety

3.1. Hilbert modular varieties

Let p be a rational prime. Let F' be a totally real number field of degree g which is
unramified over p. We denote its ring of integers by 0 = Op and its different by Dp. For
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any integer N, we put
UN:{660;|ezlmodN}.

For any prime ideal p | p of Op, let f, be the residue degree of p.

Fix a finite extension K/Q, in Q, such that F ® K splits completely. We denote by Ok
the ring of integers of K, by myg the maximal ideal of O, by mx a uniformizer of K, by
e the absolute ramification index of K, by k the residue field of K, and by W = W (k) the
Witt ring of k. Let v, be the additive valuation on K normalized as v,(p) = 1. For any
nonnegative real number ¢, we put

m7 = {z € O |vy(z) > i}, Ok.i=0x/m7', .7 =Spec(Ok.).

For any extension L/K of valuation fields, we consider the valuation on L extending v,
and define Or,, my, m?, OL,i, and .1, ; = Spec(Oy, ;) similarly. For any element z € Oy, 1,
we define the truncated valuation v,(z) by

vp(@) = min {u, (2),1}

with any lift Z € Of, of z. For any z € L, we define the absolute value of z by |z|=p~"(®).
We denote by Br the set of embeddings F' — K and by B, the subset of By consisting
of embeddings which factor through the completion F},. The set Br is decomposed as

B = [[B,.

plp

For any subset X of F, we denote by X the subset of totally positive elements of X.
Put Fr = F®R and Fj; = Homg(F,R). We denote by Fi'" the subset of Fj; consisting
of linear forms which maps the subset F*>* to Rsq. The group Uy acts on F and Fp'™
through € — €2.

Let ¢ be any nonzero fractional ideal of F. For any fractional ideals a,b of F' satisfying
ab~! = ¢, we denote by Dec(a,b) the set of rational polyhedral cone decompositions ¢ =
{o}sew of Fi'™ which is projective and smooth with respect to the lattice Hom(ab,Z)
such that the elements of € are permuted by the action of Uy, the set ¢ /Uy is finite,
and for any e € Uy and 0 € €, e(0)No # () implies e = 1, as in [31, §4.1.4]. Here we
adopt the convention that o is an open cone. Note that any two elements of Dec(a,b)
have a common refinement which belongs to Dec(a,b). For any such pair (a,b), we fix
once and for all a rational polyhedral cone decomposition € (a,b) € Dec(a,b) and put

2(¢c) ={€(a,b) | ab~! =c}.

3.1.1. Hilbert—Blumenthal abelian varieties. Let N >4 be an integer with p{ N
and let ¢ be a nonzero fractional ideal of F. Let S be a scheme over Og. A Hilbert—
Blumenthal abelian variety over S, which we abbreviate as ‘HBAV’, is a quadruple
(A,1,\,1) such that the following are true:

e A is an abelian scheme over S of relative dimension g.
o +:0Op — Endg(A) is a ring homomorphism.
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e ) is a c-polarization. Namely, A : A®p, ¢ ~ AY is an isomorphism of abelian
schemes to the dual abelian scheme AV compatible with Opg-action such that
the map

Homo, (A4,AY) ~Homp, (A, A®0,¢), frsA"tof,

induces an isomorphism of Op-modules with notion of positivity (PA,PX) ~
(c,cT). Here P4 denotes the Op-module of symmetric Op-homomorphisms from
A to AY, P:{ is the subset of Op-linear polarizations, and any element 7 € ¢ is
identified with the element (z — z®~) of Homp,. (4,A®0, ¢).

o Y: D}l ®@puny — A is an Op-linear closed immersion of group schemes, which we
call a T'go(V)-structure.

Note that for such data, the Op ® Og-module Lie(A) is locally free of rank 1 [20, Corollaire
2.9]. While the notion of an HBAV depends on ¢, we will omit the reference to ¢ when
there is no risk of confusion.

Let L/K be an extension of complete valuation fields and let p be a prime ideal of Op
dividing p. Let G be a finite flat group scheme over Op with an Op,-action. We have
decompositions

wg = @UJQ’B’ Lie(ngL,n): @Lie(gxyl;’n)ﬁ
BEB, BEB,
according with the decomposition Op, @ W~ [[5.5 W. Write wg g ~ P, Or/(a;) with
some a; € Or, and define the (-degree of G by degg(G) =, vp(a;). Similarly, for any
finite flat group scheme H over Op with an Og-action, we have decompositions

HZ@HP, WH = @w%g

plp BEBR
such that H, is a finite flat closed subgroup scheme of H over Op, and wy;, 5 = wy, s for
any 8 € By. We put degg(H) = degg (H,,) for any 3 € B,.
Suppose that G is a truncated Barsotti-Tate group of level n, height h, and dimension
d over Op,. For the p-torsion part G[p| of G, the Lie algebra Lie(GY[p] x .1 1) is a free
Op,1-module of rank h —d. The Verschiebung of GY[p] x .71 yields a map

Lie (Vgvip sy 1) : Lie(GY[p] x 72,1)% = Lie(GY[p] x F1.1).

Then the Hodge height Hdg(G) of G is by definition the truncated valuation for v, of the
determinant of a representing matrix of this map. Moreover, if the ring OF, acts on G,
then this map is also decomposed as the direct sum of maps

Lie (ng[plxyL,I)ﬁ :Lie(GY[p] X S1,1) 4105 = Lie(GV[p] X L1,1) 4,

where o denotes the natural lift to W of the pth-power Frobenius map on k. If the O, ;-
module Lie (G [p] x yl”l)ﬁ is free for any 3 € By, we define the 3-Hodge height Hdgs(G)
of G as the truncated valuation of the determinant of the map Lie (ng[p} % yLJ) 5 These
assumptions are satisfied when G is the p™-torsion part A[p"] = A[p"], of an HBAV A
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over Or, or, more generally, when G is an Op,-ADBT,, [29, §3]. For any 3 € B, we put
Hdgg (4)= Hdgg (A[p™]).

3.1.2. Moduli spaces and toroidal compactifications. Let M (uy,c) be the Hilbert
modular variety over Ok which parametrizes the isomorphism classes of HBAVs (A, ¢, A1)
such that X\ is a c-polarization and ¢ is a Tgo(IN)-structure. The scheme M (uy,c¢) is
smooth over Ok [26, Chapter 3, Theorem 6.9]. We denote by A" the universal HBAV
over M (pn,c).

An unramified cusp for M(uy,c) is a triple (a,b,¢x) of fractional ideals a,b of F
satisfying ab~! = ¢ and an isomorphism of Op-modules

¢on:a t/Na ™t ~Op/NOF.

For each cusp, we have a Tate object Tateq s(g) over a certain base scheme [36, §4],
which is used to construct a toroidal compactification M (un,c) of M (uun,c). We recall
the definition for unramified cusps. Put M = ab, Mg = M @R, and Mj; = Hom(M,R).
We identify M ® Q with F. Then any ¥ € Dec(a,b) gives a rational polyhedral cone
decomposition of

Mg™ ={feMg|f(M")CRso}.
For each o € €, put
oV ={me Mg |Il(m)>0 for any [ € o}.
Then we have an affine torus embedding
S = Spec(Ok[¢™ | m € M]) — S, = Spec (O [¢" |m e MNa"]).

The affine schemes {S, }sc% can be glued via S, NS, = Syn, to define a torus embedding
S — S¢. We denote by S3° and S& =, . S5° the complements of S in these embeddings
with reduced structures. The formal completions along these closed subschemes are

denoted by S, = Spf (Rg> and Se. By assumption, we can construct the quotient S JUNn
by regluing {S’U} 5 via the action €: S, ~ S, for any € € Uy. The closed subscheme
[eaS

S9° is defined by a principal ideal I, of the ring R, satisfying v/ I,=1,. The ring R,isa
Noetherian normal excellent ring which is complete with respect to the I,-adic topology.
Put S, = Spec (RU), S =V (fg), and S? = S, \ S2°, where the latter is an affine scheme
and we denote its affine ring by ]:22

Note that the torus with character group a is (aDr) ! ® G,. For any 1 € a, we denote by

X" the element of O ((aDp)_l ® Gm) which the character n defines. We have an Op-linear
homomorphism

q:b— (aDp) ' @Gy (52)

defined by £ — (%7’ — q5’7) with £ € b and 7 € a. By Mumford’s construction, we obtain
the semi-abelian scheme Tateq (q) over S, such that its restriction to SO is an abelian
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scheme [36, §4]. It admits a natural Op-action. Over S2, we have a natural exact sequence
0 — (aDp) ™' @ py —— Tateq 4(¢)[N]|g0 — 5b/b —0,

which defines, for any unramified cusp (a,b,¢x), a Igo(V)-structure on Tatea7b(q)|5g
using ¢y. Moreover, the natural isomorphism

((aDPF) ' ®G) ®o, ¢ — (6Dp) ' @Gy

induces a c-polarization
v
Aa,b : Tateq 5 ()| 50 ®o, ¢ — Tatep,a(q)|50 ~ (Tatea7b(q)|gg> .

By these data we consider the Tate object Tateq (q)|g0 as an HBAV over 52, which yields
a morphism S — M (uy,c). Then the toroidal compactification M7 (jup,¢) of M(pn,c)
over Ok with respect to Z(c) — which we also denote by M (un,c) if no confusion will

occur — is constructed in such a way as to satisfy the following (see [36, Théoreme 6.18]
and [23, Théoreme 7.2 (i)]):

e M(un,c) is projective and smooth over Ok.

e M(un,c) is an open subscheme of M (uy,c) which is fiberwise dense and the
complement D of M (uy,c) is a normal crossing divisor. In particular, M (uy,c¢) is
quasi-compact.

e The formal completion M (un,c)|}y of M(un,c) along the boundary divisor D
contains

Hg‘f(a,b)/UN

as a formal open subscheme, where the disjoint union runs over the set of
isomorphism classes of unramified cusps.

e The universal HBAV A" over M (un,c) extends to a semi-abelian scheme A"
with Op-action over M (uy,c) such that for any o € €(a,b), the pullback of A"
by the restriction to SO of the unique algebraization S, — M (ux,c) of the map
S, — M(pn,c)|p for any unramified cusp (a,b,¢y) is isomorphic to Tateq,s(q)|50-

3.1.3. Strict neighborhoods of the ordinary locus and their integral models.
Let M(pup,c) be the p-adic formal completion of M (un,¢). Let M(un,¢) be its Raynaud
generic fiber. Let M (uy,¢) be the analytification of the scheme M (uy,¢) ®o,. K, which is
a Zariski open subvariety of M (py,¢). The semi-abelian scheme A" defines semi-abelian
objects A™ over M(pun,c) and A"™ over M(uy,c) by taking the p-adic completion and
the Raynaud generic fiber. For the zero section e of A™, put w gun = e*Q}iun/M(MN,c)' For
any g-tuple x = (kﬁ)BGBF in Z, we define

®k
wA\1n7ﬂ = W Aun ®0F75 0K7 w%un = ® wgur{iﬁ'
BEBR
We also define w jun g and w'y,, similarly. For any 8 € Bp, let hg be the ﬁ—Partial Hasse
invariant, which is a section of the invertible sheaf w%m o108 ®wgu1n 5 on M(un,c) x A
[27, §2.5] (see also [2, §7] and [24, §3.1]). For any extension L/K of complete valuation

fields, any HBAV A over O, and any 3 € Br, consider the element P of M (up,c)(L)
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induced by A and a lift iLB of hg as a section of w%un 0—105®W;§§n
neighborhood of P. Then we have the equality of truncated valuations

Hdgs(4) = vy (s (P))
If P € M(un,c)(L) corresponds to a semi-abelian scheme A over O, which is not an
abelian scheme, then we put Hdgg(A) = v, (ﬁg (P)) =0.
Let v = (vg) 3eg,. e a g-tuple in [0,1]NQ. We denote by M (un,c) (v) and M(pn,c) (v)
the admissible open subsets of M (uy,c) and M(uy,c) defined by v, (ﬁg(P)) < g for

any 3 € Bp, respectively. Note that M(un,¢) (v) is quasi-compact. We define its integral
model My, ¢) (v) as follows: Write vs = ag/bg with nonnegative integers ag and bg # 0.
Take a formal open covering M(uy,c) = (J4; such that every hg lifts to a section hg
on each ;. Consider the formal scheme whose restriction to each i; is the admissible

8 over an open

blowup of i; along the ideal (p“f‘ ,ﬁgﬂ ), and its locus where this ideal is generated

by Bl;f. Repeat this for any 8 € Br and define M(un,c)(v) as the normalization in
M (un,c) (v) of the resulting formal scheme. We denote the special fibers of M (uy,c) and

IM(pn,c) (v) by M (pn,c)r and 9 (uy,c) (v),, respectively. We also denote by M (un,c) (v)
the complement in 9(ux,¢) (v) of the boundary divisor Dy of the special fiber. Then the
open immersion M(py,c) (v) — M(pw,c) (v) is of finite type and [19, Proposition 7.2.4]
implies that 9M(un,c) (v)™ is quasi-compact.

Let v be an element of [0,1]NQ. When vz = v for any 5 € Bp, we write M(up,c) (v) as
M(pn,¢)(v). Moreover, we denote by M(un,¢)(viot) the quasi-compact admissible open

subset defined similarly to M (puy,c)(v) with the usual Hasse invariant

hiot = ] hs

BEBF

instead of hgs. We also define similar spaces for these two variants, such as M (uy,c)(v)
and M (1, ¢) (viot ). Note that 9(un,c)(0) is just the formal open subscheme of M (py,c¢)
over which all the -partial Hasse invariants are invertible.

The formal scheme 9M(ux,c)(0) is also a formal open subscheme of M(un,c)(v)
containing Dy,. Let sp : M(un,c) — M(un,c)x be the specialization map with respect
to M(pn,¢). Then [19, Propositions 7.2.1 and 7.2.4] yields

M(pn,c) (v)"7 = M(un,c) (v) \sp~* (Dp). (3.1)

Let R be a topological Ok-algebra which is idyllic with respect to the p-adic topology
[1, Définition 1.10.1]. By [1, Corollaire 2.13.9], any morphism f : Spf(R) — 9M(uun,c¢) has
a unique algebraization f : Spec(R) — M (un,c), and we have a semi-abelian scheme
Gr = f*A"™ over Spec(R). Taking the reduction modulo p, we see that f factors through
M (un,¢)(0) if and only if G is ordinary.

Let NAdm be the category of admissible p-adic formal Og-algebras R such that R is
normal. Note that we have R[1/p]° = R by [10, remark after Proposition 6.3.4/1]. By [36,

Lemme 3.1], we can see as in [3, Proposition 5.2.1.1] that any morphism Sp(R[1/p]) —
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M(pn,c) (y)rig corresponds uniquely to an isomorphism class of an HBAV A over Spec(R)
such that Hdgg(A,) < vg for x € Sp(R[1/p]).
We give a proof of the following lemma for lack of a reference:

Lemma 3.1. Let L/K be an extension of complete valuation fields. Let X be a connected
smooth rigid analytic variety over L and let F be an invertible sheaf on X. Suppose that
f € F(X) vanishes on a nonempty admissible open subset U of X. Then [ =0.

Proof. Take an admissible affinoid covering X = UiE ; &; such that X; is connected and
F is trivial on X; for any ¢ € I. We have X;, N\U # () for some ig. Then [25, Exercise 4.6.3]
implies f|x,, = 0.

Put Iy ={i €| f|x, =0}, which is nonempty. [25, Exercise 4.6.3] also implies that
X;NX; =0 for any i € Iy and j € I := I\ I. Then for the subsets

=Jx x=Ux

i€y i€l
and s € {0,1}, the intersection XsNX; equals X; if i € I, and () if i ¢ I;. Hence X = Xy [[ X4
is an admissible covering of X. Since X" is connected, we obtain X = Ay and f=0. O

Lemma 3.2. Let L/K be an extension of complete valuation fields. Let R be an
admissible formal Or-algebra such that R[1/p] is reduced. Suppose that Spec(R/mpR) is
reduced and connected. Then Sp(R[1/p]) is connected.

Proof. Take a surjection Op(Ty,...,T,) — R. Then [11, Proposition 1.1] shows
(R[1/p])° = R. Moreover, by [10, remark after Proposition 6.3.4/1] R is integrally
closed in M[1/p]. Thus we have bijections between the sets of connected components

mo(SP(R[1/p])) = mo(Spec(R)) = mo(Spec(R/mLR)),
from which the lemma follows. O

Lemma 3.3. Let l/k be a finite extension and put W' =W (l). Let K’ be the composite
field of K and Frac(W') in Q,. Let R be a Noetherian W-algebra and let m be a mazimal
ideal of R with residue field I. Consider the natural maps

Rw W' =1, Rew O — 1, Rew Orr — 1

induced by R — R/m = 1. We denote the kernels of these maps by m', n, and n/,
respectively. Then the natural maps between complete local rings

R} = (Rew W, R} &wOk — (Row Ok )
are bijective. In particular, we have isomorphisms
(Rew Ok)h = (R@w Og:)h, + (Row W)h, & Ok

Proof. For the first map, since R is Noetherian and R/m =1 is perfect, there exists
a unique section W' — R}, of the natural surjection R}, — [. Thus we obtain a
homomorphism of W’-algebras R®@w W’ — R/, . This induces a map (RQw W')", — R},
which gives the inverse of the first map.
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For the second map, since p € m and O is totally ramified over W, we have n = (m,7g).
This yields R} &w Ok ~ (R@w O )A. The last assertion follows by applying them to
Rew Ok and Row W'. O

Lemma 3.4. Let X, be either of the rigid analytic varieties

M(pn;e) (V) M(pn,e)(Vror)-
Then X,®C, is connected for any v € [0,1)NQ.

Proof. Since X, is separated, it is enough to show that for any sufficiently large finite
extension K'/K, the base extension X, @y K’ is connected [17, Theorem 3.2.1]. Replacing
K by K’, we may assume that K’ = K and every connected component of X, has a K-
rational point.

By Ribet’s theorem (see [26, Chapter 3, Theorem 6.19]), the ordinary locus M (un,¢)(0)
is geometrically connected. Then 90t(pn,¢)(0)y is also geometrically connected, since it is
smooth over k and contains M (un,c)(0), as a dense open subset. Since X is the tube
for the immersion M (up,c)(0)r — M(un,c), [9, Proposition 1.3.3] yields the lemma for
v=0.

Consider the case of v > 0. Suppose that X, is not connected. Then we can take its
connected component Y which does not intersect Xj. Since U is quasi-compact, there
exists a finite admissible affinoid covering U = J;~, U; of U such that any S-partial Hasse
invariant can be lifted to a section over I;. Using the maximal modulus principle on each
U;, we see that there exists a positive rational number § satisfying

max {Hdgz(z) | B€Br} > 6

for any x € U. Then for any rational number ¢ satisfying 0 < & < §, we have X. NU = 0.
On the other hand, let us consider the specialization map

sp: M(un,c) = M, )k

with respect to M(un,c). Take any P € U(K) and consider its specialization P = sp(P).
Since P ¢ M(pn,¢)(0), the point P corresponds to an HBAV. By [27, (2.5.1)] and Lemma
3.3, the complete local ring of M (py,c) at P is isomorphic to the ring Ok [[ts | 8 € Br]].
Then [19, Lemma 7.2.5] gives an identification

Sp_l (P) = H Aﬂ[0’1)7 (32)
BEBR

where for any interval I we denote by Azl the annulus over K with parameter ¢g defined
by the condition |tg| € I. By [27, §4.2], we may assume that the parameter tg satisfies

min{v,(t5(Q)),1} (Ber(P))
0 (B¢ (P))

for any Q € sp~! (]5) and for any 5 € Br, where A is the HBAV corresponding to () and
7 (P) is defined by [27, (2.3.3)].

Hdg ;(A) = { (3.3)
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Suppose X, = M(un,¢)(v). For any positive rational number &, put

o (P)(e) = [ Aslp=1)x [T Asl00).

BGT(P) ﬂiT(P)

Since sp~! (]5) (v)" is a connected admissible open subset of X, containing P, it is
contained in U. However, for any ¢ satisfying ¢ < min{d,v}, we have

0#sp™" (P)(e) € XNl

which is a contradiction.

When X, = M(un,¢)(viot), take any rational number e satisfying 0 < e < min{§,v} and
vy (tp(P)) > ¢ for any B € Br. Put w =g 'e. Let V be the admissible affinoid open subset
of sp~! (]5) defined as

V=1 (ts)ses, € [ Aslop™]| TI Itsl=p"

BEBR BET(P)

Since P €V C X, and VN X, # (), by an argument as before we reduce ourselves to showing
that V is connected.

For this, replacing K by its finite extension, we may assume that there exist a,b € Ok
satisfying v,(a) = v and v,(b) = w. Consider the ring

R= Ok (Tp,Us | B€Br)(T)/(Tf —a,bUs =Ty | € Br)
with f = HﬁET(P) T3. Then V = Sp(R[1/p]) and the special fiber

Spec (k[Tp,Us | 8 € Bp][T1/(Tf,Ts | 8 € Br)) = Spec(k[Us | B € Bp][T1)

is reduced and connected. Then Lemma 3.2 concludes the proof. O

3.1.4. Canonical subgroups over moduli spaces. Let n be a positive integer. Let
v=(vg)gen, e a g-tuple satisfying

vg €[0,(p—1)/p")NQ

for any 8 € Br. Note that the 1/(p™(p—1))th lower ramification subgroups can be patched
into a rigid analytic family [28, Lemma 5.6]. Let R be an object of NAdm and put
U =Sp(R[1/p]). Let U — M(un,c) (v)™® be any morphism of rigid analytic varieties over
K. This defines an HBAV A""|g over Spec(R). For any rig-point = € Spec(R), we have
the canonical subgroup Cy, ((A"™"|r),) by [29, Theorem 8.1]. [29, Theorem 8.1(7)] implies
that they can be patched into an admissible open Op-submodule C,, of A" [p"]|y. By
[3, Proposition 4.1.3], it uniquely extends to a finite flat subgroup scheme C,, of A"|x
over Spec(R). Since C,, agrees with the scheme-theoretic closure of C, in (A" |g) [p"], we
see that C,, is stable under the Opg-action.

On the other hand, on a formal open neighborhood il of a point of the boundary
satisfying 4 C M (un,c)(0), the unit component A" [p"]°|y is quasi-finite and flat over
i with constant degree on each fiber by [36, p. 297(ii)]. Thus it is finite and flat. Then
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by gluing along 9 (s,¢)(0), we obtain a finite flat formal subgroup scheme C,, of 2("*
over M(un,¢) (v) and its generic fiber C,,, which we refer to as the canonical subgroup of
level n.

Let R be a topological Og-algebra which is quasi-idyllic with respect to the p-adic
topology [1, 1.10.1.1]. Since any finitely generated R-module is automatically p-adically
complete [1, Proposition 1.10.2], any finitely presented flat formal group scheme over
Spf(R) can be identified with a finitely presented flat group scheme over Spec(R). Thus
we have a theory of Cartier duality for any finitely presented flat formal group scheme G
over any quasi-idyllic p-adic formal scheme, and we can define the Hodge—Tate map

HTg:G(R) > wgv, x> z* (?) .

From the construction, we see that the restriction of the Cartier dual C,[gy(, v, ¢)(0) to the
ordinary locus is finite and étale.
Note that for the function

6k (v) =min ([v/(p—1),+00)Ne 'Z),

the ideal m?’/ *=1) i5 generated by W?K ) Then we have the following variant of [3,

Propositions 4.2.1 and 4.2.2]:
Lemma 3.5. Letv= (v,@)ﬂeBF be a g-tuple of nonnegative rational numbers satisfying

v:=max{vg |B€Br} <(p—1)/p".

Let R be an object of NAdm. For any morphism of admissible formal schemes
f: SpE(R) — M(pun,c) (v) over Ok, consider the pullback G = A™|g by the unique
algebraization Spec(R) — M (uy,c) of f and M, = Cnlspt(ry, which is a subgroup scheme
of the formal completion of G.

(1) For any rational number i € e~'Z>q satisfying i <n—v(p™—1)/(p—1), the natural
map we Qo Okr,i = wi, o, Ok,i s an isomorphism.

(2) Assume that we have an isomorphism of Op-modules HY(R) ~ Op [p"Op. If there
exists a rational number i € e~ 'Zx>q satisfying 0x(v) <i<n—v(p"—1)/(p—1),
then the cokernel of the linearization of the Hodge—Tate map

HTyv @1:H,)(R)®@ R — wy,

is killed by m7"/ @™V
Proof. Since the ordinary case is trivial, by a gluing argument we may assume that f
factors through 9M(un,¢) (v). By replacing Spf(R) with its formal affine open subscheme,
we may assume that R is an integral domain and wg is a free Op ® R-module of rank 1.
The first assertion follows by reducing it to [29, Theorem 8.1(8)] in the same way as [3,
Proposition 4.2.1]. For the second assertion, take surjections RY — HY (R)®@ R~ (R/p"R)?
and RY ~ wg — wy,,. Then the map HT#v ®1 can be identified with the reduction of

the map defined by some matrix v € My(R). It suffices to show miv/(p_l)Rg C~(R9).
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Let p be a prime ideal of R of height 1 and let ]:Zp be the completion of the local ring
Ry. [29, Theorem 8.1(9)] implies m?("/(p_l)ﬁ’,g Cy (]:'ig) + 7§ RY and thus m?)/(p_l)f%‘g C

vy (Rg) This shows miv/(p_l)Rg C v (R}) and det(y) # 0. Since R is normal, y(RY) is

the intersection of v (R}) for every such p, and the assertion follows. O

3.2. Connected neighborhoods of critical points

Let Y., be the moduli scheme parametrizing the isomorphism classes of pairs (A4,7H)
over schemes S/Spec(Ok), where 4 is an HBAV over S with c¢-polarization and oo (N)-
structure, and H is a finite locally free closed Op-subgroup scheme of A[p] of rank p? over
S such that # is isotropic in the sense of [27, §2.1]. Then Y, , is projective over M (un,c)
[38, p. 415]. For S = Spec(O},) with some extension L/K of complete valuation fields and
an ideal a of O, we say that H is a-cyclic if the Op-module H (Oj) is isomorphic to
Or/a, where L is an algebraic closure of L. Then # is isotropic in this sense if and only
if H is p-cyclic.

Let 9., be the p-adic formal completion of Y , and let )., be its Raynaud generic
fiber. Note that they are separated. By [36, Lemme 3.1], we have Y, ,(L) =92 ,(Or) =
Y. »(Or) for any extension L/K of complete discrete valuation fields. In this subsection,
we construct a connected admissible affinoid open neighborhood of a point @ = [(A,H)]
of Y p satisfying Hdgz(A) = p/(p+1) for any 8 € Br inside the base extension Y pc, =
Ve.p@ K Cp, assuming f, <2 for any p | p.

Lemma 3.6. There exists a point of M(uy,c) corresponding to an HBAV A over the
ring of integers O, of a finite extension L/K satisfying Hdgg(A) = p/(p+1) for any
B EBE.

Proof. Consider the stratum Wpg, of the special fiber M (un,c)x as in [27, §2.5]. Since
Wpg, is nonempty, there exists a point P € M(uy,c) such that P = sp(P) € Wg,
for the specialization map sp : M(un,¢) = M (un,c)r as before. Since 7(P) = B, the

identifications (3.2) and (3.3) yield the lemma. O

Proposition 3.7. Suppose f, <2 for any p|p. Let L/K be a finite extension in Qp and
let | be the residue field of L. Let K' be the composite field of K and Frac(W (1)) in Q.
Let [(A,H)] be an element of Y. ,(OL) satisfying Hdgg(A) =p/(p+1) for any 8 € B,
and let @ be the element of Y. p(L) it defines. Let

sp: Vep = (Yep), = Yep X0 Spec(k)
be the specialization map with respect to 9., and put Q =sp(Q). We define

1 p
< ! 4 <
< degy (Al < 2

+
b B
2 pramicas).

Ve (1) = {@ = () €V | demsal/a) <

Veq = {Q’ — (M) €sp Q)

Hng(A’) <

1
p+

T for anyﬁeBF}.
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Then they are admissible affinoid open subsets of Y., defined over K' such that
V0@ Cp is connected.

Proof. By the assumption f, <2 and [29, Proposition 6.1], we have the equality
degg(Alp]/H) = p/(p+1) for any 3 € Bp. [39, Proposition 4.2] shows that this value
is equal to the one denoted by v5(Q) in [27, §4.2]. In particular, the definition of vg(Q)
in [27, §4.2] implies I(Q) = Br with the notation of [27, (2.3.2)].

We claim that the complete local ring (’A)yth of Y., at @Q is isomorphic to the ring

B =0k [[Xp,Ys| BEBFI/(XgYs—p| B EBF) (3.4)

and that there exists gz € (B')* such that for any finite extension E/K’ and any Ok -
algebra homomorphism z : B’ — Op, the corresponding Og-valued point [(A’,H’)] of Y ,,
satisfies

degg(A'[p]/’H,') = min{v,(Xz(z)),1}, Hng(A') = min{v,((Xg +gng_106)(x)),l}.

Indeed, let Y be a moduli scheme over W similar to Y. , considered in [27, §2.1]. Let
R be the affine algebra of an affine open neighborhood of @ in Y, and let mg be the

maximal ideal of R corresponding to Q. The ring @Yt’p@ is equal to the completion of
the local ring of R®@w Ok at the kernel ng of the map R®@w Ok — [ associated to m.

By Stamm’s theorem [38] (see also [27, Theorem 2.4.1']), the mg-adic completion }A%m@
of the localization R,, o 1s isomorphic to the ring

B=W()[[Xs,Yp|BeBr]/(XsYs—p|BEBr).

Moreover, since Hdggz(A4) # 0 for any 8 € Br, equation (3.3) implies 7 (Q) = Bp. Thus,
for any finite extension E/Frac(W(l)) and any W (I)-algebra homomorphism z : 8 — Op,
the corresponding HBAV A’ satisfies v (t5(z)) = Hdggz(A'). By [27, Lemma 2.8.1] and the

definition of vg(Q) in [27, §4.2], the isomorphism RmQ ~ B gives an identification of degg
and Hdgg for the ring B as claimed before. Then the claim follows from Lemma 3.3.
By [19, Lemma 7.2.5], we have

sp~ (Q) = (Spf(B"))"e.
Thus V, ¢ is the K'-affinoid variety whose affinoid ring is the quotient of the Tate algebra
K’ <X57Y57Uﬁ7V5aW5 | B e IEBF>

by the ideal generated by
p+1
X§+1_pUﬂ7 X§+1Vﬂ—pp, XBYIQ—p, ng (X5 +95Y:*10ﬁ) —pP

for any 8 € Bp. From this, we also obtain a similar description of V. ¢ (ﬁ) as a K'-

affinoid variety.
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Next we prove that the base extension V., g® ' C, is connected. Put r =1/(p+1) and
s=p/(p+1). Fix a (p+1)th root w = p'/ P+ of p in Q,. Then the affinoid ring B c,
of VC,Q® k' C, is also isomorphic to the quotient of the Tate algebra

Cp (X5, Y5,Up, Vs, W5 | B € Br)
by the ideal generated by
ngwUB, X@VBpr, XﬁYg*?ﬂerl, Wg <X5+95Y:_106>7wp

for any 8 € Br. Note that in the ring Bq,c, we also have Y3 — @V = 0. Hence Bq,c,, is
isomorphic to the quotient of the ring

Cp (Up, Vs, W | B € Br)
by the ideal generated by
UsVp -, F:=Wp (Uﬁ +wp*19befloﬁ) —=
for any 8 € Br with some 9}3 € Qlacp, where
Aq,c, = Oc, (Us,Vs | BE€Br) / (UsVs—wP ' | B €Br).
From these equations, we see that
G = Vi = Wi (14 g5 VaVE 1) =0
in this quotient. Since
Fs=-UsGp mod UgVs — w1,
we obtain
Bq.c, ~Cp(Us,Vs,Ws | BEBF)/ (UsVs —w"",Gg | BE€Br).
Note that the ring
Bq.c, =Oc, (Us, Vs, Ws | BE€BF) / (UsVs —w"',Gs | B €Br)

is a flat Oc,-algebra. Indeed, consider the polynomial ring 2 c,[Wp]. Since the
coefficients of G5 as a polynomial of W generate the unit ideal g c,,, by a limit argument
reducing to the Noetherian case and using [34, (20.F), Corollary 2] we see that the ¢, c,-
algebra

g.c, Ws|BEBF] /(G| BEBF)

is flat. By [1, Proposition 1.10.2(ii)], the p-adic completion of this algebra is B¢ c,. Since
the Oc, -algebra 24 c, is flat, the p-adic completion B ¢, is also flat over Oc, .
Put Gg = Gg mod mc, and

RZFP[Uﬁ,Vﬁ,W5|ﬁEBF], jZ(U5V5,65|ﬁEBF).
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Next we claim that the reduction %Q@p = R/J_ of Bg ¢, is reduced and Spec (%Q@p)
is connected. For reducedness, it suffices to show that the localization at every maximal
ideal is reduced. Let 9t be any maximal ideal of R containing J. Then we have

1+923V[3Vf_10,8 ¢ m,

since, supposing the contrary, Gz € 9 implies V5 € M and 1 € M, which is a contradiction.
Thus in the ring Rgn we have

—1 _
Wa—Vs (1+g5VaVP 1) € JRm
for any 8 € Br. Hence the localization (%Q»Cp)m is isomorphic to the localization of the
ring
Fp[Us,Vs | B €Br]/(UsVs | B € Br)

at the pullback of 91, which is reduced.

Let us show the connectedness. Let B =By [[By be a decomposition into the disjoint
union of two subsets. Consider the closed subscheme Fg,, g, of Spec(Bg,c,) defined by
Us =0 for § € By and Vg =0 for 8 € By. Since every Fp, g, contains the point defined
by Ug =Vg =Wy =0 for any 5 € Bp, it is enough to show that Fp, g, is connected for
any such decomposition of Br. Put

Upy,5, = Fp [Us,Vs | B €Br]/(Us (B€Bu), Vs (BE€By)).
Note that the 2Ag,, g, -algebra
Az, .8, [Ws | B€Br]/(Gs| B €Br)

is flat. From this we see that the affine algebra of Fgy, p, can be identified with the
subring

Vs

9 T
BU,IBV 1+g/BVBVo-*loﬁ

ﬁEBF]

of Frac (Ap,,B, ), which is an integral domain. Hence we obtain the connectedness of
Bg,c,- By [19, Lemma 7.1.9], sp~* (Q) is reduced, and [17, Lemma 3.3.1(1)] shows that
Ve @k C, is also reduced. Then Lemma 3.2 shows that V, &k C, is connected. O

Lemma 3.8. Suppose f, <2 for any p|p. Let L/K be a finite extension. Let [(A,H)] be
an element of Ye ,(OL) satisfying

degg(Alpl/H) <p/(p+1),  Hdgg(A) <p/(p+1)

for any B € Bp. Then for any p | p, either Alp], has the canonical subgroup of level 1
which is equal to Hy, or Hdgg(A) =p/(p+1) for any B € By.

Proof. Suppose Hdgg (A) <p/(p+1) for some fy € B,. Since we have Hdgz(A) <p/(p+
1) for any € Bp, the assumption on f,, implies that the inequality

Hdgg(A) +pHdg,-105(A) <p
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holds for any 3 € By. By [29, Theorem 4.1], the Op,-ADBT; A[p], has the canonical
subgroup C,.
Suppose H,, # C,. For any 5 € By, [29, Corollary 5.3(1)] implies that

Hdgy (p~ " Hy/Hy) =p~ ' Hdg,op (Alply) = p~ ' Hdg,os(Alp]) <1/(p+1)
and that A[p],/H, is the canonical subgroup of p~'H,/H,. Thus we have
degy(A[p]/H) = deg (Alplp/Hp) =1 —Hdgy (p~"Hy/Hy) = p/(p+1),

which yields degg(A[p]/H) =p/(p+1) and Hdgs(A[p]) = p/(p+1) for any 3 € B,. This
contradicts the choice of (. O

Corollary 3.9. Suppose f, <2 for any p|p. Let L/K be a finite extension. Let [(A',H')]
be an element of Y. ,(Or) such that [(A7,H})] € Ve,qo(L). Then for any finite flat closed
p-cyclic Op-subgroup scheme D of A'[p] over Op, satisfying D, NH} =0, we have

Hdgs(A'/D) <1/(p+1)
for any B € B, and A’[p]/D is the canonical subgroup of A’'/D of level 1.

Proof. Write D = @p‘pr. The assumption implies Dy, # H,, for any p | p. If H is the
canonical subgroup of A’[p],, then [29, Corollary 5.3(1)] implies that

Hdgs(A'/D) =Hdgs (p~'Dy/Dy) = p~ 'Hdg,os(A'lp]) < 1/(p+1)

for any 3 € B, and that A’[p],/D, is the canonical subgroup of p~*D, /D, = (A’/D)[plp-
Otherwise, Lemma 3.8 yields Hdggz(A’) = p/(p+1) for any 8 € B,. By [29, Proposition
6.1], we see that

degg (A'[plp/Dp) =p/(p+1),  Hdgs (A'/D)[ply) =1/(p+1)

for any € B, and that (A’/D)[p], has the canonical subgroup A’[p|,/D,. Hence the
HBAV A’/D satisfies

Hdgs(A'/D) <1/(p+1)
for any 5 € Br and has the canonical subgroup

A'lpl/D=EDA'p]p/ Dy

plp

of level 1. This concludes the proof of the corollary. O
Lemma 3.10. Suppose f, <2 for any p | p. Then we have

Ve (551) #0.
Moreover, for any finite extension L/K and any element [(A',H')] of Y. ,(OL) satisfying

(AL, H] €Veo (ﬁ) (L), we have Hdgg(A') <1/(p+1) for any 8 € Br and the HBAV

A’ has the canonical subgroup H'.
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Proof. Recall that we have sp~* (Q) = (Spf(®8’))"¢ with the ring B’ of equation (3.4)
in the proof of Proposition 3.7. From the description of degg in terms of the parameter
X3 of the ring B’, we see that there exists a point [(A’,H')] € Y ,(Or) with some finite
extension L/K such that [(A},H})] €sp~!(Q) and

degs (A'[p]/H') =1/(p+1)
for any 8 € Bp. Then [29, Lemma 5.1(1)] implies that Hdgg(A’) = 1/(p+1) for any
B € Br and thus [(A7,H})] € Vo (ﬁ) (L). The last assertion also follows from [29,
Lemma 5.1(1)]. O
Since ), is separated, Proposition 3.7 implies that the base extension Vg c,

VC’Q® kC, is an admissible affinoid open subset of Ye,p,c, whose connected components
are all isomorphic to V. o®x/C,. Each connected component contains an affinoid

subdomain of V. g ( )® xC, which is isomorphic to Vg ( )® k'C,. By Lemma

p+1 ptl

3.10, we have

Ve,Q (p+1> ®K’C # 0.

The point @ € V. (L) defines a point of )., c, (Cp) by the natural inclusion L — C,,
which we also denote by Q. Let VO Q.c, be the connected component of V¢ ¢, ¢, containing

@ and let Vc o.c, <p+1> be a copy of V. g ( >®K/(C which is contained in V

These are both nonempty admissible affinoid open subsets of Ve ;, ¢,

3.3. Overconvergent Hilbert modular forms and the eigenvariety

In this subsection, we recall the construction of sheaves of overconvergent Hilbert modular
forms and the associated eigenvariety, due to Andreatta, Iovita, and Pilloni [4].

3.3.1. Overconvergent modular forms over Hilbert modular varieties. Put
T = Reso, /z(Gm). Let T be its formal completion along the unit section. For any w €

e Z>1, let TY be the formal subgroup scheme of T over Spf(Ok) representing the functor
B — Ker (T(B) = T(B/7¢'B))

on the category of admissible formal Og-algebras %B. Then T is a quasi-compact
admissible formal group scheme over Og.

Let W be the Berthelot generic fiber of Spf(Ok [[T(Z,)]]) and denote the universal
character on this space by

R T(Z,) = O°(W)* = Ok [[T(Z,)]1*

Here O° is the sheaf of rigid analytic functions with absolute value bounded by 1 and the
last equality follows from [19, Theorem 7.4.1]. For any morphism X — W of rigid analytic
varieties over K, we denote by £ the restriction

kYT (Z,) S O°(W)X = 0°(X)*
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of K" to X. Consider the case where X is a reduced K-affinoid variety & = Sp(A). Then
the subring A° of power-bounded elements is p-adically complete. For any positive integer
n, put ¢, =2 if p=2 and n =1, and ¢, = 1 otherwise. When we consider the case of
p=2 and n =1, we assume that 2 splits completely in F. The character x is said to be
n-analytic if the restriction to T? (Z,) factors as

T (Z,) == 14" (OF 8 Z,) —> (4°)%

10gi Texp

@p" (O ©Zp) — = 24;pA°
with some Z,-linear map . In this case, we also say that the morphism U — W is n-
analytic. Any xY is n-analytic for some n by the maximal modulus principle. Note that
any n-analytic character defines an analytic character TY (Z,) — A, even for the case of
p =2 and n = 1. Moreover, put

Then for any w € e~!Z satisfying
n—1406, <w<n,

any n-analytic character extends to an analytic character TS (Of) — A*.
Using [29, Theorem 8.1] and Lemma 3.5, we can generalize the construction in [4, §3.3].
Let n be a positive integer and put

B, = (p=2,n=1) (3.5)

so that we have

Let v = (vg)cp, be a g-tuple in [0,B,)NQ. Put v =max{vg | S €Br}. Let C,, be the
canonical subgroup of A"™ of level n over M(uy,c)(v), as before. Put

M(Fl(pn)7MN7c) (y) = Isom/\;l(/uv,c)(y) (CWIDEI ® NP”) :

We denote by DM (T1 (p"), i, ¢) (v) the normalization of M(pn,c) (v) in M(Tq(p™), ¢ (v).
Note that since C)/ is finite and étale over M (un,¢)(0), we have

ML (p" ), 1iv,¢) (0) = I0mggr 1y, (0) (Crs D' @ fipn) (3.6)
which is a T(Z/p"Z)-torsor over M(uun,c)(0).
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Let w be an element of e~ 'Z satisfying
v
n—1+4, <w<n—

which exists if

(3.7)

Note that condition (3.7) is satisfied for a sufficiently large K. Let F be the locally free
OF @ Ogn(r, (pn), ji, o) (vy-0dule of rank 1 constructed as in [4, Proposition 3.4], using
Lemma 3.5 for ¢ = w+ dx (v). Let

Yo : IWE = M(T1(p™), v, €) (v)

be the p-adic formal T -torsor over M(I'y (p™),un,¢) (v) classifying, for any R € NAdm

and any morphism of p-adic formal schemes v : Spf(R) — 9(I';(p"),un,¢) (v), the
isomorphisms a : v*F — Op ® R such that the composite

Op/p"Op(R) 2 CY(R) "5 v* F /1% y* F & Op @ R/75%

sends 1 to 1 [4, §3.4]. We also write J20;) as J20,, . (v). We denote the Raynaud generic
fiber of 320 by ZW,, and also by IW . (v). From equality (3.6), we see that the moduli
interpretation of 320 (0) already given is also valid for the category of quasi-idyllic
p-adic Ok-algebras R.’

For the structure morphism

= M1 (p™), o) () = M(pav,c) (),

we put 7, = hy, 07,. We denote by 428 Al and 7'i¢ the induced morphisms on the
Raynaud generic fibers. Let T,, be the formal subgroup scheme of T over Spf(Ok) whose
set of B-valued points are the inverse image of T(Z/p"Z) by the map T(B) — T (B /75 B)
for any admissible formal O-algebra 8. The natural action of T% on JJ; induces an
action of T,, on 32} over M(un,c)(v) and also on the Raynaud generic fiber ZW,
over M(pn,¢) (v). Then for any reduced K-affinoid variety ¢ and n-analytic morphism

U — W, we define

u

Q= (Wfii;g)* (Ozwz xu) [_"u] :

By [4, Proposition 3.13], it is an invertible sheaf which is independent of the choices of n
and w. Let D be the boundary divisor of M (un,c). We also put

M (pn,e,5) (v) = H° (/\;l(um) (v) x ?/LQ”“),

S (i) (v) = HO (Mpa0) (@) x U, 0 (D)) .
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For any R € NAdm, let us consider tuples (A,:,\%,u,«) over R consisting of an HBAV
(A,1,A,%) over Spec(R) such that Hdggz(A,) < wvg for any x € Sp(R[1/p]), an isomorphism
of Op-group schemes

U: Cn|R[1/p] ~ 'Dgl @ Lhpn
for the canonical subgroup C,, of A, and an isomorphism
a: vV F~0r®R

satisfying the compatibility with w as before. By equality (3.1), any element f €
HY <9ﬁ(u N©) (y)rig,ﬂ"‘u) can be identified with a rule functorially associating, with any

such tuple over R endowed with a map Sp(R[1/p]) — U, an element f(A, i\, u,a) of
R[1/p] satisfying

f (A7L7Aaw7t71u7t71a) = Hu(t)f(A,L7A,1/),U,OZ)

for any t € T(Z,). Similarly, any element f € H° (W(MN,C)(O)‘ig,Q“u> has a similar
description as a rule over any idyllic p-adic Og-algebra R endowed with a morphism
Spf(R) = M(pn,¢)(0).

For later use, we also recall the definition of an integral structure of the sheaf 0" for
an n-analytic map x : U = Sp(A) — W with some reduced K-affinoid algebra A. Note
that A° is topologically of finite type [10, Corollary 6.4.1/6] and thus 4 = Spf(A°) is an
admissible formal scheme over Spf(Q). The map Y extends to a formal character

KU Ty x4 — Gy X 8L
We put

u
O = (mw)s (ij;; xu) [—Ru] .
It is a coherent Ogy(,, ., ) (v) xu-module which is independent of the choice of w such that its

Raynaud generic fiber is Q" [4, Proposition 3.13]. Since the map h,, is an étale T(Z/p"Z)-
torsor over the ordinary locus 90(suy,¢)(0), the restriction of " to M (pp,c)(0) x 4 is
an invertible sheaf.

Let k:T(Zp) — K> be a weight character which is integral — namely, it is written as

T(Zp) = (Or®Zy)*  2t@1 H B(t)ks € K*
BEBR

with some g-tuple of integers (kg)zcp, . In this case, the sheaf Q% is isomorphic
to the classical automorphic sheaf [4, Corollary 3.10]. Indeed, consider Z =
Isom iy, 0) (OF®(9M(MN7C),wAun). Since the Raynaud generic fiber of the sheaf F
is w fun, We have a natural map IWfU — Z, which induces an isomorphism w',, — 2".
We also say that an integral weight  is doubly even if every kg is divisible by 4.
Moreover, we say that a weight character x: T(Z,) — K* is n-integral (resp., n-
doubly even) if its restriction to T (Z,) is equal to the restriction of a character of

some integral (resp., doubly even) weight (kg) seBp- Lhen, from the construction of the
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sheaf (", we see that the pullback (h%#)" Q% to M(I;(p"),un,c) (v) is isomorphic to
(hﬁlig)* (®Belﬂ%p w?{ff ﬁ). Note that for the case where p = 2 splits completely in F| a
l-integral weight is 1-analytic if and only if it is 1-doubly even.

3.3.2. Overconvergent arithmetic Hilbert modular forms. We define the weight
space WY for overconvergent Hilbert modular forms as the Berthelot generic fiber of
Spf ((’)K [[T (Z,) x pr]]) Any morphism X — W defines a pair (VX,U}X) of continuous
characters

vY T (Z,) — O°(X)*, wX:Z;%OO(X)X
with respect to the supremum seminorm on X. The map

T(Zp) = T(Zy) x ZY, t (2 Npg(t)),

induces a morphism k : W® — W. For any morphism X — W¢, put ¥ =k (Z/X,’LUX).
When & is a reduced K-affinoid variety, we say that (I/X ,w™ ) is n-analytic if v and w?®
are both n-analytic. Note that if (VX,wX) is n-analytic, then x?% is also n-analytic. We
say that a character (v,w):T(Zy) x Z, — K* is integral if it comes from an algebraic
character T X G, — G,,. Then it is written as

T(Zy) xZ; — K*, (t®1s)— [] Bt st,
BEBF
with some g-tuple of integers (kg) BeB and an integer ky. We say that it is doubly even
if every kg and ko are divisible by 4. We also say that (v,w) is n-integral (resp., n-doubly
even) if its restriction to T (Z,) x (1+p"Z,) is equal to the restriction of some integral
(resp., doubly even) character. If (v,w) is n-integral (resp., n-doubly even), then k(v,w)
is also n-integral (resp., n-doubly even).

Let U be a reduced K-affinoid variety and let 4/ — W& be an n-analytic morphism.
Note that for any c-polarization A: AQp, ¢ — A" and any x € F>>T multiplication by z
gives an x~!c-polarization

2\ A®o, vl ~ A®py ¢ A AV,
Then the group A = O;’+/U]2V acts on the space M (MN,C,KM) (v) by
([E].f)(A,L,)\,QZ),U,OZ) = Vu(e)f (A7L7€_1>\7¢1u1a)

for any f € M (un,¢,x4) (v) and € € OF ™. We define
M (e, (M) () = M (pw,e.64) ()%,
S (ue, (M) () = S (e i) ()

Let % (®) be the subgroup of F** consisting of p-adic units. For any z € F>+®)
we define a map

Ly MY (un,e, (M) (v) = M (pn,a e, (W4, 0M)) (v)
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by the formula
(La (/) (A, A\ hyu,a) = Uu(x)f (A,L,:L‘_l)\ﬂ/J,u,a) .

Let Frac(F )(p) be the group of fractional ideals of F' which are prime to p. Then the
spaces

M (v, (0t)) (), S (v, (H0")) ()

of arithmetic overconvergent Hilbert modular forms and cusp forms are defined as the
quotients

B MO (e, (Hut) @) |/ (Eal) — f e FHW),

ceFrac(F)®)

B 5 (e, (Hw) @) |/ (L))~ f e PO,

ceFrac(F)(®)

By the same construction, we also have the spaces
MG (,U’N7 (Vu7wu)) (Utot)a SG (,LLNa (Vuawu)) (vtot)-

3.3.3. Hecke operators and the Hilbert eigenvariety. Next we recall the defini-
tion of Hecke operators on the space of overconvergent Hilbert modular forms, following
[4, §3.7]. Let n, v, v, and w be as before. For any HBAV (A4,¢,\,9)) over a base scheme
S/Spec(Ok), the closed immersion 1 : D' @y — A gives a subgroup scheme Tm(v)) of
A which is étale locally isomorphic to D;l /N D;l. Let [ be any nonzero ideal of Op. We
define

Ve () € M(p,c) () x M(p,le) (v)

as the subvariety classifying pairs ((A,¢,\v),(A’,/,N,¢")) and an isogeny 7 : A — A’
compatible with the other data such that Ker(m() is étale locally isomorphic to Op/IOF,
Ker(m) NIm(¢) =0, and Ker(m) NC; = 0, where C} is the canonical subgroup of A of
level 1. Consider the projections

1V () = M(un,e) (v),  p2: Vi (v) = M(un, k) (v).

Note that map p; is finite and étale. For the case where [ is a prime ideal dividing p, we

suppose that p~'vses < vg for any 8 € By. Set v/ = (v’ﬁ) by v = vg for 8 ¢ By and

BEBF
v =p 1vy0p for B € By. Then [29, Corollary 5.3(1)] implies that map p, factors through

the admissible open subset M (pn,lc) (v') C M(un,lc) (v).

Let U be a smooth K-affinoid variety and let & — W be an n-analytic map. Then [29,
Theorem 8.1(10)] and the proof of [4, Corollary 3.26] (see also [3, Lemma 6.1.1]) show
that the map 7{ : wa — w4 induces an isomorphism

T s IW ( (0) ~ pr IV (v),

w,le

https://doi.org/10.1017/5147474802200010X Published online by Cambridge University Press


https://doi.org/10.1017/S147474802200010X

2678 S. Hattori

which in turn defines an isomorphism

Py (Q”u) ~ p; (Q”u) .

HO (M, 16) () < U, 27 ) 5 1O (4 () <)

This gives the Hecke operator

¥ -1
R (y;[(y) XU,pTQKM)
N “irr
SO (M) () x U0,

which can be seen as a map M (un,le,x) (v) = M (pun,c,c4) (v) by [33, Theorem 1.6].
We denote this map by 77 if (I,p) =1 and T} otherwise.
On the other hand, for any ideal [ with (,p/N) =1, we have a map
St M(MNaC) (Q) M (:U‘NaIQC) (Q)v (AM)\J/’) = (A Q0r [713LI7[2>‘7¢,) .
Here // and ¢’ are induced by ¢ and ¢ via the natural isogeny A — A/A[l] ~ A®e, [T},
and [2) is the [?c-polarization on A®p, [7! defined by
A
(A Koy [71) Rop (2c= (AR 0,¢) o, | gl AY Rop (A@OF [71)\/ .

Then we can show that there exists a natural isomorphism 7} : Q" ~ S?Q"‘M as in [3,

Lemma 6.1.1], and we define the operator
St M (un,Pe,s) (v) = M (un,e,x7) (v)

by St =Np/g(l)~2 (7r[*)_1 osy. Since s =id for some positive integer m, every eigenvalue
of the operator Sy is p-integral.

To define arithmetic Hecke operators for [ with (I,p) # 1, let v, be the normalized
additive valuation for any p | p. We fix once and for all elements z, € F*>* such that
vp (zp) =1 and vy (x) = 0 for any p’ # p satisfying p’ | p. We define a map

ah s M (v, te k) (v) = M (pn,e,64) (v)
by f— ((A,uA\) = f(A,zpA1)). Then we denote the composite

H(x;)vp([)oT{ ‘M /,LN,Hl‘;Up([)[C,Hu (v) —>M(MN,C,/£Z’{) (v)
plp plp

by Ti. We also write it as Uy if [ divides a power of p. Then the operators T for any [
and S for (I,pN) = 1 define actions on M (,uN, (V”,w“)) (v) and S¢ (uN, (Vu,wu)) (v)
which commute with each other. Note that Tiy = T\Ty if ([I') =1 and that [29, Theorem
8.1(10)] implies

Tpe +N T2 N
TmeH:{ +Nrjg(m)s (mf Np) (3.8)

T (m | Np)

for any maximal ideal m.

https://doi.org/10.1017/5147474802200010X Published online by Cambridge University Press


https://doi.org/10.1017/S147474802200010X

Properness of the Hilbert eigenvariety 2679

Let v be an element of QN (0,%). Note that the foregoing definitions of Hecke

operators are also valid for S¢ (un, (WY,u")) (vior). Then the operator U, is a compact

operator acting on S¢ (uN, (V“,w“)) (vtoy) Which factors as

S (i, (V') (vior) € S (v, (,0')) (7 vrer) = S (v, (VH,0)) (vtor)
and, for v < (p—1)/p?, also as
S¢ (1w, (Z/M,wu)) (Veoy) — S¢ (1w, (Vu,wu)) (puiot) € S¢ (1w, (Vu,wu)) (Vtot)-

Let T be the polynomial ring over K with variables T} for any [ and Sy for (I,pN) = 1.
Then the ring T acts on S (uy, (V¥,w4)) (v) and SE (un, (W, u")) (vior) via the Hecke
operators defined.

Now we can construct the eigenvariety from these data, as in [4, §5]. For any positive
integer n, we fix a positive rational number v,, < B, satisfying v,, > v, 41 for any n, where
B, is defined by equation (3.5). We also assume v, < (p—2+1v,(2)) /p"*! for any n > 2,
so that replacing K with its finite extension, condition (3.7) for v, is satisfied for all n.

For any admissible affinoid open subset &/ C WY, we put

n(U) =min{n € Zso | (*,u") is n-analytic} .
We define a Banach O(U)-module M, with T-action as

My =S5 (v, (W 0™)) (Vn@,sot)

on which U, acts as a compact operator. The proof of [4, Theorem 4.4] remains valid also
for p =2 and implies that the O(U)-module My, satisfies condition (Pr). For admissible
affinoid open subsets U; C Us of WY, we have n(U;) < n(Us) and [4, Proposition 3.14]
yields a map

oy s+ Moy — S (v, (W 0%)) (Vn ) t01) = Mo, @0,y O(Uh),

where the first arrow is the restriction map. Note that for any positive rational numbers
v,v" satisfying v’ < v < pv’ < (p—1)/p, the restriction map

SG (LLN7 (Vu,wu)) (Utot> — SG (MN7 (Vuawu)) (/Uéot)

is a primitive link. Thus the map oz, is a link satisfying the cocycle condition.
Hence, by applying the eigenvariety machine [12, Construction 5.7], we obtain the Hilbert
eigenvariety & — W as in [4, Theorem 5.1].

3.4. The case over C,

Since we are ultimately interested in overconvergent Hilbert modular forms over
Cp, we need to give a slight generalization of the construction in [4] over C,. As
before, for any quasi-separated rigid analytic variety X over K and any coherent
Ox-module F, we denote the base extensions of X and F to C, by &¢, and Jc,,
respectively. Similarly, for any quasi-separated admissible formal scheme X over Spf(Ok)
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and any coherent Ox-module §, we denote their pullbacks to Spf (O@p) by %ocp and
Soc, respectively. Then on the Raynaud generic fiber we have

(@), = (%0,)" ), = (50.,)

Let U = Sp(A) be a reduced Cp-affinoid variety. From [11, Theorem 1.2] and [1,
Proposition 1.10.2(iii)], we see that A° is an admissible formal Oc,-algebra. Put 4 =
Spf(A°). For any morphism U — W¢, or U — ng, we have an associated character kY
or (V“,w“) and a notion of n-analyticity defined in the same way as before. Consider the
base extensions

hn, 00 _

~ Yw, O¢ — n
Tw,Oc, :Jﬁﬂf,;@cp =" MT1(p") €)@, =" M(un,¢) ()0

Cp

of the maps 7, by, and m,. Then for any n-analytic morphism U — We,, we can define
the sheaves

# = (5). (O ) ) 0 = (re), (O o )

rig
such that Q" = (Q"‘u) is an invertible OM(uw,c)(v)cp <«y-module, as before. [1,
Propositions 1.9.14 and 1.10.2(iii)] implies that Q" is coherent and that its restriction
to M(un,¢)(0)o,, is invertible: the latter follows from a similar argument to the proof

of [35, §7, Proposition 2| combined with the fact that hn o, is a T(Z/p"Z)-torsor over

@(MN,C)(O)OCP. Using %", we define M (1n,e,64) (v) and its variants in the same way
as in the case over K.

For any reduced K-affinoid variety V and any n-analytic morphism V — W, consider
the base extension V¢, — W, and the associated character xYe» . Then we can show that
there exist natural isomorphisms

VYCp

(m”)(C ~ 0 08 (2D)e, ~QF 7 (=D) (3.9)

P

in the same way as the proof of [4, Proposition 3.14]. Similarly, for any morphism f :
U — U of reduced C,-affinoid varieties, we have natural isomorphisms

ot art (2 (D)) = o (—D). (3.10)

Let M*(uy,c) be the minimal compactification of M (un,c). We have a natural proper
map

M(Mch) %M*(MJ\UC)'

Note that a sufficiently large power of the usual Hasse invariant can be considered as
a global section of an ample invertible sheaf on M*(uy,c). Let 9 (un,¢)(vior) be the
normal admissible formal scheme defined similarly to 90(un,c)(viet) using M*(up,c)
instead of M (uy,c). Let M*(up,c)(vior) be its Raynaud generic fiber. By the foregoing
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ampleness property, we see that M*(un,c)(viot) is a K-affinoid variety. We also have
proper morphisms

p: gjt(rl(pn)’Mch)(Utot) - Djt*(MN,C)(Utot),
P M(T1(p" ), v, €) (Veor) — M (1w, €) (Veor)-
By the base extension, these induce proper morphisms
pOCp : S)j,t(rl (pn)a,qu C) (Utot)(’);cp — 95?* (,LLNa C) (Utot)ocp 5
ng : M(Fl(pn)7ﬂch) (Utot)cp — M*(,UN,C)(Utot)Cpo

Lemma 3.11. Let V be a reduced K-affinoid variety and let V — WS be an n-analytic
morphism. Then the natural base change map

(px 1) (27 (=D)) = (por, x1) (27 (~D)o, )

Cp

is an 1somorphism. Moreover, we have
v
RY <p% X 1) (m (fD)@Cp) —0
for any ¢ > 0.

Proof. It is enough to show the claim formal-locally. Put ¥V = Sp(A) and U = Spf(A°).
Let 9 be a formal affine open subscheme of 9* (1, ¢)(viot) and put X = p~(Q)). Since p
is proper of finite presentation and 2% (—D) is coherent, [1, (2.11.8.1)] implies that the
restriction

v
Ri(px 1), (2 (D)) Iy
is the coherent sheaf associated to the O(Q) x U)-module

He (xx m,m”(—D)) .

By [4, Corollary 3.20], we have H? (.’{ X ‘ﬂﬂ"v(—D)) =0 for any ¢ > 0.
Since X is quasi-compact, we can take a finite covering X = J;_, X; by formal affine
open subschemes X;. Consider the Cech complex for the coherent sheaf ﬂ”v(—D)

0 H* (xx 0,2 (=D)) = € (@ (-D)) - C* (2 (~-D)) =+

with respect to the covering X x U = |J._; X¥; x ¥, which is exact by the foregoing
vanishing. From the definition, we see that the sheaf Q"V(—D) is flat over Ok and
each Og-module C'¢ (Q“v(—D)) is also flat. By taking modulo p", tensoring Oc,, and
taking the inverse limit, we see that the sequence is exact even after taking —®o, Oc,-

This means that the Cech complex for the coherent sheaf Q"v(—D)ocp with respect to
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the formal open covering Xo., x Vo, = U:lei,ocp X Vo, is exact except the zeroth
degree. Taking the zeroth cohomology gives an isomorphism

HO (x 5,08 (—D)) S0, Oc, — H° (xo% x Vo, 0 (—D)ocp>
and the ¢th cohomology for ¢ > 0 gives
HY (35@% x Vo, 2" (—D)%) —0.
This concludes the proof. O

Lemma 3.12. Let V be a reduced K-affinoid variety and let V — WS be an n-analytic
morphism. Then the natural map

S¢ (,UN; (VV,U)V)) (Utot)®KCp — ¢ (,LLN, (VVCP,U)VC”)) (Vtot)
s an isomorphism.
Proof. Put ¥V =Sp(A). By taking the Raynaud generic fibers and [1, Propositions 4.7.23
and 4.7.36], we see from Lemma 3.11 that the base-change map

(7 1), (Q“V(—D)>Cp = (pc, x1), (2 (-D)c,)

is an isomorphism. By formula (3.9), the latter sheaf is isomorphic to the sheaf
Ve _

(pcp X 1)* (Q”" r (—D)). Since M*(un,¢)(vtot)c, X Ve, is a Cp-affinoid variety, taking

global sections yields an isomorphism

HO (M(D1(p"),113,6) (vi00) X V.27 (=D) ) €€y
— Ve
H° (M(Pl(pn)vﬂNac)(Utot)Cp x Ve, Q% " (—D)). (3.11)
Taking the T(Z/p™Z)-equivariant part and the A-fixed part, we obtain the lemma. O

Lemma 3.13. Let V = Sp(A) be a reduced K-affinoid variety and let ¥ — WS be an
n-analytic morphism. Let © be an element of V(C,) and let z* : A — C, be the ring
homomorphism defined by . Suppose that the mazimal ideal m, of Ac, = A®kC,
corresponding to x is generated by a regular sequence. Put (v,w) = (v (z),w¥(z)). Then
the specialization map

SG (#Nv (VV’wV)) (Utot)®A,$*(Cp — SG(#Nv(Vaw))(Utot)
8 an isomorphism.

Proof. This is essentially proved in [4, Proposition 3.23]. Put k¥ =k (z/v,wv) and Kk =
k(v,w). By the assumption on m,, we have the Koszul resolution

0= Ac, = Al = = Agl = Ac, — Ac, /mg — 0

with some nonnegative integers nq,...,n,, which induces a finite resolution of the sheaf
v

(1xx),(Q2%(—D)) by finite direct sums of 2% (—D)c,. By Lemma 3.11, the push-forward

of this resolution by the map pgf x 1 is exact. Since M*(un,¢)(viot)c, X Ve, is a Cp-
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affinoid variety, the sequence obtained by taking global sections is also exact. This and
formula (3.11) yield isomorphisms

HO (M (L1 (p")opiv,6) (v1ot) x V2 (=D)) @0,

_ ve, )
~ I (M (Fl(pn)7uN’c) (vtOt)CP X V(CP’QK (_D)) ®Acpﬁz*(cp
= HO (M(Fl(pn)’/’”\hc)(vtot)C;ﬂQH(—D)) .

Taking the T(Z/p"Z)-equivariant part and the A-fixed part shows the lemma. O

We can naturally extend the Hecke operators over C,: Let U be a smooth C,-affinoid
variety and let U — ng be an n-analytic morphism. Consider the base extension of the
isomorphism 7y

mc, :pZIl/V+ (v)c, gp’{IW;c(v)@p,

w,le

which defines an isomorphism
* * u * u
T, Pl (Q"‘ ) ~ pj (Q“ ) .

We define the Hecke operator T; over C, for ([,p) =1 by

*

HO (M 16) (), x U ) 55 HO (Ve xUps 2™ )

-1
*
P

B H (Veiw)e, xUpi)

N0 (MG, @), x 1,05,

Similarly, we have Hecke operators Ty for ([,p) # 1 and Sy over C,. We can show that
they are compatible with the Hecke operators over K and that the specialization map in
Lemma 3.13 is T-linear.

4. g-Expansion principle

In this section, we study the g-expansion map for arithmetic overconvergent Hilbert
modular forms. We fix once and for all a representative

[ ()] = {e1 = 0,62, epe }

of the strict class group C17(F) such that every ¢, is prime to p. For any smooth C,p-affinoid
variety U, any m-analytic map U — ng , and any v € QN [0,B,,), we have isomorphisms

ME (un, (M) (0)~ P M (e (M ")) (v),
cefort (7))

S (un, (M) ()~ B 89 (uwe (M u)) ()

cefort ()] ?

(4.1)
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by which we identify both sides. For any element f € M¢ (,uN, (V“,wu)) (v), we write
( f‘)ce[ a1t (7)) for the image of f by these isomorphisms. We say that f is an eigenform

if it is an eigenvector for any element of T.

4.1. g-Expansion of overconvergent modular forms

For any nonzero fractional ideal ¢ of F, let us consider an unramified cusp (a,b,¢) of
M (un,c) as in §3.1.2. Using any polyhedral cone decomposition & € Dec(a,b) of F£’+,
we have the I,-adically complete ring R, and the semi-abelian scheme Tateq p(q) over

S, = Spec (RU) for any o € ¥.
Let S, = Spf (RU) be the (p,f(,)—adic formal completion of S.. The smoothness

assumption on ¢ implies that there exists a basis &i,...,£, of the Z-module ab satisfying
(ab)NoY =Zsol1++ + L&y + L&ri1 + -+ + L&,
with some 7. For any ring B, we write
+7._ + +
B [XST,X>T] =B [Xl,...,XT,XTH,...,Xg ] .

For any extension L/K of complete valuation fields, we denote the p-adic completion of
Or, [XST,X;] by O, <X§r,X;> and put

L{X<p, XE,) = O0p (X<, X ) [1/p).

Then the Og-algebra R, is isomorphic to the completion of the ring Ok [XSWX;]
with respect to the principal ideal (X;---X,.) via the map X; + ¢%, and the ring R, is
isomorphic to the p-adic completion of R,. Hence the ring R, is normal and the formal
scheme S, is an object of the category FSp,. of [19, Definition 7.0.1]. In fact, the ring

v

R, is isomorphic to the ring
Ox (X<r XS 121/ (Z = X1+ X,y). (4.2)
Moreover, since the natural map

Ok [Xerm XE,] /(X1 X,)" —
OK,m [X§+17~--7Xgi] X1, .., X ]/ ( Xy X)™

is injective for any positive integer m, by taking the limit we may identify the rings R,
and R, with Og-subalgebras of the Ox-algebra

Ok (™ +,..q™*) [[¢*.. 0™ ]] -

We denote by S'Qig the Berthelot generic fiber of S, . Similarly, we denote by S¢ and

v

S%g the formal completion of Se along the boundary of the special fiber and its Berthelot
generic fiber. From the definition, we have formal open and admissible coverings

Se=J9%, SgE= s
oETC o€
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Since the quotient of Sy by the action of Uy is obtained by a regluing, so is the quotient
S¢ /U, and this coincides with the formal completion of S¢ /Uy along the boundary of
the special fiber.

Consider the case ¥ = %'(a,b). Since the map S, — M (un,c) defined using Tateq p(q)
induces an open immersion

Hg%”(a,b)/UN — M (pn,©)| D

to the formal completion of M (uy,c)|7, of M(uy,c) along the boundary divisor D, taking
the formal completion we obtain an open immersion

11 5%.6)/Un = M(un, )|,

to the formal completion M (un,c)|p, of M(puy,¢c) along the boundary Dy, of the special
fiber. Let sp : M(pun,¢) = M (un,¢)x be the specialization map with respect to M (up,c).
Then [19, Lemma 7.2.5] implies (Sﬁ(uN,cﬂgk)ng =sp~1(Dy).

Let ,Sv';gjcp and S’fgiicp be the base extensions to Sp(C,) of S¥€ and Sf;g, respectively.
Note that 5”:’%17 can be identified with the rigid analytic variety over C, whose set of
Cp-points is

z; € Oc, (i <7), xie(’)ép (i>7“),} (4.3)

Ty X €M,

{(xl,...,acg) eC

for r as before. Then, with the notation of [18, Theorem 3.1.5], we have

oo\ rig oo o\ rig o

S) . =S (S) . =S,
Since the functor (—);igp sends formal open immersions to open immersions and formal
open coverings to admissible coverings, each g;i%cp is an admissible open subset of S*;;gcp

such that S5 =,cy S, ¢, is an admissible covering. Moreover, we have
»~p »~p
o rig Srig
(S(g/UN)/(C = 555, [Un.
D

Note that the formation of the tube sp~!(Djy,) is compatible with the base extension to
C, [9, Proposition 1.1.13]. Thus, for ¢ = %'(a,b), we obtain maps

I S5%, = 555, /Un = M(pn.o)e,, (4.4)
oEC

where the first map is a surjective local isomorphism and the second is an open immersion
factoring through M (pun,c)(0)c, .
We denote by Rmocp, 5”07(9%, and gcg oc, the base extensions to Spf ((’)cp) of RU, 5},

and S, respectively. From the identification (4.2), we can show

Ro.0., =Oc, (X<rn XENZ20/(Z - X1--- X,). (4.5)
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Indeed, first note that the ring ]émocp is isomorphic to

lim lim Oc, n [X<r, X2, 2] /(Z = X1+ X, 2™). (4.6)

>r
n>0m>0

Since the ring
Oc,n [X<r X2, 2) /(2 — X1 X;)
is Z-torsion free, its Z-adic completion is
Oc,n [Xer X5 121)(Z X1 - X,).
Similarly, since an elementary argument shows that the ring
Oc, [X<r X5, 12)/(Z - X1+ X;)

is p-torsion free, taking the p-adic completion yields the claim. (The reason for this ad
hoc proof is that in general we do not know if the completion is compatible with quotients
for non-quasi-idyllic rings.)

Lemma 4.1. For any extension L/K of complete valuation fields with residue field kp,,
the rings

O (X< X2 (Z]/(Z = X1+ Xp), ko [X<n X3, ] [12)/(Z = Xa - X))
are integral domains. In particular, the ring RU,OCP is an integral domain.

Proof. For the former ring, we can show that it is a subring of the ring
Rp=L{X<,, XE)[[2]/(Z-X1--- X,).

It suffices to show that Ry is an integral domain. Since the ring L <X§T,X§> is
Noetherian and normal, the ring Ry is also normal. Since Ry is Z -adically complete and
Z-torsion free and Spec (RL/(Z)) is connected, we see that Spec (]?L> is also connected,

and the lemma follows. We can show the assertion on the latter ring similarly. O
From the description (4.3) of S“Zi)%rcp, we see that there exists an inclusion
o (Sﬂ,,ocp) = Ry,00, CO° (éj’%cp) :
By gluing, this yields an inclusion
& o ( arig
0 (Se.0.,) CO°(Si%,). (4.7)

By the description (4.6) of the ring Ra,ocp, we have a natural inclusion

R0, €[] Oc,d" (4.8)
£c€ab
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which is compatible with the restriction map ]?07on — Iv%g/,ocp for any o and o’ such
that o’ is a face of the closure . Then we have an isomorphism

O (S'(b{(gcp) ~ m RU,OCP'
oET

Note that if the dimension of the R-vector space Spang (o) generated by the elements of
o is g, then we have

(Clb) NoY = 22051 D - ~~@Zzo§g

with some &, ...,£, € ab. Thus any element of RUyon is a formal power series of ¢1,...,q%
and the ring Oc, [[¢* | € € (ab)Nc¥]] can be identified with the subset

(agqg)geab € H Oc,q* |ag =0 for any £ ¢ (ab)No"
£€ab

From the equality
(ab)* U{0} =({(ab)N0" |0 € €, dimg(Spang(0)) = g},
we have an inclusion
Oc, [[¢¢ | €€ (ab)TU{0}]] DO (sm) .
On the other hand, if we identify

Fp ~ 11 R, z®1w (B(x))s,
BEHomq. 1. (F,R)

then every boundary 7 of ¥ is outside the closure of the positive cone Fy T of Fg.
Hence for any positive real number p, the number of elements & of (ab)™ such that
the distance from £ to 7 is less than p is finite. This implies that any element of
Oc, [[¢° | € € (ab)TU{0}]] is contained in the completion of the ring

O(Cp [qﬁl’ o ’q57'7qi£7'+1’ o 7qi5g]

with respect to the ¢& --- g -adic topology. We can see that this completion is contained
in RJ,OCP. Therefore, we obtain an identification

Oc, [[af | € € (ab)* U{0}]] ~ O (S 00, ).

which is compatible with the inclusion (4.8).

Let ¢ be any nonzero fractional ideal of F' and let a,b be fractional ideals satisfying
ab™! =¢. Suppose a C o and (a,Np) = 1. Then the natural inclusion o C a=! induces
isomorphisms

bap:a t/Nat~o0/No, Php:at/ptat ~o/pto.
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Consider the unramified cusp (a,b,¢q5) of M(un,c). Take € € Dec(a,b) and ¢ € € as
before. By the construction of the Tate object, the map cb;’h yields a natural immersion

D;l ® ppn — Tateq p(q) over Sy, which induces an isomorphism
wTaten,h(q) ®(’)K OK,n = wD;1®Hp" .
Note that the map Trp/p®1: ’D;l ® Gy, — Gy, gives an element (TrF/Q ® 1)* dTT of the
Or®0 (Sg)—module Wp—1gg,, = Wrates o (q)- By the pullback, we obtain a Tate object
over Spec (}?G) with a canonical invariant differential form which are compatible with
those over Spec (RT) for any 7 € € satisfying 7 C 4.
We denote the p-adic completion of S, by S,. We have S, = Spf (Iv%g), where we

consider the p-adic topology on R,. Its base extension to Oc, is denoted by S'L,rop =

Spf (f{mocp ) Here the affine algebra Ra,o@p is the p-adic completion of the ring IV%U R0k
Oc
The identity map R, — R, is continuous if we consider the p-adic topology on the

-~

source and the (p,fg)-adic topology on the target. Then, for the case of ¥ = ¢(a,b),

its composite with the p-adic completion of the map S, — M (un,c) gives a morphism
of formal schemes S, — Sy, — M(uw,c)(0), and also a morphism S — M(un,c)(0) by
gluing. Since R, is Noetherian, the moduli interpretation of 3911;40) as in §3.3.1 is also

valid for R,. We have a commutative diagram

23 (1) —— Orly o (1)

) (1) — (07 010e)” ()

HT HT

v

Wppn @ R ———>wp-1, . @ R,
where the top horizontal arrow is the natural inclusion and the other horizontal arrows
are induced by the map Trp/q® 1. Thus the moduli interpretation and the base extension
give a morphism of formal schemes over Spf (Oc, ),

Ta,b * 5070% — Smo% — jm$,c(0)(9cp-

By gluing, this defines a morphism 5'%),@% — ’JQU;C(O)OCP, which we also denote by 74 p.

Lemma 4.2. The natural map ]:ZJ,@CP — Ra,ocp is injective. In particular, the ring

RU’»OCP s an integral domain.
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Proof. We have an isomorphism

Ro.0., ~lim lim Oy, [X<, X5, ] [[2))/(Z = X1+ X,), (4.9)
n L/K

where the direct limit is taken with respect to the directed set of finite extensions L/K
in Qp. Since the map

OLn [XST’X;‘:T] /(X1 X)™ = Ocp»n [XSMX;ET] J( Xy X)™

is injective for any such L/K, the injectivity of the lemma follows from expression (4.6).
Lemma 4.1 yields the last assertion. U

For any finite extension L/K, we write the p-adic completion
o0, 01 = O (Xer XE,) [Z]1/(Z = X1+ X))

also as Rop,. Let w7, be a uniformizer of L. By Lemma 4.1, the ring R, /(1) is an

integral domain. Since Rp, is normal, the localization (ROL : is a discrete valuation

L

ring with uniformizer 7y such that Z is invertible. Put ROO = hﬂL/K R@L and My, =

lim / K(?TL), where the direct limits are taken as before. Then the localization (]:EOO> mx:

lim (Ro L) is a valuation ring. Let Ok, be its p-adic completion. By formula (4.9),
—L/K (71) g )
the ring ngocp coincides with the p-adic completion of R,. Since the p-adic topology on

R is induced by that on (ROO> , we obtain an injection ]:ZU,@CP — O, . This defines a
Moo

morphism of p-adic formal schemes Spf (O, ) — ga,Ocp for any o € €(a,b). In particular,
we have the pullback of Tateq (g) over Spec(Ox, ) which is an HBAV. Since Oy, is quasi-
idyllic, we have the moduli interpretation of any morphism Spf (O, ) — SQBLC(O)OCP over

M(pn,c)(0)oe, asin §3.3.1. The additional structures of the Tate object over Spec (RU)

define a canonical test object

(Tatea,b(Q)aLa,bv)\a,bawa,baua,mau,b)
over Spec (O, ). This corresponds via the moduli interpretation to a map

Tu7h)(9,<0 : Spf ((9)@0) — jﬂn;’c(O)on

satisfying the following property: the composite S’U’Ocp — g%’ocp oy ZQB;’C(O)O% factors
through S'[,’ocp and its restriction to Spf (Ox, ) equals 74 5,0, , as in the diagram

So,0c, ——> S%,0,

l if (4.10)

Spf (Ok,) — So,0., — I, (0)o, -
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Let k € W(C,) be any n-analytic weight. Since the formal scheme ifﬂ(,uN,c)(v)@Cp is
quasi-compact and the sheaf 2" is coherent, we have

M(unv,em)(0) = H (M(an,0) (o, ) [1/p] € O (3] (wo, ) [1/p):

For any element f. of M (un,¢,k)(v), we define the g-expansion f.(q) of f. by

Je@) =751 (f) €O (80, ) 1/8) = Oc, [[¢f € € () U{0}]] (/0]

Thus, for any f = (f.) we can write

cefart (m)] @

fl@) = a0 (£0)+ D o (.80

ge(e—)t

with some a, -1(f,£) € C,. For any refinement ¢’ € Dec (o,cfl) of €, the natural map
gcg,pcp — 8¢, oc, induces the identity map on the ring O, Hqé £ () U {0}” [1/p].
Thus we can compute the g-expansion by taking any refinement of the fixed cone
decomposition ¢ (0,c7!) in Dec (0,c7'). We say that an eigenform f is normalized if

ao,0(f,1)=1.

By presentations (4.2) and (4.5), we have an isomorphism
(éa/ja'éa') ®0KO(CP = Ro’,(’)cp /ja-éa,ocpu

which implies a, 1 (f,0) =0 if f. € S(un,c,k)(v).

4.2. Weak multiplicity one theorem

Let (v,w) € WY(C,) be an n-analytic weight. Let f = (f‘)ce[ e be a nonzero

CI+(F)
eigenform in S (uy,(v,w))(v). For any nonzero ideal n C o, let A(n) be the eigenvalue
of T, acting on f. We set ®(n) to be the eigenvalue of S, for (n,Np) =1 and ®(n) =0
otherwise. We put py = (D' ®Gy) [n]. Any element ¢ of p,(L) C (Dp' ® Gy ) (L) with
some extension L/K defines a ring homomorphism ¢ : O (D;l ®Gm) — L. We put ("=
¢(X") for any n € o, which gives a homomorphism o/n — L*. We fix an element ¢ €

[crt ()] @,

4.2.1. g-Expansion and Hecke operators. For any € € Dec(a,b) and any maximal
ideal m of o, we can find ¢’ € Dec (a,m’lb) which is a refinement of €. For any o € ¢

and 7 € ¢’ satisfying o O 7, we have natural maps R, — R,, RO — R°, and R, — R..

T

Consider the case a = 0. Let ¢ be an element of py (K). Fix an isomorphism of o-modules
p:m tb/b~o/m.
Then we have a natural ring homomorphism
@’ Ry = Ry qf s 579,

We denote by Tate, y-15(g¢”) the pullback of Tate, y-15(g) by this map.
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On the other hand, we have Dec(a,b) = Dec(a,nb) for any unramified cusp (a,b,¢)
and n € F>*%. Thus any 0 € € glves similar rmgs to R(77 Ra7 and R, for the cusp

(a,1b,¢), which are denoted by Rn o R77 -, and R77 -, respectively. We have a natural ring
homomorphism

q": ]:2(, — ]:Z,,,U, ¢ ¢,

We denote by Tateq s(¢") the pullback of Tateq (g) by this map.
We will omit entries of test objects (A,¢,\1,u,«) for overconvergent Hilbert modular
forms if they are clear from the context.

Lemma 4.3. We have an isomorphism of test objects over ]%2,0,

(Tateo,nc*1 (q)a)‘o,nc*l) = (Tateo,c*1 (qn)anAa,c*l) .

Proof. We denote by

¢ the pullback along the map ¢"7. Consider the composite
¢ D5 @G (RS) = D! @Gl (R,

of the map o — (%5 g2t (Ee 0)) and the map ¢”, which we also denote by ¢”7. We also
have a similar map ¢" : nc~! — 9D @ Gy,

o (Rga) Then the following diagram over

RO .o s commutative:

ne ! U
xn~* li X1
D ®G ‘L]" ( 0) TN,,)WD ®G |q" (R o’)
/ \
—1 —1
¢ o ne
This yields an isomorphism Tate, ,-1(q) — Tate, .-1(¢"), as in the lemma. O

Lemma 4.4. Let m be a mazimal ideal of o satisfying m{pN. Let ¢ be an element of
[Cl+(F)](p). Take any elements x,y € F®) such that ¢ = ame and ¢’ = zy~'m~ ¢

are elements of [Cl+ (F)] @ pig an isomorphism of o-modules p: (zmc) ™t /(zc)"t ~o/m.
Then we have

( mf) ( ) V(l‘) NF/Q<m) (I)(m) fc” (qufl) n Z fc/(qmcp)

Nr/q(m) v(y) CEum(Qp)
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Proof. For any % € Dec (o,c_l) and %’ € Dec (m,c_l), we choose € € Dec (0,(mc)_1)
such that € is a common refinement of ¢ and %’. For any o € ¥ and ¢’ € €', take
T € €" satisfying 7 C 0,0’. By diagram (4.10) and the inclusions

RT,OCP :_) RT,(’)CP g O’Cry

it is enough to show the equality of the lemma after pulling back to Spf (Ok, ).
Choose an element & € (zmc) ™! such that the map p sends the image of &y, to 1 € o/m.

For any ( € fim (@), we define elements @ and Q¢ of D' ® Gy, ( 0, T) by

XM s gomn and X7 ¢*™ICT (n€o),
respectively. Let H g, ¢ be the m-cyclic Op-subgroup of the Tate object Tate, (;e)-1(q)|0x .
generated by the image of Q. Then, over Spec (Ox. ), the m-cyclic Op-subgroup schemes
of Tate,, (z)-1(q) are exactly

pms Moo (C€pm(Qy)),

where the former is the closed subgroup scheme induced by pm C Dl;l ® Gy,. Then the
pullback of (Ty f)c(q) is equal to

(Lmefc/) (Tateo,c*l(Q)v)‘o,c*l) = (it)( mfc/) (Tatea ¢t (Q) 1'71)\04*1)
=v(z)( mfc)(Tateo (zc)— 1(q )/\0’@“)—1),

which equals

v(z)

W ftl (Tateo (ze)— ( )/,um) + Z fc/ (Tateg,(xc)*l (q“")/HQ7<|qz)

CEMm (Qp)
For the first term, we have the exact sequence
0 —— py —— D;l RGm —>m_11);1 G, ——0.
For any ¢ € (x¢) ™!, the natural map D;l QG — m_ngl ® Gy, sends the Rg,lﬁ—valued
point (%" g (ne 0)) to (%’7 g8 (n€ m)), and this gives an isomorphism

Tatea,(acc)*l (Q)/Mm = ’I‘atem,(azcc)*1 (q)

compatible with natural additional structures. This implies that the evaluation
fe (Tateo,(mc)*l(qx)//im) equals

fc’ (Tatem, (ze)—1 (qr)a)\m, (acc)*l)
= fC’ (m_l RXop Tateo,m(a;c)—l (qw)am2)‘o,m(wc)—1)

NF (m)2 2yt
= % (LySmfe) (Tateu,(cu)q (q v ),,\07(c,/)_1)

https://doi.org/10.1017/5147474802200010X Published online by Cambridge University Press


https://doi.org/10.1017/S147474802200010X

Properness of the Hilbert eigenvariety 2693

For the second term, the subgroup
{(® ¢ e o) lee ()} < DF 9 G (R )
is generated by Q¢ and the image of the subgroup
{(x7 ¢ (n€0)) | €€ (2)) ')} CDF' @Gy (Rg_lya)

via the natural map Rg N This yields an isomorphism

=1 7"

Tateo,(zc)*l( )/HQ ¢= Tateo (¢/) (QCP)
compatible with natural additional structures. Hence the lemma follows. O

A similar proof also gives the following variant for m | Np:

Lemma 4.5.

(1) For any mazimal ideal m | N, take any element x € F*+ ) satisfying ¢’ = xme €

1

[Cl+(F)](p). Fiz an isomorphism of o-modules p: (xmc)~!/(zc)™1 ~0/m. Then we

have

(Twf)e(q) = > felg"¢).

N
F/Q( CEpm (QP)

(2) For any mazximal ideal p | p, take any element x € F*+H®) satisfying ¢’ = J:chlpc €

[C1+(F)](p). Fiz an isomorphism of o-modules p : (xxglpc)_l / (x:r;lc)_l ~o/p.
Then we have

(Upf)ela) =

> ()

N
/Q Ceﬂp(Qp)

4.2.2. g-Expansion and Hecke eigenvalues. For any ¢ € F'*, we put x,(§) =
I, x;"(g). For any nonzero ideal n C o, take n € F*F satisfying ¢ =n~'n € [CI* (F)] w)
and put

Cn,f)=v(n"xp(n)) ao,c-1(f:n).

By Lemma 4.3, this is independent of the choice of 7. Then we have the following variant
of [37, (2.23)] in our setting:

Lemma 4.6. For any nonzero ideal [n of 0, we have

CnTif)= > Npgla)@(@)C(a>m,f).

[+nCaCo

Proof. We can easily reduce it to the case [ = m® for some maximal ideal m. Consider

the case of m{ Np and s = 1. We follow the notation of Lemma 4.4. Since ™11 € (z¢)71,
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we have
> ¢l = Npjg(m).
CEMm (@P)
Moreover, z~1yn € (¢")~! if and only if m | n. Thus Lemma 4.4 implies
Np/o(m)@(m)C (m~'n, f) +C(mn, f) (m|n)
C(mn, f) (min)

and the lemma follows for this case. The case of m | Np and s =1 can be shown similarly
from Lemma 4.5. For s > 2, using relation (3.8) we can show the lemma by an induction
in the same way as the classical case. O

C(anmf) = {

Proposition 4.7. For any ¢ € [Cl+(F)] @) and any n € (c’1)+, put n=nc Co. Then we
have

Qg 1 (fﬂ?) =V (pr(n)_l) A(n)aﬂ,ﬂ(f71)'

Proof. We have a, 1 (f,n) = v (nxp(n) ™) C(n,f) and C(o,f) = ao,0(f,1). By Lemma
4.6, we obtain

A(m)ae o(f,1) =AM)C(o,f) =C(0,T0f)
=Cnf)=v(n""xp(1)) ao,c-1(f.0),

from which the proposition follows. O

4.3. g-Expansion and integrality

First we show the following lemma:

Lemma 4.8. Let X be a quasi-compact separated admissible formal scheme over Oc, .
Let § be an invertible sheaf on X. We denote by X, the special fiber of X and by Sw, the
pullback of § to Xf,-

(1) Suppose that X™¢ is reduced and X is integrally closed in X™&. Then for any nonzero
element f € H°(X,5)[1/p], the Oc, -submodule of C,

I={zeCy|zfec H'(XF)}

s principal.
(2) Let g be an element of H(X,T). Suppose that the image of g by the map

HOXF) — HO (X5,.3, )
is zero. Then there exists x € mc, satisfying g € tH(X,5).

Proof. For the first assertion, take a finite covering X = J/_, 4; by formal affine open
subschemes 4l; = Spf(2;) such that §|g, is trivial. Since X is separated, the intersection
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ui,j :ﬂzﬁﬂ] iS also afﬁne. Put Az' = Q(z[l/pL mi = F(ﬂz,S), and Smm = F(‘uz’],%) Then
we have a commutative diagram

0 ——TI'(X,3) H::1 m; H:,j:l M, j

| | |

0 ——T(X,3)[1/p] — ITi=y D1 /p]) == I1; j—1 D51/,

where the rows are exact and the vertical arrows are injective. Put I; = {x € C,, | 2 fly, €
9, }. Note that I; = C,, if f|y, = 0. Since the diagram implies I =();_, I;, it is enough to
show that I; is principal if fly, # 0.

By choosing a trivialization, we identify 9; with 2; and f|y, € 91;[1/p] with a nonzero
element g; € A;. Note that A; is a reduced C,-affinoid algebra. Since 2; is an admissible
formal Oc, -algebra which is integrally closed in A;, [10, remark after Proposition 6.3.4/1]
implies A7 =®;. Thus for any z € C,, we have

xg; € mz < ‘ngi'Sup S ]-7

where |g;|sup is the supremum norm of g; on Sp(4;). By the maximum modulus principle,
there exists a nonzero element ¢ € C,, satisfying |6] = |g;|sup.- Hence we obtain

I; = {x eCpllz| < |5|71} = 5*1(’)@),
and the first assertion follows.

For the second assertion, consider the covering X = (J;_,&l; as before. Since the
reduction of gly, is also zero, we can write g|y, = x;h; with some x; € mc, and h; € ;.

Replacing x; by a generator z of the ideal (z1,...,2,), we may assume gy, = xh; for any
i. Since M; and IM; ; are torsion-free Ocp—modules, the elements h; can be glued to define
h € H°(X,5). Then we obtain g = xh and the second assertion follows. O

Let k € W(C,) be any n-analytic weight. Put

M1, 6,4) (0) == HO (M(uy,) (0)o, -2 ) € M (1, ,)(0).

This is an Oc,-lattice of the Banach C,-module M(un,¢,%)(0). Consider the cusp
(a,c_l,id), the fixed cone decomposition € =€ (o,c_l) € Dec (u,c_l), and o € €. By the
definition of the g-expansion, every coefficient of the g-expansion of f € M(un,c,k)(0) is
an element of Oc,. We also have the following converse, which can be considered as a
g-expansion principle for our setting:

Proposition 4.9. Let f. be any element of M(un,c,k)(0). If every coefficient of the
g-expansion fc(q) is in Oc,, then we have f € M(pun,¢,x)(0).
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Proof. Put 9 = M(un,c)(0), M(T1(p™))! = M(T1(p™), un,¢)(0), and qm"rd =
3%;&0). Recall that ©* is invertible on 9°™d. We denote the reduction of W%S by

95?%“1. Consider the commutative diagram
p

To,e—1

/—\

v ~ d
56,00, — > Ty |5, ocp — (ch Oc ) — JWo,
\ J/ i lww

s,0c, S(g’ Ocpy — f)jt%rgp .

Recall that f. € O(jﬂﬂggp>[l/p]. The assumption on fc(g) implies 7 . (fc) €

0(85.0.,):
Consider the special fiber

T - I T (T (")) 5 g

of the map 7, and the closed immersion 3 : smord — Dﬁord From the construction of the
sheaf Q" ‘mord as the fixed part of a T(Z/p"7Z)- equlvarlant Oc,-flat sheaf on a T(Z/p"7Z)-

torsor, we see that the subsheaf 2" |mord C (Tw)« Ojﬂﬂi {0, is formal locally a direct
D

summand. Since m, is affine, for any morphlsm of formal schemes f:S — zmord the
composite of natural maps

f* <Qnm%€p> — f*(ﬂw)*ij(ggp — (71’1”‘”1;1(3))*0#;1(5)
is injective. This yields a commutative diagram

s (mgd ) ——— 0 (357

i (M) o (s2mg?) (4.11)

i*QR|Srg,FP (5%,]?,) —0 (77’1_”1 (gsgjp))

with injective horizontal arrows, where the base extension Slgjp = S¢@iF, is equal to
the special fiber of S¢, Oc, -
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On the Tate object Tate, .-1(q) over Spec (RU), we defined the canonical trivialization

of the canonical subgroup and that of the T <5’U)—set Joperd (5}), which are denoted

by s -1 and a, 1. For any a € T(Z/p"Z), we fix its lift a € T,, (Z,) satisfying 1 = 1.
Since R, is Noetherian, the moduli interpretation of J2°'¢ is available over Rg, and
these trivializations give isomorphisms

So Xgroa MIT1 (") > [ S ot (s,,) ~ [ S$.-xTo.
a€T(Z/p"Z) a€T(Z/p™Z)
The latter is an isomorphism of formal T -torsors given by (auo’c—l,daa’c—l) at the a-

component. By the base extension, we also have similar isomorphisms over Oc, . Since the
latter isomorphism is defined by (uu,c_l,a(,,c_l) at the component a = 1, the unit section

on this component coincides with the foregoing map 5’07@% -yt (5‘0,@%).

For any formal character y of T? , the y-part of the T? -representation O (5’070% X ’IF?U)

w? w

is a free ]:Zg,ocp -module of rank 1 with a generator s,. Then we have

fc|7r;1(gmoc ) € H (Ro,Ocp [l/p]snﬂ) .
P a€T(Z/pnZ)
Write this element as (Fusg-1),emz/pnz) With Fo € RmOcp [1/p]. Since k(1) =1 and
To. -1 (fe) € }?g,ocp, we obtain I} € }?07@%. Since f. is £~ 1-equivariant for the T, (Z,)-
action, we have F, = x(a) Fy. Since the image of the character  is contained in O(ép’ we
see that F, € Rg’oﬁp for any a € T(Z/p"Z). This means

9

Pl (5,00, ) €© (7' ($005,)) (4.12)

SU,OCP

To prove the proposition, we may assume f. # 0. Consider the ideal J =
{x€Oc, |2f. € M(un,c,5)(0)}, which is principal by Lemma 4.8(1). Put J = (z) and
suppose x € mc,. Then the g-expansion zf.(¢) is also integral, and zero modulo mc,.
Thus the commutative diagram (4.11) and formula (4.12) imply that the pullback of

> d . a _ .
xf. € QF (im‘ggcp) to z>‘kf2”””|5.(tgpr (S%’FP) vanishes.

Note that the reduction of Sucgpcp — ME4 induces the map on the special fiber
~p
Se¢ 5, = (5%,OCP)FP — M (un, )5, -

Let M (un,c)z M\)F be the formal completion of M(uy,c)g along its boundary Dg .
P P P p
Recall that this map induces maps
S8, = S5, /Un = M(1n,0)g, D, |

where the first arrow is a surjective local isomorphism and the second arrow is an open
immersion. Hence xf. vanishes on a formal open subscheme of the formal completion
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M (¢ r, |7 Ds, . We know that the smooth scheme smord is irreducible. Since the sheaf

Q" is invertible on the ordinary locus, Krull’s mtersectlon theorem implies that zf.
vanishes on a nonempty open subscheme of imord, and thus it also vanishes on smord
P

Then Lemma 4.8(2) implies that x f. € yM(un,¢,x)(0) for some y € mc,. Since the (’)C -
module M(up,¢,%)(0) is torsion free, this contradicts the choice of x. Thus we obtain
x € Oép and f. € M(un,¢,%)(0), which concludes the proof of the proposition. O

Corollary 4.10. Let f = (fc)ce[Cﬁ(F)](p) be a mnonzero eigenform in the space
S (un,(v,w))(v) of weight (v,w) € WE(C,). For any nonzero ideal n of o, the Hecke

eigenvalue A(n) is p-integral.

Proof. By equation (3.8), it is enough to show the case where n is a maximal ideal m. Put
k= k(v,w). Note that by Lemmas 3.1 and 3.4, the restriction map S (uy,(v,w))(v) —
SE (un,(v,w))(0) is injective. We consider A(m) as an eigenvalue of the operator Tj,
acting on

M= &  Mpuncr)(0).
cefar+ (7)) ?
This is a Banach C,-module with respect to the p-adic norm |—| defined by the Oc, -lattice
M := @ M(HJN,C,H)(O)~
cefor+ ()] ?
Namely, we put
| f| = inf {|z|™" |z eC), zf e M}.
By Lemma 4.8(1), we can find an element x € C, of largest absolute value satisfying

xfe € M(un,¢,%)(0) for any ¢ € [Cﬁ(F)](p). The norm |f| is equal to |z|~. Moreover,
any coefficient of the g-expansion z f.(q) is contained in Oc,. By Lemma 4.6, so is 2T, f.
Hence Proposition 4.9 shows xTy, f € M. This implies

|1mf| 2|~ !
Alm)| = =

and the corollary follows. O

Corollary 4.11. Let f = (fc)ce[cﬁ(F)](p) be a normalized eigenform in S (uy,(v,w))(v)
of weight (v,w) € WY (C,). Then we have

ao,c—l(fan) € OCp
for any ¢ € [C1+(F)] @ 4nd any n € (c’l)Jr
Proof. This follows from Proposition 4.7 and Corollary 4.10. U

Corollary 4.12. Let (v,w) be an element of WE (C,).

https://doi.org/10.1017/5147474802200010X Published online by Cambridge University Press


https://doi.org/10.1017/S147474802200010X

Properness of the Hilbert eigenvariety 2699

(1) For any ¢ € [Cl"'(F)}(p), there exists an admissible affinoid open subset

8. € M(un,c)(v)c, such that (ng)_l(&) meets every connected component
of IW;)C(U)(CP and, for any normalized eigenform [ = (f.) n

SE(un, (v,w))(v), the restriction fc|<

cefor+ ()]

5) 7 (50) has absolute value bounded by 1.

(2) Let f= (f“)ce[CH(F)]“’) be any element in the space S€(un,(v,w))(v). If fo(q) =0
for any c € [Cl+(F)](p), then f =0.
(3) Let f = (fc)ce[CIJr(F)](p) and f' = (fc’)ce[Cﬁ(F)](p) be normalized eigenforms in

SE(un, (v,w))(v). Suppose that the eigenvalues of the Hecke operator T, acting
on fand [’ are the same for any nonzero ideal n C 0. Then f = f’.

Proof. Let us prove the first assertion. For any 0 € € =% (o,c_l), Corollary 4.11 and

formula (4.7) show that 77 __, (f.) is a rigid analytic function on 5?% with absolute value

bounded by 1. As in the proof of Proposition 4.9, we can show that }c|(ﬂ,.ig)71 (§“g ) isa

¢,Cp

rigid analytic function with absolute value bounded by 1. Since the natural map S‘%gcp —

Se%c /Un is a surjective local isomorphism, the restriction fc is also,
1P

I(wgg)—l (55, /0)
with absolute value bounded by 1. Thus, for any nonempty admissible affinoid open subset
S. C S%%CP/UN, the absolute value of fc|(wrig)71(8 | is bounded by 1. Since S%,gc,,/UN is

an admissible open subset of M(uy,c)(v)c,, we see that S, is also its admissible open
subset.
On the other hand, the rigid analytic variety M(un,c)(v)c, is connected by Lemma

3.4. Since the map

p?

€ s M(T1(p"™),un,€) (v)c, — M, o) (v)e,
is finite and étale [18, Theorem A.2.4], it is surjective on each connected component of the
rigid analytic variety M(I'1(p™), un,¢)(v)c, . and thus (h5e) ! (S.) meets every connected
component of it.
We claim that the map

Ta® 1 IWg (W), = M(T1(p"),pn,0) (v)c,
induces a bijection
70 (IWS (v)c,) = mo (M(T1(p"),1n,¢) (v)c, )

between the sets of connected components. Indeed, by [17, Corollary 3.2.3], it is enough
to show the claim with C, replaced by a finite extension L/K. By a finite base extension,
we may assume L = K. Since the formal schemes jﬂﬂiyc(v) and (T (p"), un,¢)(v) are
both normal, it is enough to show a similar assertion for the formal model 7,,. Since it is a
formal TY -torsor, it is surjective and the map between the sets of connected components is
also surjective. Let Q) be any connected component of M (T'1 (p™), pun,¢)(v) and let {X; bies
be the set of connected components of TJQU;J(U) which ~,, maps to ). Suppose §J > 2.
Since 7, is finitely presented and flat, it is open and the connectedness of ) implies that
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Y () Ny (Xj7) # 0 for some j # j'. However, for any element y of this intersection,

the fiber v, (y) is connected, since it is isomorphic to the special fiber of T | which is a

contradiction. Since 11# is surjective, the claim shows that every connected component
of IW{ (v)c, meets the admissible open subset (w{gg)’l(sc), and the first assertion
follows.

Now suppose that f.(¢) =0 for any ¢ € [Cl+(F)] ®) Then we have fc|( 0.

WEg)il(Sc) -
Since the rigid analytic variety IW:Z,:(”)C,; is smooth over C,, the first assertion and
Lemma 3.1 show the second assertion. The third assertion follows from Proposition 4.7
and the second one. O

4.4. Normalized overconvergent modular forms in families
Let U = Sp(A) be a smooth C,-affinoid variety and put 4l = Spf(A°). Let U — ng be an

n-analytic morphism and consider the associated weight characters (VZ” ,wu) as before.
Let f= (fc)ce[Cﬁ(F)](p) be an eigenform in the space S¢ (um (uu,wu)) (v). Recall that

each f, is an element of O (JQU;;’C(U)OCP xil) [1/p]. For the cusp (o,¢71,id) of M (un,c)
and any c €€ =% (o,c_l), we have the map
To,c-1 X 1185 00 x U= IWE (v)o,, x4

over M(pn,¢)(v)o, * 4L
As in §4.1, we see that the ring Rmocp ®OCP A° is isomorphic to the completion of the
ring
A° g8, &) [, g

with respect to the (p,qEl -~~q5r)—adic topology for some &1,...,§, € ¢ 'NeV, and thus it
can be considered as a subring of the ring

A° <qi§r+1,...,qi59> Hq&,...,qET]] .

Hence we obtain the map of the ¢'-coefficient
prz’l :0 (5’07@% X il) (1/p] = A.

For any eigenform f € S (un, (W, uw")) (v) as before, we put aﬁfo(f,l) = pr
1" () € A

For any z € U(C,), put (v,w) = (M(z),wM(x)). The specialization f(z) =
(fc(x))ce[01+(F)]<p) is an element of the space S (uy, (v,w))(v) over C,, and we have the

1 ((7—070 X

usual ¢'-coefficient a, o, (f(),1) of the g-expansion of f(z). By the commutative diagram

To,0 X1

So.00, X U =" 3W, (v)o., x U

“p

1X1}T Tlxw

S0, ——> W} (Vo

To,0

https://doi.org/10.1017/5147474802200010X Published online by Cambridge University Press


https://doi.org/10.1017/S147474802200010X

Properness of the Hilbert eigenvariety 2701

we obtain
a¥f o (f,1)(x) = ao,o(f(2),1). (4.13)
Lemma 4.13. Suppose that f(z) #0 for any x € U(C,). Then we have
aﬁfo(f,l) e A*.

In particular, the specialization f'(x) of f' = a{;”o(f,l)flf s a normalized eigenform with
the same eigenvalues as f(x) for any x € U (Cp).

Proof. We claim that a,.(f(z),1) # 0 for any x € U(C,). Indeed, suppose that
ao,0(f(2),1) =0 for some x € U (C,). Since f(x) is an eigenform, Proposition 4.7 implies

that the g-expansion f(z)c(q) of f(x) is zero for any ¢ € [C1" (F)] ®) By Corollary 4.12(2)
we have f(x) =0, which is a contradiction.

Now equation (4.13) implies that a¥ ,(f,1)(z) # 0 for any 2 € U (C,). Hence we obtain
a4, (f,1) € A, O

4.5. Gluing results

Here we prove two results on gluing overconvergent Hilbert modular forms, based on the
theory of the g-expansion developed in the foregoing. Let X = Sp(R) be any admissible
affinoid open subset of W&. Put n =n(X) and v = v,, as in §3.3.3. Consider the Hilbert
eigenvariety £|x — X, which is constructed from the input data

(R,SG (1w, (VX,wX)) (Vtot), T, Up) -

4.5.1. Gluing local eigenforms.

Lemma 4.14. Let U = Sp(A) be a smooth Cy-affinoid variety and let U — A, be
a morphism of rigid analytic varieties over C,. Let f be an eigenvector of the space
S (un, (v¥,0Y)) (vior)®RA for the action of T such that for any x € U(C,), the
specialization

f(l’) € SG (MNv (VXan)) (vtot)®R,m*Cp
is nonzero. Then the image of f by the natural map

5¢ (MN7 (VX,U)X)) (Vot) O RA — 5¢ (MN7 (l/uku)) (Vtot)

is an eigenform with the same property.

https://doi.org/10.1017/5147474802200010X Published online by Cambridge University Press


https://doi.org/10.1017/S147474802200010X

2702 S. Hattori
Proof. Put (v,w) = (*(z),w"(z)). Then we have the commutative diagram

S (un, (v*w™)) (Vior) @A ——— 8 (un, (W, 0M)) (vt0r)

| |

SG (/f('Nv (VX7wX)) (Utot)®R,£E*Cp - SG (HN; (Vuawu)) (Utot)®A,a¢*Cp

|

SG(MNa(va))<Utot)~

Here the lowest two arrows are the specialization maps. Since W is smooth, the maximal
ideal of R&xC, corresponding to z is generated by a regular sequence. By Lemma 3.13,
the left oblique arrow is an isomorphism. This implies the lemma. O

Proposition 4.15. Let Z be a smooth rigid analytic variety over C, which is principally
refined. Let o : Z — (€|x)c, be a morphism of rigid analytic varieties over C,. Then there
exist an element

fe @  o@w] (v, x 2)
ce[crt ()] @

and an admissible affinoid covering Z =\, ;U; such that the restriction f |y, for eachi€ I
is an eigenform of S¢ (,uN, (V”i,wui)) (vtot) with eigensystem ™ : T — O(Z) — OU;) and
f(2) is normalized for any z € Z.

Proof. By Proposition 2.5(2), there exist an admissible affinoid covering Z =
U; = Sp(A;) with a principal ideal domain A;, and an eigenvector f; in the space

s¢ (MN, (VX7IUX)) (Utot)®RAz‘

such that for any z € U;, we have f;(z) #0 and

(h@1)fi = (A@¢"(h))fi

for any h € T. By Lemma 4.14, the image f/ of f; in the space S¢ (,uN, (V“i,w“i)) (Vtot)
is an eigenform with eigensystem ¢* : T — A; such that f/(z) # 0 for any z € U;. Since U;
is smooth, by Lemma 4.13 we may assume that f/(z) is a normalized eigenform for any
z €U;. For any z € U;NU; and any h € T, the h-eigenvalues of f;(z) and f}(z) are both
©*(h)(z). Since they are normalized eigenforms, Corollary 4.12(3) implies that the images
of f{(z) and fj(z) in SY (un, (WM (2),wt(2))) (0) agree with each other. By Lemmas 3.1
and 3.4, we obtain f;(2) = f;(z).

Since the rigid analytic variety Iwz’c(vtot)cp x Z is reduced, this equality means that

f! and fj’ coincide with each other as rigid analytic functions on

ielui’

H IWI,c(vtOt)Cp X (uz ﬂuj) .
cefort(m)]?
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Thus we can glue f/s to produce an element

fe P o@w) (v, x2).

ce[crt ()] P

This concludes the proof. O

4.5.2. Gluing around cusps. Consider the unit disc D¢, over Sp (C,) centered at the
origin O. Put D¢ = D¢, \ {O}.

Lemma 4.16. Let Z be a quasi-compact reduced rigid analytic variety over C,. Then

the ring O (Z X D(ép) can be identified with the ring Rz of power series ), _, a,T™ with
an, € O(2) such that
lim supla,(z)| =0, lim supla_,(2)|p™" =0 (4.14)

n—)JrooZeZ n~>+oozez

for any rational number p satisfying 0 < p < 1.

Proof. For any nonnegative rational number p <1, let A[p,1]c, be the closed annulus
with parameter T over C, defined by p <|T'| <1. Then we have an admissible covering

U A[pvl]C
p—0+

of DX

FlI‘St suppose that Z = Sp(A) is affinoid. Let p be a rational number satisfying 0 < p < 1.
We denote by |—|sup the supremum norm on A. Since A is reduced, [10, Theorem 6.2.4/1]
shows that |—|sup defines the Banach topology on A. Then the ring O (Sp(4) x A[p,1]c,)
can be identified with the ring of power series ), a,T™ with a, € A such that

lim |an|sup =0, ngrfoo|a,n|supp* =0. (4.15)

n—-+oo

This identification is compatible with the restriction to A[p’,1]c, for any p < p’, and also
with the restriction to any affinoid subdomain of Sp(A). In particular, the natural map

O (Sp(A4) x Alp,1]c,) = O (Sp(4) x A[p',1]c, )
is injective for any p < p’ and thus

o(sp( XDX) M ©O(Sp(A)x Alp.1]c, ) -

p—0+
This yields an isomorphism ¢z : O(Z XDEP) ~ Rz when Z is affinoid, which is

compatible with the restriction to any affinoid subdomain of Z.
For Z not necessarily affinoid, take a finite admissible affinoid covering Z = [

with U; = Sp(4;). Take f € (’)(ZXDX ) and write

By, ( > > a1

neZ

zeI
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with a; , € A;. Then a;,s can be glued to obtain an element a, € O(Z). Put ®(f) =
Y onez@nT™. Since I is a finite set, we can check that a,s also satisfy equation (4.14)
and thus ®(f) € Rz. On the other hand, for any element g =3 _,a,T" of Rz, put

V(9)i = > peztnlu, T™. Then ¥(g); € Ry, and the elements @&1(\11(9)0 €0 (Ui X Dép)

can be glued to obtain an element ¥(g) € O (Z X D(ép). Then ® and ¥ are inverse to
each other and the lemma follows. O

Next we show the following variant of [13, Lemma 7.1]:

Lemma 4.17. Let Z be a quasi-compact smooth rigid analytic variety over C,. Let V be
an admissible open subset of Z which meets every connected component of Z. Let f be an

element of O (Z X Dép). Suppose that f‘vXDK extends to an element of O (V X Dcp),
Then f extends to an element of O (Z X DCP).

Proof. By taking an admissible affinoid open subset of the intersection of V and each
connected component of Z and replacing V with their union, we may assume that V is
quasi-compact. By Lemma 3.1, the assumption on V yields injections

O(Z) 5 0W), O (z X Dép) ) (v X Dép) —O(VxDg,).

From Lemma 4.16, we see that the intersection of O (Z X Dép) and O (V X Dcp) inside

o (V X DE}) is the set of formal power series ) -, a,T" with a, € O(Z) satisfying

L sup lan(2)] =0,

which is equal to O (Z X D@p). O
Lemma 4.18.
0°(Dg,) O (Pe,).

Proof. Let f =3 ., a,T" be an element of O° (D(ép). Consider the Newton polygon

of f. Then the assumption implies that any point (n,v,(a,)) lies above the line y = —rz
for any nonnegative rational number 7, which forces a,, =0 for any n <0. O

Proposition 4.19. Let ¢ : ’Dép — (€lx)c, be a morphism of rigid analytic varieties
over C, such that the composite Dép — (€lx)c, — Ac, extends to an n-analytic map

Dc, — Ac,- Let (VD‘CP,wDCP) be the weight associated to the map D¢, — Xc,. Suppose
that for some nonnegative rational number v’ < (p—1)/p"™, we are given an element

f= (f‘)ce[01+(p)](”) € @ O (IW;yc(v’)cp X Dép)
cefar+ (7))@

and an admissible affinoid covering ’Dép =, ;Ui such that the restriction f|y, for each

iel
i €1 is an eigenform of S (MN7 (Vuf,w”’i)) (v") with eigensystem o*: T — O (’D(ép) —
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OU;) and f(z) is normalized for any z € D(ép, Then there exists an eigenform f’ €
S (pn, (vPer,wPe)) (v') such that f'(z) is normalized for any z € Dc,, and it is an
eigenform with eigensystem ¢*(z): T — O (Dép) — C, for any z € ’Dép.

Proof. Consider the map w3& : IW! (v')c, = M(un,c)(v')c, as before. Let Se be

an admissible affinoid open subset of M(un,c)(v')c, as in Corollary 4.12(1). Put

I. = (wﬁg)_l (S¢). Then Z, is an admissible open subset which meets every connected
component of IW$7C(U/ )c, such that f.(z)|z, has absolute value bounded by 1 for any
z € Dép. Hence fc|It XD also has absolute value bounded by 1.

Note that Z, is quasi-compact, since m,, is quasi-compact. By Lemma 4.16, we can write
fc|Ic XDCXP = Z anTn
ne”Z

with some a,, € O(Z,). Lemma 4.18 implies a,,(x) = 0 for any x € Z, and any n < 0. Since
Z. is reduced, we obtain a,, =0 for any n < 0 and thus

fc|L><DC><p c O(Ic XD(CP) .

Therefore, by Lemma 4.17 we see that f. extends to an element f. of O (IW;C(U/)(CP X
Dc,).

Write D¢, = Sp(C,(T')). Note that the ring O (IWZ;C(’U/)(CP x Dg,) is T-torsion free.
We claim that if f. # 0, then there exists a nonnegative integer m, satisfying

feeT™0 (IW] (v)e, x D, ) \T™ O (IW], (v)e, x D) -
Indeed, since ZW, (v/)c, is smooth, we can take an admissible affinoid covering
IW;,:(’U/)C;; = U Vj’ Vj = Sp(Aj)’
JjeJ
such that every A; is a Noetherian domain. Suppose that
fee () T"O(IW](v)e, x D,
m>0

Since A;(T') is also a Noetherian domain, Krull’s intersection theorem implies fc \vj xDe, =
0 for any j € J and thus fc =0, which is a contradiction.
Put m = min{mc |ce [Cﬁ(F)](p),f[ 7&0}. Let f/ be the unique element of

O (IW}, (v)¢, x Dc,) satisfying fe=T"f". Since the maps
O (IWY (v)e, x De,) = O (TW, (v))e, x D)
= [[o@W (@), xth)

i€l
are injective by Lemma 3.1, the element fc’ is also kP -equivariant and A-stable.
Moreover, note that the restriction map O(VXDCP) -0 (VxDép) is injective for
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any C,-affinoid variety V. For the boundary divisor D of M(un,¢)(v')c,, we have the
commutative diagram

m

O ((miie) ™ (D) x Dg, ) —> O (i)™ (D) x D, )

| |

O ((mii#) ™ (D) x D, ) 5O ((wi6) " (D)< ).

where the vertical arrows are injective and the bottom arrow is bijective. This implies that

the element f! is a cusp form. Hence the collection f’ = ( fé) (» 18 an element of
ce[Crt (M)

S (un, (VP ,wPer)) (v') such that f'(z) #0 for any 2z € De, .
Let A(n) be the image of Ty, (resp., Sy) by the map ¢*: T — O (Dgp). By Corollary 4.10,
the specialization A(n)(2) is p-integral for any z € Dg . Thus Lemma 4.18 shows A(n) €

@) (’DCP). By the injectivity mentioned above, we see that f’ is an eigenform on which T
(resp., Sn) acts by A(n). Now Lemma 4.13 concludes the proof of the proposition. O

5. Properness at integral weights

Let £ — WS be the Hilbert eigenvariety as in §3.3.3. Let Dc, be the unit disc over Sp (C,)
centered at the origin O and put Dép =Dc, \ {0} In this section, we prove the following
main theorem of this paper:

Theorem 5.1. Suppose that F is unramified over p and that for any prime ideal p | p of
F, the residue degree f, satisfies f, <2 (resp., p splits completely in F) for p >3 (resp.,
p=2). Consider a commutative diagram

N ®
D; g,

|

‘ G
D(CIJ w (Cp

of rigid analytic varieties over Cp,, where the left vertical arrow is the natural inclusion.
Suppose that 1 (0) is 1-integral (resp., 1-doubly even) in the sense of §3.3.2. Then there
exists a morphism D¢, — Ec, of rigid analytic varieties over C, such that the diagram
with this morphism added is also commutative.

Before proving the theorem, we summarize the structure of the proof.

Step 1. By shrinking the disc, we reduce the theorem to the case where v is 1-
analytic.

Step 2. Using Proposition 4.15, we convert the map ¢ to an analytic function f on

H IW$7 ¢ (Utot)(cp X Dép
cefart ()] ®
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with some small v > 0 such that locally on D(ép it gives a normalized eigenform with
eigensystem determined by ¢.

Step 3. By analytic continuation via the Up,-operator, we extend f to

I (), <D
ce[cr+ ()] ” .

By Proposition 4.19, we may assume that f can be extended to the puncture so that
it defines a normalized eigenform over Dc, .

Step 4. Using results from §3.2, we show that U, f can be evaluated on the connected
neighborhood Vg Q.c, for any critical point @, modulo passing to a finite covering

T yé » Ve,p-
Step 5. Supposing f(O) is of infinite slope, we deduce a contradiction by a

combinatorial argument using critical points in the spirit of Buzzard and Calegari.
Then Proposition 2.7 yields a desired extension of ¢ to Dc, .

Proof. Step 1. Let eq,...,e4 be a basis of the Z,-module 2p(Or ®Z,) and put E; =
exp(e;) € 14+2p(Op ®Zy). Similarly, let eg11 be a basis of the Z,-module 2pZ, and put
E,i1=exp(egi1) € 14+2pZ,. Let (1™, w ™) be the universal character on W&. Note that
ng is the disjoint union of finitely many copies of the open unit polydisc defined by

|X1‘ <1,...,|Xg+1| <1

with parameters Xi,...,X 41: the connected components are parametrized by the finite-
order characters

e: T(Z/2pZ) x (Z/2pZ)* — OF,

and on each connected component, the point defined by X; — x; corresponds to the
character (v,w) satisfying v(E;) =1+ua; for any i < g, and w(Eg41) =1+ zg41.

Put ¢=pifp>3and g=16 if p=2. Since ¥(O) is 1-integral, it comes from a K-valued
point of W&, which we also denote by 1(0O). This corresponds to a finite-order character
eo and a map X; — xz; with some z; € qOf. For p = 2, the assumption that ¢ (O) is
1-doubly even implies that o is trivial on the torsion subgroup of 1+2(Op Q Zs). Put
E! = (-1)P7'E;. The group 1+ p(OF ®Z,) is topologically generated by E;s and E!s.
We have

(v w0 (B = (0™ (B)) = 14 X,

on the ep-component of W&, Let U = Sp(R) be the admissible affinoid open subset of the
eo-component of WY defined by | X; —x;| <|q| for any i. Then 14+ X; =1 +x;+ (X; —x;) €
1+¢R° and the universal character (v"*,w"™) is l-analytic on Y.

We denote by D, ¢, the closed disc of radius p centered at the origin over C,. Consider
the element ¢*(X;)(T) of the ring O (D¢, ) = C,(T). Since 1*(X;)(0) = ;, there exists a
positive rational number p < 1 such that

[t < p= [ (Xe)(t) — x| < g
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for any 7. This means 1 (Dp,cp) C Uc, - If we can construct a morphism D, ¢, — &, which

makes the diagram in the theorem commutative, then by gluing we obtain the desired

map Dc¢, — Ec, . Thus, by shrinking the disc, we may assume that 1 factors through Uc, .
Step 2. Put n =1 and v = v;. We may assume v < 1/(p+1) so that we have

M(pn,€) (Vo) © M (v, c) (p%) .

By Remark 2.4, the rigid analytic variety ’Dép is principally refined. Applying Proposition
4.15 to the map ¢: D(ép — (€]u)c,, we obtain an element

fe @ o(zwgyc(vm)@pxpgy)
cefart(m)]”

and an admissible affinoid covering Dép = ;e Ui such that the restriction fly, for each
i €1 is an eigenform of S (uy, (14, W) (vior) with eigensystem * : T — O (Dép) —

O(U;) and f(z) is normalized for any z € D .

Step 3. Since ¢* comes from the eigenvaripety &, the Uy-eigenvalue ¢* (U,) € OU;) of
flu, satisfies * (Up) (2) # 0 for any z € U; (C,), and thus we have ¢* (U,) € O(U;)*. Since
U, improves the overconvergence from v to pv, taking ¢* (Up)_1 Up (flu,) repeatedly we
can find an eigenform

g: € S (. (H ) ()

with eigensystem ¢* : T — O (Dép) — O(U;) which extends f[y,. Note that for any

z €U; (C,) we have a commutative diagram

S (s (4. 084)) (1) = S (. (144,014 (010

|

S (un, (M (2),0Mi(2))) (p%) — S (N, (i (2),0M(2))) (Veot),

where the horizontal arrows are the restriction maps and the vertical arrows are the
specialization maps. This implies that the specialization g;(z) is also nonzero for any
z €U; (C,). Since the g-expansion is determined by the restriction to the ordinary locus,
gi(z) is also normalized for any z € U; (C,). Since the Hecke eigenvalues of g;(z) are also
given by the eigensystem ¢*(z): T — O(U;) N C,, a gluing argument as in the proof of
Proposition 4.15 shows that g¢;s can be glued. In other words, we may assume

fe @ (p)O(IWuf,c(pil%poép)-

ce[C1t ()]
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By Proposition 4.19, we may replace f by an eigenform of the space S¢ (,uN, (I/DCP ;wPer ))
(ﬁ) such that every specialization on D¢, is normalized, which we also denote by
f= (f‘)ce[cH(F)](p)' By Lemma 3.13, we have an isomorphism

S (un, (W,uM)) (vrot) @R, 2+ k(2) = 89 (un, (V7% (2),w07% (2))) (vio1)

for any z € D¢,. Thus the map T — O (Dcp) defined by the eigenvalues of f is a family
of eigensystems in S¢ (,u N, (V”,wu)) (Vtot) OVer Dc, such that its restriction to DEP is
' T—0 (Dép). In particular, it is of finite slopes over DEP. If f(O) is of finite slope,
then Proposition 2.7 yields a morphism D¢, — & |Ucp with the desired property.

Step 4. Put ¢(0) = (v(0),w(0)) and k = k(¥(0),w(0)), which are l-integral by
assumption. Let k1 = (kg) BEBy be the integral weight corresponding to the restriction

Klo(z,). For any nonzero fractional ideal ¢ of F, let X, = M (1un,c)e be the Raynaud
generic fiber of the p-adic formal completion M (un,c) of M(un,c). We also write
Xe(v') = M(pn,c)(v')"8 for any v < 1. For any v < (p—1)/p and the morphism
hy : (T 1 (p), pan,c) (V') — M(pp,c)(v'), we put h=h]'® and X1 (v') = h=1(X(v')).

Consider the rigid analytic variety ). , as in §3.2 and the natural projection 7 : Y, , —
X,. Put Ve ,(v') =771 (X, (v')). For the universal p-cyclic subgroup scheme H" over Y. ,,
we put

yép = Isomy, , (D;l ® ,up,H‘m) .

We denote by r the natural projection V!, = Vep. Put 7' = 7wor and V! (v) =
(wl)fl (Xc(v")). We write the base extensions to C, of these maps also as h, m, r, and
7!, respectively. We consider U} := X} (p—il) as a Zariski open subset of yép (ﬁ)
Then we have an isomorphism h*Q" ~ (7r1)* Q"”"|Z/,1C . Note that the sheaf A*Q2" in this
©Lp
case of l-integral weight is isomorphic to the sheaf h*(2"! >~ h*W"™ zun ¢ as in §3.3.1.
The sheaf (71'1)* Qr1 is defined over the whole rigid analytic variety y37p7(cp and satisfies
(wl)*ﬂ"l ly . = h*Q%. Thus, when ¢ lies in [C1F(F)] (p), the element f.(O) defines
¢&tp

gc = h*fc(O) = (771)* fc(0)|uc{cp eH’ (ucl,Cp’ (ﬂ-l)*Qm(_D)>7

on which any element a of the Galois group T(Z/pZ) of h:U! — X, (ﬁ) acts trivially.

Namely, for any point [(A,u)] of U} (Q,) with an Op-closed immersion u: D' @y, — A
and any a € T(Z/pZ), we have g.(A,au) = g.(A,u).

Moreover, we define Zé p as the scheme over K classifying triples (A,u,D) consisting
of an HBAV A over a base scheme over K with c-polarization, an Op-closed immersion

u: D;l ® pp — A, and a finite flat closed Op-subgroup scheme D which is étale locally
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isomorphic to Op/pOr satisfying Im(u) N D = 0. We denote by chyp the analytification
of ch) p Testricted to X:. We have two projections

q1 :Z;*%,p —>y;71(’p q2 :nglc,p—}ycl,p
(A,u,D) — (A,u), (A,u,D) — (A/D,u),

where @ is the image of u in A/D. Put Z} (v') = qt (YL, ).

We denote the restriction of the rigid analytic variety ). p ( ) defined in §3.3.3 to

p+1
X (m) also by V¢, (p+1) We have a finite étale morphism

Wit (Upse) > Ve, (551), (AwH) o (AH).

The base extensions of these maps to C,, are also denoted by ¢i, g2, and II, respectively.
By [29, Corollary 5.3(1)], we have ¢;* (Z/{;_lc) Cqt (Z/lcl) and thus ¢;* (L{;_lc’(cp) -

-1 (u&cp) This yields commutative diagrams

Ucl,c,, = (ul CC) 0! (u;flc,cp) . ul 1,C,
hl ln Hi lh

1 / 1 / 1 1
X‘(p-&-l)cp D2 yp‘lc,p (p+1)c ’ yp‘lc,p (p+1)c D1 prlf(p+1>c ’

P P p

where the latter is cartesian.
We have an isomorphism of changing polarizations

lp : M([LN,C) - M (NNap71C)7 (A7/\) = (Aap)\)7

which induces an isomorphism X, (m> — Xp- (p +1> and similarly for other rigid

analytic varieties defined already. Let x, € F** be the element we fixed in §3.3.3 to
define U, and put z =p~* Hp‘pzp € F*+ @) Then l, also induces an isomorphism

v(O) ()l HO(X (pH)CP,Q")—>H0<Xc(pi1)cp,ﬂ’“),

which is compatible with the map Ly o[],, 5 on S (un,p~ "¢, (v(0),w(0))) (p+1> Note
that under the identification (4.1), by composing L, we identify the operator U, with a
tuple of endomorphisms on S (¢, (¥(0),w(0))) p+1 for each ¢ € [C1T(F)] @),

Take any point Q = [(A,H)] € Y. ,(Or) with some finite extension L/K such that
Hdgg(A) =p/(p+1) for any 8 € B, which exists by Lemma 3.6. Consider the admissible

open subsets V. g, V?-,Q,(Cp’ and V?,Q,(Cp (p%) of Ve pc, defined in §3.2. For the
point [,(Q) € Y,-1.,(OL), we also have similar admissible open subsets V,-1c1,(@),
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nglc,lp(Q),va and Vz?*lc,lp(Q),Cp (p%) of Yp-1cp,c,, which are equal to the images of

V..o, Vng(cp, and V. g.c,’ (p%) by [,, respectively. By Corollary 3.9, we have

0! (rt Vpren@)) Sart (U7).

Taking the base extension, we also have
i (7 (Ven@ne)) Ca 7 ran@re,) St (U, )

Similarly, Lemma 3.10 shows r—! (Vz?*lc,lp(Q),Cp (ﬁ)) - L{;,lcvcp. Since the weight 1

is integral, we have a natural isomorphism 7 : g3 (7)) — g (7)) Q" over Z;,lc .
From these and the foregoing commutative diagrams, we see that the operator U, extends
to an operator

Ug: H (Ulc, (7)) 5 HO (! (Wg, ) (7))

which makes the following diagram commutative:

HO (ucl,ncp» (W1)*Qm> _ Y pgo (7.—1 (VgQ,cp>v (wl)*ﬂ’“>

\L res

- HO (1t (Woe, (55)) (1) 2r)
&
i (2 ()., o) 1 (2 ()., ).

Step 5. Now suppose that f(O) is of infinite slope. Then

(UQgc)

(i) = PO LON | e, () =

Since Vg o.c, 18 connected and r is finite and étale, the map r defines a surjection from

r—1 (V? Q.Cp
each connected component of 7~ (V?,Q’Cp) to V?,Q’Cp. Since the admissible open subset
Vg Q.c, (pﬁ) is nonempty, we see that r—! (V?,Q’CP (ﬁ)) intersects every connected
component of 7! (V?,Q,«:p)- Thus Lemma 3.1 implies Ugg:. = 0. In particular, if the
point [(A,NL)] €Y., (O@p) satisfies Hdgz(A) = p/(p+1) for any 8 € Br, then for any

O p-isomorphism m : D;l ® pp ~ L we have

> gc(A/DpAm) =0, (5.1)

DrgNLK=0
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where the sum is taken over the set of finite flat closed p-cyclic Op-subgroup schemes
D of Alp] satisfying Dx N Lk =0 and A is the induced pc-polarization. We will omit pA
from test objects as in the foregoing.

Lemma 5.2. For any p-cyclic Op-subgroup scheme H of Alp] and any Op-isomorphism
w:Dp' @ p, — (Alp]/H) K, we have g.(A/H,u) = 0.

Proof. For any p-cyclic Op-subgroup scheme M of Alp], write M = P, , M,.
Similarly, any Op-closed immersion m : D;l ® pp = Ag defines a closed immersion
my : Dat /pDa' @ p, — Alp]x for any p | p. By fixing a generator of the principal Op-
module D;ﬂl/le;1 and a primitive pth root of unity in Q,, we identify an Op-closed
immersion m: D~! p®p, — Ag with an element of A[p] (Q,). Let B be the set of maximal
ideals of Op dividing p. For any subset S C 3, we put S¢ =P\ S and

Ms=PM, M=PM, My=m>¥=o0
pes pese
We define mg and m® similarly. We write Im(m) also as (m).

For any p | p, we fix nonzero elements e, 1 € H, (@) and ey 2 € Alp] (Q,) such that
{ep,1,€p,2} forms a basis of the o/p-module Alp](Q,). Put I, = {ep1,apep1+ep 2 | ap
€o/p} and es; = (ep,i),cq for i =1,2. We claim that for any element m?® of [Toese 2o
we have

Z 9e (A/ (Hs x D), es,2 X ms) =0, (5.2)

DEN{mS)=0

where the sum is taken over the set of finite flat closed (Hp ese p) -cyclic Op-subgroup

schemes D of A satisfying D3 N <ms> =0.
To show the claim, we proceed by induction on §S. The case of S =0 is equation (5.1).
Suppose that the claim holds for some S # B. Take p € S¢ and put S’ = SU{p}. Fix mS e

S

[I4e(sr)c Iq- Taking the sum of equation (5.2) over the set {m =my X mS" | myp € Ip},

we obtain

)DEEDY S e (47 (Hs x Dy x D) gy xmy xm ) =0

myp €l Dp,Km<mp>:0Df(/ﬁ<mS’>:0

We compute terms in this sum for each Dj.

o If Dy (Q,) = (0/p)ep,1 = Hy (Qy) and Dy i N (my) = 0, then my, = apep 1 +ep2
with some a, € o/p. In this case, m, is equal to the image €, 2 of e, 2.

o If D, (Q,) = (0/p) (apep,1+ep2) and Dy g N (my,) =0, then we have either m, =
€p,1 OF My = bpep 1 +ep o with some b, # a, € 0/p. In each case, my, is equal to the
element €, 1 or (b, —ay)ép 1.

Thus the sum of the terms in which Dys of the second case appear is equal to

PP ge(A) (Hs x (0/p) (apep +ep2) x D) sesa X epr xm¥ ).

DY N(mS"y=0ap€o/p
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This equals
P S (A (s xD%) s e k),
Df{ﬂ<ep,1><ms,>20

which is zero by the induction hypothesis (5.2). What remains is the sum of the terms of
Dys of the first case, which equals

p'r Z e (A/ (’HS/ xDS') N me’) =0
DY N{ms")=0

and the claim follows. Setting S =B, we obtain g. (A/H,éq,2) = 0. For any u as in the
lemma, the map u, corresponds to a,é, o for some a, € (0/p)*. Thus we have

9e(A/H,u) = g (A/H,ep,2) =0,
and the lemma follows. O
Consider the admissible open subset of ), , defined by
{[(ANH)] | Hdgs(A) = p/(p+1) for any 5 € Br}
and let V be a nonempty admissible affinoid open subset of it. Note that the map
W:ideip = Vep, (ANH)— (A/?-L,p/_\,A[p]/’H)

is an isomorphism. By [29, Proposition 6.1], we have r=1(W (V)) CU.. Consider the base
extensions Wc, : Ve pc, = Ve,p,c, and Vc,, where the latter is an admissible affinoid
open subset of Y ,,¢,. By Lemma 5.2, 7* f(O) vanishes on the subset W (V) (Q,) of the
admissible affinoid open subset W¢, (V) =W (V)¢

p*

Lemma 5.3. Let A be a reduced K-affinoid algebra. Put X =Sp(A), Ac, = A®KC,,
and Xc, fSp (A(cp). We consider the set X (Qp) as a subset of Xc, (Cp) by the natural
inclusion Q, — C,,. Suppose that an element f € Ac,, satisfies f(x) =0 for any x € X (Qp).
Then f=0.

Proof. For any positive rational number &, we put
U.={z€Xe, | |f() <}
We can find an element f. € ARk @p such that
|(f = fo)(x)| < e for any z € Xc,.

Then we have U, = {z € X¢, | |f-(z)| < e}. Take a finite extension L/K satisfying f. €
Ap:=A®k L. Put X1, =Sp(AL). The assumption implies X (Q,) C U, namely |f.(z)|<e
for any z € X (Q,). This shows X1, = {2 € X, | |f.(x)| <e}. Since the formation of rational
subsets is compatible with base extensions, we have X¢, = U, for any ¢ > 0, which implies
f(z)=0forany x € Xc,. Since Xc, is reduced, we obtain f = 0 and the lemma follows. [

Since the invertible sheaf 7*Q" is the base extension to C, of a similar invertible sheaf
over K, it is trivialized by the base extension of an admissible affinoid covering over K.
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By Lemma 5.3, we have 7* (O

)
subset 7 (W (V)c, ) of M(un,¢ (pj_l) . By Lemma 3.4, M (uy,c) (”L)C is connected.

By Lemma 3.1, we obtain f.(O) =0 for any ¢, which contradicts the fact that f(O) is
normalized. This concludes the proof of the theorem. O

lw ), =0. Thus f.(O) vanishes on the admissible open

6. List of notation

Following is a list of the main notation, in order of definition.
§1: Dcp, O, 'Dép
§3‘1: F7 g, 0, DF7 UN; fpa K7 k7 VV7 TK, € Up, m%ia OL,iv yL,h ]BF7 B]ﬁ F]RTa F]R?-i_a
Dec(a,b), ¢(a,b), Z(c)
§3.1.1: WG, B, degﬁ, Hng
§3 1.2: M(,”’Nv ) Aunv Uva qm’ SG7 éaa g%v foa SO’) ng Rg; %na Tatea,b(Q)7 >\u,ba
M(,U'N7 ) D, A
§3.1.3: M(un,c), M(un,c), M(un,¢), A, A", Wi, Wim g, W, Wam g

Wy g M(pw,©) (v), M(pn.e) (v), Mun,ce) (@), Mpn.c) (v), M(un,e)(v),
M(pn,©) (veot ), M(pw,c)(v), NAdm, 7 (P)

§3.1.4: Cn, Cy, HTg, 6k

§3.2: Yep, Yepy Vep: Ve Ve@ (ﬁ) Veae, Yioc, (ﬁ)

§3.3.1: T, T, TO, W, k", ©°, k¥, 6,,, Bp, M(L1(p"), pn¢) (1), M(T1 (p™), o, ¢) (v),
Y IWE, IWE (), IWE, IWE (0), hw, Tw Tw, 5, M (un,esd) (v),
S (,uN,c,/-@Z”) (v), o

§3.3.2: WY  k(rw), A, FH@ Frac(F)®, M (un,c (M 0M)) (v),
S (unoe, (W) (v),  Lay M (un, (WHu)) (), S (un, (4 0t)) (),
ME (v, (W 0H)) (vior), S (e, (14 0H)) (0101)

§3.3.3: V[ ((v), p1, 2, T, Tp, Tty St, Up, Up, T, vy, €

§3'4: T, Ocpa ’Yw,ocpa h’n,(’)gp7 M*(ILLN,C), @*(MN,C)(UtOt), M*(NNac)(UtOt)7 P priga

rig
POCP 3 p(C

s4: [C(F)]", J.

§4 1: So’; Raa OL [X<7‘7 >r] OL <X<’I‘7X§r> L<X<r; §7~>7 g;iga g‘fa g;& (_);%p7
RO‘ ona SU Oc ) S% OC b) Saa RO’ O”‘ ) 7-Cl b? OKU7 ft( ) a07c71(f,§)

§4.2: A(n), ®(n), pn, ¢"

§4.2.1: R R,7 o Rn,g, q", Tateq s(q")
§4.3: M(pn,¢,5)(0), S

§4.4: a¥ (f.1)

§5: Z/l, Xﬁ XC(UI)ﬂ ha Xcl(vl)7 yC,p(v/)v ’f' yc ,p? 7(-13 ycl,p(v/)a ucla gC; Zc,p, Zc,p» q17 q2)
Z. ), I
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