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Abstract Let p be a rational prime. Let F be a totally real number field such that F is unramified
over p and the residue degree of any prime ideal of F dividing p is ≤ 2. In this paper, we show that
the eigenvariety for ResF/Q(GL2), constructed by Andreatta, Iovita, and Pilloni, is proper at integral
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2.2. Lifting lemma à la Deligne and Serre 2652
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1. Introduction

Let p be a rational prime and let N be a positive integer which is prime to p. We fix an

algebraic closure Q̄p of Qp and denote its p-adic completion by Cp. Let WQ be the weight
space for GL2,Q, which is a rigid analytic variety over Qp such that the set of Cp-valued

points WQ (Cp) is identified with the set of continuous homomorphisms Z×
p → C×

p .

In [15, 12], Coleman and Mazur and Buzzard defined a rigid analytic curve CN with

a morphism κ : CN → WQ such that the set of Cp-valued points CN (Cp) is in bijection
with the set of normalized overconvergent elliptic eigenforms of tame level N which are of

finite slopes, in such a way that the eigenform f corresponding to a point x∈ CN (Cp) is of

weight κ(x). The curve CN is called the Coleman–Mazur eigencurve, and it has played an
important role in arithmetic geometry, since it turned out to be useful to control p-adic

congruences of elliptic modular forms. After their construction of the eigencurve, much

progress has been made to generalize it to the case of automorphic forms on algebraic
groups other than GL2,Q. Now we have, for various algebraic groups G over a number

field, a similar rigid analytic variety E to the Coleman–Mazur eigencurve over a weight

space WG for G, which is called the eigenvariety for G.

Despite their importance, we still do not know much about the geometry of eigenvari-
eties. For example, we do not even know if an eigenvariety has finitely many irreducible

components. One of the topics of active research is the smoothness of eigenvarieties at

classical points. For the Coleman–Mazur eigencurve, we know the smoothness at classical
points in many cases [6, 8, 30, 32]. Belläıche and Chenevier [7] studied tangent spaces of

their eigenvariety for unitary groups at certain classical points, and applied it to showing

the nonvanishing of a Bloch–Kato Selmer group. On the other hand, Belläıche proved the
nonsmoothness of the eigenvariety for U(3) at classical points [5]. It is natural to think

that such geometric information of eigenvarieties is related to deep p-adic properties of

automorphic forms.

Another interesting topic, which this paper is concerned with, is the properness of
eigenvarieties over weight spaces. Since eigenvarieties are not of finite type over weight

spaces, they are not proper in the usual sense. Instead, we consider the following geometric

interpretation of the nonexistence of holes: Let DCp
= Sp(Cp〈T 〉) be the closed unit disc

centered at the origin O and let D×
Cp

=DCp
\{O} be the punctured disc. For any quasi-

separated rigid analytic variety X , we write XCp
for the base extension of X to Sp(Cp).

Suppose that we have a commutative diagram of rigid analytic varieties

D×
Cp

��

��

ECp

��
DCp

��

��

WG
Cp
,
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Properness of the Hilbert eigenvariety 2647

where the vertical arrows are the natural maps. Then we say that the eigenvariety E is
proper if there exists a morphism DCp

→ECp
such that the diagram is still commutative

with this morphism added. Roughly speaking, this means that any family of overcon-

vergent eigenforms of finite slopes on G parametrized by the punctured disc can always
be extended to the puncture. However, note that what eigenvarieties parametrize are in

general not eigenforms themselves but eigensystems occurring in the space of overconver-

gent automorphic forms. We also note that the naive interpretation of the nonexistence

of holes – that any p-adically convergent sequence of overconvergent eigenforms of finite
slopes converges to an overconvergent eigenform of finite slope – is false [16, Theorem 2.1].

For the properness of the Coleman–Mazur eigencurve CN , Buzzard and Calegari first

proved the properness of CN for the case where p= 2 and N = 1 [13]. It was followed by
Calegari’s result [14] on the properness of CN at integral weights: he showed the existence

of the map DCp
→ CN,Cp

as in the definition of properness if the image of the puncture

O in the weight space corresponds to a classical weight. One of the key points of their
proofs is to show that any nonzero overconvergent elliptic eigenform of infinite slope does

not converge on a certain region of a modular curve, while any overconvergent elliptic

eigenform of finite slope does converge on a larger region. In [13], they deduced the former

from the theory of canonical subgroups, especially a behavior of the Up-correspondence
for elliptic curves with Hodge height p/(p+ 1), and the latter is a consequence of a

standard analytic continuation argument via the Up-operator. Recently, the properness

of the Coleman–Mazur eigencurve was proved in full generality by Diao and Liu [22] using
p-adic Hodge theory, especially the theory of trianguline p-adic representations in families.

For algebraic groups other than GL2,Q, the properness of eigenvarieties has not been

known. Note that in Diao and Liu’s proof of the properness of the Coleman–Mazur
eigencurve, in order to apply p-adic Hodge theory it seems crucial that we have a Galois

representation, not just a Galois pseudorepresentation, over (the normalization of) the

eigencurve. This is a consequence of the fact that we can convert pseudorepresentations

into representations over smooth rigid analytic curves [15, remark after Theorem 5.1.2].
Thus, at present, it is unclear if their proof can be generalized to show the properness of

eigenvarieties of dimension greater than 1 on the components where the residual Galois

representations attached to automorphic forms are absolutely reducible.
The aim of this paper is to generalize the method of Buzzard and Calegari to the

case of Hilbert modular forms and to obtain the properness of the Hilbert eigenvariety

constructed by Andreatta, Iovita, and Pilloni [4] at integral weights in some cases.
To state the main theorem, we fix some notation. For any totally real number field F

with ring of integers OF , put G = ResF/Q(GL2) and T = ResOF /Z(Gm). Let K/Qp be a

finite extension such that F ⊗K splits completely. Let WG be the weight space for G

over K as in [4, §4.1]. By definition, we have

WG = Spf
(
OK

[[
T(Zp)×Z×

p

]])rig
,

and the set of Cp-valued points WG (Cp) can be identified with the set of pairs of

continuous characters

ν : T(Zp)→ C×
p , w : Z×

p → C×
p .
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We say that the weight (ν,w) is 1-integral if its restriction to 1+p(OF ⊗Zp)× (1+pZp)

comes from an algebraic character T×Gm →Gm. This restriction corresponds to a pair(
(kβ)β ,k0

)
of a tuple (kβ)β of integers indexed by the set of embeddings β : F →K and

an integer k0. We say that a 1-integral weight is 1-doubly even if every kβ and k0 are
divisible by 4. Then the main theorem in this paper is the following:

Theorem 1.1 (Theorem 5.1). Let F be a totally real number field which is unramified

over p. Let K/Qp be a finite extension in Q̄p such that F ⊗K splits completely. Let

N ≥ 4 be an integer prime to p. Let E →WG be the Hilbert eigenvariety of tame level N
constructed in [4, §5], which is defined over a finite extension of K.

Suppose that for any prime ideal p of F dividing p, the residue degree fp of p satisfies

fp ≤ 2 (resp., p splits completely in F) if p is odd (resp., even). Then E is proper at

1-integral (resp., 1-doubly even) weights. Namely, any commutative diagram of rigid
analytic varieties over Cp

D×
Cp

ϕ ��

��

ECp

��
DCp ψ

��

��

WG
Cp

can be filled with the dotted arrow if ψ(O) corresponds to a 1-integral (resp., 1-doubly

even) weight.

For the proof, we basically follow the idea of Buzzard and Calegari [13, 14]. Thus the

key step in our case is also to show that any nonzero overconvergent Hilbert eigenform f
of 1-integral weight and infinite slope does not converge on the locus where all the partial

Hodge heights are no more than 1/(p+1) in a Hilbert modular variety.

Let us explain briefly how to show this nonconvergence property, following [13]. For
simplicity, we assume that f is of integral weight, namely the weight (ν,w) corresponds

to an algebraic character T×Gm → Gm. For any Hilbert–Blumenthal abelian variety

(HBAV) A with an OF -action over the ring of integers OL of a finite extension L/K, we
say that a finite flat closed OF -subgroup scheme H of A over OL is p-cyclic if its generic

fiber is étale locally isomorphic to the constant group scheme OF /pOF . We say that A is

critical if every β-Hodge height of A is equal to p/(p+1) for any embedding β : F →K.

Then, for any critical A and any p-cyclic subgroup scheme H of A, the quotient A/H
has the canonical subgroup A[p]/H of level 1 and its β-Hodge heights are all 1/(p+1)

[29, Proposition 6.1]. This is where the assumption on residue degrees is used in the most

crucial way. It is unclear if the claim holds without this assumption: at least, we have a
counterexample of a similar assertion for truncated Barsotti–Tate groups if we drop the

assumption on fp [29, Remark 6.2].

Consider the Hilbert modular variety classifying pairs (A,H) of an HBAV A and its
p-cyclic subgroup scheme H. Let U be the locus where H is the canonical subgroup

of A. Another thing we need here is to show that for any (A,H) with A critical, the

corresponding point [(A,H)] of the Hilbert modular variety has a connected admissible

https://doi.org/10.1017/S147474802200010X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200010X


Properness of the Hilbert eigenvariety 2649

affinoid open neighborhood intersecting U such that, if an overconvergent Hilbert
eigenform f of integral weight converges on the locus where all the β-Hodge heights

are ≤ 1/(p+1), then we can evaluate Upf on this neighborhood (Proposition 3.7). This

implies that if f is in addition of infinite slope, then we have (Upf)(A,H) = 0 for any
critical A and any p-cyclic subgroup scheme H. From this, by a combinatorial argument

(Lemma 5.2), we obtain f(A/H,A[p]/H) = 0 for any such (A,H), which yields f = 0,

and the nonconvergence property follows. It seems that this argument using a connected

neighborhood cannot be generalized immediately to the case where f is not of locally
algebraic weight, since in this case Upf is defined only on the locus U (even after taking

a finite étale cover) and it cannot be evaluated for any critical A.

Note that sheaves of overconvergent Hilbert modular forms of [4] are defined on the
locus in the Hilbert modular variety where canonical subgroups exist. However, the theory

of canonical subgroups used in [4] does not give the existence locus which is enough large

to contain critical HBAVs unless p is sufficiently large. Instead, we use [29, Theorem 8.1],
which enables us to enlarge the locus where sheaves of overconvergent Hilbert modular

forms are defined from the original locus given in [4], and to include the case of p < 5 in

the main theorem.

What the Hilbert eigenvariety E of [4] parametrizes are eigensystems in the space
of overconvergent Hilbert modular forms. Thus, to follow the strategy of Buzzard and

Calegari to reduce properness to the nonconvergence property of overconvergent modular

forms, we have to convert a family of eigensystems of finite slopes, or a morphism from a
rigid analytic variety to E , into a family of eigenforms and vice versa. The latter direction

can be treated (Proposition 2.7) as in the proof of [7, Proposition 7.2.8]. For the former

direction, we first prove that any family of eigensystems over any smooth rigid analytic
variety over Cp can be lifted locally to a family of eigenforms (Proposition 2.5). This can

be considered as a version of Deligne and Serre’s lifting lemma [21, Lemme 6.11]. Then

we glue the local eigenforms using a weak multiplicity one result, after we normalize the

local eigenforms with respect to the first q-expansion coefficient (Proposition 4.15). This
use of weak multiplicity one and normalization via a q-expansion coefficient hinders us

from generalizing the main theorem to the case of GSp2g, where sheaves of overconvergent

Siegel modular forms and the Siegel eigenvariety are constructed in a similar way [3].
Once we have a family of overconvergent Hilbert eigenforms f of finite slopes

parametrized by D×
Cp

associated to the family of eigensystems ϕ :D×
Cp

→ECp
, we extend

its domain of definition in the Hilbert modular variety as large as possible by an analytic
continuation using the Up-operator. Since the Hecke eigenvalues are of absolute values

bounded by 1, we can show that q-expansion defines a rigid analytic function around a

cusp parametrized by D×
Cp

which is of absolute value bounded by 1. Such a function

automatically extends to the puncture, and a gluing shows that f also extends to
the puncture (Proposition 4.19). Since we analytically continued f to a large region,

the specialization f(O) at the puncture is also defined over the same large region. Thus

the nonconvergence property of eigenforms of infinite slope implies that f(O) is also of
finite slope, which gives us an extended map DCp

→ECp
.

The organization of this paper is as follows. In §2, we recall Buzzard’s eigenvariety

machine [12], on which the construction of the Hilbert eigenvariety in [4] relies, and we
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prove results to convert a family of eigensystems into local eigenforms and vice versa. In
§3, we recall the definition of overconvergent Hilbert modular forms and the construction

of the Hilbert eigenvariety, both due to Andreatta, Iovita, and Pilloni [4], including

generalizations of some of their results to the case over Cp. We also give a connected
neighborhood of any critical point in a Hilbert modular variety, which is one of the key

ingredients of the proof of Theorem 1.1. In §4, we prove properties of the q-expansion

for overconvergent Hilbert modular forms. These are used to produce a global eigenform

by gluing local eigenforms obtained from a family of eigensystems, and also to extend a
family of overconvergent Hilbert eigenforms over the punctured unit disc to the puncture.

Combining these results, we prove Theorem 1.1 in §5.

2. Lemmata on Buzzard’s eigenvariety

Let p be a rational prime and let K be a finite extension of Qp in Q̄p. In this section,

we establish two lemmata on Buzzard’s eigenvariety machine [12]. In the first lemma, we

show that any family of Hecke eigensystems over a smooth rigid analytic variety over Cp

lifts locally to a family of eigenforms. The second one enables us to convert any family of
Hecke eigensystems of finite slopes over a reduced rigid analytic variety into a morphism

to the eigenvariety.

2.1. Buzzard’s eigenvariety machine

First we briefly recall the construction of Buzzard’s eigenvariety. Let R be a reduced

K -affinoid algebra. Let M be a Banach R-module satisfying the condition (Pr) of [12,

§2]. We write EndcontR (M) for the R-algebra of continuous R-endomorphisms of M. Let T

be a commutative K -algebra endowed with a K -algebra homomorphismT→EndcontR (M).
Let φ be an element of T. Suppose that φ acts on M as a compact operator. We call such

a quadruple (R,M,T,φ) an input datum for the eigenvariety machine over K.

For such M and M ′, a continuous R-linear T-module homomorphism α : M ′ → M
is called a primitive link if there exists a compact R-linear T-module homomorphism

c : M → M ′ such that φ acts on M as α ◦ c and it acts on M ′ as c ◦α. A continuous

R-linear T-module homomorphism α :M ′ →M is called a link if it is the composite of a
finite number of primitive links.

Let P (T ) = 1+
∑

n≥1 cnT
n be the characteristic power series of φ acting on M, which is

an element of the ring R{{T}} of entire functions over R. The spectral variety Zφ for φ is

the closed analytic subvariety of Sp(R)×A1 defined by P (T ). We denote the projection
Zφ → Sp(R) by f.

The eigenvariety E associated to (R,M,T,φ) is the rigid analytic variety over Zφ, defined

as follows: let C be the set of admissible affinoid open subsets Y of Zφ satisfying the
condition that there exists an affinoid subdomain X of Sp(R) such that Y ⊆ f−1(X) and

the map Y →X induced by f is finite and surjective. We can show that C is an admissible

covering of Zφ [12, §4, Theorem], and we refer to C as the canonical admissible covering
of Zφ.

Let Y = Sp(B) be an element of C and let X = Sp(A) be as before. Suppose that X is

connected. Then the A-algebra B is projective of constant rank d. In the ring of entire
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functions A{{T}} over A, we can show that P (T ) can be written as P (T ) = Q(T )S(T )

with some S(T ) ∈A{{T}} and a polynomial Q(T ) of degree d over A with constant term

1, and that we have a natural isomorphism A[T ]/(Q(T ))� B. Put Q∗(T ) = T dQ
(
T−1

)
.

By the Riesz theory [12, Theorem 3.3], the restriction MA of M to X = Sp(A) can

be uniquely decomposed as MA = N ⊕F , where N is a projective A-module of rank d

such that Q∗(φ) acts on N as the zero map and it acts on F as an isomorphism. Since
Q∗(0) 
=0, the operator φ is invertible on N. Let T(Y ) be the A-subalgebra of EndcontA (N)

generated by the image of T. Then the A-algebra T(Y ) is finite and thus a K -affinoid

algebra. Moreover, we have a natural A-algebra homomorphism A[T ]/(Q(T ))�B→T(Y )
sending T to (φ|N )−1. Put E(Y ) = Sp(T(Y )). If X is not connected, by decomposing X

into connected components as X =
∐

iXi we put E(Y ) =
∐

i E (Y |Xi
). Then these local

pieces can be glued along the admissible covering C and define the eigenvariety E → Zφ

[12, §5]. By [12, Lemma 5.3], the rigid analytic varieties E and Zφ are separated.
By the construction, the natural map E → Zφ is finite and the structure morphism

E → Sp(R) is locally (with respect to both the source and the target) finite. Moreover, we

have a K -algebra homomorphism T→O(E) such that, for any admissible affinoid open
subset V of Zφ, the induced map T⊗K O(V )→O(E|V ) is surjective.
In some cases we can glue this construction to define the eigenvariety over a nonaffinoid

base space. Let W be a reduced rigid analytic variety over K. Let T be a commutative
K -algebra and let φ be an element of T. Suppose that for any admissible affinoid open

subset X ⊆W, we are given a Banach O(X)-module MX satisfying condition (Pr) with

a K -algebra homomorphism T→ EndcontO(X)(MX) such that the image of φ is a compact

operator. Suppose also that for any admissible affinoid open subsets X1 ⊆ X2 ⊆W, we
have a continuous O(X1)-module homomorphism α :MX1

→MX2
⊗̂O(X2)O(X1), which is

a link and satisfies a cocycle condition. Then the eigenvarieties for (O(X),MX,T,φ) can

be patched into the eigenvariety E → Zφ →W [12, Construction 5.7], where Zφ denotes
the spectral variety over W constructed by gluing the spectral varieties over X.

Let L/K be an extension of complete valuation fields (of height 1). For any quasi-

separated rigid analytic variety X over K and any coherent OX -module F , we can define
base extensions XL := X⊗̂KL and FL of X and F functorially (see [10, Section 9.3.6]

and [17, §3.1]). If the extension L/K is finite, then they are just the fiber product and

the pullback in the usual sense. Otherwise, it seems unclear if it has usual properties as

a fiber product: for an open immersion j : U → X , what we know in this case is that
the base extension jL : UL → XL is also an open immersion if j is quasi-compact (for

example, if X is quasi-separated and U is an admissible affinoid open subset) or a Zariski

open immersion. At any rate, [10, Proposition 9.3.6/1 and Corollary 9.3.6/2] imply that
the base extension takes any admissible affinoid covering of X to that of XL. We write

the set of L-valued points XL(L) also as X (L).

Let (R,M,T,φ) be an input datum for the eigenvariety machine over K and let E →Zφ

be the associated eigenvariety over X = Sp(R). We say that a K -algebra homomorphism

λ :T→ L is an L-valued eigensystem in M if there exist an element x ∈X(L) given by

a K -algebra homomorphism x∗ :R→ L and a nonzero element m of M⊗̂R,x∗L such that

we have hm= λ(h)m for any h ∈T. It is said to be of finite slope if λ(φ) 
= 0. Then there
exists a natural bijection between E(L) and the set of L-valued eigensystems λ in M of
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finite slopes [12, Lemma 5.9]. We state the following lemma for reference, which is in fact

shown in [12]:

Lemma 2.1. Let (R,M,T,φ) be an input datum for the eigenvariety machine over K

and let E → Zφ be the associated eigenvariety over X = Sp(R). Let L/K be an extension
of complete valuation fields and take z ∈ E(L). Let x ∈X(L) and y ∈Zφ(L) be the images

of z. Let λ : T → L be the L-valued eigensystem in M corresponding to z. Let m be a

nonzero element of M⊗̂R,x∗L satisfying hm= λ(h)m for any h ∈T. Take an admissible
affinoid open subset V in the canonical admissible covering of Zφ satisfying y ∈ V (L).

Write f(V ) = Sp(A). Suppose f(V ) is connected. Let P (T ) be the characteristic power

series of φ acting on M. Let Q(T ) be the factor of P (T ) in A{{T}} associated to V and

let MA =N ⊕F be the corresponding decomposition of MA, as before. Then we have the
following:

(1) λ(h) = h(z) in L, where h(z) is the specialization at z of the image of h by the map

T→O(E).
(2) The decomposition

M⊗̂R,x∗L=N ⊗A,x∗ L⊕F ⊗̂A,x∗L

is the one corresponding to the factor Qx(T ) of Px(T ), where Px(T ) and Qx(T ) are

the images of P (T ) and Q(T ) in L{{T}} by x∗, respectively.

(3) Qx

(
λ(φ)−1

)
= 0 and m ∈N⊗A,x∗L.

Proof. The first assertion follows from the proof of [12, Lemma 5.9]. The second

one follows from [12, Lemma 2.13] and the uniqueness of the decomposition in [12,
Theorem 3.3]. For the third one, note that the definition of the map E(V )→ V implies

Qx

(
λ(φ)−1

)
= Q∗

x(λ(φ)) = 0. Since Q∗
x(φ)m = Q∗

x(λ(φ))m = 0, the second assertion

implies m ∈N⊗A,x∗L.

2.2. Lifting lemma à la Deligne and Serre

In this subsection, we consider the problem of converting a family of eigensystems into
a family of eigenforms. First we show a local lemma in the following setting: Let L be

a complete valuation field which is algebraically closed. Let (A,N,T,S,ϕ) be a tuple

consisting of

• an L-affinoid algebra A,
• a projective A-module N of finite rank,
• a finite A-algebra T equipped with an A-algebra homomorphism T → EndA(N),
• an L-affinoid algebra S which is an integral domain, and
• a homomorphism ϕ : T → S of L-affinoid algebras.

For any x ∈ Sp(S), we write mx for the associated maximal ideal of S.

Lemma 2.2. Let L be a complete valuation field which is algebraically closed. Let

(A,N,T,S,ϕ) be a tuple as before. Assume that for any x ∈ Sp(S), the induced map

ϕ(−)(x) : T → S/mx
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is an S/mx-valued eigensystem in N. Namely, we assume that for any x ∈ Sp(S), there

exists a nonzero element fx ∈N ⊗A S/mx satisfying (h⊗1)fx = (1⊗ϕ(h)(x))fx for any

h ∈ T .

(1) There exists a nonzero element F ∈ N ⊗A S satisfying (h⊗ 1)F = (1⊗ϕ(h))F for

any h ∈ T .

(2) Assume moreover that S is a principal ideal domain. We write F (x) for the image

of F in N ⊗A S/mx. Then there exists F as in (1) satisfying F (x) 
= 0 for any

x ∈ Sp(S).

Proof. Put P =Ker(ϕ : T → S), which is a prime ideal of T. Consider the multiplication
map μ : T ⊗A T/P → T/P , and put

Q=Ker(μ) = Ker(T ⊗A T/P → T/P → S).

Then the ideal Q is a minimal prime ideal. Indeed, since the A-algebra T is finite, the

T/P -algebra T ⊗A T/P is also finite, and thus the latter ring is a finite extension of a
quotient of T/P . Since the quotient (T ⊗A T/P )/Q is isomorphic to T/P , we have the

inequality

dim(T/P )≥ dim(T ⊗A T/P )≥ ht(Q)+dim(T/P ),

which implies ht(Q) = 0.

The ideals nx =ϕ−1(mx) and n̄′
x = (ϕ◦μ)−1(mx) are maximal ideals of the rings T and

T ⊗A T/P , respectively. We write n̄x for the inverse image of mx by the map T/P → S,

which is also a maximal ideal. Via the map 1⊗ϕ : T ⊗AT/P → T ⊗AS, the ring T ⊗AT/P

acts on N ⊗A S/mx for any x ∈ Sp(S).
First we claim that n̄′

x = AnnT⊗AT/P (fx). Since n̄′
x is a maximal ideal and fx 
= 0,

it is enough to show n̄′
x ⊆ AnnT⊗AT/P (fx). Since L is algebraically closed, the ideal

Im(nx ⊗A T/P ) + Im(T ⊗A n̄x) is a maximal ideal contained in n̄′
x, and thus they are

equal. For any h ∈ T , we denote its image in T/P by h̄. Take elements h ∈ T and h′ ∈ nx.

We have
(
h⊗ h̄′)fx =0. On the other hand, we also have (h′⊗1)fx = (1⊗ϕ(h′)(x))fx =0

by assumption. This implies
(
h′⊗ h̄

)
fx = 0, and the claim follows.

Next we claim that the localization (N ⊗A T/P )Q of the T ⊗A T/P -module N ⊗A T/P
at Q is nonzero. Suppose the contrary. Since the T ⊗A T/P -module N ⊗A T/P is finite,

we can find s /∈ Q satisfying s(N ⊗A T/P ) = 0. Take any x ∈ Sp(S). We have s(N ⊗A

T/nx) = 0. Since L is algebraically closed, we have L = T/nx = S/mx, and we also see
that s(N ⊗A S/mx) = 0. In particular, we have sfx = 0 and s ∈ AnnT⊗AT/P (fx) = n̄′

x.

Thus we obtain

s ∈
⋂

x∈Sp(S)

n̄′
x =

⋂
x∈Sp(S)

(ϕ◦μ)−1(mx) = (ϕ◦μ)−1

⎛
⎝ ⋂

x∈Sp(S)

mx

⎞
⎠ .

The assumption that S is a reduced L-affinoid algebra implies⋂
x∈Sp(S)

mx = 0.
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Hence s ∈Ker(ϕ◦μ) =Q, which is a contradiction.

Therefore we obtain Q ∈ SuppT⊗AT/P (N ⊗A T/P ). Since Q is a minimal prime ideal,

it is also contained in AssT⊗AT/P (N ⊗A T/P ). Namely, the prime ideal Q is written as
Q=AnnT⊗AT/P (G) with some nonzero element G of N ⊗A T/P . Since the A-module N

is projective, the natural map 1⊗ϕ :N⊗AT/P →N⊗AS is an injection. Thus the image

F = (1⊗ϕ)(G) is nonzero. Moreover, since h⊗1−1⊗ h̄ ∈Q for any h ∈ T , we have the
equality (h⊗1)G=

(
1⊗ h̄

)
G. Hence we obtain (h⊗1)F = (1⊗ϕ(h))F , and assertion (1)

follows.

Now assume that S is a principal ideal domain. Then each maximal ideal mx of S is
generated by a single element tx. Put

Σ(F ) = {x ∈ Sp(S) | F (x) = 0}.

Since the A-module N is projective and the Krull dimension of S is no more than 1, we

see that Σ(F ) is a finite set. For any x∈Σ(F ), the element F lies in Ker(N⊗AS →N⊗A

S/mx) =mx(N ⊗A S). By Krull’s intersection theorem, there exists a positive integer cx
satisfying F ∈ tcxx (N ⊗A S)\ tcx+1

x (N ⊗A S). Put F = tcxx H with some nonzero element H

of N ⊗A S. We have H(x) 
= 0 and Σ(H)� Σ(F ). Since the S -module N ⊗A S is torsion

free, the element H also satisfies (h⊗1)H = (1⊗ϕ(h))H for any h ∈ T . Repeating this,
we can find F as in assertion (1) satisfying Σ(F ) = ∅.

Remark 2.3. Let Sp(S) be a connected affinoid subdomain of the unit disc DCp
=

Sp(Cp〈T 〉). Note that Cp〈T 〉 is a principal ideal domain, since it is a unique factorization

domain of Krull dimension 1. [10, Proposition 7.2.2/1] implies that S is a regular ring of

Krull dimension no more than 1 such that every maximal ideal is principal. Since Sp(S)
is connected, we see that S is a principal ideal domain. Hence the assumption of Lemma

2.2(2) is satisfied in this case.

We say that a rigid analytic variety X is principally refined if any admissible covering of

X has a refinement by an admissible affinoid covering X =
⋃

i∈I Ui such that the affinoid

algebra of each affinoid open subset Ui in the refined covering is a principal ideal domain.

Remark 2.4. Remark 2.3 implies that any open subvariety of DCp
is principally refined.

For the eigenvariety associated to an input datum (R,M,T,φ), Lemma 2.2 implies the

following proposition:

Proposition 2.5. Let (R,M,T,φ) be an input datum for the eigenvariety machine over

K and let E → Zφ → Sp(R) be the associated eigenvariety. Let L/K be an extension of
complete valuation fields such that L is algebraically closed. Let X be a smooth rigid

analytic variety over L and let ϕ : X → EL = E⊗̂KL be a morphism of rigid analytic

varieties over L.

(1) There exist an admissible affinoid covering X =
⋃

i∈I Ui and a nonzero element

Fi ∈M⊗̂RO(Ui) for each i ∈ I satisfying (h⊗1)Fi = (1⊗ϕ∗(h))Fi for any h ∈T,

where ϕ∗ :T→O(E)→O(Ui) is the map induced by ϕ.
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(2) Assume moreover that X is principally refined. We write k(x) for the residue field

of x ∈ Ui and Fi(x) for the image of Fi in M⊗̂Rk(x). Then we can find Fi as in

(1) satisfying Fi(x) 
= 0 for any x ∈ Ui.

Proof. Let C be the canonical admissible covering of Zφ. For any V ∈ C, we have the

K -affinoid variety E(V ) = Sp(T(V )), as before. Then EL =
⋃

V ∈C E(V )L is an admissible

affinoid covering of EL. Let f : Zφ → Sp(R) be the natural projection and write f(V ) =
Sp(A). For any V ∈ C such that f(V ) is connected, take an admissible affinoid covering

ϕ−1(E(V )L) =
⋃

i∈IV
Ui such that Ui = Sp(Si) is connected for any i ∈ IV . From the

construction of the eigenvariety, we have a natural decomposition M⊗̂RA =N ⊕F into
closed A-submodules N and F. Note that the A-module N is finite and projective. Since

the complete tensor product commutes with the direct sum, the Si-module N ⊗A Si is a

submodule of M⊗̂RSi.

For any i ∈ IV , consider the natural map ϕ∗ : T → T(V ) → Si. We denote the map
T(V ) → Si also by ϕ∗. For any x ∈ Ui = Sp(Si), the composite Sp(k(x)) → Ui → EL
corresponds to a k(x)-valued eigensystem of T in M of finite slope. Namely, there exists

a nonzero element gx of M⊗̂Rk(x) = N⊗Ak(x)⊕F ⊗̂Ak(x) satisfying (h⊗ 1)gx = (1⊗
ϕ∗(h)(x))gx for any h ∈T and (φ⊗1)gx 
= 0. Lemma 2.1(3) implies gx ∈N⊗Ak(x). Since

Ui is connected and smooth, the ring Si is an integral domain. Applying Lemma 2.2(1)

to the tuple
(
A⊗̂KL,N⊗̂KL,T(V )⊗̂KL,Si,ϕ

∗⊗1
)
, we obtain a nonzero element Gi ∈

N⊗ASi =
(
N⊗̂KL

)
⊗̂A⊗̂KLSi satisfying (h⊗1)Gi = (1⊗ϕ∗(h))Gi for any h ∈T. Setting

Fi to be the image of Gi by the injection N ⊗A Si →M⊗̂RSi assertion (1) follows.
For assertion (2), by assumption we may assume that each Si is a principal domain.

Then Lemma 2.2(2) allows us to find Gi satisfying in addition Gi(x) 
= 0 for any x ∈ Ui.

Since we have a commutative diagram

N ⊗A Si
� � ��

��

M⊗̂RSi

��
N ⊗A k(x) �

� �� M⊗̂Rk(x)

such that the horizontal arrows are injective, we obtain Fi(x) 
= 0 for any x ∈ Ui.

2.3. Belläıche and Chenevier’s argument

Let (R,M,T,φ) be an input datum for the eigenvariety machine over K and let E →Zφ →
Sp(R) be the associated eigenvariety. Let L/K be an extension of complete valuation

fields. Put RL = R⊗̂KL. Let X be a rigid analytic variety over L equipped with a
morphism κ :X → Sp(RL). For any x ∈X, we have a natural ring homomorphism κ∗(x) :
R→ k(x). A ring homomorphism ϕ :T→O(X) is said to be a family of eigensystems in

M over X if, for any x∈X, there exists a nonzero element fx of M⊗̂R,κ∗(x)k(x) such that
(h⊗1)fx = (1⊗ϕ(h)(x))fx for any h∈T. It is said to be of finite slopes if ϕ(φ)(x) 
= 0 for

any x ∈X. This is the same as saying that ϕ(φ) ∈ O(X)×. In this subsection, we show

that we can convert a family of eigensystems of finite slopes over a reduced base space
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into a morphism to the eigenvariety, following [7, Proposition 7.2.8]. First we recall the

following lemma:

Lemma 2.6.

(1) Let f :X → Y be a morphism of rigid analytic varieties over L with X reduced. Let

Z be a closed analytic subvariety of Y. Suppose f(X) ⊆ Z. Then f factors through

Z.

(2) Let f,f ′ :X → Y be two morphisms of rigid analytic varieties over L with X reduced

and Y separated. Suppose that these morphisms define the same map between the

underlying sets. Then f = f ′.

Proof. For the first assertion, we may assume that X = Sp(R1), Y = Sp(R2), and Z =

Sp(R2/I) for some ideal I ofR2. Consider the associated ring homomorphism f∗ :R2 →R1

and put J =Ker(f∗). By assumption, every maximal idealm ofR1 satisfies (f
∗)−1(m)⊇ I.

Since R1 is Jacobson and reduced, we obtain

I ⊆
⋂

m∈Sp(R1)

(f∗)−1(m) = (f∗)−1

⎛
⎝ ⋂

m∈Sp(R1)

m

⎞
⎠= (f∗)−1(0) = J.

Hence assertion (1) follows. Assertion (2) follows from the first one applied to (f,f ′) :
X → Y ×L Y and the diagonal Y → Y ×L Y .

Proposition 2.7. Let (R,M,T,φ) be an input datum for the eigenvariety machine over

K and let E → Zφ → Sp(R) be the associated eigenvariety. Let L/K be an extension of

complete valuation fields. Let X be a reduced rigid analytic variety over L equipped with a

morphism κ :X → Sp(RL). Suppose that we have a family of eigensystems of finite slopes
ϕ :T→O(X) in M over X. Then there exists a unique morphism Φ :X →EL such that

the diagram

X
Φ ��

κ
���

��
��

��
��

EL

��
Sp(RL)

is commutative and, for any x ∈ X, the eigensystem over k(x) corresponding to

Sp(k(x))→X
Φ→EL is the map ϕ(−)(x) :T→ k(x).

Proof. Let C be the canonical admissible covering of Zφ. Take any V = Sp(B) ∈ C and

put f(V ) = Sp(A) as in the proof of Proposition 2.5. Let I be a finite subset of T such

that its image in T(V ) is a system of generators of the finite B -algebra T(V ). We denote
by AI

VL
the affine space over VL = V ⊗̂KL whose variables are indexed by I. We have a

morphism of rigid analytic varieties

iV ,I : E(V )L → AI
VL

, z �→ (h(z))h∈I .

From the definition of I, we see that the map iV ,I is a closed immersion.
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On the other hand, we also have a morphism of rigid analytic varieties

μ :X → Sp(RL)×A1
L, x �→

(
κ(x),ϕ(φ)−1(x)

)
.

Let P (T )∈R{{T}} be the characteristic power series of φ acting on M. For any x∈X, let

Px(T ) be the image of P (T ) in k(x){{T}} by the map κ∗(x) :R→ k(x). By [12, Lemma
2.13], it is the characteristic power series of φ acting on M⊗̂R,κ∗(x)k(x). By assumption,

there exists a nonzero element gx of M⊗̂R,κ∗(x)k(x) satisfying

(h⊗1)gx = (1⊗ϕ(h)(x))gx.

Then Lemma 2.1(3) implies Px

(
ϕ(φ)(x)−1

)
= 0. Using the assumption that X is reduced

and Lemma 2.6(1), we see that the morphism μ factors through Zφ,L.

For any V ∈ C, put XVL
= μ−1(VL). For any I as before, we consider the morphism of

rigid analytic varieties over VL

jV ,I :XVL
→ AI

VL
, x �→ (ϕ(h)(x))h∈I .

By [12, Lemma 5.9] and Lemma 2.1(1), for any x ∈ XVL
there exists a unique point

zx ∈ E(k(x)) satisfying ϕ(h)(x) = h(zx) for any h ∈T. We claim that zx ∈ E(V )L. Indeed,
we may assume that f(V ) is connected. LetQ(T ) be the factor of P (T ) corresponding to V

and let Qx(T ) be its image by κ∗(x). Let N be the direct summand of MA corresponding

to V. For any x∈XVL
, we have μ(x)∈ VL and Qx

(
ϕ
(
φ−1
)
(x)
)
=Q∗

x(ϕ(φ)(x)) = 0. Hence
Q∗

x(φ)gx = 0 and thus gx ∈ N ⊗A k(x). From the proof of [12, Lemma 5.9], this implies

zx ∈ E(V )L, and the claim follows.

In particular, we have jV ,I(x) = iV ,I(zx) for any x ∈ XVL
and thus jV ,I (XVL

) ⊆
iV ,I(E(V )L). Since iV ,I is a closed immersion and XVL

is reduced, Lemma 2.6(1) yields

a unique morphism ΦV ,I : XVL
→ E(V )L over VL which makes the following diagram

commutative:

XVL

ΦV ,I ��

jV ,I ���
��

��
��

�
E(V )L� �

iV ,I

��
AI

VL
.

We claim that the morphism ΦV ,I is independent of the choice of a finite subset I of T as

before. Indeed, for any x∈XVL
, we have ΦV ,I(x)= i−1

V ,I (jV ,I(x))= zx, which depends only
on x. Since X is reduced and E is separated, Lemma 2.6(2) implies the claim. Moreover,

for the same reason we can glue the morphisms ΦV ,I along V ∈ C and obtain a morphism

Φ :X →EL. Since the requirement on Φ in the proposition is the same as Φ(x) = zx, it is
satisfied by the morphism Φ we have constructed. Lemma 2.6(2) ensures uniqueness.

3. Hilbert eigenvariety

3.1. Hilbert modular varieties

Let p be a rational prime. Let F be a totally real number field of degree g which is

unramified over p. We denote its ring of integers by o=OF and its different by DF . For
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any integer N, we put

UN =
{
ε ∈ O×

F | ε≡ 1 mod N
}
.

For any prime ideal p | p of OF , let fp be the residue degree of p.

Fix a finite extension K/Qp in Q̄p such that F ⊗K splits completely. We denote by OK

the ring of integers of K, by mK the maximal ideal of OK , by πK a uniformizer of K, by
e the absolute ramification index of K, by k the residue field of K, and by W =W (k) the

Witt ring of k. Let vp be the additive valuation on K normalized as vp(p) = 1. For any

nonnegative real number i, we put

m�i
K = {x ∈ OK | vp(x)≥ i}, OK,i =OK/m�i

K , Si = Spec(OK,i) .

For any extension L/K of valuation fields, we consider the valuation on L extending vp
and define OL,mL,m

�i
L , OL,i, and SL,i =Spec(OL,i) similarly. For any element x∈OL,1,

we define the truncated valuation vp(x) by

vp(x) = min{vp (x̂),1}

with any lift x̂∈OL of x. For any x∈L, we define the absolute value of x by |x|= p−vp(x).
We denote by BF the set of embeddings F →K and by Bp the subset of BF consisting

of embeddings which factor through the completion Fp. The set BF is decomposed as

BF =
∐
p|p

Bp.

For any subset X of F, we denote by X+ the subset of totally positive elements of X.

Put FR = F ⊗R and F ∗
R = HomQ(F,R). We denote by F ∗,+

R the subset of F ∗
R consisting

of linear forms which maps the subset F×,+ to R>0. The group UN acts on F and F ∗,+
R

through ε �→ ε2.

Let c be any nonzero fractional ideal of F. For any fractional ideals a,b of F satisfying
ab−1 = c, we denote by Dec(a,b) the set of rational polyhedral cone decompositions C =

{σ}σ∈C of F ∗,+
R which is projective and smooth with respect to the lattice Hom(ab,Z)

such that the elements of C are permuted by the action of UN , the set C /UN is finite,

and for any ε ∈ UN and σ ∈ C , ε(σ)∩ σ 
= ∅ implies ε = 1, as in [31, §4.1.4]. Here we
adopt the convention that σ is an open cone. Note that any two elements of Dec(a,b)

have a common refinement which belongs to Dec(a,b). For any such pair (a,b), we fix

once and for all a rational polyhedral cone decomposition C (a,b) ∈ Dec(a,b) and put
D(c) =

{
C (a,b) | ab−1 = c

}
.

3.1.1. Hilbert–Blumenthal abelian varieties. Let N ≥ 4 be an integer with p �N

and let c be a nonzero fractional ideal of F. Let S be a scheme over OK . A Hilbert–
Blumenthal abelian variety over S, which we abbreviate as ‘HBAV’, is a quadruple

(A,ι,λ,ψ) such that the following are true:

• A is an abelian scheme over S of relative dimension g.
• ι :OF → EndS(A) is a ring homomorphism.
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• λ is a c-polarization. Namely, λ : A⊗OF
c � A∨ is an isomorphism of abelian

schemes to the dual abelian scheme A∨ compatible with OF -action such that
the map

HomOF
(A,A∨)�HomOF

(A,A⊗OF
c), f �→ λ−1 ◦f,

induces an isomorphism of OF -modules with notion of positivity
(
PA,P+

A

)
�

(c,c+). Here PA denotes the OF -module of symmetric OF -homomorphisms from
A to A∨, P+

A is the subset of OF -linear polarizations, and any element γ ∈ c is
identified with the element (x �→ x⊗γ) of HomOF

(A,A⊗OF
c).

• ψ : D−1
F ⊗μN → A is an OF -linear closed immersion of group schemes, which we

call a Γ00(N)-structure.

Note that for such data, theOF ⊗OS-module Lie(A) is locally free of rank 1 [20, Corollaire
2.9]. While the notion of an HBAV depends on c, we will omit the reference to c when

there is no risk of confusion.

Let L/K be an extension of complete valuation fields and let p be a prime ideal of OF

dividing p. Let G be a finite flat group scheme over OL with an OFp
-action. We have

decompositions

ωG =
⊕
β∈Bp

ωG,β, Lie(G×SL,n) =
⊕
β∈Bp

Lie(G×SL,n)β

according with the decomposition OFp
⊗W �

∏
β∈Bp

W . Write ωG,β �
⊕

iOL/(ai) with

some ai ∈ OL, and define the β-degree of G by degβ(G) =
∑

i vp(ai). Similarly, for any
finite flat group scheme H over OL with an OF -action, we have decompositions

H=
⊕
p|p

Hp, ωH =
⊕
β∈BF

ωH,β

such that Hp is a finite flat closed subgroup scheme of H over OL and ωH,β = ωHp,β for
any β ∈ Bp. We put degβ(H) = degβ (Hp) for any β ∈ Bp.

Suppose that G is a truncated Barsotti–Tate group of level n, height h, and dimension

d over OL. For the p-torsion part G[p] of G, the Lie algebra Lie(G∨[p]×SL,1) is a free
OL,1-module of rank h−d. The Verschiebung of G∨[p]×SL,1 yields a map

Lie
(
VG∨[p]×SL,1

)
: Lie(G∨[p]×SL,1)

(p) → Lie(G∨[p]×SL,1) .

Then the Hodge height Hdg(G) of G is by definition the truncated valuation for vp of the
determinant of a representing matrix of this map. Moreover, if the ring OFp

acts on G,
then this map is also decomposed as the direct sum of maps

Lie
(
VG∨[p]×SL,1

)
β
: Lie(G∨[p]×SL,1)σ−1◦β → Lie(G∨[p]×SL,1)β ,

where σ denotes the natural lift to W of the pth-power Frobenius map on k. If the OL,1-

module Lie(G∨[p]×SL,1)β is free for any β ∈ Bp, we define the β-Hodge height Hdgβ(G)
of G as the truncated valuation of the determinant of the map Lie

(
VG∨[p]×SL,1

)
β
. These

assumptions are satisfied when G is the pn-torsion part A[pn] = A[pn]p of an HBAV A
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over OL or, more generally, when G is an OFp
-ADBTn [29, §3]. For any β ∈ Bp, we put

Hdgβ(A) = Hdgβ(A[p
n]).

3.1.2. Moduli spaces and toroidal compactifications. LetM(μN,c) be the Hilbert

modular variety over OK which parametrizes the isomorphism classes of HBAVs (A,ι,λ,ψ)

such that λ is a c-polarization and ψ is a Γ00(N)-structure. The scheme M(μN,c) is

smooth over OK [26, Chapter 3, Theorem 6.9]. We denote by Aun the universal HBAV
over M(μN,c).

An unramified cusp for M(μN,c) is a triple (a,b,φN ) of fractional ideals a,b of F

satisfying ab−1 = c and an isomorphism of OF -modules

φN : a−1/Na−1 �OF /NOF .

For each cusp, we have a Tate object Tatea,b(q) over a certain base scheme [36, §4],
which is used to construct a toroidal compactification M̄(μN,c) of M(μN,c). We recall

the definition for unramified cusps. Put M = ab, MR = M ⊗R, and M∗
R = Hom(M,R).

We identify M ⊗Q with F. Then any C ∈ Dec(a,b) gives a rational polyhedral cone
decomposition of

M∗,+
R =

{
f ∈M∗

R | f(M+)⊆ R>0

}
.

For each σ ∈ C , put

σ∨ = {m ∈MR | l(m)≥ 0 for any l ∈ σ}.

Then we have an affine torus embedding

S = Spec(OK [qm |m ∈M ])→ Sσ = Spec(OK [qm |m ∈M ∩σ∨]) .

The affine schemes {Sσ}σ∈C can be glued via Sσ∩Sτ = Sσ∩τ to define a torus embedding

S→SC . We denote by S∞
σ and S∞

C =
⋃

σ∈C S∞
σ the complements of S in these embeddings

with reduced structures. The formal completions along these closed subschemes are

denoted by Ŝσ =Spf
(
R̂σ

)
and ŜC . By assumption, we can construct the quotient ŜC /UN

by regluing
{
Ŝσ

}
σ∈C

via the action ε : Ŝσ � Ŝεσ for any ε ∈ UN . The closed subscheme

S∞
σ is defined by a principal ideal Îσ of the ring R̂σ satisfying

√
Îσ = Îσ. The ring R̂σ is a

Noetherian normal excellent ring which is complete with respect to the Îσ-adic topology.

Put S̄σ =Spec
(
R̂σ

)
, S̄∞

σ = V
(
Îσ

)
, and S̄0

σ = S̄σ \ S̄∞
σ , where the latter is an affine scheme

and we denote its affine ring by R̂0
σ.

Note that the torus with character group a is (aDF )
−1⊗Gm. For any η ∈ a, we denote by

Xη the element of O
(
(aDF )

−1⊗Gm

)
which the character η defines. We have an OF -linear

homomorphism

q : b→ (aDF )
−1⊗Gm

(
S̄0
σ

)
defined by ξ �→

(
Xη �→ qξη

)
with ξ ∈ b and η ∈ a. By Mumford’s construction, we obtain

the semi-abelian scheme Tatea,b(q) over S̄σ such that its restriction to S̄0
σ is an abelian
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scheme [36, §4]. It admits a natural OF -action. Over S̄0
σ, we have a natural exact sequence

0 �� 1
N (aDF )

−1⊗μN
�� Tatea,b(q)[N ]|S̄0

σ

�� 1
N b/b �� 0,

which defines, for any unramified cusp (a,b,φN ), a Γ00(N)-structure on Tatea,b(q)|S̄0
σ

using φN . Moreover, the natural isomorphism(
(aDF )

−1⊗Gm

)
⊗OF

c→ (bDF )
−1⊗Gm

induces a c-polarization

λa,b : Tatea,b(q)|S̄0
σ
⊗OF

c→ Tateb,a(q)|S̄0
σ
�
(
Tatea,b(q)|S̄0

σ

)∨
.

By these data we consider the Tate object Tatea,b(q)|S̄0
σ
as an HBAV over S̄0

σ, which yields

a morphism S̄0
σ →M(μN,c). Then the toroidal compactification M̄D(c)(μN,c) of M(μN,c)

over OK with respect to D(c) – which we also denote by M̄(μN,c) if no confusion will

occur – is constructed in such a way as to satisfy the following (see [36, Théorème 6.18]

and [23, Théorème 7.2 (i)]):

• M̄(μN,c) is projective and smooth over OK .
• M(μN,c) is an open subscheme of M̄(μN,c) which is fiberwise dense and the

complement D of M(μN,c) is a normal crossing divisor. In particular, M(μN,c) is
quasi-compact.

• The formal completion M̄(μN,c)|∧D of M̄(μN,c) along the boundary divisor D
contains ∐

ŜC (a,b)/UN

as a formal open subscheme, where the disjoint union runs over the set of
isomorphism classes of unramified cusps.

• The universal HBAV Aun over M(μN,c) extends to a semi-abelian scheme Āun

with OF -action over M̄(μN,c) such that for any σ ∈ C (a,b), the pullback of Āun

by the restriction to S̄0
σ of the unique algebraization S̄σ → M̄(μN,c) of the map

Ŝσ → M̄(μN,c)|∧D for any unramified cusp (a,b,φN ) is isomorphic to Tatea,b(q)|S̄0
σ
.

3.1.3. Strict neighborhoods of the ordinary locus and their integral models.
Let M̄(μN,c) be the p-adic formal completion of M̄(μN,c). Let M̄(μN,c) be its Raynaud
generic fiber. Let M(μN,c) be the analytification of the scheme M(μN,c)⊗OK

K, which is

a Zariski open subvariety of M̄(μN,c). The semi-abelian scheme Āun defines semi-abelian

objects Āun over M̄(μN,c) and Āun over M̄(μN,c) by taking the p-adic completion and
the Raynaud generic fiber. For the zero section e of Āun, put ωĀun = e∗Ω1

Āun/M̄(μN,c)
. For

any g-tuple κ= (kβ)β∈BF
in Z, we define

ωĀun,β = ωĀun ⊗OF ,β OK, ωκ
Āun =

⊗
β∈BF

ω
⊗kβ

Āun,β
.

We also define ωĀun,β and ωκ
Āun similarly. For any β ∈ BF , let hβ be the β-partial Hasse

invariant, which is a section of the invertible sheaf ωp

Āun,σ−1◦β ⊗ω−1
Āun,β

on M̄(μN,c)×S1

[27, §2.5] (see also [2, §7] and [24, §3.1]). For any extension L/K of complete valuation

fields, any HBAV A over OL, and any β ∈ BF , consider the element P of M̄(μN,c)(L)
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induced by A and a lift h̃β of hβ as a section of ωp

Āun,σ−1◦β ⊗ ω−1
Āun,β

over an open

neighborhood of P. Then we have the equality of truncated valuations

Hdgβ(A) = vp

(
h̃β(P )

)
.

If P ∈ M̄(μN,c)(L) corresponds to a semi-abelian scheme A over OL which is not an

abelian scheme, then we put Hdgβ(A) = vp

(
h̃β(P )

)
= 0.

Let v = (vβ)β∈BF
be a g-tuple in [0,1]∩Q. We denote by M̄(μN,c)(v) and M(μN,c)(v)

the admissible open subsets of M̄(μN,c) and M(μN,c) defined by vp

(
h̃β(P )

)
≤ vβ for

any β ∈ BF , respectively. Note that M̄(μN,c)(v) is quasi-compact. We define its integral
model M̄(μN,c)(v) as follows: Write vβ = aβ/bβ with nonnegative integers aβ and bβ 
= 0.

Take a formal open covering M̄(μN,c) =
⋃
Ui such that every hβ lifts to a section h̃β

on each Ui. Consider the formal scheme whose restriction to each Ui is the admissible

blowup of Ui along the ideal
(
paβ,h̃

bβ
β

)
, and its locus where this ideal is generated

by h̃
bβ
β . Repeat this for any β ∈ BF and define M̄(μN,c)(v) as the normalization in

M̄(μN,c)(v) of the resulting formal scheme. We denote the special fibers of M̄(μN,c) and

M̄(μN,c)(v) by M̄(μN,c)k and M̄(μN,c)(v)k, respectively. We also denote by M(μN,c)(v)
the complement in M̄(μN,c)(v) of the boundary divisor Dk of the special fiber. Then the

open immersion M(μN,c)(v)→ M̄(μN,c)(v) is of finite type and [19, Proposition 7.2.4]

implies that M(μN,c)(v)
rig

is quasi-compact.
Let v be an element of [0,1]∩Q. When vβ = v for any β ∈ BF , we write M̄(μN,c)(v) as

M̄(μN,c)(v). Moreover, we denote by M̄(μN,c)(vtot) the quasi-compact admissible open

subset defined similarly to M̄(μN,c)(v) with the usual Hasse invariant

htot =
∏

β∈BF

hβ

instead of hβs. We also define similar spaces for these two variants, such as M̄(μN,c)(v)

and M̄(μN,c)(vtot). Note that M̄(μN,c)(0) is just the formal open subscheme of M̄(μN,c)

over which all the β-partial Hasse invariants are invertible.

The formal scheme M̄(μN,c)(0) is also a formal open subscheme of M̄(μN,c)(v)
containing Dk. Let sp : M̄(μN,c) → M̄(μN,c)k be the specialization map with respect

to M̄(μN,c). Then [19, Propositions 7.2.1 and 7.2.4] yields

M(μN,c)(v)
rig

= M̄(μN,c)(v)\ sp−1(Dk). (3.1)

Let R be a topological OK -algebra which is idyllic with respect to the p-adic topology
[1, Définition 1.10.1]. By [1, Corollaire 2.13.9], any morphism f̂ : Spf(R)→ M̄(μN,c) has

a unique algebraization f : Spec(R) → M̄(μN,c), and we have a semi-abelian scheme

GR = f∗Āun over Spec(R). Taking the reduction modulo p, we see that f̂ factors through
M̄(μN,c)(0) if and only if GR is ordinary.

Let NAdm be the category of admissible p-adic formal OK -algebras R such that R is

normal. Note that we have R[1/p]◦ =R by [10, remark after Proposition 6.3.4/1]. By [36,
Lemme 3.1], we can see as in [3, Proposition 5.2.1.1] that any morphism Sp(R[1/p]) →
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M(μN,c)(v)
rig

corresponds uniquely to an isomorphism class of an HBAV A over Spec(R)
such that Hdgβ(Ax)≤ vβ for x ∈ Sp(R[1/p]).

We give a proof of the following lemma for lack of a reference:

Lemma 3.1. Let L/K be an extension of complete valuation fields. Let X be a connected
smooth rigid analytic variety over L and let F be an invertible sheaf on X . Suppose that

f ∈ F(X ) vanishes on a nonempty admissible open subset U of X . Then f = 0.

Proof. Take an admissible affinoid covering X =
⋃

i∈I Xi such that Xi is connected and

F is trivial on Xi for any i ∈ I. We have Xi0 ∩U 
= ∅ for some i0. Then [25, Exercise 4.6.3]

implies f |Xi0
= 0.

Put I0 = {i ∈ I | f |Xi
= 0}, which is nonempty. [25, Exercise 4.6.3] also implies that

Xi∩Xj = ∅ for any i ∈ I0 and j ∈ I1 := I \ I0. Then for the subsets

X0 =
⋃
i∈I0

Xi, X1 =
⋃
i∈I1

Xi

and s∈ {0,1}, the intersection Xs∩Xi equals Xi if i∈ Is and ∅ if i /∈ Is. Hence X =X0

∐
X1

is an admissible covering of X . Since X is connected, we obtain X = X0 and f = 0.

Lemma 3.2. Let L/K be an extension of complete valuation fields. Let R be an

admissible formal OL-algebra such that R[1/p] is reduced. Suppose that Spec(R/mLR) is

reduced and connected. Then Sp(R[1/p]) is connected.

Proof. Take a surjection OL〈T1, . . . ,Tn〉 → R. Then [11, Proposition 1.1] shows

(R[1/p])◦ = R. Moreover, by [10, remark after Proposition 6.3.4/1] R is integrally

closed in R[1/p]. Thus we have bijections between the sets of connected components

π0(Sp(R[1/p]))� π0(Spec(R))� π0(Spec(R/mLR)),

from which the lemma follows.

Lemma 3.3. Let l/k be a finite extension and put W ′ =W (l). Let K ′ be the composite

field of K and Frac(W ′) in Q̄p. Let R be a Noetherian W-algebra and let m be a maximal
ideal of R with residue field l. Consider the natural maps

R⊗W W ′ → l, R⊗W OK → l, R⊗W OK′ → l

induced by R → R/m = l. We denote the kernels of these maps by m′, n, and n′,
respectively. Then the natural maps between complete local rings

R∧
m → (R⊗W W ′)∧m′, R∧

m⊗̂WOK → (R⊗W OK)∧n

are bijective. In particular, we have isomorphisms

(R⊗W OK)∧n → (R⊗W OK′)
∧
n′ ← (R⊗W W ′)∧m′⊗̂W ′OK′ .

Proof. For the first map, since R is Noetherian and R/m = l is perfect, there exists
a unique section W ′ → R∧

m of the natural surjection R∧
m → l. Thus we obtain a

homomorphism of W ′-algebras R⊗W W ′ →R∧
m. This induces a map (R⊗W W ′)∧m′ →R∧

m,

which gives the inverse of the first map.
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For the second map, since p∈m andOK is totally ramified overW, we have n=(m,πK).

This yields R∧
m⊗̂WOK � (R⊗W OK)∧n . The last assertion follows by applying them to

R⊗W OK and R⊗W W ′.

Lemma 3.4. Let Xv be either of the rigid analytic varieties

M̄(μN,c)(v), M̄(μN,c)(vtot).

Then Xv⊗̂KCp is connected for any v ∈ [0,1)∩Q.

Proof. Since Xv is separated, it is enough to show that for any sufficiently large finite

extension K ′/K, the base extension Xv⊗̂KK ′ is connected [17, Theorem 3.2.1]. Replacing

K by K ′, we may assume that K ′ =K and every connected component of Xv has a K -
rational point.

By Ribet’s theorem (see [26, Chapter 3, Theorem 6.19]), the ordinary locusM(μN,c)(0)k
is geometrically connected. Then M̄(μN,c)(0)k is also geometrically connected, since it is

smooth over k and contains M(μN,c)(0)k as a dense open subset. Since X0 is the tube
for the immersion M̄(μN,c)(0)k → M̄(μN,c), [9, Proposition 1.3.3] yields the lemma for

v = 0.

Consider the case of v > 0. Suppose that Xv is not connected. Then we can take its
connected component U which does not intersect X0. Since U is quasi-compact, there

exists a finite admissible affinoid covering U =
⋃m

i=1Ui of U such that any β-partial Hasse

invariant can be lifted to a section over Ui. Using the maximal modulus principle on each
Ui, we see that there exists a positive rational number δ satisfying

max
{
Hdgβ(x) | β ∈ BF

}
≥ δ

for any x ∈ U . Then for any rational number ε satisfying 0< ε < δ, we have Xε∩U = ∅.
On the other hand, let us consider the specialization map

sp : M̄(μN,c)→ M̄(μN,c)k

with respect to M̄(μN,c). Take any P ∈ U(K) and consider its specialization P̄ = sp(P ).

Since P /∈ M̄(μN,c)(0), the point P̄ corresponds to an HBAV. By [27, (2.5.1)] and Lemma

3.3, the complete local ring of M(μN,c) at P̄ is isomorphic to the ring OK [[tβ | β ∈ BF ]].
Then [19, Lemma 7.2.5] gives an identification

sp−1
(
P̄
)
=
∏

β∈BF

Aβ [0,1), (3.2)

where for any interval I we denote by AβI the annulus over K with parameter tβ defined

by the condition |tβ | ∈ I. By [27, §4.2], we may assume that the parameter tβ satisfies

Hdgβ(A) =

{
min{vp(tβ(Q)),1}

(
β ∈ τ

(
P̄
))

0
(
β /∈ τ

(
P̄
)) (3.3)

for any Q ∈ sp−1
(
P̄
)
and for any β ∈ BF , where A is the HBAV corresponding to Q and

τ
(
P̄
)
is defined by [27, (2.3.3)].
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Suppose Xv = M̄(μN,c)(v). For any positive rational number ε, put

sp−1
(
P̄
)
(ε)′ =

∏
β∈τ(P̄)

Aβ

[
p−ε,1

)
×
∏

β/∈τ(P̄)

Aβ [0,1).

Since sp−1
(
P̄
)
(v)′ is a connected admissible open subset of Xv containing P, it is

contained in U . However, for any ε satisfying ε <min{δ,v}, we have

∅ 
= sp−1
(
P̄
)
(ε)′ ⊆Xε∩U,

which is a contradiction.

When Xv = M̄(μN,c)(vtot), take any rational number ε satisfying 0< ε<min{δ,v} and

vp (tβ(P ))≥ ε for any β ∈BF . Put w= g−1ε. Let V be the admissible affinoid open subset

of sp−1
(
P̄
)
defined as

V =

⎧⎪⎨
⎪⎩(tβ)β∈BF

∈
∏

β∈BF

Aβ

[
0,p−w

]
∣∣∣∣∣∣∣
∏

β∈τ(P̄)

|tβ | ≥ p−v

⎫⎪⎬
⎪⎭ .

Since P ∈V ⊆Xv and V∩Xε 
= ∅, by an argument as before we reduce ourselves to showing

that V is connected.

For this, replacing K by its finite extension, we may assume that there exist a,b ∈ OK

satisfying vp(a) = v and vp(b) = w. Consider the ring

R=OK 〈Tβ,Uβ | β ∈ BF 〉〈T 〉/(Tf −a,bUβ −Tβ | β ∈ BF )

with f =
∏

β∈τ(P̄)Tβ . Then V = Sp(R[1/p]) and the special fiber

Spec(k [Tβ,Uβ | β ∈ BF ] [T ]/(Tf,Tβ | β ∈ BF )) = Spec(k [Uβ | β ∈ BF ] [T ])

is reduced and connected. Then Lemma 3.2 concludes the proof.

3.1.4. Canonical subgroups over moduli spaces. Let n be a positive integer. Let

v = (vβ)β∈BF
be a g-tuple satisfying

vβ ∈ [0,(p−1)/pn)∩Q

for any β ∈BF . Note that the 1/(p
n(p−1))th lower ramification subgroups can be patched

into a rigid analytic family [28, Lemma 5.6]. Let R be an object of NAdm and put

U = Sp(R[1/p]). Let U →M(μN,c)(v)
rig

be any morphism of rigid analytic varieties over
K. This defines an HBAV Āun|R over Spec(R). For any rig-point x ∈ Spec(R), we have

the canonical subgroup Cn
((
Āun|R

)
x

)
by [29, Theorem 8.1]. [29, Theorem 8.1(7)] implies

that they can be patched into an admissible open OF -submodule Cn of Āun[pn]|U . By
[3, Proposition 4.1.3], it uniquely extends to a finite flat subgroup scheme Cn of Āun|R
over Spec(R). Since Cn agrees with the scheme-theoretic closure of Cn in

(
Āun|R

)
[pn], we

see that Cn is stable under the OF -action.
On the other hand, on a formal open neighborhood U of a point of the boundary

satisfying U ⊆ M̄(μN,c)(0), the unit component Āun[pn]0|U is quasi-finite and flat over

U with constant degree on each fiber by [36, p. 297(ii)]. Thus it is finite and flat. Then
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by gluing along M(μN,c)(0), we obtain a finite flat formal subgroup scheme Cn of Āun

over M̄(μN,c)(v) and its generic fiber Cn, which we refer to as the canonical subgroup of

level n.
Let R be a topological OK -algebra which is quasi-idyllic with respect to the p-adic

topology [1, 1.10.1.1]. Since any finitely generated R-module is automatically p-adically

complete [1, Proposition 1.10.2], any finitely presented flat formal group scheme over
Spf(R) can be identified with a finitely presented flat group scheme over Spec(R). Thus

we have a theory of Cartier duality for any finitely presented flat formal group scheme G
over any quasi-idyllic p-adic formal scheme, and we can define the Hodge–Tate map

HTG : G(R)→ ωG∨, x �→ x∗
(
dT

T

)
.

From the construction, we see that the restriction of the Cartier dual C∨
n |M̄(μN,c)(0) to the

ordinary locus is finite and étale.

Note that for the function

δK(v) = min
(
[v/(p−1),+∞)∩ e−1Z

)
,

the ideal m
�v/(p−1)
K is generated by π

eδK(v)
K . Then we have the following variant of [3,

Propositions 4.2.1 and 4.2.2]:

Lemma 3.5. Let v = (vβ)β∈BF
be a g-tuple of nonnegative rational numbers satisfying

v := max{vβ | β ∈ BF }< (p−1)/pn.

Let R be an object of NAdm. For any morphism of admissible formal schemes

f̂ : Spf(R) → M̄(μN,c)(v) over OK , consider the pullback G = Āun|R by the unique
algebraization Spec(R)→ M̄(μN,c) of f̂ and Hn = Cn|Spf(R), which is a subgroup scheme

of the formal completion of G.

(1) For any rational number i ∈ e−1Z≥0 satisfying i≤ n−v(pn−1)/(p−1), the natural

map ωG⊗OK
OK,i → ωHn

⊗OK
OK,i is an isomorphism.

(2) Assume that we have an isomorphism of OF -modules H∨
n(R)�OF /p

nOF . If there
exists a rational number i ∈ e−1Z≥0 satisfying δK(v) < i ≤ n− v(pn − 1)/(p− 1),

then the cokernel of the linearization of the Hodge–Tate map

HTH∨
n
⊗1 :H∨

n(R)⊗R→ ωHn

is killed by m
�v/(p−1)
K .

Proof. Since the ordinary case is trivial, by a gluing argument we may assume that f̂

factors through M(μN,c)(v). By replacing Spf(R) with its formal affine open subscheme,
we may assume that R is an integral domain and ωG is a free OF ⊗R-module of rank 1.

The first assertion follows by reducing it to [29, Theorem 8.1(8)] in the same way as [3,

Proposition 4.2.1]. For the second assertion, take surjections Rg →H∨
n(R)⊗R� (R/pnR)g

and Rg � ωG → ωHn
. Then the map HTH∨

n
⊗ 1 can be identified with the reduction of

the map defined by some matrix γ ∈ Mg(R). It suffices to show m
�v/(p−1)
K Rg ⊆ γ(Rg).
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Let p be a prime ideal of R of height 1 and let R̂p be the completion of the local ring

Rp. [29, Theorem 8.1(9)] implies m
�v/(p−1)
K R̂g

p ⊆ γ
(
R̂g

p

)
+πei

KR̂g
p and thus m

�v/(p−1)
K R̂g

p ⊆

γ
(
R̂g

p

)
. This shows m

�v/(p−1)
K Rg

p ⊆ γ
(
Rg

p

)
and det(γ) 
= 0. Since R is normal, γ(Rg) is

the intersection of γ
(
Rg

p

)
for every such p, and the assertion follows.

3.2. Connected neighborhoods of critical points

Let Yc,p be the moduli scheme parametrizing the isomorphism classes of pairs (A,H)

over schemes S/Spec(OK), where A is an HBAV over S with c-polarization and Γ00(N)-

structure, and H is a finite locally free closed OF -subgroup scheme of A[p] of rank pg over
S such that H is isotropic in the sense of [27, §2.1]. Then Yc,p is projective over M(μN,c)

[38, p. 415]. For S = Spec(OL) with some extension L/K of complete valuation fields and

an ideal a of OF , we say that H is a-cyclic if the OF -module H (OL̄) is isomorphic to
OF /a, where L̄ is an algebraic closure of L. Then H is isotropic in this sense if and only

if H is p-cyclic.

Let Yc,p be the p-adic formal completion of Yc,p and let Yc,p be its Raynaud generic
fiber. Note that they are separated. By [36, Lemme 3.1], we have Yc,p(L) =Yc,p(OL) =

Yc,p(OL) for any extension L/K of complete discrete valuation fields. In this subsection,

we construct a connected admissible affinoid open neighborhood of a point Q = [(A,H)]

of Yc,p satisfying Hdgβ(A) = p/(p+1) for any β ∈ BF inside the base extension Yc,p,Cp
=

Yc,p⊗̂KCp, assuming fp ≤ 2 for any p | p.

Lemma 3.6. There exists a point of M̄(μN,c) corresponding to an HBAV A over the
ring of integers OL of a finite extension L/K satisfying Hdgβ(A) = p/(p+1) for any

β ∈ BF .

Proof. Consider the stratum WBF
of the special fiber M(μN,c)k as in [27, §2.5]. Since

WBF
is nonempty, there exists a point P ∈ M̄(μN,c) such that P̄ = sp(P ) ∈ WBF

for the specialization map sp : M̄(μN,c) → M̄(μN,c)k as before. Since τ(P̄ ) = BF , the

identifications (3.2) and (3.3) yield the lemma.

Proposition 3.7. Suppose fp ≤ 2 for any p | p. Let L/K be a finite extension in Q̄p and

let l be the residue field of L. Let K ′ be the composite field of K and Frac(W (l)) in Q̄p.
Let [(A,H)] be an element of Yc,p(OL) satisfying Hdgβ(A) = p/(p+1) for any β ∈ BF ,

and let Q be the element of Yc,p(L) it defines. Let

sp : Yc,p → (Yc,p)k = Yc,p×OK
Spec(k)

be the specialization map with respect to Yc,p and put Q̄= sp(Q). We define

Vc,Q =

{
Q′ = [(A′,H′)] ∈ sp−1

(
Q̄
) ∣∣∣∣ 1

p+1
≤ degβ(A

′[p]/H′)≤ p

p+1
,

Hdgβ(A
′)≤ p

p+1
for any β ∈ BF

}
,

Vc,Q

(
1

p+1

)
=

{
Q′ = [(A′,H′)] ∈ Vc,Q

∣∣∣∣ degβ(A′[p]/H′)≤ 1

p+1
for any β ∈ BF

}
.
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Then they are admissible affinoid open subsets of Yc,p defined over K ′ such that

Vc,Q⊗̂K′Cp is connected.

Proof. By the assumption fp ≤ 2 and [29, Proposition 6.1], we have the equality

degβ(A[p]/H) = p/(p+1) for any β ∈ BF . [39, Proposition 4.2] shows that this value
is equal to the one denoted by νβ(Q) in [27, §4.2]. In particular, the definition of νβ(Q)

in [27, §4.2] implies I
(
Q̄
)
= BF with the notation of [27, (2.3.2)].

We claim that the complete local ring ÔYc,p,Q̄ of Yc,p at Q̄ is isomorphic to the ring

B′ =OK′ [[Xβ,Yβ | β ∈ BF ]]/(XβYβ −p | β ∈ BF ) (3.4)

and that there exists gβ ∈ (B′)× such that for any finite extension E/K ′ and any OK′ -

algebra homomorphism x :B′ →OE , the corresponding OE-valued point [(A′,H′)] of Yc,p

satisfies

degβ(A
′[p]/H′) = min{vp(Xβ(x)),1}, Hdgβ(A

′) = min{vp((Xβ +gβY
p
σ−1◦β)(x)),1}.

Indeed, let Yc be a moduli scheme over W similar to Yc,p considered in [27, §2.1]. Let
R be the affine algebra of an affine open neighborhood of Q̄ in Yc and let mQ̄ be the

maximal ideal of R corresponding to Q̄. The ring ÔYc,p,Q̄ is equal to the completion of

the local ring of R⊗W OK at the kernel nQ̄ of the map R⊗W OK → l associated to mQ̄.

By Stamm’s theorem [38] (see also [27, Theorem 2.4.1′]), the mQ̄-adic completion R̂mQ̄

of the localization RmQ̄
is isomorphic to the ring

B=W (l) [[Xβ,Yβ | β ∈ BF ]]/(XβYβ −p | β ∈ BF ) .

Moreover, since Hdgβ(A) 
= 0 for any β ∈ BF , equation (3.3) implies τ
(
Q̄
)
= BF . Thus,

for any finite extension E/Frac(W (l)) and any W (l)-algebra homomorphism x :B→OE ,

the corresponding HBAV A′ satisfies v (tβ(x)) = Hdgβ(A
′). By [27, Lemma 2.8.1] and the

definition of νβ(Q) in [27, §4.2], the isomorphism R̂mQ̄
�B gives an identification of degβ

and Hdgβ for the ring B as claimed before. Then the claim follows from Lemma 3.3.
By [19, Lemma 7.2.5], we have

sp−1
(
Q̄
)
= (Spf(B′))rig.

Thus Vc,Q is the K ′-affinoid variety whose affinoid ring is the quotient of the Tate algebra

K ′ 〈Xβ,Yβ,Uβ,Vβ,Wβ | β ∈ BF 〉

by the ideal generated by

Xp+1
β −pUβ, Xp+1

β Vβ −pp, XβYβ −p, Wβ

(
Xβ +gβY

p
σ−1◦β

)p+1

−pp

for any β ∈ BF . From this, we also obtain a similar description of Vc,Q

(
1

p+1

)
as a K ′-

affinoid variety.
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Next we prove that the base extension Vc,Q⊗̂K′Cp is connected. Put r = 1/(p+1) and
s= p/(p+1). Fix a (p+1)th root � = p1/(p+1) of p in Q̄p. Then the affinoid ring BQ,Cp

of Vc,Q⊗̂K′Cp is also isomorphic to the quotient of the Tate algebra

Cp 〈Xβ,Yβ,Uβ,Vβ,Wβ | β ∈ BF 〉

by the ideal generated by

Xβ −�Uβ, XβVβ −�p, XβYβ −�p+1, Wβ

(
Xβ +gβY

p
σ−1◦β

)
−�p

for any β ∈ BF . Note that in the ring BQ,Cp
we also have Yβ −�Vβ = 0. Hence BQ,Cp

is
isomorphic to the quotient of the ring

Cp 〈Uβ,Vβ,Wβ | β ∈ BF 〉

by the ideal generated by

UβVβ −�p−1, Fβ :=Wβ

(
Uβ +�p−1g′βV

p
σ−1◦β

)
−�p−1

for any β ∈ BF with some g′β ∈ A
×
Q,Cp

, where

AQ,Cp
=OCp

〈Uβ,Vβ | β ∈ BF 〉/
(
UβVβ −�p−1 | β ∈ BF

)
.

From these equations, we see that

Gβ := Vβ −Wβ

(
1+g′βVβV

p
σ−1◦β

)
= 0

in this quotient. Since

Fβ ≡−UβGβ mod UβVβ −�p−1,

we obtain

BQ,Cp
� Cp 〈Uβ,Vβ,Wβ | β ∈ BF 〉/

(
UβVβ −�p−1,Gβ | β ∈ BF

)
.

Note that the ring

BQ,Cp
=OCp

〈Uβ,Vβ,Wβ | β ∈ BF 〉/
(
UβVβ −�p−1,Gβ | β ∈ BF

)
is a flat OCp

-algebra. Indeed, consider the polynomial ring AQ,Cp
[Wβ ]. Since the

coefficients ofGβ as a polynomial ofWβ generate the unit ideal AQ,Cp
, by a limit argument

reducing to the Noetherian case and using [34, (20.F), Corollary 2] we see that the AQ,Cp
-

algebra

AQ,Cp
[Wβ | β ∈ BF ]/(Gβ | β ∈ BF )

is flat. By [1, Proposition 1.10.2(ii)], the p-adic completion of this algebra is BQ,Cp
. Since

the OCp
-algebra AQ,Cp

is flat, the p-adic completion BQ,Cp
is also flat over OCp

.

Put Ḡβ =Gβ mod mCp
and

R̄= F̄p [Uβ,Vβ,Wβ | β ∈ BF ], J̄ =
(
UβVβ,Ḡβ | β ∈ BF

)
.
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Next we claim that the reduction B̄Q,Cp
= R̄/J̄ of BQ,Cp

is reduced and Spec
(
B̄Q,Cp

)
is connected. For reducedness, it suffices to show that the localization at every maximal
ideal is reduced. Let M be any maximal ideal of R̄ containing J̄ . Then we have

1+g′βVβV
p
σ−1◦β /∈M,

since, supposing the contrary, Ḡβ ∈M implies Vβ ∈M and 1∈M, which is a contradiction.
Thus in the ring R̄M we have

Wβ −Vβ

(
1+g′βVβV

p
σ−1◦β

)−1

∈ J̄R̄M

for any β ∈ BF . Hence the localization
(
B̄Q,Cp

)
M

is isomorphic to the localization of the

ring

F̄p [Uβ,Vβ | β ∈ BF ]/(UβVβ | β ∈ BF )

at the pullback of M, which is reduced.

Let us show the connectedness. Let BF = BU

∐
BV be a decomposition into the disjoint

union of two subsets. Consider the closed subscheme FBU,BV
of Spec

(
B̄Q,Cp

)
defined by

Uβ = 0 for β ∈ BU and Vβ = 0 for β ∈ BV . Since every FBU,BV
contains the point defined

by Uβ = Vβ =Wβ = 0 for any β ∈ BF , it is enough to show that FBU,BV
is connected for

any such decomposition of BF . Put

ĀBU,BV
= F̄p [Uβ,Vβ | β ∈ BF ]/(Uβ (β ∈ BU ),Vβ (β ∈ BV )) .

Note that the ĀBU,BV
-algebra

ĀBU,BV
[Wβ | β ∈ BF ]/

(
Ḡβ | β ∈ BF

)
is flat. From this we see that the affine algebra of FBU,BV

can be identified with the

subring

ĀBU,BV

[
Vβ

1+g′βVβVσ−1◦β

∣∣∣∣∣ β ∈ BF

]

of Frac
(
ĀBU,BV

)
, which is an integral domain. Hence we obtain the connectedness of

B̄Q,Cp
. By [19, Lemma 7.1.9], sp−1

(
Q̄
)
is reduced, and [17, Lemma 3.3.1(1)] shows that

Vc,Q⊗̂K′Cp is also reduced. Then Lemma 3.2 shows that Vc,Q⊗̂K′Cp is connected.

Lemma 3.8. Suppose fp ≤ 2 for any p | p. Let L/K be a finite extension. Let [(A,H)] be

an element of Yc,p(OL) satisfying

degβ(A[p]/H)≤ p/(p+1), Hdgβ(A)≤ p/(p+1)

for any β ∈ BF . Then for any p | p, either A[p]p has the canonical subgroup of level 1

which is equal to Hp, or Hdgβ(A) = p/(p+1) for any β ∈ Bp.

Proof. Suppose Hdgβ0
(A)< p/(p+1) for some β0 ∈ Bp. Since we have Hdgβ(A)≤ p/(p+

1) for any β ∈ BF , the assumption on fp implies that the inequality

Hdgβ(A)+pHdgσ−1◦β(A)< p
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holds for any β ∈ Bp. By [29, Theorem 4.1], the OFp
-ADBT1 A[p]p has the canonical

subgroup Cp.
Suppose Hp 
= Cp. For any β ∈ Bp, [29, Corollary 5.3(1)] implies that

Hdgβ
(
p−1Hp/Hp

)
= p−1Hdgσ◦β (A[p]p) = p−1Hdgσ◦β(A[p])≤ 1/(p+1)

and that A[p]p/Hp is the canonical subgroup of p−1Hp/Hp. Thus we have

degβ(A[p]/H) = degβ (A[p]p/Hp) = 1−Hdgβ
(
p−1Hp/Hp

)
≥ p/(p+1),

which yields degβ(A[p]/H) = p/(p+1) and Hdgβ(A[p]) = p/(p+1) for any β ∈ Bp. This

contradicts the choice of β0.

Corollary 3.9. Suppose fp ≤ 2 for any p | p. Let L/K be a finite extension. Let [(A′,H′)]
be an element of Yc,p(OL) such that [(A′

L,H′
L)] ∈ Vc,Q(L). Then for any finite flat closed

p-cyclic OF -subgroup scheme D of A′[p] over OL satisfying DL∩H′
L = 0, we have

Hdgβ(A
′/D)≤ 1/(p+1)

for any β ∈ BF , and A′[p]/D is the canonical subgroup of A′/D of level 1.

Proof. Write D =
⊕

p|pDp. The assumption implies Dp 
=H′
p for any p | p. If H′

p is the
canonical subgroup of A′[p]p, then [29, Corollary 5.3(1)] implies that

Hdgβ(A
′/D) = Hdgβ

(
p−1Dp/Dp

)
= p−1Hdgσ◦β(A

′[p])≤ 1/(p+1)

for any β ∈ Bp and that A′[p]p/Dp is the canonical subgroup of p−1Dp/Dp = (A′/D)[p]p.

Otherwise, Lemma 3.8 yields Hdgβ(A
′) = p/(p+1) for any β ∈ Bp. By [29, Proposition

6.1], we see that

degβ (A
′[p]p/Dp) = p/(p+1), Hdgβ ((A

′/D)[p]p) = 1/(p+1)

for any β ∈ Bp and that (A′/D)[p]p has the canonical subgroup A′[p]p/Dp. Hence the

HBAV A′/D satisfies

Hdgβ(A
′/D)≤ 1/(p+1)

for any β ∈ BF and has the canonical subgroup

A′[p]/D =
⊕
p|p

A′[p]p/Dp

of level 1. This concludes the proof of the corollary.

Lemma 3.10. Suppose fp ≤ 2 for any p | p. Then we have

Vc,Q

(
1

p+1

)

= ∅.

Moreover, for any finite extension L/K and any element [(A′,H′)] of Yc,p(OL) satisfying

[(A′
L,H′

L)]∈ Vc,Q

(
1

p+1

)
(L), we have Hdgβ(A

′)≤ 1/(p+1) for any β ∈BF and the HBAV

A′ has the canonical subgroup H′.
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Proof. Recall that we have sp−1
(
Q̄
)
= (Spf(B′))rig with the ring B′ of equation (3.4)

in the proof of Proposition 3.7. From the description of degβ in terms of the parameter
Xβ of the ring B′, we see that there exists a point [(A′,H′)] ∈ Yc,p(OL) with some finite

extension L/K such that [(A′
L,H′

L)] ∈ sp−1
(
Q̄
)
and

degβ(A
′[p]/H′) = 1/(p+1)

for any β ∈ BF . Then [29, Lemma 5.1(1)] implies that Hdgβ(A
′) = 1/(p+1) for any

β ∈ BF and thus [(A′
L,H′

L)] ∈ Vc,Q

(
1

p+1

)
(L). The last assertion also follows from [29,

Lemma 5.1(1)].

Since Yc,p is separated, Proposition 3.7 implies that the base extension Vc,Q,Cp
=

Vc,Q⊗̂KCp is an admissible affinoid open subset of Yc,p,Cp
whose connected components

are all isomorphic to Vc,Q⊗̂K′Cp. Each connected component contains an affinoid

subdomain of Vc,Q

(
1

p+1

)
⊗̂KCp which is isomorphic to Vc,Q

(
1

p+1

)
⊗̂K′Cp. By Lemma

3.10, we have

Vc,Q

(
1

p+1

)
⊗̂K′Cp 
= ∅.

The point Q ∈ Yc,p(L) defines a point of Yc,p,Cp
(Cp) by the natural inclusion L → Cp,

which we also denote by Q. Let V0
c,Q,Cp

be the connected component of Vc,Q,Cp
containing

Q and let V0
c,Q,Cp

(
1

p+1

)
be a copy of Vc,Q

(
1

p+1

)
⊗̂K′Cp which is contained in V0

c,Q,Cp
.

These are both nonempty admissible affinoid open subsets of Yc,p,Cp
.

3.3. Overconvergent Hilbert modular forms and the eigenvariety

In this subsection, we recall the construction of sheaves of overconvergent Hilbert modular

forms and the associated eigenvariety, due to Andreatta, Iovita, and Pilloni [4].

3.3.1. Overconvergent modular forms over Hilbert modular varieties. Put

T = ResOF /Z(Gm). Let T̂ be its formal completion along the unit section. For any w ∈
e−1Z≥1, let T

0
w be the formal subgroup scheme of T̂ over Spf(OK) representing the functor

B �→Ker(T(B)→ T(B/πew
K B))

on the category of admissible formal OK-algebras B. Then T0
w is a quasi-compact

admissible formal group scheme over OK .
Let W be the Berthelot generic fiber of Spf (OK [[T(Zp)]]) and denote the universal

character on this space by

κun : T(Zp)→O◦(W)× =OK [[T(Zp)]]
×
.

Here O◦ is the sheaf of rigid analytic functions with absolute value bounded by 1 and the

last equality follows from [19, Theorem 7.4.1]. For any morphism X →W of rigid analytic

varieties over K, we denote by κX the restriction

κX : T(Zp)
κun

→ O◦(W)× →O◦(X )×
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of κun to X . Consider the case where X is a reduced K -affinoid variety U = Sp(A). Then

the subring A◦ of power-bounded elements is p-adically complete. For any positive integer

n, put qn = 2 if p = 2 and n = 1, and qn = 1 otherwise. When we consider the case of
p= 2 and n= 1, we assume that 2 splits completely in F. The character κU is said to be

n-analytic if the restriction to T0
n (Zp) factors as

T0
n (Zp) 1+pn (OF ⊗Zp)

κU
��

log

��

(A◦)×

qnp
n (OF ⊗Zp)

ψ
�� 2q2npA

◦

exp

��

with some Zp-linear map ψ. In this case, we also say that the morphism U → W is n-

analytic. Any κU is n-analytic for some n by the maximal modulus principle. Note that
any n-analytic character defines an analytic character T0

n (Zp)→A×, even for the case of

p= 2 and n= 1. Moreover, put

δn =

⎧⎪⎨
⎪⎩

1
p−1 (p≥ 3)
1
4 (p= 2, n= 1)

0 (p= 2, n≥ 2).

Then for any w ∈ e−1Z satisfying

n−1+ δn <w ≤ n,

any n-analytic character extends to an analytic character T0
w(OK)→A×.

Using [29, Theorem 8.1] and Lemma 3.5, we can generalize the construction in [4, §3.3].
Let n be a positive integer and put

Bn =

⎧⎪⎨
⎪⎩

p−2
pn (p≥ 3)
3
8 (p= 2, n= 1)
p−1
pn (p= 2, n≥ 2),

(3.5)

so that we have

1

p+1
<B1.

Let v = (vβ)β∈BF
be a g-tuple in [0,Bn)∩Q. Put v = max{vβ | β ∈ BF }. Let Cn be the

canonical subgroup of Āun of level n over M̄(μN,c)(v), as before. Put

M̄(Γ1(p
n),μN,c)(v) = IsomM̄(μN,c)(v)

(
Cn,D−1

F ⊗μpn

)
.

We denote by M̄(Γ1(p
n),μN,c)(v) the normalization of M̄(μN,c)(v) in M̄(Γ1(p

n),μN,c)(v).
Note that since C∨

n is finite and étale over M̄(μN,c)(0), we have

M̄(Γ1(p
n),μN,c)(0) = IsomM̄(μN,c)(0)

(
Cn,D−1

F ⊗μpn

)
, (3.6)

which is a T(Z/pnZ)-torsor over M̄(μN,c)(0).
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Let w be an element of e−1Z satisfying

n−1+ δn <w ≤ n− v(pn−1)

p−1
− δK(v),

which exists if

1− δn−
pnv

p−1
≥ 2

e
. (3.7)

Note that condition (3.7) is satisfied for a sufficiently large K. Let F be the locally free

OF ⊗OM̄(Γ1(pn),μN,c)(v)-module of rank 1 constructed as in [4, Proposition 3.4], using

Lemma 3.5 for i= w+ δK(v). Let

γw : IW+
w → M̄(Γ1(p

n),μN,c)(v)

be the p-adic formal T0
w-torsor over M̄(Γ1(p

n),μN,c)(v) classifying, for any R ∈NAdm

and any morphism of p-adic formal schemes γ : Spf(R) → M̄(Γ1(p
n),μN,c)(v), the

isomorphisms α : γ∗F →OF ⊗R such that the composite

OF /p
nOF (R)

γ� C∨
n (R)

HTw→ γ∗F/πew
K γ∗F α�OF ⊗R/πew

K R

sends 1 to 1 [4, §3.4]. We also write IW
+
w as IW+

w,c (v). We denote the Raynaud generic

fiber of IW+
w by IW+

w and also by IW+
w,c (v). From equality (3.6), we see that the moduli

interpretation of IW
+
w,c(0) already given is also valid for the category of quasi-idyllic

p-adic OK -algebras R.

For the structure morphism

hn : M̄(Γ1(p
n),μN,c)(v)→ M̄(μN,c)(v),

we put πw = hn ◦ γw. We denote by γrig
w , hrig

n , and πrig
w the induced morphisms on the

Raynaud generic fibers. Let Tw be the formal subgroup scheme of T̂ over Spf(OK) whose

set ofB-valued points are the inverse image of T(Z/pnZ) by the map T(B)→T(B/πew
K B)

for any admissible formal OK -algebra B. The natural action of T0
w on IW

+
w induces an

action of Tw on IW
+
w over M̄(μN,c)(v) and also on the Raynaud generic fiber IW+

w

over M̄(μN,c)(v). Then for any reduced K -affinoid variety U and n-analytic morphism

U →W, we define

ΩκU
=
(
πrig
w

)
∗

(
OIW+

w×U

)[
−κU] .

By [4, Proposition 3.13], it is an invertible sheaf which is independent of the choices of n

and w. Let D be the boundary divisor of M̄(μN,c). We also put

M
(
μN,c,κ

U)(v) =H0
(
M̄(μN,c)(v)×U,ΩκU

)
,

S
(
μN,c,κ

U)(v) =H0
(
M̄(μN,c)(v)×U,ΩκU

(−D)
)
.
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For any R ∈NAdm, let us consider tuples (A,ι,λ,ψ,u,α) over R consisting of an HBAV

(A,ι,λ,ψ) over Spec(R) such that Hdgβ(Ax)≤ vβ for any x ∈ Sp(R[1/p]), an isomorphism

of OF -group schemes

u : Cn|R[1/p] �D−1
F ⊗μpn

for the canonical subgroup Cn of A, and an isomorphism

α : γ∗F �OF ⊗R

satisfying the compatibility with u as before. By equality (3.1), any element f ∈
H0
(
M(μN,c)(v)

rig
,ΩκU

)
can be identified with a rule functorially associating, with any

such tuple over R endowed with a map Sp(R[1/p]) → U , an element f(A,ι,λ,ψ,u,α) of

R[1/p] satisfying

f
(
A,ι,λ,ψ,t−1u,t−1α

)
= κU (t)f(A,ι,λ,ψ,u,α)

for any t ∈ T(Zp). Similarly, any element f ∈ H0
(
M(μN,c)(0)

rig,ΩκU
)

has a similar

description as a rule over any idyllic p-adic OK -algebra R endowed with a morphism

Spf(R)→ M̄(μN,c)(0).

For later use, we also recall the definition of an integral structure of the sheaf ΩκU
for

an n-analytic map κU : U = Sp(A)→W with some reduced K -affinoid algebra A. Note

that A◦ is topologically of finite type [10, Corollary 6.4.1/6] and thus U= Spf(A◦) is an
admissible formal scheme over Spf(OK). The map κU extends to a formal character

κU : Tw×U→ Ĝm×U.

We put

ΩκU
= (πw)∗

(
OIW+

w×U

)[
−κU] .

It is a coherentOM̄(μN,c)(v)×U-module which is independent of the choice of w such that its

Raynaud generic fiber is ΩκU
[4, Proposition 3.13]. Since the map hn is an étale T(Z/pnZ)-

torsor over the ordinary locus M̄(μN,c)(0), the restriction of ΩκU
to M̄(μN,c)(0)×U is

an invertible sheaf.

Let κ : T(Zp)→K× be a weight character which is integral – namely, it is written as

T(Zp) = (OF ⊗Zp)
× � t⊗1 �→

∏
β∈BF

β(t)kβ ∈K×

with some g-tuple of integers (kβ)β∈BF
. In this case, the sheaf Ωκ is isomorphic

to the classical automorphic sheaf [4, Corollary 3.10]. Indeed, consider I =

IsomM̄(μN,c)

(
OF ⊗OM̄(μN,c),ωĀun

)
. Since the Raynaud generic fiber of the sheaf F

is ωĀun , we have a natural map IW+
w → I, which induces an isomorphism ωκ

Āun → Ωκ.

We also say that an integral weight κ is doubly even if every kβ is divisible by 4.
Moreover, we say that a weight character κ : T(Zp) → K× is n-integral (resp., n-

doubly even) if its restriction to T0
n (Zp) is equal to the restriction of a character of

some integral (resp., doubly even) weight (kβ)β∈BF
. Then, from the construction of the
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sheaf Ωκ, we see that the pullback
(
hrig
n

)∗
Ωκ to M̄(Γ1(p

n),μN,c)(v) is isomorphic to(
hrig
n

)∗(⊗
β∈BF

ω
⊗kβ

Āun,β

)
. Note that for the case where p = 2 splits completely in F, a

1-integral weight is 1-analytic if and only if it is 1-doubly even.

3.3.2. Overconvergent arithmetic Hilbert modular forms. We define the weight

space WG for overconvergent Hilbert modular forms as the Berthelot generic fiber of

Spf
(
OK

[[
T(Zp)×Z×

p

]])
. Any morphism X →WG defines a pair

(
νX ,wX ) of continuous

characters

νX : T(Zp)→O◦(X )×, wX : Z×
p →O◦(X )×

with respect to the supremum seminorm on X . The map

T(Zp)→ T(Zp)×Z×
p , t �→

(
t2,NF/Q(t)

)
,

induces a morphism k : WG → W. For any morphism X → WG, put κX = k
(
νX ,wX ).

When X is a reduced K -affinoid variety, we say that
(
νX ,wX ) is n-analytic if νX and wX

are both n-analytic. Note that if
(
νX ,wX ) is n-analytic, then κX is also n-analytic. We

say that a character (ν,w) : T(Zp)×Z×
p →K× is integral if it comes from an algebraic

character T×Gm →Gm. Then it is written as

T(Zp)×Z×
p →K×, (t⊗1,s) �→

∏
β∈BF

β(t)kβsk0,

with some g-tuple of integers (kβ)β∈BF
and an integer k0. We say that it is doubly even

if every kβ and k0 are divisible by 4. We also say that (ν,w) is n-integral (resp., n-doubly
even) if its restriction to T0

n (Zp)× (1+pnZp) is equal to the restriction of some integral

(resp., doubly even) character. If (ν,w) is n-integral (resp., n-doubly even), then k(ν,w)

is also n-integral (resp., n-doubly even).

Let U be a reduced K -affinoid variety and let U → WG be an n-analytic morphism.
Note that for any c-polarization λ :A⊗OF

c→A∨ and any x ∈ F×,+, multiplication by x

gives an x−1c-polarization

xλ :A⊗OF
x−1c

×x� A⊗OF
c

λ�A∨.

Then the group Δ =O×,+
F /U2

N acts on the space M
(
μN,c,κ

U)(v) by
([ε].f)(A,ι,λ,ψ,u,α) = νU (ε)f

(
A,ι,ε−1λ,ψ,u,α

)
for any f ∈M

(
μN,c,κ

U)(v) and ε ∈ O×,+
F . We define

MG
(
μN,c,

(
νU,wU))(v) =M

(
μN,c,κ

U)(v)Δ ,

SG
(
μN,c,

(
νU,wU))(v) = S

(
μN,c,κ

U)(v)Δ .

Let F×,+,(p) be the subgroup of F×,+ consisting of p-adic units. For any x ∈ F×,+,(p),
we define a map

Lx :MG
(
μN,c,

(
νU,wU))(v)→MG

(
μN,x

−1c,
(
νU,wU))(v)
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by the formula

(Lx(f))(A,ι,λ,ψ,u,α) = νU (x)f
(
A,ι,x−1λ,ψ,u,α

)
.

Let Frac(F )(p) be the group of fractional ideals of F which are prime to p. Then the

spaces

MG
(
μN,
(
νU,wU))(v), SG

(
μN,
(
νU,wU))(v)

of arithmetic overconvergent Hilbert modular forms and cusp forms are defined as the
quotients ⎛

⎝ ⊕
c∈Frac(F )(p)

MG
(
μN,c,

(
νU,wU))(v)

⎞
⎠/
(
Lx(f)−f | x ∈ F×,+,(p)

)
,

⎛
⎝ ⊕

c∈Frac(F )(p)

SG
(
μN,c,

(
νU,wU))(v)

⎞
⎠/
(
Lx(f)−f | x ∈ F×,+,(p)

)
.

By the same construction, we also have the spaces

MG
(
μN,
(
νU,wU))(vtot), SG

(
μN,
(
νU,wU))(vtot).

3.3.3. Hecke operators and the Hilbert eigenvariety. Next we recall the defini-
tion of Hecke operators on the space of overconvergent Hilbert modular forms, following

[4, §3.7]. Let n, v, v, and w be as before. For any HBAV (A,ι,λ,ψ) over a base scheme

S/Spec(OK), the closed immersion ψ :D−1
F ⊗μN →A gives a subgroup scheme Im(ψ) of

A which is étale locally isomorphic to D−1
F /ND−1

F . Let l be any nonzero ideal of OF . We
define

Y ′
c,l (v)⊆M(μN,c)(v)×M(μN,lc)(v)

as the subvariety classifying pairs ((A,ι,λ,ψ),(A′,ι′,λ′,ψ′)) and an isogeny πl : A → A′

compatible with the other data such that Ker(πl) is étale locally isomorphic to OF /lOF ,

Ker(πl)∩ Im(ψ) = 0, and Ker(πl)∩C1 = 0, where C1 is the canonical subgroup of A of

level 1. Consider the projections

p1 : Y ′
c,l (v)→M(μN,c)(v), p2 : Y ′

c,l (v)→M(μN,lc)(v) .

Note that map p1 is finite and étale. For the case where l is a prime ideal dividing p, we

suppose that p−1vσ◦β ≤ vβ for any β ∈ Bl. Set v
′ =
(
v′β

)
β∈BF

by v′β = vβ for β /∈ Bl and

v′β = p−1vσ◦β for β ∈ Bl. Then [29, Corollary 5.3(1)] implies that map p2 factors through

the admissible open subset M(μN,lc)(v
′)⊆M(μN,lc)(v).

Let U be a smooth K -affinoid variety and let U →W be an n-analytic map. Then [29,

Theorem 8.1(10)] and the proof of [4, Corollary 3.26] (see also [3, Lemma 6.1.1]) show

that the map π∗
l : ωA′ → ωA induces an isomorphism

πl : p
∗
2IW+

w,lc (v)� p∗1IW+
w,c (v),
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which in turn defines an isomorphism

π∗
l : p∗1

(
ΩκU

)
� p∗2

(
ΩκU

)
.

This gives the Hecke operator

H0
(
M(μN,lc)(v)×U,ΩκU

)
p∗
2→H0

(
Y ′
c,l (v)×U,p∗2ΩκU

)
(π∗

l )
−1

→ H0
(
Y ′
c,l (v)×U,p∗1ΩκU

)
NF/Q(l)

−1Trp1→ H0
(
M(μN,c)(v)×U,ΩκU

)
,

which can be seen as a map M
(
μN,lc,κ

U)(v)→M
(
μN,c,κ

U)(v) by [33, Theorem 1.6].

We denote this map by Tl if (l,p) = 1 and T ′
l otherwise.

On the other hand, for any ideal l with (l,pN) = 1, we have a map

sl :M(μN,c)(v)→M
(
μN,l

2c
)
(v), (A,ι,λ,ψ) �→

(
A⊗OF

l−1,ι′,l2λ,ψ′) .
Here ι′ and ψ′ are induced by ι and ψ via the natural isogeny A→ A/A[l] � A⊗OF

l−1,
and l2λ is the l2c-polarization on A⊗OF

l−1 defined by(
A⊗OF

l−1
)
⊗OF

l2c= (A⊗OF
c)⊗OF

l
λ⊗1� A∨⊗OF

l�
(
A⊗OF

l−1
)∨

.

Then we can show that there exists a natural isomorphism π∗
l : ΩκU � s∗lΩ

κU
as in [3,

Lemma 6.1.1], and we define the operator

Sl :M
(
μN,l

2c,κU)(v)→M
(
μN,c,κ

U)(v)
by Sl =NF/Q(l)

−2 (π∗
l )

−1 ◦s∗l . Since sml = id for some positive integer m, every eigenvalue
of the operator Sl is p-integral.

To define arithmetic Hecke operators for l with (l,p) 
= 1, let vp be the normalized

additive valuation for any p | p. We fix once and for all elements xp ∈ F×,+ such that
vp (xp) = 1 and vp′ (xp) = 0 for any p′ 
= p satisfying p′ | p. We define a map

x∗
p :M

(
μN,x

−1
p c,κU)(v)→M

(
μN,c,κ

U)(v)
by f �→ ((A,ι,λ,ψ) �→ f (A,ι,xpλ,ψ)). Then we denote the composite

∏
p|p

(
x∗
p

)vp(l) ◦T ′
l :M

⎛
⎝μN,

∏
p|p

x
−vp(l)
p lc,κU

⎞
⎠(v)→M

(
μN,c,κ

U)(v)
by Tl. We also write it as Ul if l divides a power of p. Then the operators Tl for any l

and Sl for (l,pN) = 1 define actions on MG
(
μN,
(
νU,wU))(v) and SG

(
μN,
(
νU,wU))(v)

which commute with each other. Note that Tll′ = TlTl′ if (l,l
′) = 1 and that [29, Theorem

8.1(10)] implies

TmTms−1 =

{
Tms +NF/Q(m)SmTms−2 (m �Np)

Tms (m |Np)
(3.8)

for any maximal ideal m.
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Let v be an element of Q∩
(
0, p−1

p

)
. Note that the foregoing definitions of Hecke

operators are also valid for SG
(
μN,
(
νU,wU))(vtot). Then the operator Up is a compact

operator acting on SG
(
μN,
(
νU,wU))(vtot) which factors as

SG
(
μN,
(
νU,wU))(vtot)⊆ SG

(
μN,
(
νU,wU))(p−1vtot

)
→ SG

(
μN,
(
νU,wU))(vtot)

and, for v < (p−1)/p2, also as

SG
(
μN,
(
νU,wU))(vtot)→ SG

(
μN,
(
νU,wU))(pvtot)⊆ SG

(
μN,
(
νU,wU))(vtot).

Let T be the polynomial ring over K with variables Tl for any l and Sl for (l,pN) = 1.

Then the ring T acts on SG
(
μN,
(
νU,wU))(v) and SG

(
μN,
(
νU,wU))(vtot) via the Hecke

operators defined.
Now we can construct the eigenvariety from these data, as in [4, §5]. For any positive

integer n, we fix a positive rational number vn <Bn satisfying vn ≥ vn+1 for any n, where

Bn is defined by equation (3.5). We also assume vn ≤ (p−2+vp(2))/p
n+1 for any n≥ 2,

so that replacing K with its finite extension, condition (3.7) for vn is satisfied for all n.

For any admissible affinoid open subset U ⊆WG, we put

n(U) = min
{
n ∈ Z>0 |

(
νU,wU) is n-analytic

}
.

We define a Banach O(U)-module MU with T-action as

MU = SG
(
μN,
(
νU,wU))(vn(U),tot

)
,

on which Up acts as a compact operator. The proof of [4, Theorem 4.4] remains valid also

for p= 2 and implies that the O(U)-module MU satisfies condition (Pr). For admissible

affinoid open subsets U1 ⊆ U2 of WG, we have n(U1) ≤ n(U2) and [4, Proposition 3.14]

yields a map

αU1,U2
:MU1

→ SG
(
μN,
(
νU1,wU1

))(
vn(U2),tot

)
�MU2

⊗̂O(U2)O(U1),

where the first arrow is the restriction map. Note that for any positive rational numbers
v,v′ satisfying v′ ≤ v < pv′ < (p−1)/p, the restriction map

SG
(
μN,
(
νU,wU))(vtot)→ SG

(
μN,
(
νU,wU))(v′tot)

is a primitive link. Thus the map αU1,U2
is a link satisfying the cocycle condition.

Hence, by applying the eigenvariety machine [12, Construction 5.7], we obtain the Hilbert

eigenvariety E →WG as in [4, Theorem 5.1].

3.4. The case over Cp

Since we are ultimately interested in overconvergent Hilbert modular forms over

Cp, we need to give a slight generalization of the construction in [4] over Cp. As
before, for any quasi-separated rigid analytic variety X over K and any coherent

OX -module F , we denote the base extensions of X and F to Cp by XCp
and FCp

,

respectively. Similarly, for any quasi-separated admissible formal scheme X over Spf(OK)
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and any coherent OX-module F, we denote their pullbacks to Spf
(
OCp

)
by XOCp

and

FOCp
, respectively. Then on the Raynaud generic fiber we have

(
Xrig
)
Cp

=
(
XOCp

)rig
,

(
Frig
)
Cp

=
(
FOCp

)rig
.

Let U = Sp(A) be a reduced Cp-affinoid variety. From [11, Theorem 1.2] and [1,

Proposition 1.10.2(iii)], we see that A◦ is an admissible formal OCp
-algebra. Put U =

Spf(A◦). For any morphism U →WCp
or U →WG

Cp
, we have an associated character κU

or
(
νU,wU) and a notion of n-analyticity defined in the same way as before. Consider the

base extensions

πw,OCp
: IW+

w,OCp

γw,OCp→ M̄(Γ1(p
n),μN,c)(v)OCp

hn,OCp→ M̄(μN,c)(v)OCp

of the maps γw, hn, and πw. Then for any n-analytic morphism U →WCp
, we can define

the sheaves

ΩκU
=
(
πrig
w,Cp

)
∗

(
OIW+

w,Cp
×U

)[
−κU], ΩκU

=
(
πw,OCp

)
∗

(
O

IW
+
w,OCp

×U

)[
−κU]

such that ΩκU
=
(
ΩκU

)rig
is an invertible OM̄(μN,c)(v)Cp×U -module, as before. [1,

Propositions 1.9.14 and 1.10.2(iii)] implies that ΩκU
is coherent and that its restriction

to M̄(μN,c)(0)OCp
is invertible: the latter follows from a similar argument to the proof

of [35, §7, Proposition 2] combined with the fact that hn,OCp
is a T(Z/pnZ)-torsor over

M̄(μN,c)(0)OCp
. Using ΩκU

, we define M
(
μN,c,κ

U)(v) and its variants in the same way

as in the case over K.

For any reduced K -affinoid variety V and any n-analytic morphism V →W, consider
the base extension VCp

→WCp
and the associated character κVCp . Then we can show that

there exist natural isomorphisms(
ΩκV

)
Cp

� Ωκ
VCp

, ΩκV
(−D)Cp

� Ωκ
VCp

(−D) (3.9)

in the same way as the proof of [4, Proposition 3.14]. Similarly, for any morphism f :
U ′ →U of reduced Cp-affinoid varieties, we have natural isomorphisms

f∗ΩκU � ΩκU′

, f∗
(
ΩκU

(−D)
)
� ΩκU′

(−D). (3.10)

Let M̄∗(μN,c) be the minimal compactification of M(μN,c). We have a natural proper
map

M̄(μN,c)→ M̄∗(μN,c).

Note that a sufficiently large power of the usual Hasse invariant can be considered as
a global section of an ample invertible sheaf on M̄∗(μN,c). Let M̄∗(μN,c)(vtot) be the

normal admissible formal scheme defined similarly to M̄(μN,c)(vtot) using M̄∗(μN,c)

instead of M̄(μN,c). Let M̄∗(μN,c)(vtot) be its Raynaud generic fiber. By the foregoing
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ampleness property, we see that M̄∗(μN,c)(vtot) is a K -affinoid variety. We also have

proper morphisms

ρ : M̄(Γ1(p
n),μN,c)(vtot)→ M̄∗(μN,c)(vtot),

ρrig : M̄(Γ1(p
n),μN,c)(vtot)→M̄∗(μN,c)(vtot).

By the base extension, these induce proper morphisms

ρOCp
: M̄(Γ1(p

n),μN,c)(vtot)OCp
→ M̄∗(μN,c)(vtot)OCp

,

ρrigCp
: M̄(Γ1(p

n),μN,c)(vtot)Cp
→M̄∗(μN,c)(vtot)Cp

.

Lemma 3.11. Let V be a reduced K-affinoid variety and let V →WG be an n-analytic

morphism. Then the natural base change map

(ρ×1)∗
(
ΩκV

(−D)
)
OCp

→
(
ρOCp

×1
)
∗

(
ΩκV

(−D)OCp

)
is an isomorphism. Moreover, we have

Rq
(
ρOCp

×1
)
∗

(
ΩκV

(−D)OCp

)
= 0

for any q > 0.

Proof. It is enough to show the claim formal-locally. Put V = Sp(A) and V = Spf(A◦).
Let Y be a formal affine open subscheme of M̄∗(μN,c)(vtot) and put X= ρ−1(Y). Since ρ

is proper of finite presentation and ΩκV
(−D) is coherent, [1, (2.11.8.1)] implies that the

restriction

Rq(ρ×1)∗
(
ΩκV

(−D)
)
|Y×V

is the coherent sheaf associated to the O(Y×V)-module

Hq
(
X×V,ΩκV

(−D)
)
.

By [4, Corollary 3.20], we have Hq
(
X×V,ΩκV

(−D)
)
= 0 for any q > 0.

Since X is quasi-compact, we can take a finite covering X =
⋃r

i=1Xi by formal affine

open subschemes Xi. Consider the Čech complex for the coherent sheaf ΩκV
(−D)

0→H0
(
X×V,ΩκV

(−D)
)
→ C0

(
ΩκV

(−D)
)
→ C1

(
ΩκV

(−D)
)
→ ·· ·

with respect to the covering X×V =
⋃r

i=1Xi ×V, which is exact by the foregoing

vanishing. From the definition, we see that the sheaf ΩκV
(−D) is flat over OK and

each OK-module Cq
(
ΩκV

(−D)
)
is also flat. By taking modulo pn, tensoring OCp

, and

taking the inverse limit, we see that the sequence is exact even after taking −⊗̂OK
OCp

.

This means that the Čech complex for the coherent sheaf ΩκV
(−D)OCp

with respect to
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the formal open covering XOCp
×VOCp

=
⋃r

i=1Xi,OCp
×VOCp

is exact except the zeroth

degree. Taking the zeroth cohomology gives an isomorphism

H0
(
X×V,ΩκV

(−D)
)
⊗̂OK

OCp
→H0

(
XOCp

×VOCp
,ΩκV

(−D)OCp

)
and the qth cohomology for q > 0 gives

Hq
(
XOCp

×VOCp
,ΩκV

(−D)OCp

)
= 0.

This concludes the proof.

Lemma 3.12. Let V be a reduced K-affinoid variety and let V →WG be an n-analytic

morphism. Then the natural map

SG
(
μN,
(
νV,wV))(vtot)⊗̂KCp → SG

(
μN,
(
νVCp ,wVCp

))
(vtot)

is an isomorphism.

Proof. Put V = Sp(A). By taking the Raynaud generic fibers and [1, Propositions 4.7.23
and 4.7.36], we see from Lemma 3.11 that the base-change map(

ρrig×1
)
∗

(
ΩκV

(−D)
)
Cp

→
(
ρCp

×1
)
∗

(
ΩκV

(−D)Cp

)
is an isomorphism. By formula (3.9), the latter sheaf is isomorphic to the sheaf(
ρCp

×1
)
∗

(
Ωκ

VCp
(−D)

)
. Since M̄∗(μN,c)(vtot)Cp

×VCp
is a Cp-affinoid variety, taking

global sections yields an isomorphism

H0
(
M̄(Γ1(p

n),μN,c)(vtot)×V,ΩκV
(−D)

)
⊗̂KCp →

H0
(
M̄(Γ1(p

n),μN,c)(vtot)Cp
×VCp

,Ωκ
VCp

(−D)
)
. (3.11)

Taking the T(Z/pnZ)-equivariant part and the Δ-fixed part, we obtain the lemma.

Lemma 3.13. Let V = Sp(A) be a reduced K-affinoid variety and let V → WG be an

n-analytic morphism. Let x be an element of V(Cp) and let x∗ : A → Cp be the ring

homomorphism defined by x. Suppose that the maximal ideal mx of ACp
= A⊗̂KCp

corresponding to x is generated by a regular sequence. Put (ν,w) =
(
νV(x),wV(x)

)
. Then

the specialization map

SG
(
μN,
(
νV,wV))(vtot)⊗̂A,x∗Cp → SG(μN,(ν,w))(vtot)

is an isomorphism.

Proof. This is essentially proved in [4, Proposition 3.23]. Put κV = k
(
νV,wV) and κ =

k(ν,w). By the assumption on mx, we have the Koszul resolution

0→ACp
→Anr

Cp
→ ·· · →An1

Cp
→ACp

→ACp
/mx → 0

with some nonnegative integers n1, . . . ,nr, which induces a finite resolution of the sheaf

(1×x)∗(Ω
κ(−D)) by finite direct sums of ΩκV

(−D)Cp
. By Lemma 3.11, the push-forward

of this resolution by the map ρrigCp
× 1 is exact. Since M̄∗(μN,c)(vtot)Cp

×VCp
is a Cp-
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affinoid variety, the sequence obtained by taking global sections is also exact. This and
formula (3.11) yield isomorphisms

H0
(
M̄ (Γ1(p

n),μN,c)(vtot)×V,ΩκV
(−D)

)
⊗̂A,x∗Cp

�H0
(
M̄(Γ1(p

n),μN,c)(vtot)Cp
×VCp

,Ωκ
VCp

(−D)
)
⊗̂ACp,x

∗Cp

�H0
(
M̄(Γ1(p

n),μN,c)(vtot)Cp
,Ωκ(−D)

)
.

Taking the T(Z/pnZ)-equivariant part and the Δ-fixed part shows the lemma.

We can naturally extend the Hecke operators over Cp: Let U be a smooth Cp-affinoid

variety and let U →WG
Cp

be an n-analytic morphism. Consider the base extension of the

isomorphism πl

πl,Cp
: p∗2IW+

w,lc(v)Cp
� p∗1IW+

w,c(v)Cp
,

which defines an isomorphism

π∗
l,Cp

: p∗1

(
ΩκU

)
� p∗2

(
ΩκU

)
.

We define the Hecke operator Tl over Cp for (l,p) = 1 by

H0
(
M(μN,lc)(v)Cp

×U,ΩκU
)

p∗
2→H0

(
Y ′
c,l (v)Cp

×U,p∗2ΩκU
)

(
π∗
l,Cp

)−1

→ H0
(
Y ′
c,l (v)Cp

×U,p∗1ΩκU
)

NF/Q(l)
−1Trp1→ H0

(
M(μN,c)(v)Cp

×U,ΩκU
)
.

Similarly, we have Hecke operators Tl for (l,p) 
= 1 and Sl over Cp. We can show that

they are compatible with the Hecke operators over K and that the specialization map in

Lemma 3.13 is T-linear.

4. q-Expansion principle

In this section, we study the q-expansion map for arithmetic overconvergent Hilbert

modular forms. We fix once and for all a representative[
Cl+(F )

](p)
= {c1 = o,c2, . . . ,ch+}

of the strict class group Cl+(F ) such that every ci is prime to p. For any smooth Cp-affinoid
variety U , any n-analytic map U →WG

Cp
, and any v ∈Q∩ [0,Bn), we have isomorphisms

MG
(
μN,
(
νU,wU))(v)� ⊕

c∈[Cl+(F )]
(p)

MG
(
μN,c,

(
νU,wU))(v),

SG
(
μN,
(
νU,wU))(v)� ⊕

c∈[Cl+(F )]
(p)

SG
(
μN,c,

(
νU,wU))(v) (4.1)
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by which we identify both sides. For any element f ∈ MG
(
μN,
(
νU,wU))(v), we write

(fc)
c∈[Cl+(F )]

(p) for the image of f by these isomorphisms. We say that f is an eigenform

if it is an eigenvector for any element of T.

4.1. q-Expansion of overconvergent modular forms

For any nonzero fractional ideal c of F, let us consider an unramified cusp (a,b,φ) of

M(μN,c) as in §3.1.2. Using any polyhedral cone decomposition C ∈ Dec(a,b) of F ∗,+
R ,

we have the Îσ-adically complete ring R̂σ and the semi-abelian scheme Tatea,b(q) over

S̄σ = Spec
(
R̂σ

)
for any σ ∈ C .

Let S̆σ = Spf
(
R̆σ

)
be the

(
p,Îσ

)
-adic formal completion of Ŝσ. The smoothness

assumption on C implies that there exists a basis ξ1, . . . ,ξg of the Z-module ab satisfying

(ab)∩σ∨ = Z≥0ξ1+ · · ·+Z≥0ξr+Zξr+1+ · · ·+Zξg

with some r. For any ring B, we write

B
[
X≤r,X

±
>r

]
:=B

[
X1, . . . ,Xr,X

±
r+1, . . . ,X

±
g

]
.

For any extension L/K of complete valuation fields, we denote the p-adic completion of
OL

[
X≤r,X

±
>r

]
by OL

〈
X≤r,X

±
>r

〉
and put

L
〈
X≤r,X

±
>r

〉
=OL

〈
X≤r,X

±
>r

〉
[1/p].

Then the OK -algebra R̂σ is isomorphic to the completion of the ring OK

[
X≤r,X

±
>r

]
with respect to the principal ideal (X1 · · ·Xr) via the map Xi �→ qξi , and the ring R̆σ is

isomorphic to the p-adic completion of R̂σ. Hence the ring R̆σ is normal and the formal
scheme S̆σ is an object of the category FSOK

of [19, Definition 7.0.1]. In fact, the ring

R̆σ is isomorphic to the ring

OK

〈
X≤r,X

±
>r

〉
[[Z]]/(Z−X1 · · ·Xr). (4.2)

Moreover, since the natural map

OK,m

[
X≤r,X

±
>r

]
/(X1 · · ·Xr)

n →
OK,m

[
X±

r+1, . . . ,X
±
g

]
[[X1, . . . ,Xr]]/(X1 · · ·Xr)

n

is injective for any positive integer m, by taking the limit we may identify the rings R̂σ

and R̆σ with OK -subalgebras of the OK -algebra

OK

〈
q±ξr+1, . . . ,q±ξg

〉[[
qξ1, . . . ,qξr

]]
.

We denote by S̆rig
σ the Berthelot generic fiber of S̆σ. Similarly, we denote by S̆C and

S̆rig
C the formal completion of ŜC along the boundary of the special fiber and its Berthelot

generic fiber. From the definition, we have formal open and admissible coverings

S̆C =
⋃
σ∈C

S̆σ, S̆rig
C =

⋃
σ∈C

S̆rig
σ .
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Since the quotient of ŜC by the action of UN is obtained by a regluing, so is the quotient

S̆C /UN , and this coincides with the formal completion of ŜC /UN along the boundary of

the special fiber.

Consider the case C = C (a,b). Since the map S̄σ → M̄(μN,c) defined using Tatea,b(q)
induces an open immersion ∐

ŜC (a,b)/UN → M̄(μN,c)|∧D

to the formal completion of M̄(μN,c)|∧D of M̄(μN,c) along the boundary divisor D, taking

the formal completion we obtain an open immersion∐
S̆C (a,b)/UN → M̄(μN,c)|∧Dk

to the formal completion M̄(μN,c)|∧Dk
of M̄(μN,c) along the boundary Dk of the special

fiber. Let sp : M̄(μN,c)→ M̄(μN,c)k be the specialization map with respect to M̄(μN,c).

Then [19, Lemma 7.2.5] implies
(
M̄(μN,c)|∧Dk

)rig
= sp−1(Dk).

Let S̆rig
σ,Cp

and S̆rig
C,Cp

be the base extensions to Sp(Cp) of S̆rig
σ and S̆rig

C , respectively.

Note that S̆rig
σ,Cp

can be identified with the rigid analytic variety over Cp whose set of
Cp-points is {

(x1, . . . ,xg) ∈ Cg
p

∣∣∣∣ xi ∈ OCp
(i≤ r), xi ∈ O×

Cp
(i > r),

x1 · · ·xr ∈mCp

}
(4.3)

for r as before. Then, with the notation of [18, Theorem 3.1.5], we have(
S̆σ

)rig
/Cp

= S̆rig
σ,Cp

,
(
S̆C

)rig
/Cp

= S̆rig
C,Cp

.

Since the functor (−)rig/Cp
sends formal open immersions to open immersions and formal

open coverings to admissible coverings, each S̆rig
σ,Cp

is an admissible open subset of S̆rig
C,Cp

such that S̆rig
C,Cp

=
⋃

σ∈C S̆rig
σ,Cp

is an admissible covering. Moreover, we have

(
S̆C /UN

)rig
/Cp

= S̆rig
C,Cp

/UN .

Note that the formation of the tube sp−1(Dk) is compatible with the base extension to
Cp [9, Proposition 1.1.13]. Thus, for C = C (a,b), we obtain maps∐

σ∈C

S̆rig
σ,Cp

→ S̆rig
C,Cp

/UN →M̄(μN,c)Cp
, (4.4)

where the first map is a surjective local isomorphism and the second is an open immersion
factoring through M̄(μN,c)(0)Cp

.

We denote by R̆σ,OCp
, S̆σ,OCp

, and S̆C,OCp
the base extensions to Spf

(
OCp

)
of R̆σ, S̆σ,

and S̆C , respectively. From the identification (4.2), we can show

R̆σ,OCp
=OCp

〈
X≤r,X

±
>r

〉
[[Z]]/(Z−X1 · · ·Xr). (4.5)
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Indeed, first note that the ring R̆σ,OCp
is isomorphic to

lim←−
n≥0

lim←−
m≥0

OCp,n

[
X≤r,X

±
>r,Z

]
/(Z−X1 · · ·Xr,Z

m). (4.6)

Since the ring

OCp,n

[
X≤r,X

±
>r,Z

]
/(Z−X1 · · ·Xr)

is Z -torsion free, its Z -adic completion is

OCp,n

[
X≤r,X

±
>r

]
[[Z]]/(Z−X1 · · ·Xr).

Similarly, since an elementary argument shows that the ring

OCp

[
X≤r,X

±
>r

]
[[Z]]/(Z−X1 · · ·Xr)

is p-torsion free, taking the p-adic completion yields the claim. (The reason for this ad

hoc proof is that in general we do not know if the completion is compatible with quotients

for non-quasi-idyllic rings.)

Lemma 4.1. For any extension L/K of complete valuation fields with residue field kL,

the rings

OL

〈
X≤r,X

±
>r

〉
[[Z]]/(Z−X1 · · ·Xr), kL

[
X≤r,X

±
>r

]
[[Z]]/(Z−X1 · · ·Xr)

are integral domains. In particular, the ring R̆σ,OCp
is an integral domain.

Proof. For the former ring, we can show that it is a subring of the ring

R̆L := L
〈
X≤r,X

±
>r

〉
[[Z]]/(Z−X1 · · ·Xr).

It suffices to show that R̆L is an integral domain. Since the ring L
〈
X≤r,X

±
>r

〉
is

Noetherian and normal, the ring R̆L is also normal. Since R̆L is Z -adically complete and

Z -torsion free and Spec
(
R̆L/(Z)

)
is connected, we see that Spec

(
R̆L

)
is also connected,

and the lemma follows. We can show the assertion on the latter ring similarly.

From the description (4.3) of S̆rig
σ,Cp

, we see that there exists an inclusion

O
(
S̆σ,OCp

)
= R̆σ,OCp

⊆O◦
(
S̆rig
σ,Cp

)
.

By gluing, this yields an inclusion

O
(
S̆C,OCp

)
⊆O◦

(
S̆rig

C,Cp

)
. (4.7)

By the description (4.6) of the ring R̆σ,OCp
, we have a natural inclusion

R̆σ,OCp
⊆
∏
ξ∈ab

OCp
qξ, (4.8)
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which is compatible with the restriction map R̆σ,OCp
→ R̆σ′,OCp

for any σ and σ′ such
that σ′ is a face of the closure σ̄. Then we have an isomorphism

O
(
S̆C,OCp

)
�
⋂
σ∈C

R̆σ,OCp
.

Note that if the dimension of the R-vector space SpanR(σ) generated by the elements of

σ is g, then we have

(ab)∩σ∨ = Z≥0ξ1⊕·· ·⊕Z≥0ξg

with some ξ1, . . . ,ξg ∈ ab. Thus any element of R̆σ,OCp
is a formal power series of qξ1, . . . ,qξg

and the ring OCp

[[
qξ | ξ ∈ (ab)∩σ∨]] can be identified with the subset⎧⎨

⎩(aξqξ)ξ∈ab
∈
∏
ξ∈ab

OCp
qξ | aξ = 0 for any ξ /∈ (ab)∩σ∨

⎫⎬
⎭ .

From the equality

(ab)+∪{0}=
⋂

{(ab)∩σ∨ | σ ∈ C , dimR(SpanR(σ)) = g},

we have an inclusion

OCp

[[
qξ | ξ ∈ (ab)+∪{0}

]]
⊇O

(
S̆C,OCp

)
.

On the other hand, if we identify

FR �
∏

β∈HomQ-alg.(F,R)

R, x⊗1 �→ (β(x))β,

then every boundary τ of σ∨ is outside the closure of the positive cone F×,+
R of FR.

Hence for any positive real number ρ, the number of elements ξ of (ab)+ such that

the distance from ξ to τ is less than ρ is finite. This implies that any element of

OCp

[[
qξ | ξ ∈ (ab)+∪{0}

]]
is contained in the completion of the ring

OCp

[
qξ1, . . . ,qξr,q±ξr+1, . . . ,q±ξg

]
with respect to the qξ1 · · ·qξr -adic topology. We can see that this completion is contained

in R̆σ,OCp
. Therefore, we obtain an identification

OCp

[[
qξ | ξ ∈ (ab)+∪{0}

]]
�O

(
S̆C,OCp

)
,

which is compatible with the inclusion (4.8).

Let c be any nonzero fractional ideal of F and let a,b be fractional ideals satisfying
ab−1 = c. Suppose a ⊆ o and (a,Np) = 1. Then the natural inclusion o ⊆ a−1 induces

isomorphisms

φa,b : a
−1/Na−1 � o/No, φ′

a,b : a
−1/pna−1 � o/pno.
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Consider the unramified cusp (a,b,φa,b) of M(μN,c). Take C ∈ Dec(a,b) and σ ∈ C as

before. By the construction of the Tate object, the map φ′
a,b yields a natural immersion

D−1
F ⊗μpn → Tatea,b(q) over S̄σ, which induces an isomorphism

ωTatea,b(q)⊗OK
OK,n � ωD−1

F ⊗μpn
.

Note that the map TrF/Q⊗1 : D−1
F ⊗Gm →Gm gives an element

(
TrF/Q⊗1

)∗ dT
T of the

OF ⊗O
(
S̄σ

)
-module ωD−1

F ⊗Gm
� ωTatea,b(q). By the pullback, we obtain a Tate object

over Spec
(
R̆σ

)
with a canonical invariant differential form which are compatible with

those over Spec
(
R̆τ

)
for any τ ∈ C satisfying τ ⊆ σ̄.

We denote the p-adic completion of S̄σ by S̃σ. We have S̃σ = Spf
(
R̆σ

)
, where we

consider the p-adic topology on R̆σ. Its base extension to OCp
is denoted by S̃σ,OCp

=

Spf
(
R̃σ,OCp

)
. Here the affine algebra R̃σ,OCp

is the p-adic completion of the ring R̆σ⊗OK

OCp
.

The identity map R̆σ → R̆σ is continuous if we consider the p-adic topology on the

source and the
(
p,Îσ

)
-adic topology on the target. Then, for the case of C = C (a,b),

its composite with the p-adic completion of the map S̄σ → M̄(μN,c) gives a morphism

of formal schemes S̆σ → S̃σ → M̄(μN,c)(0), and also a morphism S̆C → M̄(μN,c)(0) by
gluing. Since R̆σ is Noetherian, the moduli interpretation of IW+

w,c(0) as in §3.3.1 is also

valid for R̆σ. We have a commutative diagram

Z/pnZ
(
R̆σ

)
��

��

OF /p
nOF

(
R̆σ

)

��

(μpn)
∨
(
R̆σ

)
��

HT

��

(
D−1

F ⊗μpn

)∨(
R̆σ

)
HT

��
ωμpn

⊗ R̆σ
�� ωD−1

F ⊗μpn
⊗ R̆σ,

where the top horizontal arrow is the natural inclusion and the other horizontal arrows

are induced by the map TrF/Q⊗1. Thus the moduli interpretation and the base extension

give a morphism of formal schemes over Spf
(
OCp

)
,

τa,b : S̆σ,OCp
→ S̃σ,OCp

→ IW
+
w,c(0)OCp

.

By gluing, this defines a morphism S̆C,OCp
→ IW

+
w,c(0)OCp

, which we also denote by τa,b.

Lemma 4.2. The natural map R̃σ,OCp
→ R̆σ,OCp

is injective. In particular, the ring

R̃σ,OCp
is an integral domain.
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Proof. We have an isomorphism

R̃σ,OCp
� lim←−

n

lim−→
L/K

OL,n

[
X≤r,X

±
>r

]
[[Z]]/(Z−X1 · · ·Xr), (4.9)

where the direct limit is taken with respect to the directed set of finite extensions L/K

in Q̄p. Since the map

OL,n

[
X≤r,X

±
>r

]
/(X1 · · ·Xr)

m →OCp,n

[
X≤r,X

±
>r

]
/(X1 · · ·Xr)

m

is injective for any such L/K, the injectivity of the lemma follows from expression (4.6).

Lemma 4.1 yields the last assertion.

For any finite extension L/K, we write the p-adic completion

R̆σ⊗̂OK
OL =OL

〈
X≤r,X

±
>r

〉
[[Z]]/(Z−X1 · · ·Xr)

also as R̃OL
. Let πL be a uniformizer of L. By Lemma 4.1, the ring R̃OL

/(πL) is an

integral domain. Since R̃OL
is normal, the localization

(
R̃OL

)
(πL)

is a discrete valuation

ring with uniformizer πL such that Z is invertible. Put R̃∞ = lim−→L/K
R̃OL

and m∞ =

lim−→L/K
(πL), where the direct limits are taken as before. Then the localization

(
R̃∞
)
m∞

=

lim−→L/K

(
R̃OL

)
(πL)

is a valuation ring. Let OKσ
be its p-adic completion. By formula (4.9),

the ring R̃σ,OCp
coincides with the p-adic completion of R̃∞. Since the p-adic topology on

R̃∞ is induced by that on
(
R̃∞
)
m∞

, we obtain an injection R̃σ,OCp
→OKσ

. This defines a

morphism of p-adic formal schemes Spf (OKσ
)→ S̃σ,OCp

for any σ ∈C (a,b). In particular,

we have the pullback of Tatea,b(q) over Spec(OKσ
) which is an HBAV. Since OKσ

is quasi-

idyllic, we have the moduli interpretation of any morphism Spf (OKσ
)→ IW

+
w,c(0)OCp

over

M̄(μN,c)(0)OCp
as in §3.3.1. The additional structures of the Tate object over Spec

(
R̆σ

)
define a canonical test object

(Tatea,b(q),ιa,b,λa,b,ψa,b,ua,b,αa,b)

over Spec(OKσ
). This corresponds via the moduli interpretation to a map

τa,b,OKσ
: Spf (OKσ

)→ IW
+
w,c(0)OCp

satisfying the following property: the composite S̆σ,OCp
→ S̆C,OCp

τa,b→ IW
+
w,c(0)OCp

factors

through S̃σ,OCp
and its restriction to Spf (OKσ

) equals τa,b,OKσ
, as in the diagram

S̆σ,OCp
��

��

S̆C,OCp

τa,b

��
Spf (OKσ

) �� S̃σ,OCp
�� IW+

w,c(0)OCp
.

(4.10)
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Let κ ∈ W (Cp) be any n-analytic weight. Since the formal scheme M̄(μN,c)(v)OCp
is

quasi-compact and the sheaf Ωκ is coherent, we have

M(μN,c,κ)(v) =H0
(
M̄(μN,c)(v)OCp

,Ωκ
)
[1/p]⊆O

(
IW

+
w,c(v)OCp

)
[1/p].

For any element fc of M(μN,c,κ)(v), we define the q-expansion fc(q) of fc by

fc(q) = τ∗o,c−1(fc) ∈ O
(
S̆C,OCp

)
[1/p] =OCp

[[
qξ | ξ ∈

(
c−1
)+∪{0}

]]
[1/p].

Thus, for any f = (fc)
c∈[Cl+(F )]

(p) , we can write

fc(q) = ao,c−1(f,0)+
∑

ξ∈(c−1)+

ao,c−1(f,ξ)qξ

with some ao,c−1(f,ξ) ∈ Cp. For any refinement C ′ ∈ Dec
(
o,c−1

)
of C , the natural map

S̆C ′,OCp
→ S̆C,OCp

induces the identity map on the ring OCp

[[
qξ | ξ ∈

(
c−1
)+∪{0}

]]
[1/p].

Thus we can compute the q-expansion by taking any refinement of the fixed cone
decomposition C

(
o,c−1

)
in Dec

(
o,c−1

)
. We say that an eigenform f is normalized if

ao,o(f,1) = 1.

By presentations (4.2) and (4.5), we have an isomorphism(
R̆σ/ÎσR̆σ

)
⊗̂OK

OCp
� R̆σ,OCp

/ÎσR̆σ,OCp
,

which implies ao,c−1(f,0) = 0 if fc ∈ S(μN,c,κ)(v).

4.2. Weak multiplicity one theorem

Let (ν,w) ∈ WG (Cp) be an n-analytic weight. Let f = (fc)
c∈[Cl+(F )]

(p) be a nonzero

eigenform in SG(μN,(ν,w))(v). For any nonzero ideal n ⊆ o, let Λ(n) be the eigenvalue

of Tn acting on f. We set Φ(n) to be the eigenvalue of Sn for (n,Np) = 1 and Φ(n) =0

otherwise. We put μn =
(
D−1

F ⊗Gm

)
[n]. Any element ζ of μn(L)⊆

(
D−1

F ⊗Gm

)
(L) with

some extension L/K defines a ring homomorphism ζ :O
(
D−1

F ⊗Gm

)
→ L. We put ζη =

ζ(Xη) for any η ∈ o, which gives a homomorphism o/n → L×. We fix an element c ∈[
Cl+(F )

](p)
.

4.2.1. q-Expansion and Hecke operators. For any C ∈Dec(a,b) and any maximal

ideal m of o, we can find C ′ ∈ Dec
(
a,m−1b

)
which is a refinement of C . For any σ ∈ C

and τ ∈ C ′ satisfying σ ⊇ τ , we have natural maps R̂σ → R̂τ , R̂
0
σ → R̂0

τ , and R̆σ → R̆τ .

Consider the case a= o. Let ζ be an element of μm(K). Fix an isomorphism of o-modules

ρ :m−1b/b� o/m.

Then we have a natural ring homomorphism

qζρ : R̂τ → R̂τ , qξ �→ qξζρ(ξ).

We denote by Tateo,m−1b(qζ
ρ) the pullback of Tateo,m−1b(q) by this map.
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On the other hand, we have Dec(a,b) = Dec(a,ηb) for any unramified cusp (a,b,φ)

and η ∈ F×,+. Thus any σ ∈ C gives similar rings to R̂σ, R̂0
σ, and R̆σ for the cusp

(a,ηb,φ), which are denoted by R̂η,σ, R̂
0
η,σ, and R̆η,σ, respectively. We have a natural ring

homomorphism

qη : R̂σ → R̂η,σ, qξ �→ qξη.

We denote by Tatea,b(q
η) the pullback of Tatea,b(q) by this map.

We will omit entries of test objects (A,ι,λ,ψ,u,α) for overconvergent Hilbert modular

forms if they are clear from the context.

Lemma 4.3. We have an isomorphism of test objects over R̂0
η,σ(

Tateo,ηc−1(q),λo,ηc−1

)
�
(
Tateo,c−1(qη),ηλo,c−1

)
.

Proof. We denote by |qη the pullback along the map qη. Consider the composite

c−1 →D−1
F ⊗Gm

(
R̂0

σ

)
→D−1

F ⊗Gm|qη
(
R̂0

η,σ

)
of the map α �→

(
Xξ �→ qαξ (ξ ∈ o)

)
and the map qη, which we also denote by qη. We also

have a similar map qη : ηc−1 → ηD−1
F ⊗Gm|qη

(
R̂0

η,σ

)
. Then the following diagram over

R̂0
η,σ is commutative:

ηc−1

×η−1

��

����
���

���
���

ηc−1

�����
���

���
���

D−1
F ⊗Gm

(
R̂0

η,σ

)
D−1

F ⊗Gm

(
R̂0

η,σ

)

 ×η

��

D−1
F ⊗Gm|qη

(
R̂0

η,σ

)
∼
×η

�� ηD−1
F ⊗Gm|qη

(
R̂0

η,σ

)

c−1

qη

		������������
×η

�� ηc−1.

qη



������������

This yields an isomorphism Tateo,ηc−1(q)→ Tateo,c−1(qη), as in the lemma.

Lemma 4.4. Let m be a maximal ideal of o satisfying m � pN . Let c be an element of[
Cl+(F )

](p)
. Take any elements x,y ∈ F×,+,(p) such that c′ = xmc and c′′ = xy−1m−1c

are elements of
[
Cl+(F )

](p)
. Fix an isomorphism of o-modules ρ : (xmc)−1/(xc)−1 � o/m.

Then we have

(Tmf)c(q) =
ν(x)

NF/Q(m)

⎛
⎜⎝NF/Q(m)2Φ(m)

ν(y)
fc′′
(
qxy

−1
)
+

∑
ζ∈μm(Q̄p)

fc′(q
xζρ)

⎞
⎟⎠ .
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Proof. For any C ∈ Dec
(
o,c−1

)
and C ′ ∈ Dec

(
m,c−1

)
, we choose C ′′ ∈ Dec

(
o,(mc)−1

)
such that C ′′ is a common refinement of C and C ′. For any σ ∈ C and σ′ ∈ C ′, take
τ ∈ C ′′ satisfying τ ⊆ σ,σ′. By diagram (4.10) and the inclusions

R̆τ,OCp
⊇ R̃τ,OCp

⊆OKτ
,

it is enough to show the equality of the lemma after pulling back to Spf (OKτ
).

Choose an element ξm ∈ (xmc)−1 such that the map ρ sends the image of ξm to 1∈ o/m.

For any ζ ∈ μm

(
Q̄p

)
, we define elements Q and Qζ of D−1

F ⊗Gm

(
R̂0

x−1,τ

)
by

Xη �→ qξmη and Xη �→ qξmηζη (η ∈ o),

respectively. Let HQ,ζ be the m-cyclic OF -subgroup of the Tate object Tateo,(xc)−1(q)|OKτ

generated by the image of Qζ. Then, over Spec(OKτ
), the m-cyclic OF -subgroup schemes

of Tateo,(xc)−1(q) are exactly

μm, HQ,ζ

(
ζ ∈ μm

(
Q̄p

))
,

where the former is the closed subgroup scheme induced by μm ⊆ D−1
F ⊗Gm. Then the

pullback of (Tmf)c(q) is equal to

(LxTmfc′)
(
Tateo,c−1(q),λo,c−1

)
= ν(x)(Tmfc′)

(
Tateo,c−1(q),x−1λo,c−1

)
= ν(x)(Tmfc′)

(
Tateo,(xc)−1(qx),λo,(xc)−1

)
,

which equals

ν(x)

NF/Q(m)

⎛
⎜⎝fc′

(
Tateo,(xc)−1(qx)/μm

)
+

∑
ζ∈μm(Q̄p)

fc′
(
Tateo,(xc)−1(qx)/HQ,ζ |qx

)⎞⎟⎠ .

For the first term, we have the exact sequence

0 �� μm
�� D−1

F ⊗Gm
�� m−1D−1

F ⊗Gm
�� 0.

For any ξ ∈ (xc)−1, the natural map D−1
F ⊗Gm →m−1D−1

F ⊗Gm sends the R̂0
x−1,τ -valued

point
(
Xη �→ qξη (η ∈ o)

)
to
(
Xη �→ qξη (η ∈m)

)
, and this gives an isomorphism

Tateo,(xc)−1(q)/μm � Tatem,(xc)−1(q)

compatible with natural additional structures. This implies that the evaluation

fc′
(
Tateo,(xc)−1(qx)/μm

)
equals

fc′(Tatem,(xc)−1(qx),λm,(xc)−1)

= fc′
(
m−1⊗OF

Tateo,m(xc)−1(qx),m2λo,m(xc)−1

)
=

NF/Q(m)2

ν(y)
(LySmfc′)

(
Tateo,(c′′)−1

(
qxy

−1
)
,λo,(c′′)−1

)

=
NF/Q(m)2Φ(m)

ν(y)
fc′′
(
Tateo,(c′′)−1

(
qxy

−1
))

.
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For the second term, the subgroup{(
Xη �→ qξηζρ(ξη) (η ∈ o)

)
| ξ ∈ (c′)−1

}
⊆D−1

F ⊗Gm

(
R̂0

x−1,τ

)
is generated by Qζ and the image of the subgroup{(

Xη �→ qξη (η ∈ o)
)
| ξ ∈ (xc)−1

}
⊆D−1

F ⊗Gm

(
R̂0

x−1,σ

)
via the natural map R̂0

x−1,σ → R̂0
x−1,τ . This yields an isomorphism

Tateo,(xc)−1(q)/HQ,ζ � Tateo,(c′)−1(qζρ)

compatible with natural additional structures. Hence the lemma follows.

A similar proof also gives the following variant for m |Np:

Lemma 4.5.

(1) For any maximal ideal m | N , take any element x ∈ F×,+,(p) satisfying c′ = xmc ∈[
Cl+(F )

](p)
. Fix an isomorphism of o-modules ρ : (xmc)−1/(xc)−1 � o/m. Then we

have

(Tmf)c(q) =
ν(x)

NF/Q(m)

∑
ζ∈μm(Q̄p)

fc′(q
xζρ).

(2) For any maximal ideal p | p, take any element x ∈ F×,+,(p) satisfying c′ = xx−1
p pc ∈[

Cl+(F )
](p)

. Fix an isomorphism of o-modules ρ :
(
xx−1

p pc
)−1

/
(
xx−1

p c
)−1 � o/p.

Then we have

(Upf)c(q) =
ν(x)

NF/Q(p)

∑
ζ∈μp(Q̄p)

fc′
(
qxx

−1
p ζρ

)
.

4.2.2. q-Expansion and Hecke eigenvalues. For any ξ ∈ F×, we put χp(ξ) =∏
p|px

vp(ξ)
p . For any nonzero ideal n⊆ o, take η ∈ F×,+ satisfying c= η−1n ∈

[
Cl+(F )

](p)
and put

C(n,f) = ν
(
η−1χp(η)

)
ao,c−1(f,η).

By Lemma 4.3, this is independent of the choice of η. Then we have the following variant
of [37, (2.23)] in our setting:

Lemma 4.6. For any nonzero ideal l,n of o, we have

C(n,Tlf) =
∑

l+n⊆a⊆o

NF/Q(a)Φ(a)C
(
a−2ln,f

)
.

Proof. We can easily reduce it to the case l = ms for some maximal ideal m. Consider

the case of m �Np and s= 1. We follow the notation of Lemma 4.4. Since x−1η ∈ (xc)−1,
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we have ∑
ζ∈μm(Q̄p)

ζρ(x
−1η) = NF/Q(m).

Moreover, x−1yη ∈ (c′′)−1 if and only if m | n. Thus Lemma 4.4 implies

C(n,Tmf) =

{
NF/Q(m)Φ(m)C

(
m−1n,f

)
+C(mn,f) (m | n)

C(mn,f) (m � n)

and the lemma follows for this case. The case of m |Np and s= 1 can be shown similarly

from Lemma 4.5. For s≥ 2, using relation (3.8) we can show the lemma by an induction

in the same way as the classical case.

Proposition 4.7. For any c ∈
[
Cl+(F )

](p)
and any η ∈

(
c−1
)+

, put n= ηc⊆ o. Then we

have

ao,c−1(f,η) = ν
(
ηχp(η)

−1
)
Λ(n)ao,o(f,1).

Proof. We have ao,c−1(f,η) = ν
(
ηχp(η)

−1
)
C(n,f) and C(o,f) = ao,o(f,1). By Lemma

4.6, we obtain

Λ(n)ao,o(f,1) = Λ(n)C(o,f) = C(o,Tnf)

= C(n,f) = ν
(
η−1χp(η)

)
ao,c−1(f,η),

from which the proposition follows.

4.3. q-Expansion and integrality

First we show the following lemma:

Lemma 4.8. Let X be a quasi-compact separated admissible formal scheme over OCp
.

Let F be an invertible sheaf on X. We denote by XF̄p
the special fiber of X and by FF̄p

the

pullback of F to XF̄p
.

(1) Suppose that Xrig is reduced and X is integrally closed in Xrig. Then for any nonzero

element f ∈H0(X,F)[1/p], the OCp
-submodule of Cp

I =
{
x ∈ Cp | xf ∈H0(X,F)

}
is principal.

(2) Let g be an element of H0(X,F). Suppose that the image of g by the map

H0(X,F)→H0
(
XF̄p

,FF̄p

)
is zero. Then there exists x ∈mCp

satisfying g ∈ xH0(X,F).

Proof. For the first assertion, take a finite covering X =
⋃r

i=1Ui by formal affine open

subschemes Ui = Spf(Ai) such that F|Ui
is trivial. Since X is separated, the intersection
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Ui,j = Ui∩Uj is also affine. Put Ai = Ai[1/p], Mi = Γ(Ui,F), and Mi,j = Γ(Ui,j,F). Then

we have a commutative diagram

0 �� Γ(X,F) ��

��

∏r
i=1Mi

����

��

∏r
i,j=1Mi,j

��
0 �� Γ(X,F)[1/p] �� ∏r

i=1Mi[1/p]
����
∏r

i,j=1Mi,j [1/p],

where the rows are exact and the vertical arrows are injective. Put Ii = {x ∈ Cp | xf |Ui
∈

Mi}. Note that Ii =Cp if f |Ui
= 0. Since the diagram implies I =

⋂r
i=1 Ii, it is enough to

show that Ii is principal if f |Ui

= 0.

By choosing a trivialization, we identify Mi with Ai and f |Ui
∈Mi[1/p] with a nonzero

element gi ∈Ai. Note that Ai is a reduced Cp-affinoid algebra. Since Ai is an admissible

formal OCp
-algebra which is integrally closed in Ai, [10, remark after Proposition 6.3.4/1]

implies A◦
i = Ai. Thus for any x ∈ Cp, we have

xgi ∈ Ai ⇔ |x||gi|sup ≤ 1,

where |gi|sup is the supremum norm of gi on Sp(Ai). By the maximum modulus principle,

there exists a nonzero element δ ∈ Cp satisfying |δ|= |gi|sup. Hence we obtain

Ii =
{
x ∈ Cp | |x| ≤ |δ|−1

}
= δ−1OCp

,

and the first assertion follows.

For the second assertion, consider the covering X =
⋃r

i=1Ui as before. Since the
reduction of g|Ui

is also zero, we can write g|Ui
= xihi with some xi ∈mCp

and hi ∈Mi.

Replacing xi by a generator x of the ideal (x1, . . . ,xr), we may assume g|Ui
= xhi for any

i. Since Mi and Mi,j are torsion-free OCp
-modules, the elements hi can be glued to define

h ∈H0(X,F). Then we obtain g = xh and the second assertion follows.

Let κ ∈W (Cp) be any n-analytic weight. Put

M(μN,c,κ)(0) :=H0
(
M̄(μN,c)(0)OCp

,Ωκ
)
⊆M(μN,c,κ)(0).

This is an OCp
-lattice of the Banach Cp-module M(μN,c,κ)(0). Consider the cusp(

o,c−1,id
)
, the fixed cone decomposition C = C

(
o,c−1

)
∈Dec

(
o,c−1

)
, and σ ∈ C . By the

definition of the q-expansion, every coefficient of the q-expansion of f ∈M(μN,c,κ)(0) is

an element of OCp
. We also have the following converse, which can be considered as a

q-expansion principle for our setting:

Proposition 4.9. Let fc be any element of M(μN,c,κ)(0). If every coefficient of the

q-expansion fc(q) is in OCp
, then we have f ∈M(μN,c,κ)(0).
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Proof. Put M̄ord = M̄(μN,c)(0), M̄(Γ1(p
n))ord = M̄(Γ1(p

n),μN,c)(0), and IW
ord =

IW
+
w,c(0). Recall that Ωκ is invertible on M̄ord. We denote the reduction of M̄ord

OCp
by

M̄ord
F̄p

. Consider the commutative diagram

S̆σ,OCp

��
��

��
��

��

��
��

��
��

��
��

τ
o,c−1

��
π−1
w

(
S̆σ,OCp

)
��

��

π−1
w

(
S̆C,OCp

)
��

��

IW
ord
OCp

πw

��
S̆σ,OCp

�� S̆C,OCp
�� M̄ord

OCp
.

Recall that fc ∈ O
(
IW

ord
OCp

)
[1/p]. The assumption on fc(q) implies τ∗

o,c−1(fc) ∈

O
(
S̆σ,OCp

)
.

Consider the special fiber

π̄w : IWord
F̄p

γ̄n→ M̄(Γ1(p
n))ord

F̄p

h̄n→ M̄ord
F̄p

of the map πw and the closed immersion i : M̄ord
F̄p

→ M̄ord
OCp

. From the construction of the

sheaf Ωκ|M̄ord
OCp

as the fixed part of a T(Z/pnZ)-equivariant OCp
-flat sheaf on a T(Z/pnZ)-

torsor, we see that the subsheaf Ωκ|M̄ord
OCp

⊆ (πw)∗OIW
+
w,c(0)OCp

is formal locally a direct

summand. Since πw is affine, for any morphism of formal schemes f : S → M̄ord
OCp

the

composite of natural maps

f∗
(
Ωκ|M̄ord

OCp

)
→ f∗(πw)∗OIWord

OCp

→
(
πw|π−1

w (S)

)
∗
Oπ−1

w (S)

is injective. This yields a commutative diagram

Ωκ
(
M̄ord

OCp

)
��

��

O
(
IW

ord
OCp

)

��

i∗Ωκ
(
M̄ord

F̄p

)
��

��

O
(
IW

ord
F̄p

)

��

i∗Ωκ|ŜC, F̄p

(
ŜC,F̄p

)
�� O
(
π̄−1
w

(
ŜC,F̄p

))
(4.11)

with injective horizontal arrows, where the base extension ŜC,F̄p
= ŜC ⊗̂kF̄p is equal to

the special fiber of S̆C,OCp
.
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On the Tate object Tateo,c−1(q) over Spec
(
R̆σ

)
, we defined the canonical trivialization

of the canonical subgroup and that of the T0
w

(
S̆σ

)
-set IW

ord
(
S̆σ

)
, which are denoted

by uo,c−1 and αo,c−1 . For any a ∈ T(Z/pnZ), we fix its lift â ∈ Tw (Zp) satisfying 1̂ = 1.

Since R̆σ is Noetherian, the moduli interpretation of IWord is available over R̆σ, and

these trivializations give isomorphisms

S̆σ ×M̄ord M̄(Γ1(p
n))ord �

∐
a∈T(Z/pnZ)

S̆σ, π−1
w

(
S̆σ

)
�

∐
a∈T(Z/pnZ)

S̆σ ×T0
w.

The latter is an isomorphism of formal T0
w-torsors given by

(
auo,c−1,âαo,c−1

)
at the a-

component. By the base extension, we also have similar isomorphisms over OCp
. Since the

latter isomorphism is defined by
(
uo,c−1,αo,c−1

)
at the component a= 1, the unit section

on this component coincides with the foregoing map S̆σ,OCp
→ π−1

w

(
S̆σ,OCp

)
.

For any formal character χ of T0
w, the χ-part of the T

0
w-representation O

(
S̆σ,OCp

×T0
w

)
is a free R̆σ,OCp

-module of rank 1 with a generator sχ. Then we have

fc|π−1
w

(
S̆σ,OCp

) ∈
∏

a∈T(Z/pnZ)

(
R̆σ,OCp

[1/p]sκ−1

)
.

Write this element as (Fasκ−1)a∈T(Z/pnZ) with Fa ∈ R̆σ,OCp
[1/p]. Since κ(1) = 1 and

τo,c−1
∗(fc) ∈ R̆σ,OCp

, we obtain F1 ∈ R̆σ,OCp
. Since fc is κ−1-equivariant for the Tw (Zp)-

action, we have Fa = κ(â)F1. Since the image of the character κ is contained in O×
Cp
, we

see that Fa ∈ R̆σ,OCp
for any a ∈ T(Z/pnZ). This means

fc|π−1
w

(
S̆σ,OCp

) ∈ O
(
π−1
w

(
S̆σ,OCp

))
. (4.12)

To prove the proposition, we may assume fc 
= 0. Consider the ideal J ={
x ∈ OCp

| xfc ∈M(μN,c,κ)(0)
}
, which is principal by Lemma 4.8(1). Put J = (x) and

suppose x ∈ mCp
. Then the q-expansion xfc(q) is also integral, and zero modulo mCp

.

Thus the commutative diagram (4.11) and formula (4.12) imply that the pullback of

xfc ∈Ωκ
(
M̄ord

OCp

)
to i∗Ωκ|ŜC, F̄p

(
ŜC,F̄p

)
vanishes.

Note that the reduction of S̆C,OCp
→ M̄ord

OCp
induces the map on the special fiber

ŜC,F̄p
=
(
S̆C,OCp

)
F̄p

→ M̄(μN,c)F̄p
.

Let M̄(μN,c)F̄p
|∧DF̄p

be the formal completion of M̄(μN,c)F̄p
along its boundary DF̄p

.

Recall that this map induces maps

ŜC,F̄p
→ ŜC,F̄p

/UN → M̄(μN,c)F̄p
|∧DF̄p

,

where the first arrow is a surjective local isomorphism and the second arrow is an open

immersion. Hence xfc vanishes on a formal open subscheme of the formal completion
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M̄(μN,c)F̄p
|∧DF̄p

. We know that the smooth scheme M̄ord
F̄p

is irreducible. Since the sheaf

Ωκ is invertible on the ordinary locus, Krull’s intersection theorem implies that xfc
vanishes on a nonempty open subscheme of M̄ord

F̄p
, and thus it also vanishes on M̄ord

F̄p
.

Then Lemma 4.8(2) implies that xfc ∈ yM(μN,c,κ)(0) for some y ∈mCp
. Since the OCp

-

module M(μN,c,κ)(0) is torsion free, this contradicts the choice of x. Thus we obtain

x ∈ O×
Cp

and fc ∈M(μN,c,κ)(0), which concludes the proof of the proposition.

Corollary 4.10. Let f = (fc)
c∈[Cl+(F )]

(p) be a nonzero eigenform in the space

SG(μN,(ν,w))(v) of weight (ν,w) ∈ WG (Cp). For any nonzero ideal n of o, the Hecke

eigenvalue Λ(n) is p-integral.

Proof. By equation (3.8), it is enough to show the case where n is a maximal ideal m. Put
κ = k(ν,w). Note that by Lemmas 3.1 and 3.4, the restriction map SG(μN,(ν,w))(v)→
SG(μN,(ν,w))(0) is injective. We consider Λ(m) as an eigenvalue of the operator Tm

acting on

M :=
⊕

c∈[Cl+(F )]
(p)

M(μN,c,κ)(0).

This is a Banach Cp-module with respect to the p-adic norm |−| defined by theOCp
-lattice

M :=
⊕

c∈[Cl+(F )]
(p)

M(μN,c,κ)(0).

Namely, we put

|f |= inf
{
|x|−1 | x ∈ C×

p , xf ∈M
}
.

By Lemma 4.8(1), we can find an element x ∈ Cp of largest absolute value satisfying

xfc ∈ M(μN,c,κ)(0) for any c ∈
[
Cl+(F )

](p)
. The norm |f | is equal to |x|−1. Moreover,

any coefficient of the q-expansion xfc(q) is contained in OCp
. By Lemma 4.6, so is xTmf .

Hence Proposition 4.9 shows xTmf ∈M. This implies

|Λ(m)|= |Tmf |
|f | ≤ |x|−1

|x|−1
= 1,

and the corollary follows.

Corollary 4.11. Let f = (fc)
c∈[Cl+(F )]

(p) be a normalized eigenform in SG(μN,(ν,w))(v)

of weight (ν,w) ∈WG (Cp). Then we have

ao,c−1(f,η) ∈ OCp

for any c ∈
[
Cl+(F )

](p)
and any η ∈

(
c−1
)+

.

Proof. This follows from Proposition 4.7 and Corollary 4.10.

Corollary 4.12. Let (ν,w) be an element of WG (Cp).
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(1) For any c ∈
[
Cl+(F )

](p)
, there exists an admissible affinoid open subset

Sc ⊆ M̄(μN,c)(v)Cp
such that

(
πrig
w

)−1
(Sc) meets every connected component

of IW+
w,c(v)Cp

and, for any normalized eigenform f = (fc)
c∈[Cl+(F )]

(p) in

SG(μN,(ν,w))(v), the restriction fc|(πrig
w )

−1
(Sc)

has absolute value bounded by 1.

(2) Let f = (fc)
c∈[Cl+(F )]

(p) be any element in the space SG(μN,(ν,w))(v). If fc(q) = 0

for any c ∈
[
Cl+(F )

](p)
, then f = 0.

(3) Let f = (fc)
c∈[Cl+(F )]

(p) and f ′ = (f ′
c)c∈[Cl+(F )]

(p) be normalized eigenforms in

SG(μN,(ν,w))(v). Suppose that the eigenvalues of the Hecke operator Tn acting

on f and f ′ are the same for any nonzero ideal n⊆ o. Then f = f ′.

Proof. Let us prove the first assertion. For any σ ∈ C = C
(
o,c−1

)
, Corollary 4.11 and

formula (4.7) show that τ∗
o,c−1(fc) is a rigid analytic function on S̆rig

σ,Cp
with absolute value

bounded by 1. As in the proof of Proposition 4.9, we can show that fc|(πrig
w )

−1
(
S̆rig

C,Cp

) is a

rigid analytic function with absolute value bounded by 1. Since the natural map S̆rig
C,Cp

→
S̆rig

C,Cp
/UN is a surjective local isomorphism, the restriction fc|(πrig

w )
−1

(
S̆rig

C,Cp
/UN

) is also,

with absolute value bounded by 1. Thus, for any nonempty admissible affinoid open subset
Sc ⊆ S̆rig

C,Cp
/UN , the absolute value of fc|(πrig

w )
−1

(Sc)
is bounded by 1. Since S̆rig

C,Cp
/UN is

an admissible open subset of M̄(μN,c)(v)Cp
, we see that Sc is also its admissible open

subset.
On the other hand, the rigid analytic variety M̄(μN,c)(v)Cp

is connected by Lemma

3.4. Since the map

hrig
n : M̄(Γ1(p

n),μN,c)(v)Cp
→M̄(μN,c)(v)Cp

is finite and étale [18, Theorem A.2.4], it is surjective on each connected component of the

rigid analytic variety M̄(Γ1(p
n),μN,c)(v)Cp

, and thus
(
hrig
n

)−1
(Sc) meets every connected

component of it.
We claim that the map

γrig
w : IW+

w,c(v)Cp
→M̄(Γ1(p

n),μN,c)(v)Cp

induces a bijection

π0

(
IW+

w,c(v)Cp

)
→ π0

(
M̄(Γ1(p

n),μN,c)(v)Cp

)
between the sets of connected components. Indeed, by [17, Corollary 3.2.3], it is enough

to show the claim with Cp replaced by a finite extension L/K. By a finite base extension,
we may assume L =K. Since the formal schemes IW

+
w,c(v) and M̄(Γ1(p

n),μN,c)(v) are

both normal, it is enough to show a similar assertion for the formal model γw. Since it is a

formal T0
w-torsor, it is surjective and the map between the sets of connected components is

also surjective. Let Y be any connected component of M̄(Γ1(p
n),μN,c)(v) and let {Xj}j∈J

be the set of connected components of IW+
w,c(v) which γw maps to Y. Suppose �J ≥ 2.

Since γw is finitely presented and flat, it is open and the connectedness of Y implies that
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γw (Xj)∩ γw (Xj′) 
= ∅ for some j 
= j′. However, for any element y of this intersection,

the fiber γ−1
w (y) is connected, since it is isomorphic to the special fiber of T0

w, which is a

contradiction. Since γrig
w is surjective, the claim shows that every connected component

of IW+
w,c(v)Cp

meets the admissible open subset
(
πrig
w

)−1
(Sc), and the first assertion

follows.

Now suppose that fc(q) = 0 for any c ∈
[
Cl+(F )

](p)
. Then we have fc|(πrig

w )
−1

(Sc)
= 0.

Since the rigid analytic variety IW+
w,c(v)Cp

is smooth over Cp, the first assertion and
Lemma 3.1 show the second assertion. The third assertion follows from Proposition 4.7

and the second one.

4.4. Normalized overconvergent modular forms in families

Let U = Sp(A) be a smooth Cp-affinoid variety and put U= Spf(A◦). Let U →WG
Cp

be an

n-analytic morphism and consider the associated weight characters
(
νU,wU) as before.

Let f = (fc)
c∈[Cl+(F )]

(p) be an eigenform in the space SG
(
μN,
(
νU,wU))(v). Recall that

each fc is an element of O
(
IW

+
w,c(v)OCp

×U

)
[1/p]. For the cusp

(
o,c−1,id

)
of M(μN,c)

and any σ ∈ C = C
(
o,c−1

)
, we have the map

τo,c−1 ×1 : S̆σ,OCp
×U→ IW

+
w,c(v)OCp

×U

over M̄(μN,c)(v)OCp
×U.

As in §4.1, we see that the ring R̆σ,OCp
⊗̂OCp

A◦ is isomorphic to the completion of the
ring

A◦ [qξ1, . . . ,qξr][q±ξr+1, . . . ,q±ξg
]

with respect to the
(
p,qξ1 · · ·qξr

)
-adic topology for some ξ1, . . . ,ξg ∈ c−1∩σ∨, and thus it

can be considered as a subring of the ring

A◦ 〈q±ξr+1, . . . ,q±ξg
〉[[

qξ1, . . . ,qξr
]]
.

Hence we obtain the map of the q1-coefficient

prUq1 :O
(
S̆σ,OCp

×U

)
[1/p]→A.

For any eigenform f ∈ SG
(
μN,
(
νU,wU))(v) as before, we put aUo,o(f,1) = prUq1((τo,o ×

1)∗(fo)) ∈A.

For any x ∈ U (Cp), put (ν,w) =
(
νU (x),wU (x)

)
. The specialization f(x) =

(fc(x))
c∈[Cl+(F )]

(p) is an element of the space SG(μN,(ν,w))(v) over Cp, and we have the

usual q1-coefficient ao,o(f(x),1) of the q-expansion of f(x). By the commutative diagram

S̆σ,OCp
×U

τo,o×1�� IW+
w,o(v)OCp

×U

S̆σ,OCp

1×x

��

τo,o
�� IW+

w,o(v)OCp
,

1×x

��
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we obtain

aUo,o(f,1)(x) = ao,o(f(x),1). (4.13)

Lemma 4.13. Suppose that f(x) 
= 0 for any x ∈ U (Cp). Then we have

aUo,o(f,1) ∈A×.

In particular, the specialization f ′(x) of f ′ = aUo,o(f,1)
−1f is a normalized eigenform with

the same eigenvalues as f(x) for any x ∈ U (Cp).

Proof. We claim that ao,o(f(x),1) 
= 0 for any x ∈ U (Cp). Indeed, suppose that
ao,o(f(x),1) = 0 for some x ∈ U (Cp). Since f(x) is an eigenform, Proposition 4.7 implies

that the q-expansion f(x)c(q) of f(x) is zero for any c∈
[
Cl+(F )

](p)
. By Corollary 4.12(2)

we have f(x) = 0, which is a contradiction.
Now equation (4.13) implies that aUo,o(f,1)(x) 
= 0 for any x ∈ U (Cp). Hence we obtain

aUo,o(f,1) ∈A×.

4.5. Gluing results

Here we prove two results on gluing overconvergent Hilbert modular forms, based on the

theory of the q-expansion developed in the foregoing. Let X = Sp(R) be any admissible
affinoid open subset of WG. Put n= n(X ) and v = vn as in §3.3.3. Consider the Hilbert

eigenvariety E|X →X , which is constructed from the input data

(
R,SG

(
μN,
(
νX ,wX ))(vtot),T,Up

)
.

4.5.1. Gluing local eigenforms.

Lemma 4.14. Let U = Sp(A) be a smooth Cp-affinoid variety and let U → XCp
be

a morphism of rigid analytic varieties over Cp. Let f be an eigenvector of the space

SG
(
μN,
(
νX ,wX ))(vtot)⊗̂RA for the action of T such that for any x ∈ U (Cp), the

specialization

f(x) ∈ SG
(
μN,
(
νX ,wX ))(vtot)⊗̂R,x∗Cp

is nonzero. Then the image of f by the natural map

SG
(
μN,
(
νX ,wX ))(vtot)⊗̂RA→ SG

(
μN,
(
νU,wU))(vtot)

is an eigenform with the same property.
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Proof. Put (ν,w) =
(
νU (x),wU (x)

)
. Then we have the commutative diagram

SG
(
μN,
(
νX ,wX ))(vtot)⊗̂RA ��

��

SG
(
μN,
(
νU,wU))(vtot)

��
SG
(
μN,
(
νX ,wX ))(vtot)⊗̂R,x∗Cp

��

������
�����

�����
�����

��
SG
(
μN,
(
νU,wU))(vtot)⊗̂A,x∗Cp

��
SG(μN,(ν,w))(vtot).

Here the lowest two arrows are the specialization maps. Since WG is smooth, the maximal
ideal of R⊗̂KCp corresponding to x is generated by a regular sequence. By Lemma 3.13,

the left oblique arrow is an isomorphism. This implies the lemma.

Proposition 4.15. Let Z be a smooth rigid analytic variety over Cp which is principally

refined. Let ϕ :Z → (E|X )Cp
be a morphism of rigid analytic varieties over Cp. Then there

exist an element

f ∈
⊕

c∈[Cl+(F )]
(p)

O
(
IW+

w,c(vtot)Cp
×Z
)

and an admissible affinoid covering Z =
⋃

i∈I Ui such that the restriction f |Ui
for each i∈ I

is an eigenform of SG
(
μN,
(
νUi,wUi

))
(vtot) with eigensystem ϕ∗ :T→O(Z)→O(Ui) and

f(z) is normalized for any z ∈ Z.

Proof. By Proposition 2.5(2), there exist an admissible affinoid covering Z =
⋃

i∈I Ui,

Ui = Sp(Ai) with a principal ideal domain Ai, and an eigenvector fi in the space

SG
(
μN,
(
νX ,wX ))(vtot)⊗̂RAi

such that for any z ∈ Ui, we have fi(z) 
= 0 and

(h⊗1)fi = (1⊗ϕ∗(h))fi

for any h ∈T. By Lemma 4.14, the image f ′
i of fi in the space SG

(
μN,
(
νUi,wUi

))
(vtot)

is an eigenform with eigensystem ϕ∗ :T→Ai such that f ′
i(z) 
= 0 for any z ∈ Ui. Since Ui

is smooth, by Lemma 4.13 we may assume that f ′
i(z) is a normalized eigenform for any

z ∈ Ui. For any z ∈ Ui∩Uj and any h ∈T, the h-eigenvalues of f ′
i(z) and f ′

j(z) are both

ϕ∗(h)(z). Since they are normalized eigenforms, Corollary 4.12(3) implies that the images
of f ′

i(z) and f ′
j(z) in SG

(
μN,
(
νUi(z),wUi(z)

))
(0) agree with each other. By Lemmas 3.1

and 3.4, we obtain f ′
i(z) = f ′

j(z).

Since the rigid analytic variety IW+
w,c(vtot)Cp

×Z is reduced, this equality means that

f ′
i and f ′

j coincide with each other as rigid analytic functions on∐
c∈[Cl+(F )]

(p)

IW+
w,c(vtot)Cp

× (Ui∩Uj) .
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Thus we can glue f ′
is to produce an element

f ∈
⊕

c∈[Cl+(F )]
(p)

O
(
IW+

w,c(vtot)Cp
×Z
)
.

This concludes the proof.

4.5.2. Gluing around cusps. Consider the unit disc DCp
over Sp(Cp) centered at the

origin O. Put D×
Cp

=DCp
\{O}.

Lemma 4.16. Let Z be a quasi-compact reduced rigid analytic variety over Cp. Then

the ring O
(
Z×D×

Cp

)
can be identified with the ring RZ of power series

∑
n∈Z anT

n with

an ∈ O(Z) such that

lim
n→+∞

sup
z∈Z

|an(z)|= 0, lim
n→+∞

sup
z∈Z

|a−n(z)|ρ−n = 0 (4.14)

for any rational number ρ satisfying 0< ρ≤ 1.

Proof. For any nonnegative rational number ρ ≤ 1, let A[ρ,1]Cp
be the closed annulus

with parameter T over Cp defined by ρ≤ |T | ≤ 1. Then we have an admissible covering

D×
Cp

=
⋃

ρ→0+

A[ρ,1]Cp

of D×
Cp
.

First suppose that Z =Sp(A) is affinoid. Let ρ be a rational number satisfying 0<ρ≤ 1.
We denote by |−|sup the supremum norm on A. Since A is reduced, [10, Theorem 6.2.4/1]

shows that |−|sup defines the Banach topology on A. Then the ring O
(
Sp(A)×A[ρ,1]Cp

)
can be identified with the ring of power series

∑
n∈Z anT

n with an ∈A such that

lim
n→+∞

|an|sup = 0, lim
n→+∞

|a−n|supρ−n = 0. (4.15)

This identification is compatible with the restriction to A[ρ′,1]Cp
for any ρ < ρ′, and also

with the restriction to any affinoid subdomain of Sp(A). In particular, the natural map

O
(
Sp(A)×A[ρ,1]Cp

)
→O

(
Sp(A)×A[ρ′,1]Cp

)
is injective for any ρ < ρ′ and thus

O
(
Sp(A)×D×

Cp

)
=
⋂

ρ→0+

O
(
Sp(A)×A[ρ,1]Cp

)
.

This yields an isomorphism ΦZ : O
(
Z×D×

Cp

)
� RZ when Z is affinoid, which is

compatible with the restriction to any affinoid subdomain of Z.
For Z not necessarily affinoid, take a finite admissible affinoid covering Z =

⋃
i∈I Ui

with Ui = Sp(Ai). Take f ∈ O
(
Z×D×

Cp

)
and write

ΦUi

(
f |Ui×D×

Cp

)
=
∑
n∈Z

ai,nT
n
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with ai,n ∈ Ai. Then ai,ns can be glued to obtain an element an ∈ O(Z). Put Φ(f) =∑
n∈Z anT

n. Since I is a finite set, we can check that ans also satisfy equation (4.14)

and thus Φ(f) ∈ RZ . On the other hand, for any element g =
∑

n∈Z anT
n of RZ , put

Ψ(g)i =
∑

n∈Z an|Ui
Tn. Then Ψ(g)i ∈ RUi

and the elements Φ−1
Ui

(Ψ(g)i) ∈ O
(
Ui×D×

Cp

)
can be glued to obtain an element Ψ(g) ∈ O

(
Z×D×

Cp

)
. Then Φ and Ψ are inverse to

each other and the lemma follows.

Next we show the following variant of [13, Lemma 7.1]:

Lemma 4.17. Let Z be a quasi-compact smooth rigid analytic variety over Cp. Let V be

an admissible open subset of Z which meets every connected component of Z. Let f be an

element of O
(
Z×D×

Cp

)
. Suppose that f |V×D×

Cp

extends to an element of O
(
V ×DCp

)
.

Then f extends to an element of O
(
Z×DCp

)
.

Proof. By taking an admissible affinoid open subset of the intersection of V and each

connected component of Z and replacing V with their union, we may assume that V is
quasi-compact. By Lemma 3.1, the assumption on V yields injections

O(Z)→O(V), O
(
Z×D×

Cp

)
→O

(
V ×D×

Cp

)
←O

(
V ×DCp

)
.

From Lemma 4.16, we see that the intersection of O
(
Z×D×

Cp

)
and O

(
V ×DCp

)
inside

O
(
V ×D×

Cp

)
is the set of formal power series

∑
n≥0 anT

n with an ∈ O(Z) satisfying

lim
n→+∞

sup
z∈Z

|an(z)|= 0,

which is equal to O
(
Z×DCp

)
.

Lemma 4.18.

O◦
(
D×

Cp

)
⊆O

(
DCp

)
.

Proof. Let f =
∑

n∈Z anT
n be an element of O◦

(
D×

Cp

)
. Consider the Newton polygon

of f. Then the assumption implies that any point (n,vp(an)) lies above the line y =−rx
for any nonnegative rational number r, which forces an = 0 for any n < 0.

Proposition 4.19. Let ϕ : D×
Cp

→ (E|X )Cp
be a morphism of rigid analytic varieties

over Cp such that the composite D×
Cp

→ (E|X )Cp
→ XCp

extends to an n-analytic map

DCp
→ XCp

. Let
(
νDCp ,wDCp

)
be the weight associated to the map DCp

→ XCp
. Suppose

that for some nonnegative rational number v′ < (p−1)/pn, we are given an element

f = (fc)
c∈[Cl+(F )]

(p) ∈
⊕

c∈[Cl+(F )]
(p)

O
(
IW+

w,c(v
′)Cp

×D×
Cp

)

and an admissible affinoid covering D×
Cp

=
⋃

i∈I Ui such that the restriction f |Ui
for each

i ∈ I is an eigenform of SG
(
μN,
(
νUi,wUi

))
(v′) with eigensystem ϕ∗ : T → O

(
D×

Cp

)
→
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O(Ui) and f(z) is normalized for any z ∈ D×
Cp
. Then there exists an eigenform f ′ ∈

SG
(
μN,
(
νDCp ,wDCp

))
(v′) such that f ′(z) is normalized for any z ∈ DCp

, and it is an

eigenform with eigensystem ϕ∗(z) :T→O
(
D×

Cp

)
→ Cp for any z ∈ D×

Cp
.

Proof. Consider the map πrig
w : IW+

w,c(v
′)Cp

→ M̄(μN,c)(v
′)Cp

as before. Let Sc be
an admissible affinoid open subset of M̄(μN,c)(v

′)Cp
as in Corollary 4.12(1). Put

Ic =
(
πrig
w

)−1
(Sc). Then Ic is an admissible open subset which meets every connected

component of IW+
w,c(v

′)Cp
such that fc(z)|Ic

has absolute value bounded by 1 for any
z ∈ D×

Cp
. Hence fc|Ic×D×

Cp

also has absolute value bounded by 1.

Note that Ic is quasi-compact, since πw is quasi-compact. By Lemma 4.16, we can write

fc|Ic×D×
Cp

=
∑
n∈Z

anT
n

with some an ∈O(Ic). Lemma 4.18 implies an(x) = 0 for any x ∈ Ic and any n < 0. Since

Ic is reduced, we obtain an = 0 for any n < 0 and thus

fc|Ic×D×
Cp

∈ O
(
Ic×DCp

)
.

Therefore, by Lemma 4.17 we see that fc extends to an element f̃c of O
(
IW+

w,c(v
′)Cp

×
DCp

)
.

Write DCp
= Sp(Cp〈T 〉). Note that the ring O

(
IW+

w,c(v
′)Cp

×DCp

)
is T -torsion free.

We claim that if fc 
= 0, then there exists a nonnegative integer mc satisfying

f̃c ∈ TmcO
(
IW+

w,c(v
′)Cp

×DCp

)
\Tmc+1O

(
IW+

w,c(v
′)Cp

×DCp

)
.

Indeed, since IW+
w,c(v

′)Cp
is smooth, we can take an admissible affinoid covering

IW+
w,c(v

′)Cp
=
⋃
j∈J

Vj, Vj = Sp(Aj),

such that every Aj is a Noetherian domain. Suppose that

f̃c ∈
⋂
m≥0

TmO
(
IW+

w,c(v
′)Cp

×DCp

)
.

Since Aj〈T 〉 is also a Noetherian domain, Krull’s intersection theorem implies f̃c|Vj×DCp
=

0 for any j ∈ J and thus f̃c = 0, which is a contradiction.

Put m = min
{
mc | c ∈

[
Cl+(F )

](p)
,fc 
= 0

}
. Let f̃ ′

c be the unique element of

O
(
IW+

w,c(v
′)Cp

×DCp

)
satisfying f̃c = Tmf̃ ′

c. Since the maps

O
(
IW+

w,c(v
′)Cp

×DCp

)
→O

(
IW+

w,c(v
′)Cp

×D×
Cp

)
→
∏
i∈I

O
(
IW+

w,c(v
′)Cp

×Ui

)

are injective by Lemma 3.1, the element f̃ ′
c is also κDCp -equivariant and Δ-stable.

Moreover, note that the restriction map O
(
V ×DCp

)
→ O

(
V ×D×

Cp

)
is injective for
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any Cp-affinoid variety V. For the boundary divisor D of M̄(μN,c)(v
′)Cp

, we have the

commutative diagram

O
((

πrig
w

)−1
(D)×DCp

)

��

Tm
�� O
((

πrig
w

)−1
(D)×DCp

)

��

O
((

πrig
w

)−1
(D)×D×

Cp

)
Tm

∼ �� O
((

πrig
w

)−1
(D)×D×

Cp

)
,

where the vertical arrows are injective and the bottom arrow is bijective. This implies that

the element f̃ ′
c is a cusp form. Hence the collection f̃ ′ =

(
f̃ ′
c

)
c∈[Cl+(F )]

(p)
is an element of

SG
(
μN,
(
νDCp ,wDCp

))
(v′) such that f̃ ′(z) 
= 0 for any z ∈ DCp

.

Let Λ(n) be the image of Tn (resp., Sn) by the map ϕ∗ :T→O
(
D×

Cp

)
. By Corollary 4.10,

the specialization Λ(n)(z) is p-integral for any z ∈ D×
Cp
. Thus Lemma 4.18 shows Λ(n) ∈

O
(
DCp

)
. By the injectivity mentioned above, we see that f̃ ′ is an eigenform on which Tn

(resp., Sn) acts by Λ(n). Now Lemma 4.13 concludes the proof of the proposition.

5. Properness at integral weights

Let E →WG be the Hilbert eigenvariety as in §3.3.3. Let DCp
be the unit disc over Sp(Cp)

centered at the origin O and put D×
Cp

=DCp
\{O}. In this section, we prove the following

main theorem of this paper:

Theorem 5.1. Suppose that F is unramified over p and that for any prime ideal p | p of

F, the residue degree fp satisfies fp ≤ 2 (resp., p splits completely in F) for p≥ 3 (resp.,

p= 2). Consider a commutative diagram

D×
Cp

ϕ ��

��

ECp

��
DCp ψ

��

��

WG
Cp

of rigid analytic varieties over Cp, where the left vertical arrow is the natural inclusion.

Suppose that ψ(O) is 1-integral (resp., 1-doubly even) in the sense of §3.3.2. Then there

exists a morphism DCp
→ ECp

of rigid analytic varieties over Cp such that the diagram
with this morphism added is also commutative.

Before proving the theorem, we summarize the structure of the proof.

Step 1. By shrinking the disc, we reduce the theorem to the case where ψ is 1-
analytic.

Step 2. Using Proposition 4.15, we convert the map ϕ to an analytic function f on∐
c∈[Cl+(F )]

(p)

IW+
w,c(vtot)Cp

×D×
Cp
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with some small v > 0 such that locally on D×
Cp

it gives a normalized eigenform with

eigensystem determined by ϕ.

Step 3. By analytic continuation via the Up-operator, we extend f to∐
c∈[Cl+(F )]

(p)

IW+
w,c

(
1

p+1

)
Cp

×D×
Cp
.

By Proposition 4.19, we may assume that f can be extended to the puncture so that

it defines a normalized eigenform over DCp
.

Step 4. Using results from §3.2, we show that Upf can be evaluated on the connected

neighborhood V0
c,Q,Cp

for any critical point Q, modulo passing to a finite covering

r : Y1
c,p →Yc,p.

Step 5. Supposing f(O) is of infinite slope, we deduce a contradiction by a
combinatorial argument using critical points in the spirit of Buzzard and Calegari.

Then Proposition 2.7 yields a desired extension of ϕ to DCp
.

Proof. Step 1. Let e1, . . . ,eg be a basis of the Zp-module 2p(OF ⊗Zp) and put Ei =

exp(ei) ∈ 1+2p(OF ⊗Zp). Similarly, let eg+1 be a basis of the Zp-module 2pZp and put
Eg+1 = exp(eg+1)∈ 1+2pZp. Let (ν

un,wun) be the universal character on WG. Note that

WG
Cp

is the disjoint union of finitely many copies of the open unit polydisc defined by

|X1|< 1, . . . , |Xg+1|< 1

with parameters X1, . . . ,Xg+1: the connected components are parametrized by the finite-

order characters

ε : T(Z/2pZ)× (Z/2pZ)× →O×
Cp

and on each connected component, the point defined by Xi �→ xi corresponds to the

character (ν,w) satisfying ν(Ei) = 1+xi for any i≤ g, and w (Eg+1) = 1+xg+1.
Put q= p if p≥ 3 and q= 16 if p= 2. Since ψ(O) is 1-integral, it comes from a K -valued

point of WG, which we also denote by ψ(O). This corresponds to a finite-order character

εO and a map Xi �→ xi with some xi ∈ qOK . For p = 2, the assumption that ψ(O) is
1-doubly even implies that εO is trivial on the torsion subgroup of 1+2(OF ⊗Z2). Put

E′
i = (−1)p−1Ei. The group 1+ p(OF ⊗Zp) is topologically generated by Eis and E′

is.

We have

(νun,wun)(Ei) = (νun,wun)(E′
i) = 1+Xi

on the εO-component of WG. Let U =Sp(R) be the admissible affinoid open subset of the
εO-component ofWG defined by |Xi−xi| ≤ |q| for any i. Then 1+Xi =1+xi+(Xi−xi)∈
1+ qR◦ and the universal character (νun,wun) is 1-analytic on U .
We denote by Dρ,Cp

the closed disc of radius ρ centered at the origin over Cp. Consider

the element ψ∗(Xi)(T ) of the ring O
(
DCp

)
=Cp〈T 〉. Since ψ∗(Xi)(0) = xi, there exists a

positive rational number ρ < 1 such that

|t| ≤ ρ⇒ |ψ∗(Xi)(t)−xi| ≤ |q|
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for any i. This means ψ
(
Dρ,Cp

)
⊆UCp

. If we can construct a morphism Dρ,Cp
→ECp

which

makes the diagram in the theorem commutative, then by gluing we obtain the desired
map DCp

→ECp
. Thus, by shrinking the disc, we may assume that ψ factors through UCp

.

Step 2. Put n= 1 and v = v1. We may assume v < 1/(p+1) so that we have

M̄(μN,c)(vtot)⊆ M̄(μN,c)
(

1
p+1

)
.

By Remark 2.4, the rigid analytic variety D×
Cp

is principally refined. Applying Proposition

4.15 to the map ϕ :D×
Cp

→ (E|U )Cp
, we obtain an element

f ∈
⊕

c∈[Cl+(F )]
(p)

O
(
IW+

w,c(vtot)Cp
×D×

Cp

)

and an admissible affinoid covering D×
Cp

=
⋃

i∈I Ui such that the restriction f |Ui
for each

i ∈ I is an eigenform of SG
(
μN,
(
νUi,wUi

))
(vtot) with eigensystem ϕ∗ :T→O

(
D×

Cp

)
→

O(Ui) and f(z) is normalized for any z ∈ D×
Cp
.

Step 3. Since ϕ∗ comes from the eigenvariety E , the Up-eigenvalue ϕ∗ (Up) ∈ O(Ui) of
f |Ui

satisfies ϕ∗ (Up)(z) 
= 0 for any z ∈ Ui (Cp), and thus we have ϕ∗ (Up)∈O(Ui)
×. Since

Up improves the overconvergence from v to pv, taking ϕ∗ (Up)
−1

Up (f |Ui
) repeatedly we

can find an eigenform

gi ∈ SG
(
μN,
(
νUi,wUi

))(
1

p+1

)

with eigensystem ϕ∗ : T → O
(
D×

Cp

)
→ O(Ui) which extends f |Ui

. Note that for any

z ∈ Ui (Cp) we have a commutative diagram

SG
(
μN,
(
νUi,wUi

))(
1

p+1

)
��

��

SG
(
μN,
(
νUi,wUi

))
(vtot)

��
SG
(
μN,
(
νUi(z),wUi(z)

))(
1

p+1

)
�� SG
(
μN,
(
νUi(z),wUi(z)

))
(vtot),

where the horizontal arrows are the restriction maps and the vertical arrows are the

specialization maps. This implies that the specialization gi(z) is also nonzero for any

z ∈ Ui (Cp). Since the q-expansion is determined by the restriction to the ordinary locus,

gi(z) is also normalized for any z ∈ Ui (Cp). Since the Hecke eigenvalues of gi(z) are also

given by the eigensystem ϕ∗(z) :T→O(Ui)
z∗
→ Cp, a gluing argument as in the proof of

Proposition 4.15 shows that gis can be glued. In other words, we may assume

f ∈
⊕

c∈[Cl+(F )]
(p)

O
(
IW+

w,c

(
1

p+1

)
Cp

×D×
Cp

)
.
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By Proposition 4.19, we may replace f by an eigenform of the space SG
(
μN,
(
νDCp ,wDCp

))(
1

p+1

)
such that every specialization on DCp

is normalized, which we also denote by

f = (fc)
c∈[Cl+(F )]

(p) . By Lemma 3.13, we have an isomorphism

SG
(
μN,
(
νU,wU))(vtot)⊗̂R,z∗k(z)� SG

(
μN,
(
νDCp (z),wDCp (z)

))
(vtot)

for any z ∈ DCp
. Thus the map T→O

(
DCp

)
defined by the eigenvalues of f is a family

of eigensystems in SG
(
μN,
(
νU,wU))(vtot) over DCp

such that its restriction to D×
Cp

is

ϕ∗ :T→O
(
D×

Cp

)
. In particular, it is of finite slopes over D×

Cp
. If f(O) is of finite slope,

then Proposition 2.7 yields a morphism DCp
→E|UCp

with the desired property.

Step 4. Put ψ(O) = (ν(O),w(O)) and κ = k(ν(O),w(O)), which are 1-integral by
assumption. Let κ1 = (kβ)β∈BF

be the integral weight corresponding to the restriction

κ|T0
1(Zp). For any nonzero fractional ideal c of F, let Xc = M(μN,c)

rig be the Raynaud
generic fiber of the p-adic formal completion M(μN,c) of M(μN,c). We also write

Xc(v
′) = M(μN,c)(v

′)rig for any v′ < 1. For any v′ < (p− 1)/p and the morphism

h1 : M̄(Γ1(p),μN,c)(v
′)→ M̄(μN,c)(v

′), we put h= hrig
1 and X 1

c (v
′) = h−1(Xc(v

′)).
Consider the rigid analytic variety Yc,p as in §3.2 and the natural projection π : Yc,p →

Xc. Put Yc,p(v
′) = π−1(Xc(v

′)). For the universal p-cyclic subgroup scheme Hun over Yc,p,

we put

Y1
c,p = IsomYc,p

(
D−1

F ⊗μp,H
un
)
.

We denote by r the natural projection Y1
c,p → Yc,p. Put π1 = π ◦ r and Y1

c,p(v
′) =(

π1
)−1

(Xc(v
′)). We write the base extensions to Cp of these maps also as h, π, r, and

π1, respectively. We consider U1
c := X 1

c

(
1

p+1

)
as a Zariski open subset of Y1

c,p

(
1

p+1

)
.

Then we have an isomorphism h∗Ωκ �
(
π1
)∗

Ωκ|U1
c,Cp

. Note that the sheaf h∗Ωκ in this

case of 1-integral weight is isomorphic to the sheaf h∗Ωκ1 � h∗ωκ1 Āun,Cp
as in §3.3.1.

The sheaf
(
π1
)∗

Ωκ1 is defined over the whole rigid analytic variety Y1
c,p,Cp

and satisfies(
π1
)∗

Ωκ1 |U1
c,Cp

� h∗Ωκ. Thus, when c lies in
[
Cl+(F )

](p)
, the element fc(O) defines

gc := h∗fc(O) =
(
π1
)∗

fc(O)|U1
c,Cp

∈H0
(
U1
c,Cp

,
(
π1
)∗

Ωκ1(−D)
)
,

on which any element a of the Galois group T(Z/pZ) of h : U1
c →Xc

(
1

p+1

)
acts trivially.

Namely, for any point [(A,u)] of U1
c

(
Q̄p

)
with an OF -closed immersion u :D−1

F ⊗μp →A

and any a ∈ T(Z/pZ), we have gc(A,au) = gc(A,u).
Moreover, we define Z1

c,p as the scheme over K classifying triples (A,u,D) consisting

of an HBAV A over a base scheme over K with c-polarization, an OF -closed immersion

u : D−1
F ⊗μp → A, and a finite flat closed OF -subgroup scheme D which is étale locally
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isomorphic to OF /pOF satisfying Im(u)∩D = 0. We denote by Z1
c,p the analytification

of Z1
c,p restricted to Xc. We have two projections

q1 : Z1
p−1c,p →Y1

p−1c,p q2 : Z1
p−1c,p →Y1

c,p

(A,u,D) �→ (A,u), (A,u,D) �→ (A/D,ū),

where ū is the image of u in A/D. Put Z1
c,p(v

′) = q−1
1

(
Y1
c,p(v

′)
)
.

We denote the restriction of the rigid analytic variety Y ′
c,p

(
1

p+1

)
defined in §3.3.3 to

Xc

(
1

p+1

)
also by Y ′

c,p

(
1

p+1

)
. We have a finite étale morphism

Π : q−1
1

(
U1
p−1c

)
→Y ′

p−1c,p

(
1

p+1

)
, (A,u,H) �→ (A,H).

The base extensions of these maps to Cp are also denoted by q1, q2, and Π, respectively.

By [29, Corollary 5.3(1)], we have q−1
1

(
U1
p−1c

)
⊆ q−1

2

(
U1
c

)
and thus q−1

1

(
U1
p−1c,Cp

)
⊆

q−1
2

(
U1
c,Cp

)
. This yields commutative diagrams

U1
c,Cp

h

��

q−1
1

(
U1
p−1c,Cp

)
q2



Π

��

Xc

(
1

p+1

)
Cp

Y ′
p−1c,p

(
1

p+1

)
Cp

,
p2





q−1
1

(
U1
p−1c,Cp

)
Π

��

q1 �� U1
p−1c,Cp

h

��

Y ′
p−1c,p

(
1

p+1

)
Cp

p1

�� Xp−1c

(
1

p+1

)
Cp

,

where the latter is cartesian.

We have an isomorphism of changing polarizations

lp :M(μN,c)→M
(
μN,p

−1c
)
, (A,λ) �→ (A,pλ),

which induces an isomorphism Xc

(
1

p+1

)
→ Xp−1c

(
1

p+1

)
and similarly for other rigid

analytic varieties defined already. Let xp ∈ F×,+ be the element we fixed in §3.3.3 to

define Up and put x= p−1
∏

p|pxp ∈ F×,+,(p). Then lp also induces an isomorphism

ν(O)(x)l∗p :H
0

(
Xp−1c

(
1

p+1

)
Cp

,Ωκ

)
→H0

(
Xc

(
1

p+1

)
Cp

,Ωκ

)
,

which is compatible with the map Lx◦
∏

p|px
∗
p on SG

(
μN,p

−1c,(ν(O),w(O))
)(

1
p+1

)
. Note

that under the identification (4.1), by composing Lx we identify the operator Up with a

tuple of endomorphisms on SG(μN,c,(ν(O),w(O)))
(

1
p+1

)
for each c ∈

[
Cl+(F )

](p)
.

Take any point Q = [(A,H)] ∈ Yc,p(OL) with some finite extension L/K such that
Hdgβ(A) = p/(p+1) for any β ∈BF , which exists by Lemma 3.6. Consider the admissible

open subsets Vc,Q, V0
c,Q,Cp

, and V0
c,Q,Cp

(
1

p+1

)
of Yc,p,Cp

defined in §3.2. For the

point lp(Q) ∈ Yp−1c,p(OL), we also have similar admissible open subsets Vp−1c,lp(Q),
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V0
p−1c,lp(Q),Cp

, and V0
p−1c,lp(Q),Cp

(
1

p+1

)
of Yp−1c,p,Cp

, which are equal to the images of

Vc,Q, V0
c,Q,Cp

, and Vc,Q,Cp
0
(

1
p+1

)
by lp, respectively. By Corollary 3.9, we have

q−1
1

(
r−1
(
Vp−1c,lp(Q)

))
⊆ q−1

2

(
U1
c

)
.

Taking the base extension, we also have

q−1
1

(
r−1
(
V0
p−1c,lp(Q),Cp

))
⊆ q−1

1

(
r−1
(
Vp−1c,lp(Q),Cp

))
⊆ q−1

2

(
U1
c,Cp

)
.

Similarly, Lemma 3.10 shows r−1
(
V0
p−1c,lp(Q),Cp

(
1

p+1

))
⊆ U1

p−1c,Cp
. Since the weight κ1

is integral, we have a natural isomorphism π∗
p : q∗2

(
π1
)∗

Ωκ1 → q∗1
(
π1
)∗

Ωκ1 over Z1
p−1c,p.

From these and the foregoing commutative diagrams, we see that the operator Up extends

to an operator

UQ :H0
(
U1
c,Cp

,
(
π1
)∗

Ωκ1

)
→H0

(
r−1
(
V0
c,Q,Cp

)
,
(
π1
)∗

Ωκ1

)
which makes the following diagram commutative:

H0
(
U1
c,Cp

,
(
π1
)∗

Ωκ1

)
UQ �� H0

(
r−1
(
V0
c,Q,Cp

)
,
(
π1
)∗

Ωκ1

)
res

��

H0
(
r−1
(
V0
c,Q,Cp

(
1

p+1

))
,
(
π1
)∗

Ωκ
)

H0

(
Xc

(
1

p+1

)
Cp

,Ωκ

)
Up

��

h∗

��

H0

(
Xc

(
1

p+1

)
Cp

,Ωκ

)
.

h∗

��

Step 5. Now suppose that f(O) is of infinite slope. Then

(UQgc)

∣∣∣∣r−1
(
V0

c,Q,Cp

(
1

p+1

)) = (h∗Upfc(O))

∣∣∣∣r−1
(
V0

c,Q,Cp

(
1

p+1

)) = 0.

Since V0
c,Q,Cp

is connected and r is finite and étale, the map r defines a surjection from

each connected component of r−1
(
V0
c,Q,Cp

)
to V0

c,Q,Cp
. Since the admissible open subset

V0
c,Q,Cp

(
1

p+1

)
is nonempty, we see that r−1

(
V0
c,Q,Cp

(
1

p+1

))
intersects every connected

component of r−1
(
V0
c,Q,Cp

)
. Thus Lemma 3.1 implies UQgc = 0. In particular, if the

point [(A,λ,L)] ∈ Yc,p

(
OQ̄p

)
satisfies Hdgβ(A) = p/(p+1) for any β ∈ BF , then for any

OF -isomorphism m :D−1
F ⊗μp � LK we have∑

DK∩LK=0

gc
(
A/D,pλ̄,m̄

)
= 0, (5.1)
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where the sum is taken over the set of finite flat closed p-cyclic OF -subgroup schemes
D of A[p] satisfying DK ∩LK = 0 and λ̄ is the induced pc-polarization. We will omit pλ̄

from test objects as in the foregoing.

Lemma 5.2. For any p-cyclic OF -subgroup scheme H of A[p] and any OF -isomorphism

u :D−1
F ⊗μp → (A[p]/H)K , we have gc(A/H,u) = 0.

Proof. For any p-cyclic OF -subgroup scheme M of A[p], write M =
⊕

p|pMp.

Similarly, any OF -closed immersion m : D−1
F ⊗ μp → AK defines a closed immersion

mp : D−1
F /pD−1

F ⊗μp → A[p]K for any p | p. By fixing a generator of the principal OF -
module D−1

F /pD−1
F and a primitive pth root of unity in Q̄p, we identify an OF -closed

immersionm :D−1
F ⊗μp →AK with an element of A[p]

(
Q̄p

)
. LetP be the set of maximal

ideals of OF dividing p. For any subset S ⊆P, we put Sc =P\S and

MS =
⊕
p∈S

Mp, MS =
⊕
p∈Sc

Mp, M∅ =MP = 0.

We define mS and mS similarly. We write Im(m) also as 〈m〉.
For any p | p, we fix nonzero elements ep,1 ∈ Hp

(
Q̄p

)
and ep,2 ∈ A[p]

(
Q̄p

)
such that

{ep,1,ep,2} forms a basis of the o/p-module A[p]
(
Q̄p

)
. Put Ip = {ep,1,apep,1+ ep,2 | ap

∈ o/p} and eS,i = (ep,i)p∈S for i = 1,2. We claim that for any element mS of
∏

p∈Sc Ip,

we have ∑
DS

K∩〈mS〉=0

gc

(
A/
(
HS ×DS

)
,eS,2×mS

)
= 0, (5.2)

where the sum is taken over the set of finite flat closed
(∏

p∈Sc p

)
-cyclic OF -subgroup

schemes DS of A satisfying DS
K ∩
〈
mS
〉
= 0.

To show the claim, we proceed by induction on �S. The case of S = ∅ is equation (5.1).

Suppose that the claim holds for some S 
=P. Take p∈ Sc and put S′ = S∪{p}. Fix mS′ ∈∏
q∈(S′)c Iq. Taking the sum of equation (5.2) over the set

{
mS =mp×mS′ |mp ∈ Ip

}
,

we obtain∑
mp∈Ip

∑
Dp,K∩〈mp〉=0

∑
DS′

K ∩〈mS′〉=0

gc

(
A/
(
HS ×Dp×DS′

)
,eS,2×mp×mS′

)
= 0.

We compute terms in this sum for each Dp.

• If Dp

(
Q̄p

)
= (o/p)ep,1 = Hp

(
Q̄p

)
and Dp,K ∩ 〈mp〉 = 0, then mp = apep,1 + ep,2

with some ap ∈ o/p. In this case, m̄p is equal to the image ēp,2 of ep,2.
• If Dp

(
Q̄p

)
= (o/p)(apep,1+ep,2) and Dp,K ∩〈mp〉 = 0, then we have either mp =

ep,1 or mp = bpep,1+ep,2 with some bp 
= ap ∈ o/p. In each case, m̄p is equal to the
element ēp,1 or (bp−ap) ēp,1.

Thus the sum of the terms in which Dps of the second case appear is equal to

pfp
∑

DS′
K ∩〈mS′〉=0

∑
ap∈o/p

gc

(
A/
(
HS × (o/p)(apep,1+ ep,2)×DS′

)
,eS,2× ep,1×mS′

)
.
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This equals

pfp
∑

DS
K∩〈ep,1×mS′〉=0

gc

(
A/
(
HS ×DS

)
,eS,2× ep,1×mS′

)
,

which is zero by the induction hypothesis (5.2). What remains is the sum of the terms of

Dps of the first case, which equals

pfp
∑

DS′
K ∩〈mS′〉=0

gc

(
A/
(
HS′ ×DS′

)
,eS′,2×mS′

)
= 0

and the claim follows. Setting S =P, we obtain gc (A/H,ēP,2) = 0. For any u as in the

lemma, the map up corresponds to apēp,2 for some ap ∈ (o/p)×. Thus we have

gc(A/H,u) = gc (A/H,ēP,2) = 0,

and the lemma follows.

Consider the admissible open subset of Yc,p defined by{
[(A,λ,H)] |Hdgβ(A) = p/(p+1) for any β ∈ BF

}
and let V be a nonempty admissible affinoid open subset of it. Note that the map

W : Yc,p →Yc,p, (A,λ,H) �→
(
A/H,pλ̄,A[p]/H

)
is an isomorphism. By [29, Proposition 6.1], we have r−1(W (V))⊆U1

c . Consider the base
extensions WCp

: Yc,p,Cp
→ Yc,p,Cp

and VCp
, where the latter is an admissible affinoid

open subset of Yc,p,Cp
. By Lemma 5.2, π∗fc(O) vanishes on the subset W (V)

(
Q̄p

)
of the

admissible affinoid open subset WCp

(
VCp

)
=W (V)Cp

.

Lemma 5.3. Let A be a reduced K-affinoid algebra. Put X = Sp(A), ACp
= A⊗̂KCp,

and XCp
= Sp

(
ACp

)
. We consider the set X

(
Q̄p

)
as a subset of XCp

(Cp) by the natural

inclusion Q̄p →Cp. Suppose that an element f ∈ACp
satisfies f(x)= 0 for any x∈X

(
Q̄p

)
.

Then f = 0.

Proof. For any positive rational number ε, we put

Uε =
{
x ∈XCp

| |f(x)| ≤ ε
}
.

We can find an element fε ∈A⊗K Q̄p such that

|(f −fε)(x)| ≤ ε for any x ∈XCp
.

Then we have Uε =
{
x ∈XCp

| |fε(x)| ≤ ε
}
. Take a finite extension L/K satisfying fε ∈

AL :=A⊗KL. PutXL =Sp(AL). The assumption impliesX
(
Q̄p

)
⊆Uε, namely |fε(x)| ≤ ε

for any x∈X
(
Q̄p

)
. This showsXL = {x∈XL | |fε(x)| ≤ ε}. Since the formation of rational

subsets is compatible with base extensions, we have XCp
=Uε for any ε > 0, which implies

f(x)= 0 for any x∈XCp
. SinceXCp

is reduced, we obtain f =0 and the lemma follows.

Since the invertible sheaf π∗Ωκ is the base extension to Cp of a similar invertible sheaf

over K, it is trivialized by the base extension of an admissible affinoid covering over K.
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By Lemma 5.3, we have π∗fc(O)|W (V)Cp
= 0. Thus fc(O) vanishes on the admissible open

subset π
(
W (V)Cp

)
of M̄(μN,c)

(
1

p+1

)
Cp

. By Lemma 3.4, M̄(μN,c)
(

1
p+1

)
Cp

is connected.

By Lemma 3.1, we obtain fc(O) = 0 for any c, which contradicts the fact that f(O) is
normalized. This concludes the proof of the theorem.

6. List of notation

Following is a list of the main notation, in order of definition.

§1: DCp
, O, D×

Cp

§3.1: F, g, o, DF , UN , fp, K, k, W, πK , e, vp, m
≥i
L , OL,i, SL,i, BF , Bp, F

∗
R , F

∗,+
R ,

Dec(a,b), C (a,b), D(c)

§3.1.1: ωG,β , degβ , Hdgβ

§3.1.2: M(μN,c), A
un, σ∨, qm, Ŝσ, R̂σ, ŜC , Îσ, S̄σ, S̄

0
σ, R̂

0
σ, Xη, Tatea,b(q), λa,b,

M̄(μN,c), D, Āun

§3.1.3: M̄(μN,c), M̄(μN,c), M(μN,c), Āun, Āun, ωĀun , ωĀun,β , ωκ
Āun , ωĀun,β ,

ωκ
Āun , hβ , M̄(μN,c)(v), M(μN,c)(v), M̄(μN,c)(v), M(μN,c)(v), M̄(μN,c)(v),

M̄(μN,c)(vtot), M̄(μN,c)(v), NAdm, τ
(
P̄
)

§3.1.4: Cn, Cn, HTG , δK

§3.2: Yc,p, Yc,p, Yc,p, Vc,Q, Vc,Q

(
1

p+1

)
, V0

c,Q,Cp
, V0

c,Q,Cp

(
1

p+1

)
§3.3.1: T, T̂, T0

w, W, κun, O◦, κX , δn, Bn, M̄(Γ1(p
n),μN,c)(v), M̄(Γ1(p

n),μN,c)(v),

γw, IW
+
w , IW

+
w,c (v), IW+

w , IW+
w,c (v), hw, πw, Tw, ΩκU

, M
(
μN,c,κ

U)(v),
S
(
μN,c,κ

U)(v), ΩκU

§3.3.2: WG, k(ν,w), Δ, F×,+,(p), Frac(F )(p), MG
(
μN,c,

(
νU,wU))(v),

SG
(
μN,c,

(
νU,wU))(v), Lx, MG

(
μN,
(
νU,wU))(v), SG

(
μN,
(
νU,wU))(v),

MG
(
μN,
(
νU,wU))(vtot), SG

(
μN,
(
νU,wU))(vtot)

§3.3.3: Y ′
c,l (v), p1, p2, πl, xp, Tl, Sl, Ul, Up, T, vn, E

§3.4: πw,OCp
, γw,OCp

, hn,OCp
, M̄∗(μN,c), M̄

∗(μN,c)(vtot), M̄∗(μN,c)(vtot), ρ, ρ
rig,

ρOCp
, ρrigCp

§4:
[
Cl+(F )

](p)
, fc

§4.1: S̆σ, R̆σ, OL

[
X≤r,X

±
>r

]
, OL

〈
X≤r,X

±
>r

〉
, L
〈
X≤r,X

±
>r

〉
, S̆rig

σ , S̆C , S̆rig
C , (−)rig/Cp

,

R̆σ,OCp
, S̆σ,OCp

, S̆C,OCp
, S̃σ, R̃σ,OCp

, τa,b, OKσ
, fc(q), ao,c−1(f,ξ)

§4.2: Λ(n), Φ(n), μn, ζ
η

§4.2.1: R̂η,σ, R̂
0
η,σ, R̆η,σ, q

η, Tatea,b(q
η)

§4.3: M(μN,c,κ)(0), Sc

§4.4: aUo,o(f,1)
§5: U , Xc, Xc(v

′), h, X 1
c (v

′), Yc,p(v
′), r, Y1

c,p, π
1, Y1

c,p(v
′), U1

c , gc, Zc,p, Zc,p, q1, q2,

Zc,p(v
′), Π
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[5] J. Belläıche, Nonsmooth classical points on eigenvarieties, Duke Math. J. 145(1) (2008),
71–90.
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caractéristiques divisant le discriminant, Compos. Math. 90(1) (1994), 59–79.

[21] P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. Éc. Norm. Supér.
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