On the Multiplicities of Characters in Table Algebras

J. Bagherian

Abstract. In this paper we show that every module of a table algebra can be considered as a faithful module of some quotient table algebra. Also we prove that every faithful module of a table algebra determines a closed subset that is a cyclic group. As a main result we give some information about multiplicities of characters in table algebras.

1 Introduction

In [6], Hanaki proved that every character of an association scheme can be considered as a faithful character of some quotient scheme. Also he showed that a faithful character of an association scheme determines a thin closed subset that is cyclic as a finite group. In this paper we first generalize the above facts for table algebras. Then as an application of them, we give some information about multiplicities of characters for a table algebra. More precisely, we first show that for every irreducible character χ of a table algebra (A, B) we have

$$
\begin{equation*}
\zeta_{\chi} \leq \frac{\left|B^{+}\right|}{\chi(1)\left|Z(\chi)^{+}\right|} \tag{1.1}
\end{equation*}
$$

where ζ_{χ} is the multiplicity of χ. Then we give a condition for which the equality occurs in (1.1). More precisely, we show that if (A, B) is a table algebra and $\chi \in \operatorname{Irr}(A)$ such that $B / / Z(\chi)$ is an abelian group, then

$$
\zeta_{\chi}=\frac{\left|B^{+}\right|}{\chi(1)\left|Z(\chi)^{+}\right|} .
$$

In particular, if (A, B) is commutative, then

$$
\zeta_{\chi}=\frac{\left|B^{+}\right|}{\left|Z(\chi)^{+}\right|}
$$

This is a generalization of [5, Theorem 2.31] in the character theory of finite groups which states that if G is a finite group and $\chi \in \operatorname{Irr}(G)$ such that $G / Z(\chi)$ is abelian, then $\chi(1)^{2}=|G: Z(\chi)|$.

Throughout this paper we follow [1] for the definition of table algebras and related notions. Hence we deal with non-commutative table algebras defined as follows.

[^0]A table algebra (A, B) is a finite dimensional algebra A over the complex field \mathbb{C} and a distinguished basis $B=\left\{b_{1}=1, \cdots, b_{d}\right\}$ for A, where 1 is a unit, such that the following properties hold:
(a) The structure constants of B are nonnegative real numbers, i.e., for $a, b \in B$,

$$
a b=\sum_{c \in B} \lambda_{a b c} c, \quad \lambda_{a b c} \in \mathbb{R}^{+} \cup\{0\} .
$$

(b) There is a semilinear involutory anti-automorphism of A (denoted by*) such that $B^{*}=B$.
(c) For all $a, b \in B, \lambda_{a a^{*} 1}>0$ and $\lambda_{a b 1}=0$ if $b \neq a^{*}$.

Remark 1.1 (i) Let (A, B) be a table algebra. Then [1, Theorem 3.11] implies that A is semisimple.
(ii) For any table algebra (A, B), there is a unique algebra homomorphism $|\cdot|: A \rightarrow$ \mathbb{C}, called the degree map, such that $|b|=\left|b^{*}\right|>0$ for all $b \in B$ (see [1, Theorem 3.14]).
(iii) If $|b|=\lambda_{b b^{*} 1}$ for all $b \in B$, then (A, B) is called the standard table algebra.

Without loss of generality, in this paper we will assume that (A, B) is a standard table algebra.

The value $|b|$ is called the degree of the basis element b. For an arbitrary element $\sum_{b \in B} x_{b} b \in A$, we have $\left|\sum_{b \in B} x_{b} b\right|=\sum_{b \in B} x_{b}|b|$.

For any $x=\sum_{b \in B} x_{b} b \in A$ we denote by $\operatorname{Supp}(x)$ the set of all basis elements $b \in B$ such that $x_{b} \neq 0$. If $E, D \subseteq B$, then we set $E D=\bigcup_{e \in E, d \in D} \operatorname{Supp}(e d)$.

A nonempty subset $C \subseteq B$ is called closed if $C^{*} C \subseteq C$, where $C^{*}=\left\{c^{*} \mid c \in C\right\}$. We denote by $\mathcal{C}(B)$ the set of all closed subsets of B. In addition, a closed subset C of B is called strongly normal if for every $b \in B, b^{*} C b \subseteq C$. An element $b \in B$ is called linear if $b b^{*}=|b| 1$. From [1, Proposition 4.6], the set of all linear elements of B is a closed subset of B that forms a finite group.

Let (A, B) be a table algebra with basis B and let $C \in \mathcal{C}(B)$. From [1, Proposition 4.7], it follows that $\{C b C \mid b \in B\}$ is a partition of B. The subset $C b C$ is called a C-double coset or double coset with respect to the closed subset C. Let

$$
b / / C:=\left|C^{+}\right|^{-1}(C b C)^{+}=\left|C^{+}\right|^{-1} \sum_{x \in C b C} x
$$

where $C^{+}=\sum_{c \in C} c$ and $\left|C^{+}\right|=\sum_{c \in C}|c|$. Then the following theorem is an immediate consequence of [1, Theorem 4.9].

Theorem 1.2 Let (A, B) be a table algebra and let $C \in \mathcal{C}(B)$. Suppose that $\left\{b_{1}=1, \ldots, b_{k}\right\}$ is a complete set of representatives of C-double cosets. Then the vector space spanned by the elements $b_{i} / / C, 1 \leq i \leq k$, is a table algebra (which is denoted by $A / / C)$ with a distinguished basis $B / / C=\left\{b_{i} / / C \mid 1 \leq i \leq k\right\}$. The structure constants are given by

$$
\gamma_{i j k}=\left|C^{+}\right|^{-1} \sum_{\substack{r \in C b_{i} C, s \in C b_{j} C}} \lambda_{r s t},
$$

where $t \in C b_{k} C$ is an arbitrary element.
The table algebra $(A / / C, B / / C)$ is called the quotient table algebra of (A, B) modulo C. One can see that a closed subset C of table algebra (A, B) is strongly normal if and only if $(A / / C, B / / C)$ is a group algebra; see [2, Corollary 2.9].

Let (A, B) be a table algebra and $C \in \mathcal{C}(B)$. Set $e=\left|C^{+}\right|^{-1} C^{+}$. Then e is an idempotent of A, and the subalgebra $e A e$ is equal to the quotient table algebra $(A / / C, B / / C)$ modulo C; see [1].

2 Faithful Modules

Let (A, B) be a table algebra. The kernel of an A-module V in B is defined by

$$
\operatorname{ker}_{B} V=\{b \in B|b x=|b| x, \forall x \in V\} .
$$

From [8, Proposition 4.5], it follows that $\operatorname{ker}_{B} V$ is a closed subset in B and if χ is the character of A afforded by the A-module V, then $\operatorname{ker}_{B} V=\operatorname{ker}_{B} \chi$, where $\operatorname{ker}_{B} \chi=$ $\{b \in B|\chi(b)=|b| \chi(1)\}$. Furthermore, the A-module V or character χ is called faithful if $\operatorname{ker}_{B} V=\{1\}$.

In the theorem below we show that every A-module V can be considered as a faithful $A / / K$-module, where $K=\operatorname{ker}_{B} V$. It might be mentioned that this is an analog of the association schemes that was done by Hanaki in [6].

Theorem 2.1 Let (A, B) be a table algebra and V be an A-module. Suppose that L is a closed subset of B contained in $K=\operatorname{ker}_{B} V$. Then V can be considered as an A//L-module by the multiplication

$$
(b / / L) v=\frac{|b / / L|}{|b|} b v, \quad v \in V
$$

Moreover, if $L=K$, then V is faithful as an $A / / K$-module.
Proof Put $e=\left|L^{+}\right|^{-1} L^{+}$. Then e is an idempotent of A and for every $b \in B$ we have

$$
b / / L=\frac{|b / / L|}{|b|} e b e .
$$

Moreover, by assumption of the theorem one can see that for $v \in V$,

$$
e v=\left(\left|L^{+}\right|^{-1} L^{+}\right) v=\left|L^{+}\right|^{-1}\left(L^{+} v\right)=\left|L^{+}\right|^{-1}\left|L^{+}\right| v=v
$$

This implies that for every $b \in B$, ebe $(v)=e b(e v)=(e b) v=e(b v)=b v$. Now for every $v \in V$, we consider the multiplication

$$
(b / / L) v=\frac{|b / / L|}{|b|} e b e(v)=\frac{|b / / L|}{|b|} b v
$$

We will show that the above multiplication is well defined. Suppose $b / / L=c / / L$. Then we have

$$
\frac{|b / / L|}{|b|} e b e=\frac{|c / / L|}{|c|} e c e .
$$

So for every $v \in V$,

$$
\frac{|b / / L|}{|b|} b v=\frac{|b / / L|}{|b|} e b e(v)=\frac{|c / / L|}{|c|} e c e(v)=\frac{|c / / L|}{|c|} c v .
$$

Now since for every $b, c \in B$ and $v \in V$,

$$
(b / / L c / / L) v=\frac{|b / / L|}{|b|} \frac{|c / / L|}{|c|}(\text { ebece }) v=\frac{|b / / L|}{|b|} \frac{|c / / L|}{|c|} \text { ebe }(\text { ece }(v))=b / / L(c / / L(v))
$$

it follows that V is an $A / / L$-module. Moreover, suppose that $L=K$ and $b / / K \in$ $\operatorname{ker}_{B} V$ as an $A / / K$-module. Then for every $v \in V,(b / / K) v=|b / / K| v$. So

$$
\frac{|b / / K|}{|b|} b v=|b / / K| v
$$

and hence $b v=|b| v$. This implies that $b \in \operatorname{ker}_{B} V=K$ and then $b / / K=1 / / K$. Therefore, V is faithful as an $A / / K$-module, as desired.

The following corollary is a generalization of [6, Theorem 2.1] for table algebras.
Corollary 2.2 Let (A, B) be a table algebra and χ be a character of A afforded by an A-module V. Suppose that T is a closed subset of B contained in $\operatorname{ker}_{B} V$. Then we can define a character χ^{\prime} of $A / / L$ such that

$$
\chi^{\prime}(b / / L)=\frac{|b / / L|}{|b|} \chi(b)
$$

Moreover, χ^{\prime} is faithful if $T=\operatorname{ker}_{B} V$.
Let (A, B) be a table algebra and V be an A-module. We define

$$
Z(V)=\left\{b \in B \mid \forall v \in V, b v=\lambda_{b} v, \text { where } \lambda_{b} \in \mathbb{C} \text { and }\left|\lambda_{b}\right|=|b|\right\}
$$

Clearly $\operatorname{ker}_{B} V \subseteq Z(V)$. In the following lemma we show that $Z(V)$ is a closed subset of B.

Lemma 2.3 For every A-module $V, Z(V)$ is a closed subset of B.
Proof Let $b, c \in Z(V)$. Then for every $v \in V$

$$
\begin{equation*}
b(c v)=b\left(\lambda_{c} v\right)=\lambda_{b} \lambda_{c} v \tag{2.1}
\end{equation*}
$$

where $\lambda_{b}, \lambda_{c} \in \mathbb{C}$ such that $\left|\lambda_{b}\right|=|b|$ and $\left|\lambda_{c}\right|=|c|$. On the other hand, suppose that

$$
b c=\sum_{d \in B} \lambda_{b c d} d
$$

Then for every $v \in V$

$$
\begin{equation*}
(b c) v=\sum_{d \in B} \lambda_{b c d} d v=\sum_{d \in B} \lambda_{b c d} \sum_{w \in T} \mu_{d w} w, \tag{2.2}
\end{equation*}
$$

where T is a \mathbb{C}-basis of V and for every $w \in T, \mu_{d w} \in \mathbb{C}$. But since $b(c v)=(b c) v$, from (2.1) and (2.2) we get

$$
\lambda_{b} \lambda_{c} v=\sum_{d \in B} \lambda_{b c d} \mu_{d v} v
$$

and so

$$
\lambda_{b} \lambda_{c}=\sum_{d \in B} \lambda_{b c d} \mu_{d v}
$$

Since from [8, Proposition 4.1] it follows that $\left|\mu_{d v}\right| \leq|d|$, by the latter equality we get

$$
|b||c|=\left|\lambda_{b}\right|\left|\lambda_{c}\right|=\left|\lambda_{b} \lambda_{c}\right|=\left|\sum_{d \in B} \lambda_{b c d} \mu_{d v}\right| \leq \sum_{d \in B} \lambda_{b c d}\left|\mu_{d v}\right| \leq \sum_{d \in B} \lambda_{b c d}|d|=|b||c|
$$

Hence we conclude that for every $d \in B$, where $\lambda_{b c d} \neq 0,\left|\mu_{d v}\right|=|d|$. This implies that for every $d \in B$, where $\lambda_{b c d} \neq 0, d v=\mu_{d v} v$ and $\left|\mu_{d v}\right|=|d|$. So $d \in Z(V)$. Therefore, $Z(V)$ is a closed subset of B, as desired.

Let (A, B) be a table algebra and V be an A-module. Let D be the representation of A corresponding to V. Then one can see that

$$
Z(V)=\left\{b \in B \mid D(b)=\lambda_{b} I, \text { where } \lambda_{b} \in \mathbb{C} \text { and }\left|\lambda_{b}\right|=|b|\right\}
$$

In the lemma below we show that if V is a faithful A-module, then $Z(V)$ is cyclic as a finite group.

Lemma 2.4 Let V be a faithful A-module of a table algebra (A, B). Then every element of $Z(V)$ is linear. In particular, $Z(V)$ is cyclic as a finite group.

Proof Let D be the representation of A corresponding to V and let $b \in Z(V)$. Then we have

$$
\begin{equation*}
D\left(b b^{*}\right)=D(b) D\left(b^{*}\right)=\lambda_{b} \overline{\lambda_{b}} I=\left|\lambda_{b}\right|^{2} I=|b|^{2} I \tag{2.3}
\end{equation*}
$$

where I is the identity matrix. On the other hand, suppose that

$$
b b^{*}=\sum_{d \in B} \lambda_{b b^{*} d} d
$$

Then we have

$$
\begin{equation*}
D\left(b b^{*}\right)=\sum_{d \in B} \lambda_{b b^{*} d} D(d) \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we conclude that for every $d \in \operatorname{Supp}\left(b b^{*}\right), D(d)=|d| I$. So for every $d \in \operatorname{Supp}\left(b b^{*}\right), d \in \operatorname{ker}_{B}(V)=\{1\}$. Thus $b b^{*}=\{1\}$ and b is a linear element of B. Moreover, since for every $b, c \in B, D\left(b c b^{*} c^{*}\right)=D(b) D(c) D\left(b^{*}\right) D\left(c^{*}\right)=I$, we have $b c b^{*} c^{*} \in \operatorname{ker}_{B}(V)=\{1\}$ and hence $b c=c b$. So we conclude that $Z(V)$ is an abelian group.

To prove the second statement, since for every irreducible constituent W of V we have $Z(V) \subseteq Z(W)$, we can assume that V is irreducible. Now we define $\lambda: Z(V) \mapsto$ $\mathbb{C}-\{0\}$ by $\lambda(b)=\lambda_{b}$. Suppose that $b, c \in B$ such that $\lambda_{b}=\lambda_{c}$. Then $D\left(b c^{*}\right)=$ $D(b) D\left(c^{*}\right)=\lambda_{b} \overline{\lambda_{c}}=|b||c| I$, where I is the identity matrix. It follows that $D(d)=$ $|d| I$, for every $d \in \operatorname{Supp}\left(b c^{*}\right)$. This implies that $d \in \operatorname{ker}_{B}(V)=\{1\}$, for every $d \in \operatorname{Supp}\left(b c^{*}\right)$ and hence $b=c$. Thus λ is a faithful irreducible representation of abelian group $Z(V)$. Now from [5, Theorem 2.32(a)], $Z(V)$ is cyclic as a finite group.

Definition 2.5 Let (A, B) be a table algebra and χ be a character of A. We define

$$
Z(\chi)=\{b \in B| | \chi(b)|=|b| \chi(1)\}
$$

One can see that if χ is afforded by an A-module V, then $Z(\chi)=Z(V)$, and so $Z(\chi)$ is a closed subset of B.

In the corollary below we give a generalization of [6, Theorem 3.1] for table algebras.

Corollary 2.6 Let χ be a character of table algebra (A, B). Then every element of $Z(\chi)$ is linear. In particular, $Z(\chi)$ is cyclic as a finite group.

3 Multiplicities of Characters

Let (A, B) be a table algebra. Define a linear function ζ on A by $\zeta(b)=\delta_{b, 1}\left|B^{+}\right|$for $b \in B$, where $\left|B^{+}\right|=\sum_{b \in B}|b|$. Then ζ is a non-degenerate feasible trace on A, and from [7] it follows that

$$
\zeta=\sum_{\chi \in \operatorname{Irr}(A)} \zeta_{\chi} \chi
$$

where $\zeta_{\chi} \in \mathbb{C}$ and all ζ_{χ} are nonzero. The feasible trace ζ is called the standard feasible trace, and ζ_{χ} is called the standard feasible multiplicity or briefly the multiplicity of character χ.

For every $\chi, \varphi \in \operatorname{Hom}_{\mathbb{C}}(A, \mathbb{C})$, we define the inner product of χ and φ as follows:

$$
[\chi, \varphi]=\frac{1}{\left|B^{+}\right|} \sum_{b \in B} \frac{1}{|b|} \chi(b) \varphi\left(b^{*}\right)
$$

From [7, Lemma 3.1(ii)], one can see that

$$
[\chi, \psi]=\delta_{\chi, \psi} \frac{\chi(1)}{\zeta_{\chi}}
$$

for any $\chi, \psi \in \operatorname{Irr}(A)$.
Now let H be a closed subset of B. Then for every character χ of A we have

$$
\left|H^{+}\right|\left[\chi_{H}, \chi_{H}\right]=\sum_{b \in H} \frac{\chi(b) \chi\left(b^{*}\right)}{|b|} \leq \sum_{b \in B} \frac{\chi(b) \chi\left(b^{*}\right)}{|b|}=\left|B^{+}\right|[\chi, \chi]
$$

Then

$$
\begin{equation*}
\left[\chi_{H}, \chi_{H}\right] \leq \frac{\left|B^{+}\right|}{\left|H^{+}\right|}[\chi, \chi] \tag{3.1}
\end{equation*}
$$

with equality if and only if $\chi(b)=0$, for every $b \in B-H$. Now let $H=Z(\chi)$ for some irreducible character of A. Then since

$$
\left[\chi_{Z(\chi)}, \chi_{Z(\chi)}\right]=\frac{1}{\left|Z(\chi)^{+}\right|} \sum_{b \in Z(\chi)} \frac{\chi(b) \chi\left(b^{*}\right)}{|b|}=\frac{1}{\left|Z(\chi)^{+}\right|} \sum_{b \in Z(\chi)} \frac{|\chi(b)|^{2}}{|b|}=\chi(1)^{2}
$$

from inequality (3.1) we get

$$
\chi(1)^{2}=\left[\chi_{Z(\chi)}, \chi_{Z(\chi)}\right] \leq \frac{\left|B^{+}\right|}{\left|Z(\chi)^{+}\right|}[\chi, \chi]=\frac{\left|B^{+}\right|}{\left|Z(\chi)^{+}\right|} \frac{\chi(1)}{\zeta_{\chi}}
$$

and thus

$$
\begin{equation*}
\chi(1) \zeta_{\chi} \leq \frac{\left|B^{+}\right|}{\left|Z(\chi)^{+}\right|} \tag{3.2}
\end{equation*}
$$

Equality occurs if and only if for every $b \in B-Z(\chi), \chi(b)=0$.
The following theorem gives a condition under which the equality occurs in (3.2).
Theorem 3.1 Let (A, B) be a table algebra and $\chi \in \operatorname{Irr}(A)$. Suppose that $B / / Z(\chi)$ is an abelian group. Then $\chi(1) \zeta_{\chi}=\left|B^{+}\right| /\left|Z(\chi)^{+}\right|$.

Proof From the above remark it is enough to show that for every $b \in B-Z(\chi)$, $\chi(b)=0$. To do so, let $b \in B-Z(\chi)$. First we assume that χ is faithful. Then from Lemma 2.4, $Z=Z(\chi)$ is cyclic as a finite group. Since

$$
1=|b / / Z|=\left|Z^{+}\right|^{-1}\left|(Z b Z)^{+}\right|=\left|Z^{+}\right|^{-1}\left|(b Z)^{+}\right|=\left|Z^{+}\right|^{-1} \frac{|b|\left|Z^{+}\right|}{\left|\operatorname{St}_{Z}(b)\right|}=\frac{|b|}{\left|\operatorname{St}_{Z}(b)\right|}
$$

where $\mathrm{St}_{Z}(b)=\{t \in Z \mid b t=b\}$, we conclude that $\left|\mathrm{St}_{Z}(b)\right|>1$. Thus there is an element $t \in Z$ such that $b t=b$. Then $\chi(b)=\chi(b t)=\operatorname{tr} D(b t)=\operatorname{tr}(D(b) D(t))=$ $\lambda_{b} \chi(b)$. Since $\lambda_{b} \neq 1$, from the latter equality we have $\chi(b)=0$, as desired.

Now we suppose that $K=\operatorname{ker}(\chi) \neq\{1\}$. Then from Theorem 2.1, we can consider faithful irreducible character χ^{\prime} of quotient table algebra $(A / / K, B / / K)$ such that

$$
\chi^{\prime}(b / / K)=\frac{|b / / K|}{|b|} \chi(b) .
$$

Furthermore,

$$
\begin{aligned}
Z\left(\chi^{\prime}\right) & =\left\{b / / K \in B / / K| | \chi^{\prime}(b / / K)\left|=|b / / K| \chi^{\prime}(1)\right\}\right. \\
& =\left\{b / / K \in B / / K\left|\frac{|b / / K|}{|b|}\right| \chi(b)\left|=|b / / K| \chi^{\prime}(1 / / K)\right\}\right. \\
& =\{b / / K \in B / / K| | \chi(b)|=|b| \chi(1)\} \\
& =\{b / / K \in B / / K \mid b \in Z\}=Z / / K .
\end{aligned}
$$

Since from [4, Proposition 2.13] we have $(B / / K) / /(Z / / K)=B / / Z$, we conclude that $(B / / K) / / Z\left(\chi^{\prime}\right)$ is an abelian group. Then from the first part of proof we conclude that for every $b / / K \in B / / K-Z\left(\chi^{\prime}\right), \chi^{\prime}(b / / K)=0$. This implies for every $b \in B-Z$, $\chi(b)=0$.

The following corollary is a generalization of [5, Theorem 2.31].
Corollary 3.2 Let (A, B) be a commutative table algebra. Suppose that $\chi \in \operatorname{Irr}(A)$ such that $Z(\chi)$ is a strongly normal closed subset of B. Then

$$
\zeta_{\chi}=\frac{\left|B^{+}\right|}{\left|Z(\chi)^{+}\right|}
$$

Corollary 3.3 ([5, Theorem 2.31]) Let G be a finite group. Suppose that $\chi \in \operatorname{Irr}(G)$ such that $G / Z(\chi)$ is abelian. Then $\chi(1)^{2}=|G: Z(\chi)|$.

Proof Let C_{1}, \ldots, C_{h} be the conjugacy classes of G. Put $\mathrm{Cla}(G)=\left\{K_{1}, \ldots, K_{h}\right\}$, where $K_{i}=\sum_{g \in C_{i}} g$. Then it is known that $(Z(\mathbb{C} G), \mathrm{Cla}(G))$ is a commutative table algebra, where $Z(\mathbb{C} G)$ is the center of group algebra $\mathbb{C} G$. One can see that the degree map of $(Z(\mathbb{C} G), \mathrm{Cla}(G))$ is defined by $K_{i} \rightarrow\left|C_{i}\right|$, for every $1 \leq i \leq h$, and $\left\{\omega_{\chi} \mid \chi \in \operatorname{Irr}(A)\right\}$ is the set of irreducible characters of $Z(\mathbb{C}(G))$, where

$$
\begin{equation*}
\omega_{\chi}\left(K_{i}\right)=\frac{\chi(g)\left|C_{i}\right|}{\chi(1)} \tag{3.3}
\end{equation*}
$$

for some $g \in C_{i}$. Moreover, for every $\chi \in \operatorname{Irr}(A)$, we have $\zeta_{\omega_{\chi}}=\chi(1)^{2}$. From (3.3) it follows that the closed subset $Z\left(\omega_{\chi}\right)$ corresponds to $Z(\chi) \unlhd G$. Then one can see that

$$
\mathrm{Cla}(G / Z(\chi)) \simeq \mathrm{Cla}(G) / / Z\left(\omega_{\chi}\right)
$$

(see [3]). So our assumption implies that $\operatorname{Cla}(G) / / Z\left(\omega_{\chi}\right)$ is a finite group. Hence by Corollary 3.2 it follows that $\chi(1)^{2}=\zeta_{\omega_{\chi}}=\left|G: Z\left(\omega_{\chi}\right)^{+}\right|=|G: Z(\chi)|$, as desired.

Example 3.4 Let A be a $\left(\mathbb{C}\right.$-linear space with the basis $B=\left\{b_{0}=1, b_{1}, b_{2}, b_{3}\right\}$ such that

$$
\begin{array}{ll}
b_{1}^{2}=b_{0}, & b_{1} b_{2}=b_{2} \\
b_{2}^{2}=2 b_{3}, & b_{1} b_{3}=b_{3} \\
b_{3}^{2}=2 b_{2}, & b_{2} b_{3}=2 b_{0}+2 b_{1} .
\end{array}
$$

Then one can see that the pair (A, B) is a commutative table algebra, and an easy computation shows that the character table of (A, B) is

	b_{0}	b_{1}	b_{2}	b_{3}	$\zeta_{\chi_{i}}$
χ_{1}	1	1	2	2	1
χ_{2}	1	1	2ω	$2 \omega^{2}$	1
χ_{3}	1	1	$2 \omega^{2}$	2ω	1
χ_{4}	1	-1	0	0	3

where ω is a primitive third root of unity. One can see that $Z\left(\chi_{4}\right)=\left\{b_{0}, b_{1}\right\}$ is a strongly normal closed subset of B and $B / / Z\left(\chi_{4}\right)$ is an abelian group. Then the assertion of Corollary 3.2 holds.

Remark 3.5 The strongly normal condition in Corollary 3.2 is a necessary condition. In the example below we give a commutative table algebra for which the assertion of Corollary 3.2 does not hold.

Example 3.6 Let A be a $\left(\mathbb{C}\right.$-linear space with the basis $B=\left\{b_{0}=1, b_{1}, b_{2}, b_{3}\right\}$ such that

$$
\begin{array}{ll}
b_{1}^{2}=b_{0}, & b_{1} b_{2}=b_{3} \\
b_{2}^{2}=2 b_{0}+b_{2}, & b_{1} b_{3}=b_{2}, \\
b_{3}^{2}=2 b_{0}+b_{2}, & b_{2} b_{3}=2 b_{1}+b_{3}
\end{array}
$$

Then one can see that the pair (A, B) is a commutative table algebra and an easy computation shows that the character table of (A, B) is

	b_{0}	b_{1}	b_{2}	b_{3}	$\zeta_{\chi_{i}}$
χ_{1}	1	1	2	2	1
χ_{2}	1	-1	2	-2	1
χ_{3}	1	-1	-1	1	2
χ_{4}	1	1	-1	-1	2

One can see that $Z\left(\chi_{3}\right)=\left\{b_{0}, b_{1}\right\}$ is not a strongly normal closed subset of B, and thus the assertion of Corollary 3.2 does not hold.

References

[1] Z. Arad, E. Fisman, and M. Muzychuk, Generalized table algebras. Israel J. Math. 114(1999), 29-60. http://dx.doi.org/10.1007/BF02785571
[2] J. Bagherian and A. Rahnamai Barghi, Burnside-Brauer theorem for table algebras. Electron. J. Combin. 18(2011), P204.
[3] H. I. Blau, Quotient structures in C-algebras. J. Algebra 177(1995), no. 1, 297-337. http://dx.doi.org/10.1006/jabr. 1995.1300
[4] H. I. Blau and P.-H. Zieschang, Sylow theory for table algebras, fusion rule algebras, and hypergroups. J. Algebra 273(2004), no. 2, 551-570. http://dx.doi.org/10.1016/j.jalgebra.2003.09.041
[5] I. M. Isaacs, Character theory of finite groups. Pure and Applied Mathematics, 69, Academic Press [Harcourt Brace Jovanovich Publishers], New York-London, 1976.
[6] A. Hanaki, Faithful representation of association schemes. Proc. Amer. Math. Soc. 139(2011), no. 9, 3191-3193. http://dx.doi.org/10.1090/S0002-9939-2011-11026-8
[7] A. Rahnamai Barghi and J. Bagherian, Standard character condition for table algebras. Electron. J. Combin. 17(2010), no. 1, R13.
[8] B. Xu, Characters of table algebras and applications to association schemes. J. Combin. Theory Ser. A 115(2008), no. 8, 1358-1373. http://dx.doi.org/10.1016/j.jcta.2008.02.005

Department of Mathematics, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran e-mail: bagherian@sci.ui.ac.ir

[^0]: Received by the editors October 31, 2012.
 Published electronically January 18, 2014.
 This research was partially supported by the Center of Excellence for Mathematics, University of Isfahan.

 AMS subject classification: 20C99, 16G30.
 Keywords: table algebra, faithful module, multiplicity of character.

