PERIODIC SOLUTIONS OF NON-LINEAR EVOLUTION EQUATIONS IN BANACH SPACES

BUI AN TON

In this paper the theory of Browder [2] and of Lions [3] on periodic solutions of non-linear evolution equations in Banach spaces is put in a more general framework so as to include the Navier-Stokes equations and their variants.

An abstract existence theorem is proved in § 1. Applications are given in § 2. The existence of periodic solutions of the Navier-Stokes equations without any restriction on the dimension of the space domain is established. Application of the abstract theorem to the following problem is given:

$$
\left\{\begin{array}{c}
D_{t} u_{\epsilon}-\Delta u_{\epsilon}+\sum_{j=1}^{n} u_{j \epsilon} D_{j} u_{\epsilon}+\frac{1}{2}\left(\operatorname{div} u_{\epsilon}\right) u_{\epsilon}+\operatorname{grad} p_{\epsilon}=f \text { on } G \times[0, T] ; \\
\operatorname{div}\left(u_{\epsilon}\right)=-p_{\epsilon} \cdot \epsilon ; \quad u_{\epsilon}(x, t)=0 \quad \text { on } \partial G \times[0, T] ; \\
u_{\epsilon}(x, 0)=u_{\epsilon}(x, T) \text { on } G .
\end{array}\right.
$$

1. Let H be a Hilbert space and $(., .)_{H}$ the inner product in H. Let V and W be two reflexive separable Banach spaces with $W \subset V \subset H . W$ is dense in V and V is dense in H. The natural injection mappings of W into V and of V into H are compact.

Let V^{*} be the dual of V and $\{.,$.$\} the pairing between V$ and V^{*}. The pairing between W and its dual W^{*} is denoted by (.,.).

Consider the Banach space $F=L^{p}(0, T ; V)$ of equivalence classes of functions $u(t)$ from $[0, T]$ to V with the norm:

$$
\|u\|_{F}=\left\{\int_{0}^{T}\|u(t)\|_{V}^{p} d t\right\}^{1 / p}, \quad 2 \leqq p<\infty
$$

$\langle.,$.$\rangle is the pairing between F$ and its dual F^{*}. Let $Y=L^{r}(0, T ; W)$ with $2 \leqq p<r<\infty$ and let $((.,)$.$) be the pairing between Y$ and its dual Y^{*}.

Thus $\langle u, v\rangle=\int_{0}^{T}(u, v)_{H} d t$ if $u \in L^{p}(0, T ; H)$ and v is in F. Similarly for ((.,.)).

Set $X=F \cap L^{\infty}(0, T ; H)$. We shall say that $u_{n} \rightarrow u$ weakly in X if $u_{n} \rightarrow u$ weakly in F and $u_{n} \rightarrow u$ in the weak-star topology of $L^{\infty}(0, T ; H)$.

In this paper we consider non-linear operators A mapping X and Y into Y^{*} and satisfying the following assumption.

Assumption (I). (i) A is continuous from line segments in X to the weak* topology of Y^{*}.

Received June 11, 1970.
(ii) Let $u_{n} \rightarrow u$ weakly in X, u_{n} in $Y, u_{n}(0)=u_{n}(T) ; u_{n}{ }^{\prime} \rightarrow u^{\prime}$ weakly in Y^{*}, $A u_{n} \rightarrow g$ weakly in Y^{*} with $g+u^{\prime}$ in F^{*} and

$$
\lim \sup \operatorname{Re}\left(\left(u_{n}^{\prime}+A u_{n}, u_{n}\right)\right) \leqq \operatorname{Re}\left\langle g+u^{\prime}, u\right\rangle
$$

Then $A u=g$.
(iii) If $u_{n} \rightarrow u$ weakly in Y and $u_{n}{ }^{\prime} \rightarrow u^{\prime}$ weakly in Y^{*}, then $A u_{n} \rightarrow A u$ weakly in Y^{*} and $\left(\left(A u_{n}, u_{n}\right)\right) \rightarrow((A u, u))$.

We have shown in [7] that all the semi-monotone operators considered by Browder [2] and by Lions [3] as well as all the weakly continuous operators from F into F^{*} satisfy Assumption (I).

The main result of this paper is the following theorem.
Theorem 1. Let A be a non-linear operator mapping X and Y into Y^{*} and satisfying Assumption (I). Suppose further that:
(i) A maps bounded sets of X and of Y into bounded sets of Y^{*};
(ii) $\operatorname{Re}((A u, u)) \geqq c\left(\|u\|_{F}\right)\|u\|_{F}$ for all u in $Y, c(r)$ is a positive continuous function with $c(r) \rightarrow+\infty$ as $r \rightarrow+\infty$;
(iii) $\operatorname{Re}(A u, u) \geqq 0$ for all u in Y and for almost all t in $[0, T]$;
(iv) There exists a positive continuous function $\varphi(r)$ such that:

$$
\operatorname{Re}((A u, u)) \leqq \varphi\left(\|u\|_{F}\right) \quad \text { for all } u \text { in } Y
$$

Then for each f in F^{*}, there exists u in X with u^{\prime} in Y^{*} such that:

$$
u^{\prime}+A u=f, \quad u(0)=u(T)
$$

Theorem 1 will be derived from the following result.
Theorem 2. Let J be the duality mapping from Y into Y^{*} associated with the gauge function $\psi(s)=s^{r-1}$. Suppose that all the hypotheses of Theorem 1 are satisfied. Then for each $\epsilon, 0<\epsilon<1$, and for each f in F^{*}, there exists u_{ϵ} in Y with u_{ϵ}^{\prime} in Y^{*} such that:

$$
u_{\epsilon}^{\prime}+\epsilon J u_{\epsilon}+A u_{\epsilon}=f, \quad u_{\epsilon}(0)=u_{\epsilon}(T)
$$

Moreover, $\left\|u_{\epsilon}\right\|_{F}+\epsilon\left\|u_{\epsilon}\right\|_{Y^{r}}+\left\|u_{\epsilon}^{\prime}\right\|_{Y^{*}}+\left\|u_{\epsilon}\right\|_{L^{\infty}(0, T ; H)} \leqq M . M$ is a constant independent of ϵ.

Proof of Theorem 1 using Theorem 2. Since Y is a reflexive Banach space, by taking an equivalent norm if necessary, we may assume that Y^{*} is strictly convex. It is well known that the duality mapping J from Y into Y^{*} associated with the gauge function $\psi(s)$ exists. Since Y^{*} is strictly convex, J is uniquely defined.

From the weak compactness of the unit ball in a reflexive Banach space, we have by taking a subsequence if necessary:
$u_{\epsilon} \rightarrow u$ weakly in $F, u_{\epsilon} \rightarrow u$ in the weak* topology of $L^{\infty}(0, T ; H)$, $u_{\epsilon}^{\prime} \rightarrow u^{\prime}$ weakly in Y^{*} and $\epsilon^{1 / r} u_{\epsilon} \rightarrow 0$ weakly in Y as $\epsilon \rightarrow 0$.

Since the natural injection mapping of V into W^{*} is compact, it follows then that $u_{\epsilon}(t)-u(t) \rightarrow 0$ in W^{*} for all t in $[0, T]$. But $u_{\epsilon}(0)=u_{\epsilon}(T)$, thus $u(0)=u(T)$.

By hypothesis, A maps bounded sets of X into bounded sets of Y^{*}, hence $A u_{\epsilon} \rightarrow g$ weakly in Y^{*} as $\epsilon \rightarrow 0$.

On the other hand, $\epsilon\left\|J u_{\epsilon}\right\|_{Y^{*}}=\epsilon\left\|u_{\epsilon}\right\|_{Y^{r-1}} \rightarrow 0$ as $\epsilon \rightarrow 0$. Therefore $\lim \sup \operatorname{Re}\left(\left(u_{\epsilon}^{\prime}+A u_{\epsilon}, u_{\epsilon}\right)\right) \leqq \operatorname{Re}\langle f, u\rangle=\operatorname{Re}\left\langle g+u^{\prime}, u\right\rangle$. It follows from Assumption (I) that $A u=g$.

Proof of Theorem 2. It is well known that the duality mapping J is monotone from Y into Y^{*} and is continuous from the strong topology of Y to the weak topology of Y^{*}.

For u, v in Y, let $L(u, v)=A u+\epsilon J v$. Then L maps bounded sets of $Y \times Y$ into bounded sets of Y^{*}. Moreover, $L(u, \cdot)$ is monotone and is continuous from line segments in Y to the weak topology of Y^{*}. It is also clear that $L(u, u)$ is coercive.

If $u_{n} \rightarrow u$ weakly in Y and $u_{n}^{\prime} \rightarrow u^{\prime}$ weakly in Y^{*}, then it follows from Assumption (I) that $A u_{n} \rightarrow A u$ weakly in Y^{*} and $\left(\left(A u_{n}, u_{n}\right)\right) \rightarrow((A u, u))$. Therefore $\left(\left(L\left(u_{n}, \varphi\right), u_{n}\right)\right) \rightarrow((L(u, \varphi), u))$ and $\left(\left(L\left(u_{n}, \varphi\right), v\right)\right) \rightarrow((L(u, \varphi), v))$ for any φ, v in Y.

It follows from [3] that there exist u_{ϵ} in Y, u_{ϵ}^{\prime} in Y^{*} such that

$$
u_{\epsilon}^{\prime}+\epsilon J u_{\epsilon}+A u_{\epsilon}=f, \quad u_{\epsilon}(0)=u_{\epsilon}(T)
$$

We easily obtain $\left\|u_{\epsilon}\right\|_{F}+\epsilon\left\|u_{\epsilon}\right\|_{Y}{ }^{T} \leqq M . M$ is independent of ϵ.
It remains to show that u_{ϵ} is uniformly bounded in $L^{\infty}(0, T ; H)$. It is the crucial part of the theorem and indeed of the paper.

First, we show that $\left\|u_{\epsilon}(0)\right\|_{H}$ is uniformly bounded. Let $\theta \in C^{1}(0, T)$ and $\theta(T)=0, \theta(0)=1$. Set $v_{\epsilon}=\theta u_{\epsilon}$. Then $v_{\epsilon}^{\prime}+\epsilon \theta J u_{\epsilon}+\theta A u_{\epsilon}=\theta f+\theta^{\prime} u_{\epsilon}$. Hence:

$$
\begin{aligned}
\frac{1}{2}\left\|v_{\epsilon}(0)\right\|_{H}^{2} & =\frac{1}{2}\left\|u_{\epsilon}(0)\right\|_{H}^{2} \\
& \leqq \operatorname{Re} \int_{0}^{T}\left\{-\theta\left\{f, u_{\epsilon}\right\}-\theta^{\prime} \theta\left\|u_{\epsilon}\right\|_{H}^{2}+\epsilon \theta^{2}\left(J u_{\epsilon}, u_{\epsilon}\right)+\theta^{2}\left(A u_{\epsilon}, u_{\epsilon}\right)\right\} d t
\end{aligned}
$$

Since by hypothesis $\operatorname{Re}\left(\left(A u_{\epsilon}, u_{\epsilon}\right)\right) \leqq \varphi\left(\left\|u_{\epsilon}\right\|_{F}\right)$ for u_{ϵ} in Y, we obtain $\operatorname{Re} \int_{0}^{T} \theta^{2}\left(A u_{\epsilon}, u_{\epsilon}\right) d t \leqq K \varphi\left(\left\|u_{\epsilon}\right\|_{F}\right) \leqq C$.

Thus $\frac{1}{2}\left\|u_{\epsilon}(0)\right\|_{H}^{2} \leqq C$. The different constants are all independent of ϵ.
Using a remark as in [7], we show that

$$
\left\|u_{\epsilon}(t)\right\|_{H}^{2} \leqq C\left(\left\|u_{\epsilon}(0)\right\|_{H}^{2}+1\right) \quad \text { for } t \text { in }[0, T]
$$

Indeed,

$$
\left\|u_{\epsilon}(t)\right\|_{H}^{2}=\left\|u_{\epsilon}(0)\right\|_{H}^{2}+2 \operatorname{Re} \int_{0}^{t}\left(u_{\epsilon}^{\prime}, u_{\epsilon}\right) d t
$$

Thus

$$
\begin{aligned}
\left\|u_{\epsilon}(t)\right\|_{H}^{2} & =\left\|u_{\epsilon}(0)\right\|_{H}^{2}+2 \operatorname{Re} \int_{0}^{t}\left(f-A u_{\epsilon}-\epsilon J u_{\epsilon}, u_{\epsilon}\right) d t \\
& \leqq\left\|u_{\epsilon}(0)\right\|_{H}^{2}+2\|f\|_{F^{*}}\left\|u_{\epsilon}\right\|_{F}-\operatorname{Re} \int_{0}^{t} \epsilon\left(J u_{\epsilon}, u_{\epsilon}\right) d t
\end{aligned}
$$

since by hypothesis $\operatorname{Re}\left(A u_{\epsilon}, u_{\epsilon}\right) \geqq 0$ for almost all t in [0,T]. Thus

$$
\begin{aligned}
&\left\|u_{\epsilon}(t)\right\|_{H}^{2} \leqq\left\|u_{\epsilon}(0)\right\|_{H}^{2}+2\|f\|_{F^{*}}\left\|u_{\epsilon}\right\|_{F}+2 \epsilon\left\|J u_{\epsilon}\right\|_{Y^{*}}\left\|u_{\epsilon}\right\|_{Y} \\
& \leqq C\left(\left\|u_{\epsilon}(0)\right\|_{H}^{2}+\left\|u_{\epsilon}\right\|_{F}+\epsilon\left\|u_{\epsilon}\right\|_{Y}^{r}\right) \leqq M .
\end{aligned}
$$

M is independent of t and of ϵ.
The theorem is proved.
2. We now give some applications of Theorem 1 to the study of periodic solutions of strongly non-linear parabolic equations.

Let G be a bounded open subset of R^{n} with a smooth boundary ∂G. The points of G will be denoted by $x=\left(x_{1}, \ldots, x_{n}\right)$. Set $D_{j}=i^{-1} \partial / \partial x_{j}$, $j=1, \ldots, n$. For each n-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of non-negative integers, we write:

$$
D^{\alpha}=\prod_{j=1}^{n} D_{j}^{\alpha_{j}} \quad \text { with }|\alpha|=\sum_{j=1}^{n} \alpha_{j} .
$$

The points of E^{1} will be denoted by t and differentiation in t by D_{t}. Let k be a positive integer. By functions we mean k-vector-valued functions $u=\left(u_{1}, \ldots, u_{k}\right)$ where each u_{j} is a real-valued function on G or on $G \times[0, T]$.
$W^{k, p}(G)$ is the Banach space

$$
W^{k, p}(G)=\left\{u: u \text { in } L^{p}(G), D^{\alpha} u \text { in } L^{p}(G),|\alpha| \leqq k\right\}
$$

with the norm

$$
\|u\|_{k, p}=\left\{\sum_{|\alpha| \leqq k}\left\|D^{\alpha} u\right\|_{L^{p}(G)}^{p}\right\}^{1 / p}, \quad 1<p<\infty .
$$

(I) Periodic solutions of strongly non-linear parabolic equations. The existence of periodic solutions of the strongly non-linear parabolic equations considered by Lions [3] may be established by applying Theorem 1 and the remark following Assumption (I).
(II) Periodic solutions of the Navier-Stokes equations. Let

$$
S=\left\{\varphi: \varphi \operatorname{in} C_{c}^{\infty}(G) ; \operatorname{div} \varphi=0\right\}
$$

H, V, W are the completion of S in the $L^{2}(G)$-norm, the $\left(\|\cdot\|_{1,2}\right)$-norm, and the $\left(\|\cdot\|_{m, 4}\right)$-norm, respectively, where $m=1+[n / 4]$.

Then $W \subset V \subset H . W$ is dense in V and V is dense in H. The natural injection mappings of W into V and of V into H are compact since G is bounded.

Take Y to be the Banach space $Y=L^{4}(0, T ; W)$ and $F=L^{2}(0, T ; V)$. Consider the problem:

$$
\left\{\begin{array}{c}
D_{t} u-\Delta u+\sum_{j=1}^{n} u_{j} D_{j} u+\operatorname{grad} p=f \quad \text { on } G \times[0, T] ; \\
\operatorname{div} u=0 \text { on } G \times[0, T] \quad u(x, t)=0 \text { on } \partial G \times[0, T] ; \\
u(x, 0)=u(x, T) \quad \text { on } G .
\end{array}\right.
$$

Theorem 3. For each f in $L^{2}\left(0, T ; V^{*}\right)$, there exists u in $L^{2}(0, T ; V)$ and in $L^{\infty}(0, T ; H)$ with u^{\prime} in $L^{2}\left(0, T ; W^{*}\right)$ such that

$$
-\left(\left(u, \varphi^{\prime}\right)\right)+\sum_{j=1}^{n} \int_{0}^{T}\left(u_{j} D_{j} u, \varphi\right)_{H} d t+\sum_{j=1}^{n} \int_{0}^{T}\left(D_{j} u, D_{j} \varphi\right)_{H} d t=\langle f, \varphi\rangle
$$

for all φ in Y with φ^{\prime} in Y^{*} and $\varphi(0)=\varphi(T)$.
Proof. From the Sobolev embedding theorem we have:

$$
W \subset C(\mathrm{cl} G)
$$

The natural injection mapping of W into $C(\mathrm{cl} G)$ is continuous.
Let

$$
a(u, v)=\sum_{j, k=1}^{n} \int_{0}^{T}\left\{\left(D_{j} u_{k}, D_{j} v_{k}\right)_{H}+\left(u_{j} D_{j} u_{k}, v_{k}\right)_{H}\right\} d t
$$

where u is in $X=L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H)$ and v in $Y . a(u, v)$ is welldefined and, moreover, continuous, linear in v on Y. Hence $a(u, v)=((A u, v))$.

To prove the theorem, we shall apply Theorem 1.
We check that A satisfies all the hypotheses of Assumption (I). Suppose that $u_{n} \rightarrow u$ weakly in X and $u_{n}{ }^{\prime} \rightarrow u^{\prime}$ weakly in Y^{*}. Since the natural injection mapping of V into H is compact, it follows from a result of Aubin [1] that $u_{n} \rightarrow u$ in $L^{2}(0, T ; H)$.

An easy argument, using the Lebesgue convergence theorem yields: $A u_{n} \rightarrow A u$ weakly in Y^{*}.

It remains to verify part (iii) of Assumption (I). Suppose that $u_{n} \rightarrow u$ weakly in Y and $u_{n}{ }^{\prime} \rightarrow u^{\prime}$ weakly in Y^{*}. Since the natural injection mapping of W into V is compact, it follows from [1] again that $u_{n} \rightarrow u$ in $L^{4}(0, T ; V)$. Hence

$$
\begin{aligned}
& \left\|u_{n} D u_{n}-u D u\right\|_{L^{2}(0, T ; H)} \\
& \quad \leqq C\|u\|_{Y}\left\{\left\|u_{n}-u\right\|_{L^{4}(0, T ; H)}+\left\|D u_{n}-D u\right\|_{L^{4}(0, T ; H)}\right\} \rightarrow 0 \quad \text { as } n \rightarrow+\infty .
\end{aligned}
$$

It follows that $A u_{n} \rightarrow A u$ in Y^{*}.
To apply Theorem 1, it suffices to check part (iv) of the hypotheses of Theorem 1.

For u in Y,

$$
a(u, u)=((A u, u))=\sum_{j, k=1}^{n} \int_{0}^{T}\left(D_{j} u_{k}, D_{j} u_{k}\right)_{H} d t \leqq C\|u\|_{F}^{2}
$$

Applying Theorem 1, we obtain u in X with u^{\prime} in Y^{*} such that

$$
u^{\prime}+A u=f, \quad u(0)=u(T)
$$

Since $\|A u\|_{L^{2}\left(0, T ; W^{*}\right)} \leqq M\left\{\|u\|_{F}+\|u\|_{L^{\infty}(0, T ; H)}\|u\|_{F}\right\}$, we have $u^{\prime}=f-A u$ in $L^{2}\left(0, T ; W^{*}\right)$.

The theorem is proved.
The existence of periodic solutions of the Navier-Stokes equations without any restriction on the dimension of the space domain was shown by Prouse [5] when f is periodic in time and by Lions [4] for f in $L^{2}\left(0, T ; V^{*}\right)$. Lions solved the initial-value problem in a finite-dimensional space, then used a fixed-point theorem (in order to obtain a uniform estimate in $L^{\infty}(0, T ; H)$ of the approximate solutions) to show the existence of periodic solutions in finite-dimensional subspaces. Finally by going to the limit, the approximate solutions are shown to converge weakly in $L^{2}(0, T ; V)$ to a periodic solution of the Navier-Stokes equations.
(III) Periodic solutions of an equation considered by Temam [6]. Consider the problem:

$$
\left\{\begin{array}{c}
D_{t} u_{\epsilon}-\Delta u_{\epsilon}+\sum_{j=1}^{n} u_{j \epsilon} D_{j} u_{\epsilon}+\frac{1}{2}\left(\operatorname{div} u_{\epsilon}\right) u_{\epsilon}+\operatorname{grad} p_{\epsilon}=f \text { on } G \times[0, T] ; \\
\operatorname{div}\left(u_{\epsilon}\right)=-p_{\epsilon} \cdot \epsilon, \quad u_{\epsilon}(x, t)=0 \quad \text { on } \partial G \times[0, T] ; \\
u_{\epsilon}(x, 0)=u_{\epsilon}(x, T) \text { on } G .
\end{array}\right.
$$

The initial-value problem for the above equation was studied by Temam in [6] when $n=2,3$.

Let H be the Hilbert space $L^{2}(G)$ and V, W the completion of $C_{c}^{\infty}(G)$ with respect to the $\left(\|\cdot\|_{1,2}\right)$-norm and the $\left(\|\cdot\|_{m, 4}\right)$-norm, respectively, with $m=1+[n / 4]$.

Take $F=L^{2}(0, T ; V)$ and $Y=L^{4}(0, T ; W)$ with $X=F \cap L^{\infty}(0, T ; H)$. Let

$$
\begin{aligned}
& a_{\epsilon}(u, v ; w)=\sum_{j=1}^{n} \int_{0}^{T} \int_{G} D_{j} u \cdot D_{j} w d x d t+\int_{0}^{T} \int_{G} \epsilon^{-1} \operatorname{div}(u) \operatorname{div}(w) d x d t \\
& \quad+\frac{1}{2} \sum_{j, k=1}^{n} \int_{0}^{T} \int_{G} u_{j}\left(D_{j} v_{k} \cdot w_{k}-v_{k} \cdot D_{j} w_{k}\right) d x d t, \quad u, v \text { in } X \text { and } w \text { in } Y .
\end{aligned}
$$ $a_{\epsilon}(u, v ; w)$ is well-defined and $a_{\epsilon}(u, u ; v)=\left(\left(A_{\epsilon} u, v\right)\right)$ for u in X and v in Y.

Theorem 4. For each f in F^{*} and for $\epsilon, 0<\epsilon<1$, there exists u_{ϵ} in X with u_{ϵ}^{\prime} in $L^{2}\left(0, T ; W^{*}\right)$ such that

$$
u_{\epsilon}^{\prime}+A_{\epsilon} u_{\epsilon}=f, \quad u_{\epsilon}(0)=u_{\epsilon}(T) .
$$

Moreover $\left\|u_{\epsilon}\right\|_{F}+\left\|u_{\epsilon}\right\|_{L^{\infty}(0, T ; H)}+\epsilon^{-\frac{1}{2}}\left\|\operatorname{div}\left(u_{\epsilon}\right)\right\|_{L^{2}(G \times(0, T))}+\left\|u_{\epsilon}^{\prime}\right\|_{Y^{*}} \leqq M$. M is a constant independent of ϵ.

Proof. An argument as in the proof of Theorem 3 shows that A_{ϵ} satisfies all the hypotheses of Theorem 1. It follows from Theorem 2 that there exists $u_{\epsilon \eta}$ in Y with $u_{\epsilon \eta}{ }^{\prime}$ in Y^{*} such that:

$$
u_{\epsilon \eta}{ }^{\prime}+\eta J u_{\epsilon \eta}+A_{\epsilon} u_{\epsilon \eta}=f, \quad u_{\epsilon \eta}(0)=u_{\epsilon \eta}(T), \quad 0<\eta<1 .
$$

It is easy to see that

$$
\left\|u_{\epsilon \eta}\right\|_{F}+\eta\left\|u_{\epsilon \eta}\right\|_{Y^{4}}+\epsilon^{-\frac{1}{2}}\left\|\operatorname{div}\left(u_{\epsilon \eta}\right)\right\|_{L^{2}(G \times(0, T))} \leqq M .
$$

M is a constant independent of both ϵ and η.
An argument exactly as in the proof of Theorem 2 yields: $\left\|u_{\epsilon \eta}(0)\right\|_{H} \leqq M$ and $\left\|u_{\epsilon \eta}(t)\right\|_{H} \leqq C\left(1+\left\|u_{\epsilon \eta}(0)\right\|_{H}\right) \leqq M . M$ and C are constants independent of ϵ, η, t.

Thus $\left\|u_{\epsilon \eta}\right\|_{L^{\infty}(0, T ; H)} \leqq M$ and hence $\left\|u_{\epsilon \eta^{\prime}}\right\|_{L^{2}\left(0, T ; W^{*}\right)} \leqq M$.
Let $\eta \rightarrow 0$; then from the weak compactness of the unit ball in a reflexive Banach space, we obtain $u_{\epsilon \eta} \rightarrow u_{\epsilon}$ weakly in F. Theorem 1 shows that u_{ϵ} is a solution of $u_{\epsilon}^{\prime}+A_{\epsilon} u_{\epsilon}=f$ with $u_{\epsilon}(0)=u_{\epsilon}(T)$. All the other assertions of the theorem are trivial to verify.

Theorem 5. Let u_{ϵ} be a solution of $u_{\epsilon}^{\prime}+A_{\epsilon} u_{\epsilon}=f, u_{\epsilon}(0)=u_{\epsilon}(T)$ of Theorem 4. Then as $\epsilon \rightarrow 0, u_{\epsilon} \rightarrow u$ weakly in F and u is a solution of $u^{\prime}+A u=f$, $u(0)=u(T)$ of Theorem 3 .

Proof. From the weak compactness of the unit ball in a reflexive Banach space, we obtain by taking a subsequence if necessary:
$u_{\epsilon} \rightarrow u$ weakly in $F, u_{\epsilon} \rightarrow u$ in the weak ${ }^{*}$ topology of $L^{\infty}(0, T ; H)$,
$u_{\epsilon}^{\prime} \rightarrow u^{\prime}$ weakly in $L^{2}\left(0, T ; W^{*}\right)$ and $\operatorname{div}\left(u_{\epsilon}\right) \rightarrow 0$ in $L^{2}(G \times(0, T))$ as $\epsilon \rightarrow 0$.
Since the injection mapping of V into H is compact, it follows from [1] that $u_{\epsilon} \rightarrow u$ in $L^{2}(0, T ; H)$ as $\epsilon \rightarrow 0$.

From above, we have $\operatorname{div}\left(u_{\epsilon}\right) \rightarrow \operatorname{div}(u)$ weakly in $L^{2}(G \times(0, T))$ and thus $\operatorname{div}(u)=0$.

On the other hand, as in the proof on Theorem 1, we could show that $u(0)=u(T)$.

It remains to show that $A_{\epsilon} u_{\epsilon} \rightarrow A u$ weakly in Y^{*}. The proof is easy and is therefore omitted.

References

1. J. P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris 256 (1963), 5042-5044.
2. F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U. S. A. 53 (1965), 1100-1103.
3. J.-L. Lions, Sur certaines équations paraboliques nonlinéaires, Bull. Soc. Math. France 93 (1965), 155-175.
4. Quelques méthodes de résolution des problèmes aux limites nonlinéaires (Dunod, Paris, 1969).
5. G. Prouse, Soluzioni periodiche dell'equazione di Navier-Stokes, Rend. Accad. Naz. Lincei 35 (1963), 443-447.
6. R. Teman, Une méthode d'approximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. France 96 (1968), 115-152.
7. B. A. Ton, On strongly nonlinear parabolic equations (to appear in J. Functional Analysis).

University of British Columbia, Vancouver, British Columbia

