PERIODIC SOLUTIONS OF NON-LINEAR EVOLUTION EQUATIONS IN BANACH SPACES

BUI AN TON

In this paper the theory of Browder [2] and of Lions [3] on periodic solutions of non-linear evolution equations in Banach spaces is put in a more general framework so as to include the Navier-Stokes equations and their variants.

An abstract existence theorem is proved in § 1. Applications are given in § 2. The existence of periodic solutions of the Navier-Stokes equations without any restriction on the dimension of the space domain is established. Application of the abstract theorem to the following problem is given:

$$\begin{cases} D_t u_{\epsilon} - \Delta u_{\epsilon} + \sum_{j=1}^n u_{j\epsilon} D_j u_{\epsilon} + \frac{1}{2} (\operatorname{div} u_{\epsilon}) u_{\epsilon} + \operatorname{grad} p_{\epsilon} = f & \text{on } G \times [0, T]; \\ \operatorname{div}(u_{\epsilon}) = -p_{\epsilon} \cdot \epsilon; & u_{\epsilon}(x, t) = 0 & \text{on } \partial G \times [0, T]; \\ u_{\epsilon}(x, 0) = u_{\epsilon}(x, T) & \text{on } G. \end{cases}$$

1. Let H be a Hilbert space and $(.,.)_H$ the inner product in H. Let V and W be two reflexive separable Banach spaces with $W \subset V \subset H$. W is dense in V and V is dense in H. The natural injection mappings of W into V and of V into H are compact.

Let V^* be the dual of V and $\{.,.\}$ the pairing between V and V^* . The pairing between W and its dual W^* is denoted by (.,.).

Consider the Banach space $F = L^p(0, T; V)$ of equivalence classes of functions u(t) from [0, T] to V with the norm:

$$||u||_F = \left\{ \int_0^T ||u(t)||_V^p dt \right\}^{1/p}, \qquad 2 \le p < \infty.$$

 $\langle .,. \rangle$ is the pairing between F and its dual F^* . Let $Y = L^r(0, T; W)$ with $2 \le p < r < \infty$ and let ((.,.)) be the pairing between Y and its dual Y^* .

Thus $\langle u, v \rangle = \int_0^T (u, v)_H dt$ if $u \in L^p(0, T; H)$ and v is in F. Similarly for ((.,.)).

Set $X = F \cap L^{\infty}(0, T; H)$. We shall say that $u_n \to u$ weakly in X if $u_n \to u$ weakly in F and $u_n \to u$ in the weak-star topology of $L^{\infty}(0, T; H)$.

In this paper we consider non-linear operators A mapping X and Y into Y^* and satisfying the following assumption.

Assumption (I). (i) A is continuous from line segments in X to the weak* topology of Y^* .

Received June 11, 1970.

190 BUI AN TON

(ii) Let $u_n \to u$ weakly in X, u_n in Y, $u_n(0) = u_n(T)$; $u_n' \to u'$ weakly in Y^* , $Au_n \to g$ weakly in Y^* with g + u' in F^* and

$$\lim \sup \operatorname{Re} ((u_n' + Au_n, u_n)) \leq \operatorname{Re} \langle g + u', u \rangle.$$

Then Au = g.

(iii) If $u_n \to u$ weakly in Y and $u_n' \to u'$ weakly in Y^* , then $Au_n \to Au$ weakly in Y^* and $((Au_n, u_n)) \to ((Au, u))$.

We have shown in [7] that all the semi-monotone operators considered by Browder [2] and by Lions [3] as well as all the weakly continuous operators from F into F^* satisfy Assumption (I).

The main result of this paper is the following theorem.

THEOREM 1. Let A be a non-linear operator mapping X and Y into Y^* and satisfying Assumption (I). Suppose further that:

- (i) A maps bounded sets of X and of Y into bounded sets of Y*;
- (ii) $\operatorname{Re}((Au, u)) \ge c(||u||_F)||u||_F$ for all u in Y, c(r) is a positive continuous function with $c(r) \to +\infty$ as $r \to +\infty$;
- (iii) $Re(Au, u) \ge 0$ for all u in Y and for almost all t in [0, T];
- (iv) There exists a positive continuous function $\varphi(r)$ such that:

$$Re((Au, u)) \leq \varphi(||u||_F)$$
 for all u in Y.

Then for each f in F^* , there exists u in X with u' in Y^* such that:

$$u' + Au = f, \qquad u(0) = u(T).$$

Theorem 1 will be derived from the following result.

THEOREM 2. Let J be the duality mapping from Y into Y* associated with the gauge function $\psi(s) = s^{\tau-1}$. Suppose that all the hypotheses of Theorem 1 are satisfied. Then for each ϵ , $0 < \epsilon < 1$, and for each f in F*, there exists u_{ϵ} in Y with u_{ϵ}' in Y* such that:

$$u_{\epsilon}' + \epsilon J u_{\epsilon} + A u_{\epsilon} = f, \qquad u_{\epsilon}(0) = u_{\epsilon}(T).$$

Moreover, $||u_{\epsilon}||_F + \epsilon ||u_{\epsilon}||_{Y}' + ||u_{\epsilon}'||_{Y^*} + ||u_{\epsilon}||_{L^{\infty}(0,T;H)} \leq M$. M is a constant independent of ϵ .

Proof of Theorem 1 using Theorem 2. Since Y is a reflexive Banach space, by taking an equivalent norm if necessary, we may assume that Y^* is strictly convex. It is well known that the duality mapping J from Y into Y^* associated with the gauge function $\psi(s)$ exists. Since Y^* is strictly convex, J is uniquely defined.

From the weak compactness of the unit ball in a reflexive Banach space, we have by taking a subsequence if necessary:

 $u_{\epsilon} \to u$ weakly in F, $u_{\epsilon} \to u$ in the weak* topology of $L^{\infty}(0, T; H)$, $u_{\epsilon'} \to u'$ weakly in Y^* and $\epsilon^{1/r}u_{\epsilon} \to 0$ weakly in Y as $\epsilon \to 0$.

Since the natural injection mapping of V into W^* is compact, it follows then that $u_{\epsilon}(t) - u(t) \to 0$ in W^* for all t in [0, T]. But $u_{\epsilon}(0) = u_{\epsilon}(T)$, thus u(0) = u(T).

By hypothesis, A maps bounded sets of X into bounded sets of Y^* , hence $Au_{\epsilon} \to g$ weakly in Y^* as $\epsilon \to 0$.

On the other hand, $\epsilon ||Ju_{\epsilon}||_{Y^*} = \epsilon ||u_{\epsilon}||_{Y^{r-1}} \to 0$ as $\epsilon \to 0$. Therefore $\limsup \operatorname{Re}((u_{\epsilon}' + Au_{\epsilon}, u_{\epsilon})) \leq \operatorname{Re}\langle f, u \rangle = \operatorname{Re}\langle g + u', u \rangle$. It follows from Assumption (I) that Au = g.

Proof of Theorem 2. It is well known that the duality mapping J is monotone from Y into Y^* and is continuous from the strong topology of Y to the weak topology of Y^* .

For u, v in Y, let $L(u, v) = Au + \epsilon Jv$. Then L maps bounded sets of $Y \times Y$ into bounded sets of Y^* . Moreover, $L(u, \cdot)$ is monotone and is continuous from line segments in Y to the weak topology of Y^* . It is also clear that L(u, u) is coercive.

If $u_n \to u$ weakly in Y and $u_n' \to u'$ weakly in Y^* , then it follows from Assumption (I) that $Au_n \to Au$ weakly in Y^* and $((Au_n, u_n)) \to ((Au, u))$. Therefore $((L(u_n, \varphi), u_n)) \to ((L(u, \varphi), u))$ and $((L(u_n, \varphi), v)) \to ((L(u, \varphi), v))$ for any φ , v in Y.

It follows from [3] that there exist u_{ϵ} in Y, u_{ϵ}' in Y^* such that

$$u_{\epsilon}' + \epsilon J u_{\epsilon} + A u_{\epsilon} = f, \qquad u_{\epsilon}(0) = u_{\epsilon}(T).$$

We easily obtain $||u_{\epsilon}||_F + \epsilon ||u_{\epsilon}||_{Y'} \leq M$. M is independent of ϵ .

It remains to show that u_{ϵ} is uniformly bounded in $L^{\infty}(0, T; H)$. It is the crucial part of the theorem and indeed of the paper.

First, we show that $||u_{\epsilon}(0)||_{H}$ is uniformly bounded. Let $\theta \in C^{1}(0, T)$ and $\theta(T) = 0$, $\theta(0) = 1$. Set $v_{\epsilon} = \theta u_{\epsilon}$. Then $v_{\epsilon}' + \epsilon \theta J u_{\epsilon} + \theta A u_{\epsilon} = \theta f + \theta' u_{\epsilon}$. Hence:

$$\frac{1}{2}||v_{\epsilon}(0)||_{H}^{2} = \frac{1}{2}||u_{\epsilon}(0)||_{H}^{2}$$

$$\leq \operatorname{Re} \int_0^T \left\{ -\theta \{f, u_{\epsilon}\} - \theta' \theta ||u_{\epsilon}||_H^2 + \epsilon \theta^2 (Ju_{\epsilon}, u_{\epsilon}) + \theta^2 (Au_{\epsilon}, u_{\epsilon}) \right\} dt.$$

Since by hypothesis $\operatorname{Re}((Au_{\epsilon}, u_{\epsilon})) \leq \varphi(||u_{\epsilon}||_F)$ for u_{ϵ} in Y, we obtain $\operatorname{Re} \int_0^T \theta^2(Au_{\epsilon}, u_{\epsilon}) dt \leq K \varphi(||u_{\epsilon}||_F) \leq C$.

Thus $\frac{1}{2}||u_{\epsilon}(0)||_{H}^{2} \leq C$. The different constants are all independent of ϵ . Using a remark as in [7], we show that

$$||u_{\epsilon}(t)||_{H}^{2} \leq C(||u_{\epsilon}(0)||_{H}^{2} + 1)$$
 for t in $[0, T]$.

Indeed,

$$||u_{\epsilon}(t)||_{H}^{2} = ||u_{\epsilon}(0)||_{H}^{2} + 2 \operatorname{Re} \int_{0}^{t} (u_{\epsilon}', u_{\epsilon}) dt.$$

Thus

$$\begin{aligned} ||u_{\epsilon}(t)||_{H}^{2} &= ||u_{\epsilon}(0)||_{H}^{2} + 2 \operatorname{Re} \int_{0}^{t} (f - Au_{\epsilon} - \epsilon Ju_{\epsilon}, u_{\epsilon}) dt \\ &\leq ||u_{\epsilon}(0)||_{H}^{2} + 2 ||f||_{F^{*}} ||u_{\epsilon}||_{F} - \operatorname{Re} \int_{0}^{t} \epsilon (Ju_{\epsilon}, u_{\epsilon}) dt, \end{aligned}$$

since by hypothesis $Re(Au_{\epsilon}, u_{\epsilon}) \ge 0$ for almost all t in [0, T]. Thus

$$||u_{\epsilon}(t)||_{H}^{2} \leq ||u_{\epsilon}(0)||_{H}^{2} + 2||f||_{F^{*}}||u_{\epsilon}||_{F} + 2\epsilon||Ju_{\epsilon}||_{Y^{*}}||u_{\epsilon}||_{Y}$$

$$\leq C(||u_{\epsilon}(0)||_{H}^{2} + ||u_{\epsilon}||_{F} + \epsilon||u_{\epsilon}||_{Y}^{r}) \leq M.$$

M is independent of t and of ϵ .

The theorem is proved.

2. We now give some applications of Theorem 1 to the study of periodic solutions of strongly non-linear parabolic equations.

Let G be a bounded open subset of R^n with a smooth boundary ∂G . The points of G will be denoted by $x = (x_1, \ldots, x_n)$. Set $D_j = i^{-1} \partial/\partial x_j$, $j = 1, \ldots, n$. For each n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n)$ of non-negative integers, we write:

$$D^{\alpha} = \prod_{j=1}^{n} D_{j}^{\alpha_{j}}$$
 with $|\alpha| = \sum_{j=1}^{n} \alpha_{j}$.

The points of E^1 will be denoted by t and differentiation in t by D_t . Let k be a positive integer. By functions we mean k-vector-valued functions $u = (u_1, \ldots, u_k)$ where each u_j is a real-valued function on G or on $G \times [0, T]$. $W^{k,p}(G)$ is the Banach space

$$W^{k,p}(G) = \{u : u \text{ in } L^p(G), D^{\alpha}u \text{ in } L^p(G), |\alpha| \leq k \}$$

with the norm

$$||u||_{k,p} = \left\{ \sum_{|\alpha| \leq k} ||D^{\alpha}u||_{L^{p}(G)}^{p} \right\}^{1/p}, \qquad 1$$

- (I) Periodic solutions of strongly non-linear parabolic equations. The existence of periodic solutions of the strongly non-linear parabolic equations considered by Lions [3] may be established by applying Theorem 1 and the remark following Assumption (I).
 - (II) Periodic solutions of the Navier-Stokes equations. Let

$$S = \{ \varphi \colon \varphi \text{ in } C_c^{\infty}(G); \operatorname{div} \varphi = 0 \}.$$

H, V, W are the completion of S in the $L^2(G)$ -norm, the $(||\cdot||_{1,2})$ -norm, and the $(||\cdot||_{m,4})$ -norm, respectively, where m=1+[n/4].

Then $W \subset V \subset H$. W is dense in V and V is dense in H. The natural injection mappings of W into V and of V into H are compact since G is bounded.

Take Y to be the Banach space $Y = L^4(0, T; W)$ and $F = L^2(0, T; V)$. Consider the problem:

$$\begin{cases} D_{t}u - \Delta u + \sum_{j=1}^{n} u_{j}D_{j}u + \text{grad } p = f & \text{on } G \times [0, T]; \\ \text{div } u = 0 \text{ on } G \times [0, T] & u(x, t) = 0 \text{ on } \partial G \times [0, T]; \\ u(x, 0) = u(x, T) & \text{on } G. \end{cases}$$

THEOREM 3. For each f in $L^2(0, T; V^*)$, there exists u in $L^2(0, T; V)$ and in $L^{\infty}(0, T; H)$ with u' in $L^2(0, T; W^*)$ such that

$$-((u,\varphi')) + \sum_{j=1}^{n} \int_{0}^{T} (u_{j}D_{j}u,\varphi)_{H} dt + \sum_{j=1}^{n} \int_{0}^{T} (D_{j}u,D_{j}\varphi)_{H} dt = \langle f,\varphi \rangle$$

for all φ in Y with φ' in Y* and $\varphi(0) = \varphi(T)$.

Proof. From the Sobolev embedding theorem we have:

$$W \subset C(\operatorname{cl} G)$$
.

The natural injection mapping of W into $C(\operatorname{cl} G)$ is continuous. Let

$$a(u,v) = \sum_{j,k=1}^{n} \int_{0}^{T} \{ (D_{j}u_{k}, D_{j}v_{k})_{H} + (u_{j}D_{j}u_{k}, v_{k})_{H} \} dt,$$

where u is in $X = L^2(0, T; V) \cap L^{\infty}(0, T; H)$ and v in Y. a(u, v) is well-defined and, moreover, continuous, linear in v on Y. Hence a(u, v) = ((Au, v)). To prove the theorem, we shall apply Theorem 1.

We check that A satisfies all the hypotheses of Assumption (I). Suppose that $u_n \to u$ weakly in X and $u_n' \to u'$ weakly in Y^* . Since the natural injection mapping of V into H is compact, it follows from a result of Aubin [1] that $u_n \to u$ in $L^2(0, T; H)$.

An easy argument, using the Lebesgue convergence theorem yields: $Au_n \rightarrow Au$ weakly in Y^* .

It remains to verify part (iii) of Assumption (I). Suppose that $u_n \to u$ weakly in Y and $u_n' \to u'$ weakly in Y^* . Since the natural injection mapping of W into V is compact, it follows from [1] again that $u_n \to u$ in $L^4(0, T; V)$. Hence

$$||u_n D u_n - u D u||_{L^2(0,T;H)} \le C||u||_{Y}\{||u_n - u||_{L^4(0,T;H)} + ||D u_n - D u||_{L^4(0,T;H)}\} \to 0 \quad \text{as } n \to +\infty.$$

It follows that $Au_n \to Au$ in Y^* .

To apply Theorem 1, it suffices to check part (iv) of the hypotheses of Theorem 1.

For u in Y,

$$a(u, u) = ((Au, u)) = \sum_{j,k=1}^{n} \int_{0}^{T} (D_{j}u_{k}, D_{j}u_{k})_{H} dt \leq C||u||_{F}^{2}.$$

194 BUI AN TON

Applying Theorem 1, we obtain u in X with u' in Y^* such that

$$u' + Au = f, \qquad u(0) = u(T).$$

Since $||Au||_{L^2(0,T;W^*)} \le M\{||u||_F + ||u||_{L^\infty(0,T;H)}||u||_F\}$, we have u' = f - Au in $L^2(0,T;W^*)$.

The theorem is proved.

The existence of periodic solutions of the Navier-Stokes equations without any restriction on the dimension of the space domain was shown by Prouse [5] when f is periodic in time and by Lions [4] for f in $L^2(0, T; V^*)$. Lions solved the initial-value problem in a finite-dimensional space, then used a fixed-point theorem (in order to obtain a uniform estimate in $L^{\infty}(0, T; H)$ of the approximate solutions) to show the existence of periodic solutions in finite-dimensional subspaces. Finally by going to the limit, the approximate solutions are shown to converge weakly in $L^2(0, T; V)$ to a periodic solution of the Navier-Stokes equations.

(III) Periodic solutions of an equation considered by Temam [6]. Consider the problem:

$$\begin{cases} D_{i}u_{\epsilon} - \Delta u_{\epsilon} + \sum_{j=1}^{n} u_{j\epsilon} D_{j}u_{\epsilon} + \frac{1}{2}(\operatorname{div} u_{\epsilon})u_{\epsilon} + \operatorname{grad} p_{\epsilon} = f & \text{on } G \times [0, T]; \\ \operatorname{div}(u_{\epsilon}) = -p_{\epsilon} \cdot \epsilon, & u_{\epsilon}(x, t) = 0 & \text{on } \partial G \times [0, T]; \\ u_{\epsilon}(x, 0) = u_{\epsilon}(x, T) & \text{on } G. \end{cases}$$

The initial-value problem for the above equation was studied by Temam in [6] when n = 2, 3.

Let H be the Hilbert space $L^2(G)$ and V, W the completion of $C_c^{\infty}(G)$ with respect to the $(||\cdot||_{1,2})$ -norm and the $(||\cdot||_{m,4})$ -norm, respectively, with $m=1+\lceil n/4 \rceil$.

Take $F = L^2(0, T; V)$ and $Y = L^4(0, T; W)$ with $X = F \cap L^{\infty}(0, T; H)$. Let

$$\begin{split} a_{\epsilon}(u,v;w) &= \sum_{j=1}^n \int_0^T \int_G D_j u \cdot D_j w \, dx dt + \int_0^T \int_G \epsilon^{-1} \operatorname{div}(u) \, \operatorname{div}(w) \, dx dt \\ &+ \frac{1}{2} \sum_{j,k=1}^n \int_0^T \int_G u_j (D_j v_k \cdot w_k - v_k \cdot D_j w_k) \, dx dt, \qquad u,v \text{ in } X \text{ and } w \text{ in } Y. \end{split}$$

 $a_{\epsilon}(u, v; w)$ is well-defined and $a_{\epsilon}(u, u; v) = ((A_{\epsilon}u, v))$ for u in X and v in Y.

THEOREM 4. For each f in F* and for ϵ , $0 < \epsilon < 1$, there exists u_{ϵ} in X with u_{ϵ}' in $L^2(0, T; W^*)$ such that

$$u_{\epsilon}' + A_{\epsilon}u_{\epsilon} = f, \qquad u_{\epsilon}(0) = u_{\epsilon}(T).$$

Moreover $||u_{\epsilon}||_F + ||u_{\epsilon}||_{L^{\infty}(0,T;H)} + \epsilon^{-\frac{1}{2}}||\operatorname{div}(u_{\epsilon})||_{L^2(G\times(0,T))} + ||u_{\epsilon}'||_{Y^*} \leq M$. M is a constant independent of ϵ .

Proof. An argument as in the proof of Theorem 3 shows that A_{ϵ} satisfies all the hypotheses of Theorem 1. It follows from Theorem 2 that there exists $u_{\epsilon n}$ in Y with $u_{\epsilon n}'$ in Y^* such that:

$$u_{\epsilon\eta}' + \eta J u_{\epsilon\eta} + A_{\epsilon} u_{\epsilon\eta} = f,$$
 $u_{\epsilon\eta}(0) = u_{\epsilon\eta}(T),$ $0 < \eta < 1.$

It is easy to see that

$$||u_{\epsilon\eta}||_F + \eta ||u_{\epsilon\eta}||_{Y^4} + \epsilon^{-\frac{1}{2}} ||\operatorname{div}(u_{\epsilon\eta})||_{L^2(G\times(0,T))} \leq M.$$

M is a constant independent of both ϵ and η .

An argument exactly as in the proof of Theorem 2 yields: $||u_{\epsilon\eta}(0)||_H \leq M$ and $||u_{\epsilon\eta}(t)||_H \leq C(1+||u_{\epsilon\eta}(0)||_H) \leq M$. M and C are constants independent of ϵ , η , t.

Thus $||u_{\epsilon\eta}||_{L^{\infty}(0,T;H)} \leq M$ and hence $||u_{\epsilon\eta}'||_{L^{2}(0,T;W^{*})} \leq M$.

Let $\eta \to 0$; then from the weak compactness of the unit ball in a reflexive Banach space, we obtain $u_{\epsilon\eta} \to u_{\epsilon}$ weakly in F. Theorem 1 shows that u_{ϵ} is a solution of $u_{\epsilon}' + A_{\epsilon}u_{\epsilon} = f$ with $u_{\epsilon}(0) = u_{\epsilon}(T)$. All the other assertions of the theorem are trivial to verify.

THEOREM 5. Let u_{ϵ} be a solution of $u_{\epsilon}' + A_{\epsilon}u_{\epsilon} = f$, $u_{\epsilon}(0) = u_{\epsilon}(T)$ of Theorem 4. Then as $\epsilon \to 0$, $u_{\epsilon} \to u$ weakly in F and u is a solution of u' + Au = f, u(0) = u(T) of Theorem 3.

Proof. From the weak compactness of the unit ball in a reflexive Banach space, we obtain by taking a subsequence if necessary:

 $u_{\epsilon} \to u$ weakly in F, $u_{\epsilon} \to u$ in the weak* topology of $L^{\infty}(0, T; H)$, $u_{\epsilon'} \to u'$ weakly in $L^{2}(0, T; W^{*})$ and $\operatorname{div}(u_{\epsilon}) \to 0$ in $L^{2}(G \times (0, T))$ as $\epsilon \to 0$.

Since the injection mapping of V into H is compact, it follows from [1] that $u_{\bullet} \to u$ in $L^2(0, T; H)$ as $\epsilon \to 0$.

From above, we have $\operatorname{div}(u_{\epsilon}) \to \operatorname{div}(u)$ weakly in $L^2(G \times (0, T))$ and thus $\operatorname{div}(u) = 0$.

On the other hand, as in the proof on Theorem 1, we could show that u(0) = u(T).

It remains to show that $A_{\epsilon}u_{\epsilon} \to Au$ weakly in Y^* . The proof is easy and is therefore omitted.

REFERENCES

- 1. J. P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris 256 (1963), 5042-5044.
- F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U. S. A. 53 (1965), 1100-1103.
- 3. J.-L. Lions, Sur certaines équations paraboliques nonlinéaires, Bull. Soc. Math. France 93 (1965), 155-175.
- 4. Quelques méthodes de résolution des problèmes aux limites nonlinéaires (Dunod, Paris, 1969).

196 BUI AN TON

- G. Prouse, Soluzioni periodiche dell'equazione di Navier-Stokes, Rend. Accad. Naz. Lincei 35 (1963), 443-447.
- R. Teman, Une méthode d'approximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. France 96 (1968), 115-152.
- 7. B. A. Ton, On strongly nonlinear parabolic equations (to appear in J. Functional Analysis).

University of British Columbia, Vancouver, British Columbia