
JFP 22 (2): 153–180, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000044 First published online 16 March 2012

153

Pure Type System conversion is always typable

VINCENT SILES

Ecole Polytechnique/INRIA/Laboratoire PPS, Equipe πr2

(e-mail:)vincent.siles@polytechnique.edu)

HUGO HERBELIN

INRIA/Laboratoire PPS, Equipe πr2

(e-mail:)hugo.herbelin@inria.fr)

Abstract

Pure Type Systems are usually described in two different ways, one that uses an external

notion of computation like beta-reduction, and one that relies on a typed judgment of equality,

directly in the typing system. For a long time, the question was open to know whether both

presentations described the same theory. A first step towards this equivalence has been made

by Adams for a particular class of Pure Type Systems (PTS) called functional. Then, his

result has been relaxed to all semi-full PTSs in previous work. In this paper, we finally give a

positive answer to the general question, and prove that equivalence holds for any Pure Type

System.

1 Introduction

Dependent type systems are used as a basis for both formalizing mathematics and

building more expressive programming languages. Some popular implementations

of those concepts are the proof systems Coq1 - which is built on top of the Calculus

of Inductive Constructors (Werner, 1994) - Isabelle-HOL2 - which can be seen as

an extension of Girard’s system Fω - and the dependently typed programming

language Agda 2 (Norell, 2007). A key ingredient of these systems is the presence

of an internal notion of equality based on β-conversion or βη-conversion. However,

two traditional presentations of this equality can be found in the literature. One way

to express it is to rely on an “untyped conversion” rule of the form:

Γ � M : A Γ � B type

Γ � M : B
A=βB

Untyped conversion is the equality conventionally used to define, e.g. the Calculus

of Inductive Constructions. The equality is a black box that knows nothing about

the typing validity of the terms it deals with: each conversion step is not checked

to be well-typed and it is only a posteriori that we know that for two convertible

well-typed terms, there is a path exclusively made of well-typed terms that connects

1 http://coq.inria.fr/refman/
2 http://www.cl.cam.ac.uk/research/hvg/Isabelle/

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

154 V. Siles and H. Herbelin

them (see Corollary 2.9). A second approach embeds a notion of equality directly

in the type system. So there are two kinds of typing judgments: one to type terms,

and the other to type equalities. With this kind of approach, we enforce that every

conversion step is well-typed:

Γ �e M : A Γ �e A =β B type

Γ �e M : B

Those systems are known as “type systems with judgmental equality”. The equality

knows some typing information, and needs to fulfill some typing constraints to

hold, it is not an external tool anymore. This is the case of Martin-Löf ’s Type

Theory (Martin-Löf, 1984; Nordstrom et al., 1990) from which Agda 2 is derived,

or UTT (Goguen, 1994).

Surprisingly, showing the equivalence between those two definitions is difficult.

Translating a judgmental equality into an untyped one is simple, but the reverse

translation is significantly more difficult. Geuvers (1993) early noticed that being

able to lift an untyped equality to a typed one, i.e. to turn a system with β-conversion

into a system with judgmental equality requires to show Subject Reduction in the

latter system:

If Γ �e M : A and M �β N then Γ �e M =β N : A.

Subject Reduction requires the injectivity of dependent products ΠxA.B :

If Γ �e ΠxA.B =β ΠxC.D type then Γ �e A =β C type and Γ(x : A) �e B =β D type.

This property itself relies on a notion of typed confluence which again involves

Subject Reduction: we are facing a circular dependency.

Both presentations have their own purpose but in two different directions. Because

they carry more typing information, the systems based on judgmental equality are

convenient for building models (Goguen, 1994; Abel et al., 2007; Abel, 2010;

Werner & Lee, 2011). On the other hand the typing judgments are irrelevant for

computation, and with untyped conversion one can concentrate on the purely

computational content of conversion. Those systems are also better suited for type-

checking and type-inference as developed in van Benthem Jutting et al. (1993) with

the definition of a syntax directed version of Pure Type Systems. However, there

is still a missing link between both presentations to ensure that they are effectively

describing the same theory.

Besides looking for a better understanding of the relations between typed and

untyped equality, another motivation is to apply such an equivalence to the

foundations of proof assistants. For instance, for Coq, the construction of a set-

theoretical model (on which relies the consistency of some standard mathematical

axioms) requires the use of a typed equality. However, the implementation relies on

an untyped version of the same system. By achieving the equivalence between both

presentations, we would be able to assert that a set-theoretical model, such as the

one given by Werner and Lee, correctly applies to the actual implementation.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 155

The first proofs of equivalence only concerned particular cases without aiming

for a general statement, and were based on construction of models, one system

at a time (Geuvers, 1993; Goguen, 1994; Abel et al., 2007). However, this kind of

approach does not scale easily since it relies on the underlying model construction,

which is closely linked to the structure of each particular system.

Among type systems, the class of Pure Type Systems (or PTSs) that Berardi (1990)

and Terlouw (1989) independently introduced as a generalization of Barendregt’s

λ-cube (Barendregt, 1991) is a framework based on untyped conversion which is

at the core of the world of dependent types, with the (dependent) implication as

only type constructor. Most complex systems are built on top of a particular PTS

by adding new kinds of type constructors or concepts (inductive types, intersection

types, subtyping, . . .).

A few years ago, Adams (2006) showed that building models was not necessary

to connect PTSs and their counterpart with judgmental equality (also knows as

semantical PTS Geuvers, 1993, or PTSe); he proved by purely syntactical means3

that every functional Pure Type System is equivalent to its variant with judgmental

equality. The authors also made a new step toward an extension of the result to

all PTSs by reusing Adams’ technique to prove that the equivalence also holds for

any semi-full Pure Type System (Siles & Herbelin, 2010). The main idea of those

proofs is to define an intermediate system called Typed Parallel One Step Reduction

(or TPOSR) that combines the idea of a typed equality with the idea of parallel

reduction which is at the heart of the proof of Confluence.

In this paper, we shall prove that the equivalence holds for any PTS : every

instance of Pure Type System is equivalent to its judgmental equality counterpart.

To do so, we extended Adams’ TPOSR definition into a new system which enjoys

the same properties about typing and reduction, while keeping the whole generality

of PTSs: Pure Type System based on Annotated Typed Reduction (PTSatr).

PTSatr can be seen as an operational presentation of PTSe with enough typing

information embedded in terms so that the main meta-theoretical properties of

PTSs hold, starting with Π-injectivity. That Π-injectivity holds is not obvious and a

byproduct of our approach is that only a nonuniformly typed form of Π-injectivity

holds. This weak Π-injectivity is, however, enough to get Church-Rosser and Subject

Reduction, and this is shown in Section 3. The equivalence comes then from the

ability to annotate any derivation in PTSs or PTSe so that it holds in PTSatr . We

show how to do that for PTSs in Section 4.

The whole process that we are going to describe involves some quite complicated

structures and large mutual inductive proofs, so everything stated in this paper has

been formalized (using de Bruijn indices 1972) in the proof assistant Coq. The whole

development can be found in Siles (2010).

By closing this open problem, we are one step closer to more complex typing

systems, for example, systems with subtyping like the Extended Calculus Of Con-

structions (Luo, 1989) and the Calculus of Inductive Constructions, or systems with

3 Formalizable in primitive recursive arithmetic.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

156 V. Siles and H. Herbelin

more expressive conversion that consider η-expansion (as in Geuvers & Werner

1994).

2 The meta-theory of PTS

In this section, we give the definitions of Pure Type System and Pure Type System

with Judgmental Equality, its “typed” counterpart. We also recall the main properties

of these systems, and the main issues that one faces while trying to prove that both

presentations are equivalent.

2.1 Terms and untyped reductions

The terms used in the following type systems are the usual λ-calculus terms

a la Church - variable, abstraction and application - extended with two more

constructions which are the entry points of types inside terms: Π-types and sorts.

Structure of terms and contexts

s : Sorts

x : Vars

A, B,M,N ::= s | x | MN | λxA.M | ΠxA.B

Γ ::= ∅ | Γ(x : A)

The Π construct is used to type functions, and is usually denoted A → B when B

does not depend on its argument. If there is a dependency, we keep track of the

binding variable x with this notation.

The set Sorts is the first parameter that defines an instance of PTS. Sorts are

used to assert that a term can correctly be used in a typing position. We will see

how it works in more detail after the introduction of the typing rules. The set of

variables Vars is assumed to be infinite and is common to all PTSs. In the following,

we consider s, si and t to be in Sorts, and x, y and z to be in Vars. A context is

a list of terms labeled by distinct variables, e.g. Γ ≡ (x1 : A1) . . . (xn : An), where all

the xi are distinct. Since we want to handle dependent types, the order inside the

context matters: a xi can only appear in Aj where j > i. Γ(x) = A is shorthand for

(x : A) ∈ Γ and ∅ denotes the empty context. The domain Dom(Γ) of a context Γ

is defined as the set of xi such that Γ(xi) exists. The concatenation of two contexts

whose domains are disjoint is written Γ1Γ2.

The term λxA.M (resp. ΠxA.B) binds the variable x in M (resp. B) but not in A

and the set of free variables (fv) is defined as usual according to those binding rules.

We use an external notion of substitution: M[N/x] stands for the term M where

all the free variables x have been replaced by N, without any variable capture. We

can extend the substitution to contexts (in this case, we consider that x �∈ Dom(Γ)).

Γ[N/x] is recursively defined as :

1. ∅[N/x] � ∅
2. (Γ(y : A))[N/x] � Γ[N/x](y : A[N/x])

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 157

The notion of β-reduction (→β) is defined as the congruence closure of the relation

(λxA.M)N →β M[N/x] over the grammar of terms. The reflexive-transitive closure

of →β is written as �β , and its reflexive-symmetric-transitive closure as =β . The

notion of syntactic equality (up to α-conversion) is denoted as ≡.

At this point, it is important to notice the order in which we can prove things:

Confluence of the β-reduction can be established before even defining the typing

system, it is only a property of the reduction. Using this, we can prove some useful

properties of Π-types and sorts:

Lemma 2.1 (Confluence and its consequences)

• If M �β N and M �β P then there is Q such that N �β Q and P �β Q.

• Π-injectivity: If ΠxA.B =β ΠxC.D then A =β C and B =β D

• If s =β t then s ≡ t.

2.2 Presentation of Pure Type Systems

2.2.1 Pure Type System

A PTS is a generic framework to study a family of type systems all at once.

Popular type systems like Simply Typed Lambda Calculus, System F , or Calculus of

Constructions (CoC) are part of this family. There is a well-established literature on

PTSs and we only recall the main ideas of those systems. The reader interested in

more details is invited to look for instance at Geuvers & Nederhof, 1991; Barendregt,

1992; Geuvers, 1993.

The generic nature of PTSs arises in the typing rules for sorts and Π-types. The

set of axioms A ⊂ (Sorts × Sorts) is used to type sorts: (s, t) ∈ A means that the

sort s can be typed by the sort t. The set of rules R ⊂ (Sorts× Sorts× Sorts) is used

to check the well-formedness of Π-types.

In this paper, we describe a variant of PTSs (which is known to be equivalent

to their usual description, see (Pollack, 1994) or the proof provided in the Coq

formalization) which uses a notion of “well-formed contexts”. The typing rules for

PTSs are given in Figure 1. Intuitively, Γ � M : T can be read as “the term M has

type T in the context Γ”, and Γ � A : s as “A is a valid type in Γ”. As we can see,

the conv rule relies on the external notion of β-conversion, so we do not check that

every step of the conversion is well-typed.

In this paper, we refer to some subclasses of PTSs:

Functional, full and semi-full PTS

• A PTS is functional if:

1. For all s, t, t′, if (s, t) ∈ A and (s, t′) ∈ A then t ≡ t′.

2. For all s, t, u, u′, if (s, t, u) ∈ R and (s, t, u′) ∈ R then u ≡ u′.

• A PTS is semi-full4 if (s, t, u) ∈ R implies that for all t′, there is u′ such that

(s, t′, u′) ∈ R.

4 The notion of semi-full is due to Pollack, see (van Benthem Jutting et al., 1993).

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

158 V. Siles and H. Herbelin

∅wf

nil

Γ � A : s x /∈ Dom(Γ)

Γ(x : A)wf

cons

Γwf (s, t) ∈ A
Γ � s : t

sort

Γwf Γ(x) = A

Γ � x : A
var

Γ � A : s Γ(x : A) � B : t

(s, t, u) ∈ R Γ(x : A) � M : B

Γ � λxA.M : ΠxA.B
lam

Γ � A : s Γ(x : A) � B : t (s, t, u) ∈ R
Γ � ΠxA.B : u

pi

Γ � M : ΠxA.B Γ � N : A

Γ � MN : B[N/x]
app

Γ � M : A A =β B Γ � B : s

Γ � M : B
conv

Fig. 1. Typing rules for PTS.

• A PTS is full if for any s, t, there is u such that (s, t, u) ∈ R.

Obviously, a full PTS is also semi-full.

Lemma 2.2 (Type Uniqueness for functional PTS)

In any functional PTS, if Γ � M : T and Γ � M : T ′ then T =β T ′.

The following properties hold for all PTSs. They are the basic meta-theory that

we need to prove the interesting theorems.

Lemma 2.3 (Weakening)

1. If Γ1Γ2 � M : B and Γ1 � A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 � M : B.

2. If Γ1Γ2 wf and Γ1 � A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 wf .

Lemma 2.4 (Substitution)

1. If Γ1(x : A)Γ2 � M : B and Γ1 � P : A then Γ1Γ2[P/x] � M[P/x] : B[P/x].

2. If Γ1(x : A)Γ2 wf and Γ1 � P : A then Γ1Γ2[P/x]wf .

While proving facts about PTSs, we often need to compute some typing infor-

mation about the subterms of one judgment. To do this, we frequently use the

Generation (or Inversion) property:

Theorem 2.5 (Generation)

1. If Γ � s : T then there is t such that (s, t) ∈ A and T =β t.

2. If Γ � x : A then there is B such that Γ(x) = B and A =β B.

3. If Γ � ΠxA.B : T then there are s1, s2, s3 such that Γ � A : s1, Γ(x : A) � B : s2,

(s1, s2, s3) ∈ R and T =β s3.

4. If Γ � λxA.M : T then there are s1, s2, s3 and B such that Γ � A : s1,

Γ(x : A) � B : s2, Γ(x : A) � M : B, (s1, s2, s3) ∈ R and T =β ΠxA.B.

5. If Γ � M N : T then there are A and B such that Γ � M : ΠxA.B, Γ � N : A

and T =β B[N/x].

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 159

Lemma 2.6 (Type Correctness)

If Γ � M : T , then there is s such that T ≡ s or Γ � T : s.

Since we want the full generality of PTSs, we need to distinguish between the two

conclusions: nothing ensures that all sorts are well-typed.

The notion of β-conversion can easily be extended to context since they are

ordered lists of terms:

Context conversion

• ∅ =β ∅.

• If Γ =β Γ′, A =β B and x �∈ Dom(Γ), then Γ(x : A) =β Γ′(x : B).

Lemma 2.7 (Context Conversion in Judgments)

If Γ � M : A, Γ =β Γ′ and Γ′
wf then Γ′ � M : A.

With all those tools, we can now prove the main property of PTSs, which states

that computation preserves typing:

Theorem 2.8 (Subject Reduction)

If Γ � M : A and M →β N, then Γ � N : A.

Proof

The proof can be found in Barendregt (1992). We just want to put forward that it

relies on Confluence, more precisely on the Π-injectivity of β-reduction. �

Now that we have Subject Reduction, we can prove that any use of the conv rule

is sound, even if the conversion path uses ill-typed terms. If this is the case, we can

find another path only made of well-typed terms.

Corollary 2.9 (Using conv is always sound)

If Γ � M : A, Γ � B : s and A =β B, then there is a sequence (C1, s1), . . . , (Cp, sp)

such that A ≡ C1, B ≡ Cp, Γ � Ci : si and Ci →β Ci+1 or Ci+1 →β Ci.

Proof

Let us suppose we have Γ � M : A, Γ � B : s and A =β B. By Confluence, there is

C such that A �β C β� B. By Type Correctness, there is t such that Γ � A : t, or

A ≡ t:

1. In the first case, by Subject Reduction, we know that any term that appears in

the reduction A →β A1 →β . . . →β Ak →β C is typed by t, and any term that

appears in the reduction B →β B1 →β . . . →β Bl →β C is typed by s. So we

can take the sequence (A, t), (A1, t), . . . , (Ak, t), (C, t), (Bl, s), . . . , (B1, s), (B, s).

2. In the second case, B =β t and by Confluence, B →β B1 →β . . . →β Bp →β t.

Subject Reduction implies that Γ � t : s. So this time, we can choose the

sequence (A, s), (Bp, s), . . . , (B1, s), (B, s).

�

It is here interesting to see that in the first case, the path between T and T ′ is

well-typed by sorts, but nothing guarantees that we can have the same sort in both

branches. If we wanted to do so, we would need to be in a functional PTS.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

160 V. Siles and H. Herbelin

∅wf

nil

Γ �e A : s x /∈ Dom(Γ)

Γ(x : A)wf

cons

Γwf (s, t) ∈ A
Γ �e s : t

sort

(s1, s2, s3) ∈ R
Γ �e A : s1 Γ(x : A) �e B : s2

Γ �e ΠxA.B : s3
pi

Γwf (s, t) ∈ A
Γ �e s =β s : t

sort-eq

(s1, s2, s3) ∈ R
Γ �e A =β A′ : s1 Γ(x : A) �e B =β B′ : s2

Γ �e ΠxA.B =β ΠxA
′
, B′ : s3

pi-eq

Γwf Γ(x) = A

Γ �e x : A
var

Γ �e A : s1 Γ(x : A) �e B : s2
(s1, s2, s3) ∈ R Γ(x : A) �e M : B

Γ �e λx
A.M : ΠxA.B

lam

Γwf Γ(x) = A

Γ �e x =β x : A
var-eq

Γ �e A =β A′ : s1 Γ(x : A) �e B : s2
(s1, s2, s3) ∈ R Γ(x : A) �e M =β M′ : B

Γ �e λx
A.M =β λxA

′
.M′ : ΠxA.B

lam-eq

Γ �e M : A Γ �e A =β B : s

Γ �e M : B
conv

Γ �e M : ΠxA.B Γ �e N : A

Γ �e MN : B[N/x]
app

Γ �e M =β N : A Γ �e A =β B : s

Γ �e M =β N : B
conv-eq

Γ �e M =β M′ : ΠxA.B Γ �e N =β N′ : A

Γ �e MN =β M′N′ : B[N/x]
app-eq

(s1, s2, s3) ∈ R
Γ �e A : s1 Γ(x : A) �e B : s2 Γ �e N : A Γ(x : A) �e M : B

Γ �e (λxA.M)N =β M[N/x] : B[N/x]
beta

Γ �e N =β M : A

Γ �e M =β N : A
sym

Γ �e M =β N : A Γ �e N =β P : A

Γ �e M =β P : A
trans

Fig. 2. Typing rules for PTSe.

2.2.2 Pure Type System with judgmental equality

There is another variant of the presentation of Pure Type System, by defining an

internal notion of equality: Pure Type System with Judgmental Equality, where every

conversion step is required to be well-typed. With those judgments, we no longer

need to rely on Confluence and Subject Reduction to ensure that conv is sound. The

typing rules for PTSe are given in Figure 2. The first thing we can prove (by direct

induction) about this system is that equality enjoys reflexivity:

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 161

Lemma 2.10 (Equality Reflexivity in PTSe)

If Γ �e M : T then Γ �e M =β M : T .

We can prove by the same arguments that some properties of PTSs also hold

for PTSe, namely Weakening, Substitution (with similar statements) and Context

Conversion:

Lemma 2.11 (Weakening in PTSe)

1. If Γ1Γ2 �e M : B, Γ1 �e A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 �e M : B.

2. If Γ1Γ2 �e M =β N : B, Γ1 �e A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 �e

M =β N : B.

3. If Γ1Γ2 wf , Γ1 �e A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 wf .

Lemma 2.12 (Substitution in PTSe)

1. If Γ1(x : A)Γ2 �e M : B and Γ1 �e P : A then Γ1Γ2[P/x] �e M[P/x] : B[P/x].

2. If Γ1(x : A)Γ2 �e M =β N : B and Γ1 �e P : A then Γ1Γ2[P/x] �e M[P/x] =β

N[P/x] : B[P/x].

3. If Γ1(x : A)Γ2 wf and Γ1 �e P : A then Γ1Γ2[P/x]wf .

Lemma 2.13 (Context Conversion in PTSe)

• If Γ1(x : A)Γ2 �e M : T and Γ1 �e A =β B : s then Γ1(x : B)Γ2 �e M : T .

• If Γ1(x : A)Γ2 �e M =β N : T and Γ1 �e A =β B : s then Γ1(x : B)Γ2 �e

M =β N : T .

• If Γ1(x : A)Γ2 wf and Γ1 �e A =β B : s then Γ1(x : B)Γ2 wf .

Later on, we will need another variant of the substitution lemma, to be able to

correctly type parallel substitutions in PTSe:

Lemma 2.14 (Parallel Substitution in PTSe)

1. If Γ1(x : A)Γ2 �e M : B and Γ1 �e P =β P ′ : A then Γ1Γ2[P/x] �e M[P/x] =β

M[P ′/x] : B[P/x].

2. If Γ1(x : A)Γ2 �e M =β N : B and Γ1 �e P =β P ′ : A then

Γ1Γ2[P/x] �e M[P/x] =β N[P ′/x] : B[P/x].

Proof

The proof of the first point is straightforward by induction on the shape of the

typing judgment Γ1(x : A)Γ2 �e M : B, using the previous Substitution lemma.

The proof of the latter is a trivial combination of trans, Substitution and the first

point. �

We can add to the list the following reflexivity properties (also known as Equation

Validity) which need to be proved along with Type Correctness:

Lemma 2.15 (Type Correctness and, Left-Hand / Right-Hand Reflexivity of PTSe)

• If Γ �e M : T or Γ �e M = N : T , then there is s ∈ Sorts such that T ≡ s or

Γ �e T : s.

• If Γ �e M =β N : A, then Γ �e M : A.

• If Γ �e M =β N : A, then Γ �e N : A.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

162 V. Siles and H. Herbelin

Proof

We need to prove these three propositions simultaneously for three main reasons:

1. To prove Type Correctness, we need the Right-Hand reflexivity for the conv

rule.

2. To prove both reflexivity statements, we need Type Correctness for the app-eq

rule.

3. Because of the sym rule, we need to prove both reflexivity statements at once.

Then, Left-Hand reflexivity is simply done by induction: all the premises of the

typing rules of PTSe have been chosen to correctly type the left hand-side of the

equality in the current context. However, the Right-Hand reflexivity needs additional

work. The proof is also done by induction, but Context Conversion is used in the

rules involving λ-abstractions and Π-types, and the Substitution lemmas are used

to type the right part of beta. The proof of Type Correctness also follows directly

from the mutual induction hypothesis. �

It is interesting to notice that we could have removed the dependency on Type

Correctness just by adding more typing information (like the fact that A and B are

also well-typed, with the correct sorts) to the premises of app-eq.

Our final goal is to prove the equivalence between PTS and PTSe:

Theorem 2.16 (Equivalence between PTS and PTSe)

• Γ � M : T iff Γ �e M : T

• Γ � M : T , Γ � N : T , and M =β N iff Γ �e M =β N : T

With the few results we listed for PTSe, we can already prove half of this

equivalence:

Theorem 2.17 (From PTSe to PTS)

1. If Γ �e M : A then Γ � M : A.

2. If Γ �e M =β N : A then Γ � M : A, Γ � N : A and M =β N.

Proof

The main idea of the proof is to remove the typing information from the typed

equalities. The proof is straightforward by mutual induction on the typing judg-

ments of PTSe. Context Conversion (in PTSs) is also requiered for the second

conclusion. �

2.3 Subject reduction and equivalence

We have previously seen that Subject Reduction and Π-injectivity are two important

properties of PTSs: Subject Reduction allows us to freely compute without having to

check that typing is preserved at every reduction step, and Π-injectivity is a crucial

step to prove the latter. With the basic meta-theory for PTSe at hand, we can now try

to check if both properties also holds when the equality is required to be well-typed.

If it is the case, we would be able to prove that both presentations are in fact two

different ways to describe the same theory.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 163

Theorem 2.18 (Subject Reduction)

If Γ �e M : T and M →β N then Γ �e M =β N : T .

To prove this property for PTSe, we can try the same approach that was used for

PTSs, but this requires to have the Π-injectivity for PTSe. Since we are using a typed

equality, we can express this injectivity in several ways. Here are two examples of

injectivity:

• We can completely getting rid of the types (as we did for PTSs):

If Γ �e ΠxAB =β ΠxC.D : u, then A =β C and B =β D.

• We can also try to keep as much typing information as we can:

If Γ �e ΠxA.B =β ΠxC.D : u then Γ �e A =β C : s and Γ(x : A) �e B =β D : t

for some s, t ∈ Sorts such that (s, t, u) ∈ R.

With the first solution, we lack too much type information to build the typed

equality needed by Subject Reduction. The second one is used by Adams to prove the

equivalence in the functional case. However, this statement is wrong in the general

case (this proof can also be found in the Coq formalization):

Lemma 2.19 (Strong Π-injectivity does not hold for all PTSe)

The following statement does not hold for all PTSe:

If Γ �e ΠxA.B =β ΠxC.D : u, then Γ �e A =β C : s, Γ(x : A) �e B =β D : t for

some s, t ∈ Sorts such that (s, t, u) ∈ R.

Proof

We are going to build a counterexample by selecting the right sets for Sorts, A and

R. Let us assume that previous statement of strong injectivity holds for all PTSe,

including the following ones:

• Sorts ≡ {u, v, v′, w, w′}
• A ≡ {(u, v), (u, v′), (v, w), (v′, w′)}
• R ≡ {(w,w, w), (w′, w′, w′), (v, v, u), (v′, v′, u)}

Let us define two terms D1 ≡ (λxv.u) u and D2 ≡ (λxv
′
.u) u.

1. ∅ �e D1 : v and if ∅ �e D1 : T then T =β v.

This is a consequence of our choices for the sets A and R: to type the

abstraction λxv.u, we need to find a rule (a, b, c) ∈ R and a type A such that

∅ �e v : a, (x : v) �e u : A and (x : v) �e A : b. The first typing judgment implies

that a ≡ w, and the only rule involving w is (w,w, w), so b ≡ c ≡ w. This also

implies that the only choice for A is v. Therefore, the abstraction has only one

type, v → v, and T has to be equal to v[u/x] ≡ v.

2. For the same reason, ∅ �e D2 : v′ and if ∅ �e D2 : T then T =β v′.

3. With both results and the fact that ∅ �e u : v and ∅ �e u : v′, we can prove

∅ �e D1 =β u : v and ∅ �e D2 =β u : v′.

4. The correct choice of rules in R leads to ∅ �e ΠxD1 .u =β Πxu.u : u and

∅ �e Πxu.u =β ΠxD2 .u : u, so by transitivity: ∅ �e ΠxD1 .u =β ΠxD2 .u : u.

5. Since we supposed strong-injectivity, either ∅ �e D1 =β D2 : v or ∅ �e D1 =β

D2 : v′.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

164 V. Siles and H. Herbelin

6. In both the cases, one of the reflexivity lemmas and the first two items force

v =β v′ which is impossible by Confluence (cf Lemma 2.1).

�

To prove Subject Reduction, we need a weaker form of Π-injectivity. In the next

sections, we give the description of a correct injectivity statement, but we are not able

to prove it before proving Subject Reduction. This is the reason why we postpone

this discussion to Section 4.

To prove the full equivalence between untyped conversion and judgmental equality,

we define an auxiliary type presentation PTSatr with judgments of the form Γ � M �
N : A. The intended meaning is that M of type A can do a parallel reduction step to

N. PTSatr also has more informative terms so we can directly prove properties like

Confluence, Weak Π-injectivity and Subject Reduction. There is an erasure function

| | from the annotated terms of PTSatr to original PTS and PTSe terms. The outline

of the equivalence is the following:

1. If Γ � M � N : A then |Γ| � |M| : |A| and Γ � |N| : |A|,
2. If Γ � M � N : A, then |Γ| �e |M| =β |N| : |A|,
3. If Γ � M : A, then there are Γ+, M+ and A+ such that Γ+ � M+ � M+ : A+

and |Γ+| ≡ Γ, |M+| ≡ M and |A+| ≡ A.

The properties combined show that a PTS can be embedded into a PTSe, using

PTSatr as an intermediate step.

3 Basic meta-theory of PTSatr

3.1 Definition of PTSatr

Let us go back to the question of lifting a typing judgment from PTSs to PTSe. To

do so, we need to be able to lift a conversion A =β B into a typed equality judgment

Γ �e A =β B and as said above, we would like to have Subject Reduction for PTSe

which itself requires the injectivity of Π-types.

A first proof of equivalence between PTSs and PTSe has been given by Adams

(2006) for the subclass of functional PTSs, a result that has been later extended to

the subclasses of semi-full and full PTSs by the authors (Siles & Herbelin, 2010). As

expected, the key step of these proofs is to build an intermediate system with two

major properties:

1. It has to be equivalent to both PTSs and PTSe.

2. It has to satisfy the Church-Rosser property.

With such a system, we can prove that it enjoys Π-injectivity and Subject Reduction,

and finally translate both properties into PTSe.

Since we are dealing with a typed equality, we need to build a typed version of

Church-Rosser. The usual way to prove it for β-reduction is to define a parallel

reduction that enjoys the Diamond Property, and whose transitive-closure is the

same closure as β-reduction. So Adams defined a typed version of this parallel

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 165

reduction called Type Parallel One Step Reduction to prove his result. In order to

prove the Church-Rosser property, Adams decided to annotate applications by their

co-domain, and to restrict to functional PTSs so his system would also enjoy the

Uniqueness of Types. We used the same annotation system to show that the Church-

Rosser property also holds for semi-full and full systems, but this is not enough for

the general framework.

To extend Adams’ method to the class of all PTSs and PTSe, we add a second

annotation to the applications. In his paper, he rejected this solution because it

introduced a new constraint—one has to check when one wants to reduce a β-

redex—and he did not investigate how to handle this additional complication. Such

methods have already been tried to prove normalization results for PTSs in Melliès

& Werner (1997) and for correctness and completeness results in Streicher (1991),

but we had to adapt it without any normalization requirement.

All of this has led us to define a variant of TPOSR that we call Pure Type

System based on Annotated Typed Reduction. This system is built on a trade-off: this

additional annotation allows us to get more information from our typing judgments,

but it adds new constraints in the typed reduction that we will have to face. In the

following, we give a detailed description of the systems, its properties, and of the

difficulties introduced by this new annotation.

Structure of annotated terms

A,B,M,N ::= s | x | MΠx:A.BN | λxA.M | ΠxA.B

All the other notions (context, substitution and untyped reduction) described

for the terms of PTSs are defined in the same way for PTSatr , with their natural

adaptation to the annotated applications. To avoid confusion between the reductions,

we write →p for untyped parallel reduction in PTSatr (we allow reduction in the

annotations) and � for its transitive closure (since PTSatr is a parallel system,

using a one-step parallel reduction is easier, but its closure is still the same as the

usual one-step β-reduction). We define an erasure procedure | | by induction on the

structure of terms that maps annotated PTSatr terms to non-annotated PTS ones,

by inductively removing the additional typing information within the applications.

The typing rules of PTSatr are presented in Figure 3.

As a shortcut, we use the notation Γ � M � N : A,B for “Γ � M � N : A and

Γ � M � N : B”.

The �+ (resp. ∼=β) relation can be read as the transitive (resp. transitive-symmetric)

closure of the � relation. The ∼=β judgment has to be understood as an equality

at “the level of types”, where we do not demand to keep the same sort at every

transitivity step. We need this to be able to state the Generation Lemmas correctly,

since we do not have the Uniqueness of Types in the general case. To avoid confusion

in further development, here is a reminder of the several variants of β-equality we

are dealing with:

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

166 V. Siles and H. Herbelin

∅wf empty

Γ � A � B : s x /∈ Dom(Γ)

Γ(x : A)wf
extend

Γwf (s, t) ∈ A
Γ � s � s : t

sort

Γwf Γ(x) = A

Γ � x � x : A
var

(s1, s2, s3) ∈ R
Γ � A � A′ : s1 Γ(x : A) � B � B′ : s2

Γ � ΠxA.B � ΠxA
′
.B′ : s3

prod

Γ � A � A′ : s1 (s1, s2, s3) ∈ R
Γ(x : A) � B � B : s2 Γ(x : A) � M � M′ : B

Γ � λxA.M � λxA
′
.M′ : ΠxA.B

lam

(s1, s2, s3) ∈ R
Γ � A � A′ : s1 Γ(x : A) � B � B′ : s2
Γ � M � M′ : ΠxA.B Γ � N � N′ : A

Γ � MΠx:A.BN � M′
Πx:A′ .B′N

′ : B[N/x]
app

Γ � A � A : s1 Γ � A′ � A′ : s1
Γ � A0 �+ A : s1 Γ � A0 �+ A′ : s1 (s1, s2, s3) ∈ R

Γ(x : A) � B � B : s2 Γ(x : A) � M � M′ : B Γ � N � N′ : A

Γ � (λxA.M)Πx:A′ .BN � M′[N′/x] : B[N/x]
beta

Γ � M � N : A Γ � A � B : s

Γ � M � N : B
red

Γ � M � N : A Γ � B � A : s

Γ � M � N : B
exp

Γ � M � N : A

Γ � M �+ N : A
reds-intro

Γ � M �+ N : A Γ � N �+ P : A

Γ � M �+ P : A
reds-trans

Γ � A � B : s

Γ � A ∼=β B
eq-intro

Γ � B � A : s

Γ � A ∼=β B
eq-intro2

Γ � A ∼=β B Γ � B ∼=β C

Γ � A ∼=β C
trans

Fig. 3. Typing rules and type equality for PTSatr .

Notation Terms Systems Meaning

M ≡ N all all syntactic (α-conversion)

M =β N non-annotated PTS β-conversion

Γ �e M =β N : T non-annotated PTSe β-conversion with typing constraints

Γ � M ∼=β N annotated PTSatr β-conversion with typing constraints

The meaning of the beta rule is to ensure that there is a conversion path from

the annotation A of the λ-abstraction, to the annotation of the application A′,

where each step is typed by the sort s1 (which is the first sort of the triple). As

Adams pointed out for TPOSR, having A instead of A′ would break the linearity

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 167

of the left-hand side of the rule: a β-redex would only be able to reduce if both

annotations are syntactically equal, which may not be the case (especially during the

proof of the Church-Rosser property). To get over this limitation, we require that

both annotations must be convertible, and the path between them has to be typed

by the same sort.

The equality ∼=β ensures that each step is typed by a sort, but does not guarantee

that each step use the same one, so we cannot use it directly. Using another equality

where we ensure that each step lives in the same type (much like PTSe equality) did

not help at all in the following proofs. That is the reason why we stated the system

with this “common expanded form” rather than with another new judgment that

would not be used elsewhere.

We do not directly have a symmetry statement for ∼=β equality in order to have

more control over the equality, but this rule is straightforward to prove by induction:

Lemma 3.1 (Symmetry for ∼=β)

If Γ � A ∼=β B then Γ � B ∼=β A.

3.2 General properties of PTSatr

From now on, we consider the general case of PTSs, without any restrictions: we

can start to prove some properties of PTSatr (by mutual induction over � and �+

at once):

Lemma 3.2 (Weakening)

1. If Γ1Γ2 � M � N : B and Γ1 � A � A′ : s and x /∈ Dom(Γ1Γ2) then

Γ1(x : A)Γ2 � M � N : B.

2. If Γ1Γ2 � M �+ N : B and Γ1 � A � A′ : s and x /∈ Dom(Γ1Γ2) then

Γ1(x : A)Γ2 � M �+ N : B.

3. If Γ1Γ2 wf and Γ1 � A � A′ : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 wf .

We extend the notion of equality on terms to equality on contexts, which are

nothing but ordered lists of terms:

Context conversion

• ∅ ∼=β ∅.

• If Γ ∼=β Γ′, Γ � A ∼=β B and x �∈ Dom(Γ), then Γ(x : A) ∼=β Γ′(x : B).

Lemma 3.3 (Conversion in Context)

• If Γ � M � N : A and Γ ∼=β Γ′ then Γ′ � M � N : A.

• If Γ � M �+ N : A and Γ ∼=β Γ′ then Γ′ � M �+ N : A.

• If Γ � A ∼=β B and Γ ∼=β Γ′ then Γ′ � A ∼=β B.

The following lemmas are still proved by mutual induction, but they have to be

proved in this order since they also rely on the lemma just before them.

Lemma 3.4 (Left-Hand Reflexivity)

If Γ � M � N : A or Γ � M �+ N : A, then Γ � M � M : A.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

168 V. Siles and H. Herbelin

Lemma 3.5 (Parallel Substitution)

1. If Γ1(x : A)Γ2 � M � N : B and Γ1 � P � P ′ : A then

Γ1Γ2[P/x] � M[P/x] � N[P ′/x] : B[P/x].

2. If Γ1(x : A)Γ2 � M �+ N : B and Γ1 � P � P ′ : A then

Γ1Γ2[P/x] � M[P/x] �+ N[P ′/x] : B[P/x].

3. If Γ1(x : A)Γ2 wf and Γ1 � P � P ′ : A then Γ1Γ2[P/x]wf .

Lemma 3.6 (Right-Hand Reflexivity)

1. If Γ � M � N : A or Γ � M �+ N : A, then Γ � N � N : A.

2. If Γ � A ∼=β B, then Γ � A � A : s and Γ � B � B : t for some sorts s and t.

The following lemma is an adapted version of the Generation Lemma introduced

for PTSs. By adding both annotations, we do not have to “guess” the domain and

co-domain of an application anymore.

Lemma 3.7 (Generation)

1. If Γ � s � N : T then N ≡ s and there is t such that (s, t) ∈ A and either

T ≡ t or Γ � T ∼=β t.

2. If Γ � x � N : T then N ≡ x and there is A such that Γ(x) = A and

Γ � T ∼=β A.

3. If Γ � ΠxA.B � N : T then there are A′, B′, s1, s2, s3 such that N ≡ ΠxA
′
.B′,

(s1, s2, s3) ∈ R, Γ � A � A′ : s1, Γ(x : A) � B � B′ : s2 and either T ≡ s3 or

Γ � T ∼=β s3.

4. If Γ � λxA.M � N : T then there are A′,M ′, B, s1, s2, s3 such that N ≡ λxA
′
.M ′,

(s1, s2, s3) ∈ R, Γ � A � A′ : s1, Γ(x : A) � B � B : s2, Γ(x : A) � M � M ′ : B

and Γ � T ∼=β ΠxA.B.

5. If Γ � PΠx:U.BQ � N : T then there are A,A′, B′, Q′, s1, s2, s3 such that

(s1, s2, s3) ∈ R,

Γ � A � A′ : s1, Γ(x : A) � B � B′ : t2, Γ � Q � Q′ : A, Γ � T ∼=β B[Q/x] and

• either (app case) U ≡ A, Γ � P � P ′ : ΠxA.B and N ≡ P ′
Πx:A′ .B′Q′ for some

P ′

• or (beta case) U ≡ A′′, P ≡ λxA.R, Γ(x : A) � R � R′ : B, N ≡ R′[Q′/x],

Γ � A0 �+ A′′ : s1 and Γ � A0 �+ A : s1 for some A0, A
′′, R, R′.

Proof

As for PTSs, the proof is done by induction on the shape of the typing

judgment. �

One of the key-points to prove the Church-Rosser property for β-reduction (more

exactly, to prove that the usual reduction and the parallel one have the same

transitive closure) is that β enjoys some multi-step congruence properties like:

• If A �β B and C �β D, then ΠxA.C �β ΠxB.D

• If A �β B and M �β N, then λxA.M �β λxB.N

• . . .

However, to have the same properties in PTSatr , that is with type restrictions to fulfill,

those lemmas can be hard to prove, especially for the application case. To prove these

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 169

properties about multi-step congruence, Adams used the Type Uniqueness property

thanks to its functional setting. To prove those multi-step congruence results for

PTSatr , we need to find something new. A particular example of what we need arise

in the multi-step congruence case of application, where we need to check that terms

are typed by the triple of sorts in R. For example, we know that Γ � A � A : s and

Γ � A �+ A′ : t, but we need the latter statement typed by s. With Type Uniqueness,

we would be able to prove that s ≡ t, but this is not true in the general case. What

we would like to do it to keep the reduction skeleton of the second statement and

use it with the types of the first judgment.

The following theorem is a sufficient tool to achieve this task:

Theorem 3.8 (Exchange of Types)

If Γ � M � N : A and Γ � M � P : B, then Γ � M � N : B and Γ � M � P : A.

Proof

By induction on the first judgment and Generation on the second one, there are no

difficult cases since we have the co-domain annotations on the applications. The

second part of the conclusion is proved by symmetry. �

The heart of this theorem is to keep the reduction structure of a derivation and

allowing to change the type annotations inside, if we have a witness that these

annotations are correct. We can directly extend this result to multi-step reduction:

Corollary 3.9 (Exchange of Types in multi-step reduction)

If Γ � M �+ N : A and Γ � M � M : B, then Γ � M �+ N : B.

It allows us to prove that the following transitivity rule for �+ is admissible:

Γ � M �+ N : A Γ � N �+ P : B

Γ � M �+ P : A
reds-trans-alt

This is the key lemma to prove our multi-step congruence lemma for PTSatr:

Lemma 3.10 (Multi-step Congruences and Generations)

• Congruences:

— If Γ � A �+ A′ : s1, Γ(x : A) � B �+ B′ : s2 and (s1, s2, s3) ∈ R, then

Γ � ΠxA.B �+ ΠxA
′
.B′ : s3.

— If Γ � A �+ A′ : s1, Γ(x : A) � M �+ M ′ : B, Γ(x : A) � B � B : s2 and

(s1, s2, s3) ∈ R, then Γ � λxA.M �+ λxA
′
,M ′ : ΠxA.B.

— If Γ � A �+ A′ : s, Γ(x : A) � B �+ B′ : t, Γ � M �+ M ′ : ΠxA.B, and

Γ � N �+ N ′ : A, then Γ � MΠx:A.BN �+ M ′
Πx:A′ .B′N ′ : B[N/x].

• (Multi-step) Generation:

— If Γ � ΠxA.B �+ N : T then there are A′, B′, s1, s2, s3 such that (s1, s2, s3) ∈
R, N ≡ ΠxA

′
.B′, Γ � A �+ A′ : s1, Γ(x : A) � B �+ B′ : s2 and Γ � T ∼=β s3

or T ≡ s3.

— If Γ � λxA.M �+ N : T then there are A′,M ′, B, s1, s2, s3 such that

(s1, s2, s3) ∈ R, N ≡ λxA
′
.M ′, Γ � A �+ A′ : s1, Γ(x : A) � M �+ M ′ : B,

Γ(x : A) � B � B : s2 and Γ � T ∼=β ΠxA.B.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

170 V. Siles and H. Herbelin

— If Γ � s �+ N : T , then there is t such that N ≡ s, (s, t) ∈ A, and

Γ � T ∼=β t or T ≡ t.

Proof

These proofs are done in the same way as their PTSs’ counterpart, by induction on

the length of the �+ reduction, along with Exchange of Types. �

This exchange of types is also used in the proof of the Church-Rosser property to

help building the right sets of sorts in R at some minor stage of the proof. However,

we use it extensively while proving that well-typed terms in PTSs can be correctly

annotated into well-typed annotated terms in PTSatr .

Lemma 3.11 (Type Correctness)

If Γ � M � N : A, then there is s ∈ Sorts such as either: A ≡ s or Γ � A � A : s.

Proof

The proof is the same as for PTSs, by induction on the typing judgment. �

Theorem 3.12 (From PTSatr to PTS and PTSe)

1. If Γ � M � N : A then |Γ| � |M| : |A|,
|Γ| � |N| : |A| and |M| =β |N|.

2. If Γ � M � N : A then |Γ| �e |M| : |A|,
|Γ| �e |N| : |A| and |Γ| �e |M| =β |N| : |A|.

Proof

As we did for the translation from PTSe into PTSs, we want to strip a PTSatr

judgment from its annotation in the application, to get a valid judgment in PTSs.

The first point is a consequence of the second and Theorem 2.17. The latter follows

the same pattern as the proof of Theorem 2.17, by induction on the typing judgment,

with some use of Context Conversion of PTSe for lam, pi, beta and app, and Parallel

Substitution for beta.

Since PTSatr is a parallel system, and PTSe is not, it is mandatory for the Parallel

Substitution lemma to be provable in the latter. �

Corollary 3.13 (Sort and Π-types incompatibility)

It is impossible to prove that Γ � ΠxA.B ∼=β s for any Γ, A, B, s.

Proof

Using Theorem 3.12, we can prove that Γ � M ∼=β N implies |M| =β |N| (by

induction on the length of the conversion path). Let us consider a judgment of the

form Γ � ΠxA.B ∼=β s. Then by translating it into a PTS equality, we end up having

Πx|A|.|B| =β s. Since β-conversion is confluent (Lemma 2.1), there is a term T such

that Πx|A|.|B| �β T and s �β T . However, this implies that T has to be a Π-type

and at the same time a sort, which is impossible. �

At this point we need to recall what we said about the order we used to prove

things in PTSs. We did not present any kind of confluence for PTSatr . The reason

is that, in a typed framework like PTSe or PTSatr , the Confluence and the Church-

Rosser properties are a blocking step. Since they mix together typing and reduction,

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 171

it is difficult to find a proof without involving the Subject Reduction of the system,

and the proof of this theorem involves already knowing the Π-injectivity property

(as required for PTSs in the previous section) which comes from Confluence.

3.3 The Church-Rosser property in PTSatr

The next step in the meta-theory is to prove the Church-Rosser property by proving

that PTSatr enjoys the Diamond Property:

Theorem 3.14 (Diamond Property)

If Γ � M � N : A and Γ � M � P : B, then there is Q such that

Γ � N � Q : A,B Γ � P � Q : A,B

It is to prove the Diamond Property property that the annotation is important.

Indeed, to make the proof goes through, we need to satisfy the following constraints:

1. Because the resulting type of an application in the app and beta rules is only

an instance B[N/x] of the original co-domain B present in the premises of the

rule, some information needs to be kept to match both co-domains involved

in the app/app, beta/app and app/beta cases;

2. Because reduction steps can occur in the occurrence of A in both λxA.M and

ΠxA.B, the induction hypotheses over the domain of types do not always

match the context of the hypothesis we actually have.

Adams solved the first problem by adding the co-domain as an annotation of

application and he solved the second problem by requiring Uniqueness of Typing

which comes from the functionality requirement of the PTSs he considered. In Siles

& Herbelin, 2010, we reused Adams’ idea for solving the first problem and used

instead a property on the shape of types (which is called Typing Lemma in van

Benthem Jutting 1993) to solve the second problem. To address the full generality

of PTSs, our solution to the second problem is to add the domain as an extra

annotation of application.

Adding the domain as an annotation raises new problems in the design of the

beta rule (Figure 3). We cannot require A and A′ to be syntactically the same in the

rule beta because A and A′ are liable to be reduced in different directions and their

syntactic equivalence would not be preserved as an invariant. We cannot take them

unrelated neither, nor can we take them ∼=β-convertible. Indeed, we need to enforce

that each conversion step stays in the same sort, much like the equality judgments

for PTSe, and for that purpose, it happens that ensuring the existence of a common

ancestor A0 for the reduction is a sufficient condition.

Proof

The proof is done by induction on the first judgment and Generation on the second

one. We only describe the beta/app. The app/app and app/beta are done in a

similar way, and all other cases are straightforward.

The two judgments are:

Γ � (λxA.M)Πx:A′ .B N � M ′[N ′/x] : B[N/x]

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

172 V. Siles and H. Herbelin

Γ � (λxA.M)Πx:A′ .B N � (λxC.M ′′)Πx:C ′ .B′′ N ′′ : B[N/x]

where5

Γ � A0 �+ A : s1 Γ � A � C : t1
Γ � A0 �+ A′ : s1 Γ(x : A′) � B � B′′ : t2
Γ(x : A) � B � B′ : s2 Γ(x : A) � M � M ′′ : D

Γ(x : A) � M � M ′ : B Γ � N � N ′′ : A′

Γ � N � N ′ : A Γ � ΠxA.D ∼=β ΠxA
′
.B

Γ � A′ � C ′ : u1

By induction (and Context Conversion for B), we can close the diamonds for M,

N and B: there are M0, N0 and B0 such that

• Γ(x : A) � M ′ � M0 : B,D and Γ(x : A) � M ′′ � M0 : B,D

• Γ � N ′ � N0 : A,A′ and Γ � N ′′ � N0 : A,A′

• Γ(x : A) � B′ � B0 : s2, t2 and Γ(x : A) � B′′ � B0 : s2, t2

Our candidate to close the diamond is M0[N0/x]. To conclude, we need to prove

that (1) Γ � M ′[N ′/x] � M0[N0/x] : B[N/x] and (2) Γ � (λxC.M ′′)Πx:C ′ .B′′ N ′′ �
M0[N0/x] : B[N/x].

Thanks to the Substitution lemma, Γ � B[N/x] � B[N0/x] : s2, t2, so Γ �
B[N/x] ∼=β B[N0/x]. So we can close (1) by converting B[N0/x] into B[N/x] and

applying the Substitution lemma once more.

To prove (2), we perform the same replacement, then we need to apply the beta

rule, and so we need to find a well-typed path from C to C ′. Fortunately, we already

have one, through A, A0 and A′. However, we have a mix of s1, t1 and u1 while we

need the exact same sort along the path. This is where Theorem 3.8 is useful: we

can rewrite the judgments into Γ � A � C : s1 and Γ � A′ � C ′ : s1, which leads

to Γ � A0 �+ C : s1 and Γ � A0 �+ C ′ : s1. We can now correctly apply the beta

rule. �

As a direct consequence (by induction of the structure of the �+ reductions) of

the Diamond Property, we finally are able to prove the Church-Rosser property.

Theorem 3.15 (Church-Rosser Property)

If Γ � M �+ N : A and Γ � M �+ P : B, then Γ � N �+ Q : A and Γ � P �+ A : B.

3.4 Consequences of the Church-Rosser property

With the Church-Rosser property, we can settle with all the missing pieces of theory

that we do not know how to prove directly in a typed framework:

Lemma 3.16 (Confluence)

If Γ � A ∼=β B, there are C, s, t such that Γ � A �+ C : s and Γ � B �+ C : t.

Lemma 3.17 (Weak Π-injectivity for PTSatr)

If Γ � ΠxA.B ∼=β ΠxC.D then Γ � A ∼=β C and Γ(x : A) � B ∼=β D.

5 To keep the proof readable, we do not keep track of all the R involved.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 173

Proof

The two previous lemmas are proved in the exact same way as their PTS version:

• Confluence is proved by induction on the structure of the conversion path.

• Weak Π-injectivity is a direct consequence of Confluence and the fact that a

Π-type can only reduce itself to another Π-type.

�

Since strong injectivity does not hold for PTSatr (the same counterexample we

used for PTSe also works here), we stated a weaker form of injectivity. However,

this statement of Π-injectivity for ∼=β along with the Exchange of Types property

are powerful enough to prove Subject Reduction.

Theorem 3.18 (Subject Reduction)

If Γ � M � M : A and M →p N then Γ � M �+ N : A.

Proof

The proof is done by induction on M →p N, where most cases are trivial but the

case of parallel β-reduction. Whereas in the proof of the Diamond Property, we

already had a well-typed path to use with the beta rule, this time we need to build

one.

We are in the following situation:

M →p M
′ N →p N

′

(λxA.M)Πx:C.D N →p M
′[N ′/x]

and Γ � (λxA.M)Πx:C.D N � (λxA.M)Πx:C.D N : T . By Generation, we have two

possibilities: the typing judgment is either built from app or from beta. In both

cases, we know that Γ � T ∼=β D[N/x], so we can replace T right now. In the

latter case, we have every information at hand to prove that Γ � (λxA.M)Πx:C.D N �
M ′[N ′/x] : D[N/x]. The problem arises if we only have typing information coming

from the app rule:

• Γ � A � A : s1, Γ(x : A) � M � M : B and Γ(x : A) � B � B : s2 where

(s1, s2, s3) ∈ R.

• Γ � C � C : t1, Γ(x : C) � D � D : t2 where (t1, t2, t3) ∈ R.

• Γ � N � N : C and Γ � ΠxA.B ∼=β ΠxC.D.

Using Π-injectivity, we can show that Γ � A ∼=β C , and Confluence gives us A0 such

that Γ � A �+ A0 : s and Γ � C �+ A0 : t. The same argument is valid for B and

D, so we have B0 such that Γ(x : A) � B �+ B0 : s′ and Γ � D �+ B0 : t′.

Using Theorem 3.8, we can replace s by s1, t by t1, s
′ by s2 and t′ by t2, which

allows us to prove that

Γ � (λxA.M)Πx:C.DN �+ (λxA.M)Πx:A0 .B0
N : D[N/x]

With this new redex, we can now use beta on its right-hand side, proving that:

Γ � (λxA.M)Πx:A0 .B0
N � M[N/x] : B0[N/x]

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

174 V. Siles and H. Herbelin

By induction, we have that Γ(x : A) � M �+ M ′ : B and Γ � N �+ N ′ : C , so with

(reds-trans-alt), and the Substitution Lemma, we can now glue both reductions

and conclude the final case of Subject Reduction. �

4 Equivalence of PTSatr and PTS

4.1 Confluence of the annotation process

Our last step to prove the equivalence is to prove the correctness of annotations,

i.e. to prove that every judgment Γ � M : T can be annotated into a valid PTSatr

derivation

Γ+ � M+ � M+ : T+ where |Γ+| ≡ Γ, |M+| ≡ M and |T+| ≡ T .

To do so, we need to show some basic properties of the annotation process. Since

there are several ways to annotate a term, we face some difficult situations while

performing induction. Let us take a simple example with the construction of Π-types

with the pi rule:

Γ � A : s1 Γ(x : A) � B : s2 (s1, s2, s3) ∈ R
Γ � ΠxA.B : s3

pi

By induction, we get that Γ1 � A1 � A1 : s1 and Γ2(x : A2) � B2 � B2 : s2 with

the equalities |Γ1| ≡ |Γ2| = Γ, |B2| ≡ B and |A1| ≡ |A2| = A. To build a Π-type

from those two judgments, we need to relate Γ1 to Γ2 and A1 to A2 in PTSatr .

More precisely, we need to show that if two annotated types come from the same

non-annotated term, and if they are well-typed in PTSatr , they are equivalent in

PTSatr . With such a property, we would be able to state a similar lemma for contexts

and prove that our annotation procedure is correct.

However, we have to recall that what we call here types are just terms typed

by a sort, and their typing judgment may use β-redexes, which may involve “non-

types”. So we have to state a more general lemma about the conversion of different

annotated versions of a same PTS term.

Lemma 4.1 (Erased Confluence)

If |M| ≡ |N| , Γ � M � M : A and Γ � N � N : B , then there is R such that

Γ � M �+ R : A and Γ � N �+ R : B.

Proof

The proof is done by induction on M, the only difficult part is the application case:

M ≡ PΠx:A0 .D
Q, N ≡ P ′

Πx:A′
0 .D

′Q
′ |P | ≡ |P ′|, |Q| ≡ |Q′|

By Generation, we get that P , P ′, Q and Q′ are well-typed, so by induction, there

are P0, Q0 such that:

Γ � P �+ P0 : ΠxC.D Γ � Q �+ Q0 : C

Γ � P ′ �+ P0 : ΠxC
′
.D′ Γ � Q′ �+ Q0 : C ′

and some additional information relating A0 and A′
0 to C and C ′ depending on the

way M was typed (beta or app).

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 175

In the functional case (where only one annotation is needed), this is quite trivial

: thanks to the Uniqueness of Types applied to P0 and Π-injectivity we get that

Γ(x : C) � D ∼=β D′. By Confluence, we get a common reduct D0 for D and D′, so

the common reduct of M and N is P0 D0
Q0.

We need to be a little more subtle here: for the semi-full case (Siles & Herbelin,

2010), we showed that terms can be classified in two families whose types have very

particular shapes. Fortunately, the full generality of this classification is not needed

here:

Lemma 4.2 (Weak shape of type)

If Γ � M � N : A and Γ � M � P : B, then:

• either Γ � A ∼=β B

• or we are in the following cases:

1. there are U and V such that Γ � M � λxU.V : A,B,

2. there is s such that Γ � M � s : A,B,

3. there is U and V such that Γ � M � ΠxU.V : A,B.

Proof

The proof of this lemma is quite trivial by induction, and relies on the fact that we

have the annotation of co-domains at hand. �

We can apply the Weak shape of type (Lemma 4.2) to P0 which gives two

possible outcomes. In the first case, we conclude almost like in the functional

case. By Generation, we also got a way to prove that Γ � A0
∼=β A′

0, depending

on the constructor used. By Confluence, we can get a common reduct A′′, and use

P0 Πx:A′′ .D0
Q0 to close the lemma.

In the second case, the only relevant possibility is the first one: since P0 is typed by

a Π-types, it cannot reduce itself to a sort or another Π-type. The reason is because

with the Generation lemma, we know that the type of a sort or a Π-type is always

convertible to a sort. If they could be typed by a Π-type, we would end up having

a judgment of the form Γ � ΠxA.B ∼=β s which is impossible due to Corollary 3.13.

In the last remaining case, there are U and V such that:

• Γ � P0 � λxU.V : ΠxC.D

• Γ � P0 � λxU.V : ΠxC
′
.D′

We just created a β-redex since P0 is going to be applied, so this time, the common

reduced term is the result of the β-reduction initiated by P0 instead of just a simple

application.

Actually, we still need to show that we are allowed to reduce this redex, just as we

needed to show it for Subject Reduction: this is the second place where we are facing

quite technical points because of the new annotations. There are four different cases

to handle here, depending on how M and M ′ are originally typed (by beta or app),

but each can be closed by extensive use of Confluence and Exchange of Types, as we

did for Subject Reduction. The main idea behind each case is the same, and follows

this scheme:

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

176 V. Siles and H. Herbelin

Γ � PΠx:U.DQ �+P0 Πx:U.DQ : D[Q/x]

�+(λxU.V)Πx:U.DQ : D[Q/x]

�+V [Q/x] : D[Q/x]

�+V [Q0/x] : D[Q/x]

Γ � P ′
Πx:U.D′Q′�+P0 Πx:U.D′Q′ : D′[Q′/x]

�+(λxU.V)Πx:U.D′Q′: D′[Q′/x]

�+V [Q′/x] : D′[Q′/x]

�+V [Q0/x] : D′[Q′/x]

In the end, we manage to find a common reduct in each type without having

to find a common reduct for the annotations, which concludes the proof of this

lemma. �

4.2 Consequences of the erased confluence

With the general statement for all terms, we can now show what we needed about

types and contexts:

Lemma 4.3 (Erased Conversion)

1. If |A| ≡ |B|, Γ � A � A : s and Γ � B � B : t then Γ � A ∼=β B.

2. If |Γ1| ≡ |Γ2| and Γ1 � M � N : A, then

Γ2 � M � N : A.

Proof

The first statement directly follows from Lemma 4.1. The second is a consequence

of the first one, by simple induction on the length of Γ1. �

Now let us go back to the annotation of Π-types. With Lemma 4.3, we can derive

the fact that Γ1 � A1
∼=β A2 and Γ1

∼=β Γ2. By context conversion, we can exchange

the contexts and we end up proving that Γ1(x : A1) � B2 � B2 : s2, and so we can

finally build the annotated judgment Γ1 � ΠxA1 .B2 � ΠxA1 .B2 : s3, with |Γ1| ≡ Γ,

|A1| ≡ A and |B2| ≡ B.

By doing the same process for each constructor, we can now conclude the last

missing piece of the whole equivalence process:

Theorem 4.4 (From PTS to PTSatr)

If Γ � M : T , then there are Γ+,M+, T+ such that Γ+ � M+ � M+ : T+, |Γ+| ≡ Γ,

|M+| ≡ M and |T+| ≡ T .

Proof

Since we have managed to prove Subject Reduction and Lemma 4.3, the proof

is similar to Adams’ proof for TPOSR, with a few type exchanges in the beta

case. �

Finally, all of this leads us to state that:

Theorem 4.5 (Equivalence of PTS and PTSe)

1. Γ � M : T iff Γ �e M : T .

2. Γ �e M =β N : T iff Γ � M : T , Γ � N : T and M =β N.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 177

Proof

This is just a combination of all the previous theorems:

• If Γ �e M : T , then by Theorem 2.17, we have Γ � M : T .

• If Γ � M : T , by Theorem 4.4 we know that

Γ+ � M+ � M+ : T+ with |Γ+| ≡ Γ, |M+| ≡ M and |T+| ≡ T . By

Theorem 3.12, |Γ+| �e |M+| : |T+| which is equal to Γ �e M : T .

• If Γ �e M =β N : T , so we conclude by Theorem 2.17.

• If Γ � M : T , Γ � N : T and M =β N, by Confluence, there is P such that

M �β P and N �β P . By Theorem 4.4, there are Γ+,M+, T+ such that

|Γ+| ≡ Γ, |M+| ≡ M, |T+| ≡ T and Γ+ � M+ � M+ : T+. Let us consider

P+ such that |P+| ≡ P and M+ � P+ (such a term always exists, the proof

is a simple induction on the structure of M).

Γ+ � M+ � M+ : T+

⇒ Γ+ � M+ �+ P+ : T+ (Subject Reduction)

⇒ Γ �e M =β P : T (Theorem 3.12 and trans)

We do the same to conclude that Γ �e N =β P : T , so by sym and trans, we

finally have Γ �e M =β N : T .

�

4.3 Subject reduction in PTSe

Now that we have a way to go from PTSs to PTSe (and the other way around), we

can go back to the proof of Subject Reduction for PTSe.

Theorem 4.6 (Subject Reduction for PTSe)

If Γ �e M : T and M →β N then Γ �e M =β N : T .

Proof

By using the first part of Theorem 4.5 and Theorem 4.4, there are Γ+, M+ and T+

such that Γ+ � M+ � M+ : T+ and |Γ+| ≡ Γ, |M+| ≡ M and |T+| ≡ T . Let us

consider N+ such that |N+| ≡ N and M+ →p N+. With such a term, and using

Theorem 3.18, we can prove that Γ+ � M+ �+ N+ : T+. By erasing the annotations

using the last part of Theorem 3.12, we end up having |Γ+| �e |M+| =β |N+| : |T+|
which is the exact result we wanted. �

We showed how to map PTS derivations to PTSatr derivations. We believe that the

same could have been done directly from PTSe to PTSatr . That would have provided

with a direct way to transfer Subject Reduction in PTSatr to Subject Reduction in

PTSe and the equivalence between PTSs and PTSe would then just have been a

consequence of Subject Reduction in PTSe.

4.4 Weak Π-injectivity in PTSe

The last missing piece of our development is to find the correct statement for

injectivity of products in PTSe. Subject Reduction for PTSatr relied on the weak Π-

injectivity for ∼=β and we choose such an equality to be able to state the Generation

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

178 V. Siles and H. Herbelin

lemmas for PTSatr . Since PTSatr is “enhanced” version of PTSe with additional

annotations, that may be the correct presentation we were looking for:

Weak PTSe equality
Γ �e A =β B : s

Γ �e A =β B

Γ �e B =β A

Γ �e A =β B

Γ �e A =β B Γ �e B =β C

Γ �e A =β C

This weaker form of equality enjoys some nice properties:

• If Γ �e A =β B, then there are s and t such that Γ �e A : s and Γ �e B : t.

• If Γ �e A =β B, then A =β B.

• This equality is compatible with conversion in PTSe context: if Γ1 �e A =β B

and Γ1(x : A)Γ2 �e M : T , then Γ1(x : B)Γ2 �e M : T .

All those properties are directly consequences of the usual equality for PTSe.

With this equality, we can directly state some generation lemmas for PTSe without

relying on the equivalence:

Lemma 4.7 (Generation Lemmas for PTSe)

Those properties are much like PTSatr ’s one, so we only state the ones that are really

need here:

1. If Γ �e ΠxA.B : T then there are s1, s2, s3 such that (s1, s2, s3) ∈ R, Γ �e A : s1,

Γ(x : A) �e B : s2, and T ≡ s3 or Γ �e T =β s3.

2. If Γ �e λxA.M : T then there are s1, s2, s3 and B such that (s1, s2, s3) ∈ R,

Γ �e A : s1, Γ(x : A) �e M : B, Γ(x : A) �e B : s2 and Γ �e T =β ΠxA.B.

3. If Γ �e M N : T then there are A and B such that Γ �e M : ΠxA.B, Γ �e N : A

and Γ �e T =β B[N/x].

Now that we have the Generation Lemmas and Subject Reduction, we can prove

what we consider to be the correct statement for injectivity of products in PTSe.

Corollary 4.8 (Weak Π-injectivity for PTSe)

If Γ �e ΠxA.B =β ΠxC.D then Γ �e A =β C and Γ(x : A) �e B =β D.

Proof

By using the properties of weak equality that we just stated, there are s3 and s′
3 such

that Γ � ΠxA.B : s3, Γ � ΠxC.D : s′
3, and ΠxA.B =β ΠxC.D. By Π-injectivity and

Confluence for the usual untyped β, and Generation for PTSe, we get:

• A �β U β� C and B �β V β� D

• Γ � A : s1, Γ � C : s′
1, Γ(x : A) � B : s2 and Γ(x : C) � D : s′

2 for s1, s
′
1, s2, s

′
2

such that (s1, s2, s3) ∈ R and (s′
1, s

′
2, s

′
3) ∈ R.

By using Subject Reduction for PTSe, we get that Γ �e A =β U : s1, Γ �e C =β U : s′
1,

Γ(x : A) �e B =β V : s2 and Γ(x : C) �e D =β V : s′
2. It is now easy to glue everything

together to obtain Γ �e A =β C and Γ(x : A) �e B =β D. �

This proof of injectivity holds for any PTSe, even the non-functional ones or the

ones that do not enjoy normalization. Another test that validate we did the right

choice, is that if we consider this property for granted, we can make a direct proof of

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

Pure Type System conversion is always typable 179

Subject Reduction for PTSe by adapting the well-known proof for PTSs. However,

we do not have any proof of this weak injectivity that do not use Subject Reduction,

which makes us think that the correct framework to deal with judgmental equality

is PTSatr , and not PTSe.

5 Conclusion

Pure Type Systems are a general framework at the core of dependently typed

theories. Until now, there were two main presentations, with or without typed

equality judgments. With this new result, we finally prove that both presentations

are describing the same theory, without having to rely on specific model-based

proofs of normalization.

This result can also be seen as a completion of Adams’ syntactic approach

to the meta-theory of PTSe. In particular, two main properties of PTSs based

on judgmental equality can now be stated and proved in a precise way: Subject

Reduction and Weak Π-injectivity. Regarding the strong version of injectivity, we

provide a counterexample for the general case of PTSe, but we know it is true in the

functional case since Adams proved it (2006).

Now that we know how to deal with any kind of PTSs, we will be able to focus

on extending the typing system, with subtyping for example, and looking toward

proving the same equivalence for the Extended Calculus of Constructions, or even

for the Calculus of Inductive Constructors. On the other hand, we can also try to

change the conversion rule, by adding η-expansion for example. This would provide

an interesting framework to deal with normalization by evaluation, or to improve

unification of proof assistants by adding techniques based on η-expansion, like

pattern-unification.

Acknowledgments

We are particularly grateful to Bruno Barras for guiding us through our experiments

on the problem solved in this paper. We also thank Andreas Abel, Stéphane

Lengrand, Paul-André Melliès and Randy Pollack for many stimulating discussions

on the topic.

References

Abel, A. (2010) Towards normalization by evaluation for the βη-Calculus of constructions.

In Proceedings of the 10th International Symposium on Functional and Logic Programming

(FLOPS 2010), Sendai, Japan, April 19-21, 2010, Blume, M., Kobayashi, N. & Vidal, G.

(eds), Lecture Notes in Computer Science, vol. 6009. Springer-Verlag, pp. 224–239.

Abel, A., Coquand, T., & Dybjer, P. (2007) Normalization by evaluation for Martin-Löf

type theory with typed equality judgements. In Proceedings of the 22nd IEEE Symposium

on Logic in Computer Science (LICS 2007), Wroclaw, Poland, 10-12 July 2007, IEEE

Computer Society Press, pp. 3–12.

Adams, R. (2006) Pure Type Tystems with judgemental equality. J. Funct. Program., 16(2),

219–246.

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

180 V. Siles and H. Herbelin

Barendregt, H. (1991) Introduction to generalized type systems. J. Funct. Program., 1(2),

125–154.

Barendregt, H. P. (1992) Lambda calculi with types. In Handbook of Logic in Computer

Science, Abramsky, S., Gabbay, D. M. & Maibaum, T. S. E. (eds), Oxford University Press,

pp. 117–309.

Berardi, S. (1990) Type Dependence and Constructive Mathematics. Ph.D. thesis, Mathematical

Institute Torino, Italy.

Coq Development Team. (2010) The Coq Proof Assistant Reference Manual. http://coq.inria.

fr/refman/.

de Bruijn, N. G. (1972) Lambda-Calculus notation with nameless dummies: A tool

for automatic formula manipulation with application to the Church-Rosser theorem.

Indagtiones Mathematica, 34(5), 381–392.

Geuvers, H. (1993) Logics and Type Systems. Ph.D. thesis, Katholieke Universiteit Nijmegen,

The Netherlands.

Geuvers, H. & Nederhof, M-J. (1991) Modular proof of strong normalization for the calculus

of constructions. J. Funct. Program. 1(2), 155–189.

Geuvers, H. & Werner, B. (1994) On the Church-Rosser property for expressive type

systems and its consequences for their metatheoretic study. In Logic in Computer Science,

pp. 320–329.

Goguen, H. (1994) A Typed Operational Semantics for Type Theory. Ph.D. thesis, University

of Edinburgh, Scotland.

Luo, Z. (1989) ECC: An extended calculus of constructions. In Proceedings of the Fourth

Annual Symposium on Logic in Computer Science. Piscataway, NJ, USA: IEEE Press,

pp. 385–395.

Martin-Löf, P. (1984) Intuitionistic Type Theory. Berkeley, CA : Bibliopolis.

Melliès, P.-A. and Werner, B. (1997) A Generic Normalization Proof for Pure Type Systems.

TYPES’96, Paulin-Mohring, C. & Gimenez, E. (eds), LNCS, Springer-Verlag.

Nordstrom, B., Petersson, K. & Smith, J. M. (1990) Programming in Martin-Löf ’s Type Theory:

An introduction. New York: Oxford University Press.

Norell, U. (2007 September) Towards a Practical Programming Language Based on Dependent

Type Theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers

University of Technology, SE-412 96 Göteborg, Sweden.

Pollack, R. (1994) The Theory of LEGO: A Proof Checker for the Extended Calculus of

Constructions. Ph.D. thesis, University of Edinburgh, Scotland.

Siles, V. (2010) Formalization of Equivalence Between PTS and PTSe. http://www.lix.

polytechnique.fr/~vsiles/coq/PTSATR.html.

Siles, V. & Herbelin, H. (2010) Equality is typable in Semi-Full Pure Type Systems. In

Proceedings of the 25th Annual IEEE Symposium on Login in Computer Science (LICS ’10),

Edinburgh, UK, 11-14 July 2010. IEEE Compuer Society Press.

Streicher, T. (1991) Semantics of Type Theory: Correctness, Completeness, and Independence

Results. Birkhauser Boston Inc., Cambridge, MA, USA.

Terlouw, J. (1989) Een nadere Bewijstheoretische Analyse van GSTTs (Manuscript, in Dutch).

Tech. Rep. University of Nijmegen, The Netherlands.

van Benthem Jutting, L. S., McKinna, J. & Pollack, R. (1993) Checking algorithms for Pure

Type Systems. In TYPES, pp. 19–61.

Werner, B. (1994) Une théorie des Constructions Inductives. Ph.D. thesis, Université Paris,

France.

Werner, B., & Lee, G. (2011) A proof-irrelevant model of CC with predicate induction and

judgemental equality. Logical Methods Comput. Sci. 7(4).

https://doi.org/10.1017/S0956796812000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000044

