
1

Introduction

The subject of this book is automated learning, or, as we will more often call it,
Machine Learning (ML). That is, we wish to program computers so that they can
“learn” from input available to them. Roughly speaking, learning is the process of
converting experience into expertise or knowledge. The input to a learning algo-
rithm is training data, representing experience, and the output is some expertise,
which usually takes the form of another computer program that can perform some
task. Seeking a formal-mathematical understanding of this concept, we’ll have to
be more explicit about what we mean by each of the involved terms: What is the
training data our programs will access? How can the process of learning be auto-
mated? How can we evaluate the success of such a process (namely, the quality of
the output of a learning program)?

1.1 WHAT IS LEARNING?

Let us begin by considering a couple of examples from naturally occurring animal
learning. Some of the most fundamental issues in ML arise already in that context,
which we are all familiar with.

Bait Shyness – Rats Learning to Avoid Poisonous Baits: When rats encounter
food items with novel look or smell, they will first eat very small amounts, and sub-
sequent feeding will depend on the flavor of the food and its physiological effect.
If the food produces an ill effect, the novel food will often be associated with the
illness, and subsequently, the rats will not eat it. Clearly, there is a learning mech-
anism in play here – the animal used past experience with some food to acquire
expertise in detecting the safety of this food. If past experience with the food was
negatively labeled, the animal predicts that it will also have a negative effect when
encountered in the future.

Inspired by the preceding example of successful learning, let us demonstrate
a typical machine learning task. Suppose we would like to program a machine that
learns how to filter spam e-mails. A naive solution would be seemingly similar to the
way rats learn how to avoid poisonous baits. The machine will simply memorize all
previous e-mails that had been labeled as spam e-mails by the human user. When a

1

https://doi.org/10.1017/CBO9781107298019.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107298019.002

2 Introduction

new e-mail arrives, the machine will search for it in the set of previous spam e-mails.
If it matches one of them, it will be trashed. Otherwise, it will be moved to the user’s
inbox folder.

While the preceding “learning by memorization” approach is sometimes useful,
it lacks an important aspect of learning systems – the ability to label unseen e-mail
messages. A successful learner should be able to progress from individual examples
to broader generalization. This is also referred to as inductive reasoning or inductive
inference. In the bait shyness example presented previously, after the rats encounter
an example of a certain type of food, they apply their attitude toward it on new,
unseen examples of food of similar smell and taste. To achieve generalization in the
spam filtering task, the learner can scan the previously seen e-mails, and extract a set
of words whose appearance in an e-mail message is indicative of spam. Then, when
a new e-mail arrives, the machine can check whether one of the suspicious words
appears in it, and predict its label accordingly. Such a system would potentially be
able correctly to predict the label of unseen e-mails.

However, inductive reasoning might lead us to false conclusions. To illustrate
this, let us consider again an example from animal learning.

Pigeon Superstition: In an experiment performed by the psychologist
B. F. Skinner, he placed a bunch of hungry pigeons in a cage. An automatic mech-
anism had been attached to the cage, delivering food to the pigeons at regular
intervals with no reference whatsoever to the birds’ behavior. The hungry pigeons
went around the cage, and when food was first delivered, it found each pigeon
engaged in some activity (pecking, turning the head, etc.). The arrival of food rein-
forced each bird’s specific action, and consequently, each bird tended to spend some
more time doing that very same action. That, in turn, increased the chance that the
next random food delivery would find each bird engaged in that activity again. What
results is a chain of events that reinforces the pigeons’ association of the delivery of
the food with whatever chance actions they had been performing when it was first
delivered. They subsequently continue to perform these same actions diligently.1

What distinguishes learning mechanisms that result in superstition from useful
learning? This question is crucial to the development of automated learners. While
human learners can rely on common sense to filter out random meaningless learning
conclusions, once we export the task of learning to a machine, we must provide
well defined crisp principles that will protect the program from reaching senseless
or useless conclusions. The development of such principles is a central goal of the
theory of machine learning.

What, then, made the rats’ learning more successful than that of the pigeons?
As a first step toward answering this question, let us have a closer look at the bait
shyness phenomenon in rats.

Bait Shyness revisited – rats fail to acquire conditioning between food and electric
shock or between sound and nausea: The bait shyness mechanism in rats turns out to
be more complex than what one may expect. In experiments carried out by Garcia
(Garcia & Koelling 1996), it was demonstrated that if the unpleasant stimulus that
follows food consumption is replaced by, say, electrical shock (rather than nausea),
then no conditioning occurs. Even after repeated trials in which the consumption

1 See: http://psychclassics.yorku.ca/Skinner/Pigeon

https://doi.org/10.1017/CBO9781107298019.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107298019.002

1.2 When Do We Need Machine Learning? 3

of some food is followed by the administration of unpleasant electrical shock, the
rats do not tend to avoid that food. Similar failure of conditioning occurs when the
characteristic of the food that implies nausea (such as taste or smell) is replaced
by a vocal signal. The rats seem to have some “built in” prior knowledge telling
them that, while temporal correlation between food and nausea can be causal, it is
unlikely that there would be a causal relationship between food consumption and
electrical shocks or between sounds and nausea.

We conclude that one distinguishing feature between the bait shyness learn-
ing and the pigeon superstition is the incorporation of prior knowledge that biases
the learning mechanism. This is also referred to as inductive bias. The pigeons in
the experiment are willing to adopt any explanation for the occurrence of food.
However, the rats “know” that food cannot cause an electric shock and that the
co-occurrence of noise with some food is not likely to affect the nutritional value
of that food. The rats’ learning process is biased toward detecting some kind of
patterns while ignoring other temporal correlations between events.

It turns out that the incorporation of prior knowledge, biasing the learning pro-
cess, is inevitable for the success of learning algorithms (this is formally stated and
proved as the “No-Free-Lunch theorem” in Chapter 5). The development of tools
for expressing domain expertise, translating it into a learning bias, and quantifying
the effect of such a bias on the success of learning is a central theme of the theory
of machine learning. Roughly speaking, the stronger the prior knowledge (or prior
assumptions) that one starts the learning process with, the easier it is to learn from
further examples. However, the stronger these prior assumptions are, the less flex-
ible the learning is – it is bound, a priori, by the commitment to these assumptions.
We shall discuss these issues explicitly in Chapter 5.

1.2 WHEN DO WE NEED MACHINE LEARNING?

When do we need machine learning rather than directly program our computers to
carry out the task at hand? Two aspects of a given problem may call for the use of
programs that learn and improve on the basis of their “experience”: the problem’s
complexity and the need for adaptivity.

Tasks That Are Too Complex to Program.

� Tasks Performed by Animals/Humans: There are numerous tasks that we
human beings perform routinely, yet our introspection concerning how
we do them is not sufficiently elaborate to extract a well defined pro-
gram. Examples of such tasks include driving, speech recognition, and
image understanding. In all of these tasks, state of the art machine learn-
ing programs, programs that “learn from their experience,” achieve quite
satisfactory results, once exposed to sufficiently many training examples.

� Tasks beyond Human Capabilities: Another wide family of tasks that ben-
efit from machine learning techniques are related to the analysis of very
large and complex data sets: astronomical data, turning medical archives
into medical knowledge, weather prediction, analysis of genomic data, Web
search engines, and electronic commerce. With more and more available

https://doi.org/10.1017/CBO9781107298019.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107298019.002

4 Introduction

digitally recorded data, it becomes obvious that there are treasures of mean-
ingful information buried in data archives that are way too large and too
complex for humans to make sense of. Learning to detect meaningful pat-
terns in large and complex data sets is a promising domain in which the
combination of programs that learn with the almost unlimited memory
capacity and ever increasing processing speed of computers opens up new
horizons.

Adaptivity. One limiting feature of programmed tools is their rigidity – once the
program has been written down and installed, it stays unchanged. However,
many tasks change over time or from one user to another. Machine learning
tools – programs whose behavior adapts to their input data – offer a solution to
such issues; they are, by nature, adaptive to changes in the environment they
interact with. Typical successful applications of machine learning to such prob-
lems include programs that decode handwritten text, where a fixed program can
adapt to variations between the handwriting of different users; spam detection
programs, adapting automatically to changes in the nature of spam e-mails; and
speech recognition programs.

1.3 TYPES OF LEARNING

Learning is, of course, a very wide domain. Consequently, the field of machine
learning has branched into several subfields dealing with different types of learning
tasks. We give a rough taxonomy of learning paradigms, aiming to provide some
perspective of where the content of this book sits within the wide field of machine
learning.

We describe four parameters along which learning paradigms can be classified.

Supervised versus Unsupervised Since learning involves an interaction between the
learner and the environment, one can divide learning tasks according to the
nature of that interaction. The first distinction to note is the difference between
supervised and unsupervised learning. As an illustrative example, consider the
task of learning to detect spam e-mail versus the task of anomaly detection.
For the spam detection task, we consider a setting in which the learner receives
training e-mails for which the label spam/not-spam is provided. On the basis of
such training the learner should figure out a rule for labeling a newly arriving
e-mail message. In contrast, for the task of anomaly detection, all the learner
gets as training is a large body of e-mail messages (with no labels) and the
learner’s task is to detect “unusual” messages.

More abstractly, viewing learning as a process of “using experience to gain
expertise,” supervised learning describes a scenario in which the “experience,”
a training example, contains significant information (say, the spam/not-spam
labels) that is missing in the unseen “test examples” to which the learned exper-
tise is to be applied. In this setting, the acquired expertise is aimed to predict
that missing information for the test data. In such cases, we can think of the
environment as a teacher that “supervises” the learner by providing the extra
information (labels). In unsupervised learning, however, there is no distinction
between training and test data. The learner processes input data with the goal

https://doi.org/10.1017/CBO9781107298019.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107298019.002

1.3 Types of Learning 5

of coming up with some summary, or compressed version of that data. Clus-
tering a data set into subsets of similar objets is a typical example of such a
task.

There is also an intermediate learning setting in which, while the train-
ing examples contain more information than the test examples, the learner is
required to predict even more information for the test examples. For exam-
ple, one may try to learn a value function that describes for each setting of a
chess board the degree by which White’s position is better than the Black’s.
Yet, the only information available to the learner at training time is positions
that occurred throughout actual chess games, labeled by who eventually won
that game. Such learning frameworks are mainly investigated under the title of
reinforcement learning.

Active versus Passive Learners Learning paradigms can vary by the role played
by the learner. We distinguish between “active” and “passive” learners. An
active learner interacts with the environment at training time, say, by posing
queries or performing experiments, while a passive learner only observes the
information provided by the environment (or the teacher) without influenc-
ing or directing it. Note that the learner of a spam filter is usually passive
– waiting for users to mark the e-mails coming to them. In an active set-
ting, one could imagine asking users to label specific e-mails chosen by the
learner, or even composed by the learner, to enhance its understanding of what
spam is.

Helpfulness of the Teacher When one thinks about human learning, of a baby at
home or a student at school, the process often involves a helpful teacher, who
is trying to feed the learner with the information most useful for achieving
the learning goal. In contrast, when a scientist learns about nature, the envir-
onment, playing the role of the teacher, can be best thought of as passive –
apples drop, stars shine, and the rain falls without regard to the needs of the
learner. We model such learning scenarios by postulating that the training data
(or the learner’s experience) is generated by some random process. This is the
basic building block in the branch of “statistical learning.” Finally, learning also
occurs when the learner’s input is generated by an adversarial “teacher.” This
may be the case in the spam filtering example (if the spammer makes an effort
to mislead the spam filtering designer) or in learning to detect fraud. One also
uses an adversarial teacher model as a worst-case scenario, when no milder
setup can be safely assumed. If you can learn against an adversarial teacher,
you are guaranteed to succeed interacting any odd teacher.

Online versus Batch Learning Protocol The last parameter we mention is the dis-
tinction between situations in which the learner has to respond online, through-
out the learning process, and settings in which the learner has to engage the
acquired expertise only after having a chance to process large amounts of data.
For example, a stockbroker has to make daily decisions, based on the expe-
rience collected so far. He may become an expert over time, but might have
made costly mistakes in the process. In contrast, in many data mining settings,
the learner – the data miner – has large amounts of training data to play with
before having to output conclusions.

https://doi.org/10.1017/CBO9781107298019.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107298019.002

6 Introduction

In this book we shall discuss only a subset of the possible learning paradigms.
Our main focus is on supervised statistical batch learning with a passive learner
(for example, trying to learn how to generate patients’ prognoses, based on large
archives of records of patients that were independently collected and are already
labeled by the fate of the recorded patients). We shall also briefly discuss online
learning and batch unsupervised learning (in particular, clustering).

1.4 RELATIONS TO OTHER FIELDS

As an interdisciplinary field, machine learning shares common threads with the
mathematical fields of statistics, information theory, game theory, and optimization.
It is naturally a subfield of computer science, as our goal is to program machines so
that they will learn. In a sense, machine learning can be viewed as a branch of AI
(Artificial Intelligence), since, after all, the ability to turn experience into exper-
tise or to detect meaningful patterns in complex sensory data is a cornerstone of
human (and animal) intelligence. However, one should note that, in contrast with
traditional AI, machine learning is not trying to build automated imitation of intel-
ligent behavior, but rather to use the strengths and special abilities of computers
to complement human intelligence, often performing tasks that fall way beyond
human capabilities. For example, the ability to scan and process huge databases
allows machine learning programs to detect patterns that are outside the scope of
human perception.

The component of experience, or training, in machine learning often refers to
data that is randomly generated. The task of the learner is to process such randomly
generated examples toward drawing conclusions that hold for the environment from
which these examples are picked. This description of machine learning highlights its
close relationship with statistics. Indeed there is a lot in common between the two
disciplines, in terms of both the goals and techniques used. There are, however, a
few significant differences of emphasis; if a doctor comes up with the hypothesis
that there is a correlation between smoking and heart disease, it is the statistician’s
role to view samples of patients and check the validity of that hypothesis (this is the
common statistical task of hypothesis testing). In contrast, machine learning aims
to use the data gathered from samples of patients to come up with a description of
the causes of heart disease. The hope is that automated techniques may be able to
figure out meaningful patterns (or hypotheses) that may have been missed by the
human observer.

In contrast with traditional statistics, in machine learning in general, and in this
book in particular, algorithmic considerations play a major role. Machine learning
is about the execution of learning by computers; hence algorithmic issues are piv-
otal. We develop algorithms to perform the learning tasks and are concerned with
their computational efficiency. Another difference is that while statistics is often
interested in asymptotic behavior (like the convergence of sample-based statisti-
cal estimates as the sample sizes grow to infinity), the theory of machine learning
focuses on finite sample bounds. Namely, given the size of available samples,
machine learning theory aims to figure out the degree of accuracy that a learner
can expect on the basis of such samples.

https://doi.org/10.1017/CBO9781107298019.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107298019.002

1.5 How to Read This Book 7

There are further differences between these two disciplines, of which we shall
mention only one more here. While in statistics it is common to work under the
assumption of certain presubscribed data models (such as assuming the normal-
ity of data-generating distributions, or the linearity of functional dependencies), in
machine learning the emphasis is on working under a “distribution-free” setting,
where the learner assumes as little as possible about the nature of the data distribu-
tion and allows the learning algorithm to figure out which models best approximate
the data-generating process. A precise discussion of this issue requires some techni-
cal preliminaries, and we will come back to it later in the book, and in particular in
Chapter 5.

1.5 HOW TO READ THIS BOOK

The first part of the book provides the basic theoretical principles that underlie
machine learning (ML). In a sense, this is the foundation upon which the rest of
the book is built. This part could serve as a basis for a minicourse on the theoretical
foundations of ML.

The second part of the book introduces the most commonly used algorithmic
approaches to supervised machine learning. A subset of these chapters may also be
used for introducing machine learning in a general AI course to computer science,
Math, or engineering students.

The third part of the book extends the scope of discussion from statistical clas-
sification to other learning models. It covers online learning, unsupervised learning,
dimensionality reduction, generative models, and feature learning.

The fourth part of the book, Advanced Theory, is geared toward readers who
have interest in research and provides the more technical mathematical techniques
that serve to analyze and drive forward the field of theoretical machine learning.

The Appendixes provide some technical tools used in the book. In particular, we
list basic results from measure concentration and linear algebra.

A few sections are marked by an asterisk, which means they are addressed
to more advanced students. Each chapter is concluded with a list of exercises. A
solution manual is provided in the course Web site.

1.5.1 Possible Course Plans Based on This Book

A 14 Week Introduction Course for Graduate Students:

1. Chapters 2–4.
2. Chapter 9 (without the VC calculation).
3. Chapters 5–6 (without proofs).
4. Chapter 10.
5. Chapters 7, 11 (without proofs).
6. Chapters 12, 13 (with some of the easier proofs).
7. Chapter 14 (with some of the easier proofs).
8. Chapter 15.
9. Chapter 16.

10. Chapter 18.

https://doi.org/10.1017/CBO9781107298019.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107298019.002

8 Introduction

11. Chapter 22.
12. Chapter 23 (without proofs for compressed sensing).
13. Chapter 24.
14. Chapter 25.

A 14 Week Advanced Course for Graduate Students:

1. Chapters 26, 27.
2. (continued)
3. Chapters 6, 28.
4. Chapter 7.
5. Chapter 31.
6. Chapter 30.
7. Chapters 12, 13.
8. Chapter 14.
9. Chapter 8.

10. Chapter 17.
11. Chapter 29.
12. Chapter 19.
13. Chapter 20.
14. Chapter 21.

1.6 NOTATION

Most of the notation we use throughout the book is either standard or defined on
the spot. In this section we describe our main conventions and provide a table sum-
marizing our notation (Table 1.1). The reader is encouraged to skip this section and
return to it if during the reading of the book some notation is unclear.

We denote scalars and abstract objects with lowercase letters (e.g. x and λ).
Often, we would like to emphasize that some object is a vector and then we use
boldface letters (e.g. x and λ). The i th element of a vector x is denoted by xi . We use
uppercase letters to denote matrices, sets, and sequences. The meaning should be
clear from the context. As we will see momentarily, the input of a learning algorithm
is a sequence of training examples. We denote by z an abstract example and by
S = z1, . . . ,zm a sequence of m examples. Historically, S is often referred to as a
training set; however, we will always assume that S is a sequence rather than a set.
A sequence of m vectors is denoted by x1, . . . ,xm . The i th element of xt is denoted
by xt,i .

Throughout the book, we make use of basic notions from probability. We denote
by D a distribution over some set,2 for example, Z . We use the notation z ∼ D to
denote that z is sampled according to D. Given a random variable f : Z → R, its
expected value is denoted by Ez∼D [f (z)]. We sometimes use the shorthand E [f]
when the dependence on z is clear from the context. For f : Z → {true, false} we
also use Pz∼D [f (z)] to denote D({z : f (z) = true}). In the next chapter we will also

2 To be mathematically precise, D should be defined over some σ -algebra of subsets of Z . The user who
is not familiar with measure theory can skip the few footnotes and remarks regarding more formal
measurability definitions and assumptions.

https://doi.org/10.1017/CBO9781107298019.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107298019.002

1.6 Notation 9

Table 1.1. Summary of notation

symbol meaning

R the set of real numbers
Rd the set of d -dimensional vectors over R
R+ the set of non-negative real numbers
N the set of natural numbers
O,o,�,ω,�, Õ asymptotic notation (see text)
1[Boolean expression] indicator function (equals 1 if expression is true and 0 o.w.)
[a]+ = max{0,a}
[n] the set {1, . . . ,n} (for n ∈N)
x,v,w (column) vectors
xi ,vi ,wi the ith element of a vector
〈x,v〉 =∑d

i=1 xivi (inner product)
‖x‖2 or ‖x‖ =√〈x,x〉 (the �2 norm of x)
‖x‖1 =∑d

i=1 |xi | (the �1 norm of x)
‖x‖∞ = maxi |xi | (the �∞ norm of x)
‖x‖0 the number of nonzero elements of x
A ∈Rd,k a d × k matrix over R
A� the transpose of A
Ai, j the (i, j) element of A
xx� the d × d matrix A s.t. Ai, j = xi x j (where x ∈Rd)
x1, . . . ,xm a sequence of m vectors
xi, j the jth element of the ith vector in the sequence
w(1), . . . ,w(T) the values of a vector w during an iterative algorithm

w
(t)
i the ith element of the vector w(t)

X instances domain (a set)
Y labels domain (a set)
Z examples domain (a set)
H hypothesis class (a set)
� : H× Z →R+ loss function
D a distribution over some set (usually over Z or over X)
D(A) the probability of a set A ⊆ Z according to D
z ∼D sampling z according to D
S = z1, . . . , zm a sequence of m examples
S ∼Dm sampling S = z1, . . . , zm i.i.d. according to D
P,E probability and expectation of a random variable
Pz∼D [f (z)] =D({z : f (z) = true}) for f : Z →{true, false}
Ez∼D [f (z)] expectation of the random variable f : Z →R

N(μ,C) Gaussian distribution with expectation μ and covariance C
f ′(x) the derivative of a function f : R→R at x
f ′′(x) the second derivative of a function f : R→R at x
∂ f (w)
∂wi

the partial derivative of a function f : Rd →R at w w.r.t. wi

∇ f (w) the gradient of a function f : Rd →R at w
∂ f (w) the differential set of a function f : Rd →R at w
minx∈C f (x) = min{ f (x) : x ∈ C} (minimal value of f over C)
maxx∈C f (x) = max{ f (x) : x ∈ C} (maximal value of f over C)
argminx∈C f (x) the set {x ∈ C : f (x) = minz∈C f (z)}
argmaxx∈C f (x) the set {x ∈ C : f (x) = maxz∈C f (z)}
log the natural logarithm

https://doi.org/10.1017/CBO9781107298019.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107298019.002

10 Introduction

introduce the notation Dm to denote the probability over Zm induced by sampling
(z1, . . . ,zm) where each point zi is sampled fromD independently of the other points.

In general, we have made an effort to avoid asymptotic notation. However, we
occasionally use it to clarify the main results. In particular, given f : R→ R+ and
g : R→ R+ we write f = O(g) if there exist x0,α ∈ R+ such that for all x > x0 we
have f (x)≤ αg(x). We write f = o(g) if for every α > 0 there exists x0 such that for
all x > x0 we have f (x)≤ αg(x). We write f =�(g) if there exist x0,α ∈R+ such that
for all x > x0 we have f (x) ≥ αg(x). The notation f = ω(g) is defined analogously.
The notation f = �(g) means that f = O(g) and g = O(f). Finally, the notation
f = Õ(g) means that there exists k ∈N such that f (x)= O(g(x) logk (g(x))).

The inner product between vectors x and w is denoted by 〈x,w〉. Whenever we
do not specify the vector space we assume that it is the d-dimensional Euclidean
space and then 〈x,w〉 =∑d

i=1 xiwi . The Euclidean (or �2) norm of a vector w is
‖w‖2 =

√〈w,w〉. We omit the subscript from the �2 norm when it is clear from the
context. We also use other �p norms, ‖w‖p =

(∑
i |wi |p

)1/p, and in particular ‖w‖1 =∑
i |wi | and ‖w‖∞ =maxi |wi |.
We use the notation minx∈C f (x) to denote the minimum value of the set

{ f (x) : x ∈ C}. To be mathematically more precise, we should use infx∈C f (x) when-
ever the minimum is not achievable. However, in the context of this book the
distinction between infimum and minimum is often of little interest. Hence, to sim-
plify the presentation, we sometimes use the min notation even when inf is more
adequate. An analogous remark applies to max versus sup.

https://doi.org/10.1017/CBO9781107298019.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107298019.002

