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Turbulent shear flows are abundant in geophysical and astrophysical systems and in
engineering-technology applications. They are often riddled with large-scale secondary
flows that drastically modify the characteristics of the primary stream, preventing or
enhancing mixing, mass and heat transfer. Using experiments and numerical simulations,
we study the possibility of modifying these secondary flows by using superhydrophobic
surface treatments that reduce the local shear. We focus on the canonical problem of
Taylor–Couette flow, the flow between two coaxial and independently rotating cylinders,
which has robust secondary structures called Taylor rolls that persist even at significant
levels of turbulence. We generate these structures by rotating only the inner cylinder of the
system, and show that an axially spaced superhydrophobic treatment can weaken the rolls
through a mismatching surface heterogeneity, as long as the roll size can be fixed. The
minimum hydrophobicity of the treatment required for this flow control is rationalized,
and its effectiveness beyond the Reynolds numbers studied here is also discussed.

Key words: turbulence control, mixing enhancement, Taylor–Couette flow

1. Introduction

Shear flows are an extremely common occurrence in nature and technology. A simple
example would be the fluid motion between two differentially moving parallel plates.
More complex examples abound: from wind currents in the atmosphere at different speeds
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(Pedlosky 1987; Newman, Terry & Ware 2007), to flow inside an industrial centrifugal
reactor (Schrimpf et al. 2021). A primary shear flow field generally involves adjacent fluid
layers that move at different speeds. Under certain conditions, the primary flow can be
hydrodynamically unstable and any perturbation will lead to a complex three-dimensional
flow, where secondary structures can arise that are superimposed on the primary stream
(Orszag & Patera 1983). Notable laminar secondary structures are found in the arteries in
its curves and branches (Ku et al. 1997). On the other hand, turbulent secondary structures
are commonly found in geophysical and astrophysical occurrences, such as atmospheric
convection cells responsible for the water cycle (Agee 1984; Atkinson & Wu Zhang 1996).
They also exist in centrifugal reactors (Schrimpf et al. 2021) and rotating reverse osmosis
filtration devices (Lee & Lueptow 2001a,b).

Secondary flows are a crucial component of the global properties of a system because
they account for a major portion of the mass and momentum transport. Hence, the ability
to affect or control these secondary structures could lead to affecting global transport
properties or even the frictional losses in a system. The scientific interest behind this
possibility has led to many attempts at secondary flow control (Qi et al. 2012; Bakhuis
et al. 2018, 2020; Naim & Baig 2019). A natural place to start this investigation is to
simplify the flow as much as possible to canonical models. One of the most frequently
studied canonical models for shear flows and its secondary structure is Taylor–Couette
flow (TCF) and its Taylor rolls, respectively.

Taylor–Couette flow (Donnelly 1991; Grossmann, Lohse & Sun 2016) is the movement
of the fluid between two concentric cylinders that rotate independently. A secondary
flow called a Taylor roll forms if the flow is centrifugally (or Rayleigh) unstable, i.e. if
the angular momentum of the inner cylinder is larger than that of the outer cylinder.
At low Reynolds numbers, these are axisymmetric and laminar (Taylor 1923). As the
Reynolds number increases, they go through a series of instabilities where they transition
to increasingly turbulent states: first to wavy Taylor vortex flow, then to temporally
modulated turbulent Taylor rolls and finally to turbulent Taylor rolls (Andereck, Liu &
Swinney 1986). As large Reynolds numbers are reached (Re ∼ O(105)), turbulent Taylor
rolls wash away in certain regions of parameter space, and where they remain, their main
driver is the combination of shear and solid body rotation (Lathrop, Fineberg & Swinney
1992b; Huisman et al. 2014; Sacco, Verzicco & Ostilla-Mónico 2019).

Taylor rolls are a particularly interesting example of a secondary flow because of their
robustness in the turbulent regime (Zhu et al. 2016; Ostilla-Mónico et al. 2017), and the
possibility that multiple stable solutions (‘roll states’ with different roll sizes) can occur
for the same boundary conditions (Coles 1965; Huisman et al. 2014; Martínez-Arias et al.
2014; Wen et al. 2020). Furthermore, Taylor rolls are commonly used in engineering
applications to affect mixing properties (Lee & Lueptow 2001a,b; Schrimpf et al.
2021) and represent a large portion of the momentum transport across the cylinder gap
(Brauckmann & Eckhardt 2013; Ostilla-Mónico et al. 2016b). By successfully modifying
robust Taylor rolls, we can demonstrate a general capacity to modify secondary flows. The
findings here can also be applied directly to TCF or TCF-like systems in engineering, such
as centrifugal mixers or bioreactors.

A successful approach to affect turbulent secondary structures is to force an additional
secondary flow at a different wavelength from the existing structures. This would generate
a mismatch that interferes with existing or ‘natural’ secondary flows and weakens them
(Bakhuis et al. 2018; Jeganathan, Alba & Ostilla-Mónico 2021). In the current study we
will attempt to induce Prandtl secondary flows of the second kind (Nikitin, Popelenskaya &
Stroh 2021), which are turbulent secondary flows that arise to compensate for imbalances
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(mainly in the mean Reynolds stresses) through turbulent pulsations and can be found,
for example, in turbulent rectangular pipes (Hoagland 1962). The advantage of using this
method is that this interference can be achieved through selective surface treating without
substantially modifying an existing geometry. For example, patterns of heterogeneous
roughness induce swirling motions in regions between high- and low-momentum pathways
(Nugroho, Hutchins & Monty 2013; Barros & Christensen 2014; Willingham et al. 2014;
Anderson et al. 2015). This swirling motion leads to secondary flows that are generated
and sustained due to spanwise gradients in the Reynolds stress components, which
cause an imbalance between the production and dissipation of turbulent kinetic energy
that necessitates secondary advective velocities to balance (Anderson et al. 2015). In a
similar spirit, a recent study has showed that heterogeneous axially spaced roughness
(equivalent to spanwise roughness in a plane geometry) is a plausible mechanism to control
secondary flows in TCF (Bakhuis et al. 2020). Through a combined use of experiments
and simulations, this study has reported that certain distributions of roughness induce a
new, spatially fixed secondary flow that is absent from the base flow, and this effect has
resulted in a large change in flow properties.

However, using roughness modifications to affect a system generally results in an
increase in overall drag and causes energy losses in real-world applications. An alternative
to using roughness, which increases local shear stress, is to attempt to induce the
same types of secondary flow by using hydrophobic surfaces, which reduces local
stress compared with untreated surfaces. This would induce similar stress imbalances
and generate Prandtl secondary flows (Türk et al. 2014). Idealized stress-free boundary
inhomogeneities in TCF have been simulated in previous studies (Naim & Baig 2019;
Jeganathan et al. 2021), which have reported a substantial modification of secondary
flows when using axial (spanwise) boundary heterogeneity, with the effects persisting
up to Reynolds numbers of the order of Re ∼ O(104). The effects are greatest when the
axial heterogeneity is distributed in a pattern with a characteristic wavelength of half the
wavelength of the natural structure (a single Taylor roll), causing a weakening interference
between the two secondary flows (Jeganathan et al. 2021).

A drawback of these numerical studies is that idealized stress-free boundaries are
impossible to achieve in engineering applications, thus the potential for real-world
applications is uncertain. In this paper we set out to investigate whether this is
experimentally feasible, i.e. whether it is possible to control secondary flows using the
types of stress-reducing surfaces available in a laboratory setting. To do this, we will use
a highly accessible superhydrophobic (SHP) coating (Jeevahan et al. 2018) and assess
its effects on TCF. Superhydrophobic coatings, unlike the stress-free limits attainable
in computer simulations, have a finite-slip length and are often heavily tested for their
durability (Xue et al. 2015; Wang et al. 2016). Recent efforts (Lambley, Schutzius &
Poulikakos 2020; Wang et al. 2020) show that it is indeed possible to achieve durable
SHP surfaces that can withstand extreme conditions, paving the way for studies such as
the present one.

The use of SHP surfaces for flow control has not been well explored, especially in
the turbulent regime. However, there are some indications that they could be effective,
such as reports that SHP surfaces can delay the onset of vortex shedding in flow over
a cylinder, and also increase the shedding frequency of the Kármán vortex, causing
premature vortex roll up (Muralidhar et al. 2011; Kim, Kim & Park 2015). Another study
has pointed out the existence of a large number of coherent structures and a change in
the vortex shedding pattern in the near wake of an SHP cylinder (Sooraj et al. 2020). In
addition to affecting secondary structures, the major impact of introducing stress-free or
finite-slip boundary conditions is drag reduction. Indeed, our recent TCF simulations in
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Jeganathan et al. (2021) reported torque reductions of up to 32 % when using (ideal)
axial patterns of 50/50 no-slip/stress-free heterogeneity. In the laboratory, drag reduction
through the use of SHP surfaces has been achieved in channel flow experiments
(Watanabe, Udagawa & Udagawa 1999; Cheng & Giordano 2002; Tretheway & Meinhart
2002; Ou, Perot & Rothstein 2004). Taylor–Couette flow studies also report a maximum
drag reduction of up to 80 % using chemically generated SHP surfaces (Srinivasan et al.
2015; Hu et al. 2017; Rajappan & McKinley 2020), and up to 90 % using stress reduction
limits generated by the Leidenfrost effect (Saranadhi et al. 2016; Ayan, Entezari & Chini
2019). However, we emphasize that a pure focus on drag reduction is not our main interest
because through the application of SHP treatments, we expect to see a reduction in drag
in the majority of cases, provided the surface is sufficiently hydrophobic and durable
(Daniello, Waterhouse & Rothstein 2009), as seen, for example, in ship hulls (Dong et al.
2013; Hwang et al. 2017). We focus mainly on how the secondary structures are affected
by these surface treatments, while making sure that the possible energy losses do not
substantially increase.

To keep the parameter space simple, we apply SHP surface treatments only to the inner
cylinder and focus on the resulting flow organization and torque for a TCF system with
pure inner cylinder rotation. We study a Reynolds number of the order of Re ∼ O(104),
where the flow is turbulent and the Taylor rolls persist. The parameter space is further
restricted to only axial (spanwise) pattern wavelengths that are large enough to have an
impact on large-scale structures, rather than small pattern wavelengths that do not have a
significant effect on the flow (Jeganathan et al. 2021) and are more difficult to construct.

2. Experiments

2.1. Experimental methods
A schematic of the experimental set-up is shown in figure 1(a). The dimensional and
dimensionless parameters are consistently denoted with and without a hat symbol, ,̂
respectively, throughout this paper. The Taylor–Couette experimental set-up is built using
an aluminum inner cylinder of radius, r̂i = 76.2 mm, and an acrylic outer cylinder of
radius, r̂o = 92.1 mm, leaving a gap width of d̂ = r̂o − r̂i = 15.9 mm. The length of
the cylinders is l̂ = 614.7 mm. The resulting dimensionless geometric parameters are the
radius ratio, η = r̂i/r̂o = 0.83, and the aspect ratio, Γz = l̂/d̂ = 38.7. The outer cylinder
is fixed, and the inner cylinder is rotated at a rotational velocity, ω̂i, driven by a brushless
DC motor (IKA Eurostar 200 mixer). The shear driving strength can be expressed as a
Reynolds number of the inner cylinder, Rei = r̂iω̂id̂/ν̂, where ν̂ is the kinematic viscosity
of the working fluid.

As shown in figure 1(a), there is a small gap between the inner cylinder and the end caps
at the top and bottom. The end caps are stationary, and this would mean a discontinuity in
velocity between the inner cylinder and end caps. To minimize torque losses, the system
is filled in a way such that the fluid only fills the gap up to the top surface of the inner
cylinder. This means that only the space between the inner cylinder and the bottom end
cap contains liquid. The gap between the inner cylinder and the cylinder’s top cap contains
air. With this set-up we estimate that 20–30 % of the measured torque results from the end
caps and other system losses.

To achieve the SHP surfaces required to construct TCF experiments, we use a
commercial two-step coating called Ultra-Ever Dry, UltraTech International, as used in
a previous TCF study by Hu et al. (2017). The first step requires spraying a chemical
called ‘bottom coat’ followed by the ‘top coat’ in the second step. The bottom coat is
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Figure 1. (a) Schematic of experimental set-up. (b,c) Scanning electron microscope images of the untreated
aluminum surface (blue region in the schematic) and the SHP surface (yellow region in the schematic),
respectively. (d) Flat and (e) stepped SHP modifications on the inner cylinder. Scanning electron microscope
images of ( f ) the freshly coated SHP surface and (g) SHP surface sheared at the highest studied shear rate of
ˆ̇Γ = 600 s−1 for 90 min. The insets in ( f ) and (g) depict the contact angle of a 5 μL deionized water droplet

on the corresponding surfaces. (h) Dimensional slip length (�, green) of the SHP coating measured using the
rheometer at various tip shear rates. The right-hand y axis shows the slip length non-dimensionalized by the
cylinder gap width, d̂, from the experiments. The dotted green line shows the average slip length b = 0.023
of all tip shear rates. The error bars show the average of slip lengths measured during three separate instances
(Srinivasan et al. 2013). The blue region shows the zone of uncertainty caused by the onset of turbulence in
rheometry tests; see Appendix A.

not SHP, but once it cures, it facilitates the self-assembly and bonding characteristic
of the microstructures responsible for the superhydrophobicity found in the ‘top coat’.
Microscope images comparing the uncoated and SHP surfaces are shown in figures 1(b)
and 1(c), respectively. We can clearly see that the SHP-treated surface has air-trapping
microstructures that cause superhydrophobicity that are largely absent on the uncoated
surface. There are two ways by which one may apply the SHP coating on the inner cylinder
in TCF experiments. In the first method the treated surfaces are made by sandblasting the
inner cylinder, followed by spraying the coatings. This method leaves a nearly flat surface
on the inner cylinder as shown in figure 1(d). Therefore, we refer to this treatment as
‘flat SHP’. In the second method we spray the SHP coating on abrasive tapes of 80 grit
size, achieving a combined thickness of tape and coating of 0.58 mm. These are fixed
on the inner cylinder using an adhesive backing. This leaves a step-like structure on the
system as shown in figure 1(e). We accordingly refer to this treatment as ‘stepped SHP’.
Superhydrophobic patterns are applied to the inner cylinder in an axially periodic manner,
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as shown in figure 1(a). This is achieved by masking portions of the inner cylinder during
the coating process.

We define the dimensionless SHP pattern wavelength as λz = 2ŝz/d̂, with ŝz being the
dimensional axial width of the coating. We will explore three pattern sizes: λz = 1.2,
λz = 2.4 and λz = 4.8. We have chosen these three values because of several reasons: (i)
they serve to divide the cylinder equally, (ii) they roughly correspond to the values of
λz studied in Jeganathan et al. (2021) (1.17 and 2.33), and (iii) they roughly correspond
to one-half, one or twice the Taylor roll wavelength one can expect at these Reynolds
numbers. This last point is important as it can serve to experimentally test the prediction
from Jeganathan et al. (2021), where we found that λz = 1

2λTR was the most effective
wavelength in disrupting the turbulent Taylor rolls. We note that with this choice, we
cannot distinguish whether λz = 1.2, λz = 1.3 or λ = 1.4 would be the best fit for this
(or any) Taylor–Couette system, but instead focus on giving a proof of concept that axial
heterogeneities with wavelengths similar to half the roll size can disrupt turbulent Taylor
rolls in an experiment, and that they work better than axial heterogeneities at wavelengths
comparable to a single or double roll size. Finally, as mentioned in the introduction, we
did not study patterns with wavelengths smaller than ≈ 1

2λTR, as we do not expect them to
affect the rolls substantially (Jeganathan et al. 2021).

To depict the SHP microstructures more clearly, we show the microscopic image
of a freshly coated SHP surface in figure 1( f ). These microstructures display
superhydrophobicity by creating a low surface energy (Jeevahan et al. 2018) and causing
the droplet contact angle to be as high as Θ = 160◦ ± 2◦, as shown in the insert of
figure 1( f ). To demonstrate the durability of this coating, we present a microscopic image
of a water droplet and its contact angle with an SHP surface that has been sheared for

90 min at a shear rate of ˆ̇Γ = 600 s−1 in figure 1(g). We use this shear rate and duration
as they correspond to the highest Rei in this study, Rei = 2 × 104, and to the time frame
of the TCF experiments. The sheared surface still retains its SHP microstructures and
a high contact angle of Θ = 158◦, giving us confidence in the ability of the coating to
withstand TCF experiments. To study the stress-reducing characteristics of SHP surface,
we use the method detailed in Srinivasan et al. (2013). The experimental slip length at
different tip shear rates 2 s−1 < ˆ̇Γ < 600 s−1 is derived from rheometer (HR-3 Discovery
hybrid model, TA Instruments) measurements presented in figure 1(h). The average slip
length across all the shear rates is found to be b̂ = 360 ± 12 μm. This corresponds to
b = b̂/d̂ = 0.023 in dimensionless terms. Further details of the characterization of the
SHP surface are provided in Appendices A and B.

Once the SHP surfaces are fixed to the inner cylinders of different axial patterns, we
start a series of TCF experiments. The gap between the inner and outer cylinders is
filled with deionized water, which is seeded with 50 μm polyamide seeding particle at
0.2 g L−1 to obtain particle image velocity (PIV) data (Buchhave 1992). The working fluid
is isolated between the cylinders using various rotary and static rubber seals. Temperature
fluctuations are recorded using an Omega HH308 thermometer, revealing that they are
within 0.1 K during the PIV experiments. LaVision Nd:YAG laser (532 nm) is used to
generate a vertical laser sheet of thickness 2 mm that illuminates the gap between the
cylinders. To reduce light refraction errors from the curved acrylic outer cylinder, we
have placed the TCF cell inside a cuboidal external chamber. The cuboidal chamber is
made from acrylic and filled with water that has a refractive index close to that of acrylic,
creating a fish tank (Moisés et al. 2016).
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The system is started up by accelerating the inner cylinder at 0.279 rad s−2 to reach the
desired revolutions per minute. For most cases, this achieves a reliable number of rolls, as
we detail below. Before starting the PIV measurements, we wait five minutes at a given
Rei so that the flow achieves a statistically stationary state. After this period, we use a
high-speed camera (Phantom VEO 710) to record 6000 PIV images (1280 × 504 pixels)
of the fully developed Taylor rolls at 2000 fps for a time period of 3 s. We selected
this fps after an extensive parametric study to achieve high-resolution images. The 3 s
time period corresponds to ≈ 300 eddy turnover times of Taylor rolls, t̂e = d̂/(r̂iω̂i),
which is long enough to study their properties, while the initial wait of five minutes
corresponds to ≈ 3 × 105 large-eddy turnover times, more than enough to achieve a
statistically stationary state (Ostilla-Mónico et al. 2016b). The camera is fitted with a K2
DistaMax long-distance microscope to achieve a 4.4x zoom factor. The PIV images are
post processed in MATLAB’s open-source PIVlab software (Thielicke & Sonntag 2021)
using multi-step interrogation windows ranging from 64 × 64 to 32 × 32 pixels. We then
obtain the instantaneous radial, ûr, and axial, ûz, velocity components of the flow. Torque,
T̂ , is measured for 600 s at a rate of 1000 Hz using an inline rotary ultra-precision torque
sensor (Himmelstein MCRT 48801 V[25-0]CFZ). The torque sensor is attached to the
driving shaft that connects the motor to the TCF cell. In Appendix C we compare velocity
and torque data obtained from our experiment to other experiments and simulations. We
use low internal clearance P5 high-precision deep groove SKF ball bearings to reduce
the effects of frictional force on the rotary seals, centrifugal forces and the buoyancy
of the rotating inner cylinder on the measured torque. The temperature of water is
measured during the torque measurement experiments, and the corresponding viscosities
and densities are used in the Reynolds number calculations. The density and viscosity
of the working fluids at different temperatures are measured using a hand-held density
meter (DMA Basic 35) and a rheometer (HR-3 Discovery hybrid model, TA Instruments),
respectively.

2.2. Experimental results
To visualize the classic no-slip turbulent TCF, we present the temporally averaged
dimensionless radial velocity 〈ur〉t of the flow field at Rei = 104 in figure 2(a) and the
corresponding PIV experiment in supplementary movie M1 available at https://doi.org/
10.1017/jfm.2023.606. The x and y axes are non-dimensionalized by gap width, d̂, with
r = 0 corresponding to the inner cylinder and r = 1 the outer cylinder. The average
radial velocity 〈ûr〉t is non-dimensionalized using the rotational velocity r̂iω̂i of the inner
cylinder to obtain the dimensionless velocity presented in figure 2. The effect of different
wavelengths of the SHP pattern on the turbulent TCF flow field for both flat and stepped
patterns is shown in figure 2(b–h) at Rei = 104. For the flat patterns, it is apparent that
the size of the rolls formed in the system changes across different patterns, something we
can attribute to the Taylor–Couette system having a range of possible solutions reflected as
changing roll wavelengths (Huisman et al. 2014; Martínez-Arias et al. 2014). This finding
is consistent with Bakhuis et al. (2020), who has used axially varying roughness to control
a TCF and has observed different roll sizes in their system.

To set the boundary of a pair of rolls and quantify the roll strength, we first calculate the
roll (pair) wavelength λTR. This is given by twice the roll size determined from the axial
autocorrelation of the radial velocity at the mid-gap, and in turn this is given by the (axial)
distance to the first local minimum of the autocorrelation (Ostilla-Mónico, Verzicco &
Lohse 2015). Figure 3(a) shows how the different treatments affect λTR, quantifying the
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Figure 2. Temporally averaged radial velocity results 〈ur〉t from experiments at Rei = 104. (a–d) No-slip
turbulent TCF; flat SHP patterns with wavelengths λz = 1.2, λz = 2.4 and λz = 4.8. (e–h) At Rei = 104,
stepped pattern with no SHP coating with wavelength λz = 1.2; stepped SHP patterns with wavelengths
λz = 1.2, λz = 2.4 and λz = 4.8. The areas striped in grey represent the limits of one roll pair, as measured
through the autocorrelation.

previous visual intuition: the roll wavelength λTR varies by ±20–30 % with respect to the
no-slip reference case as the underlying pattern wavelength λz is changed.

In addition to the changes in roll size, we can also observe our intended effect: Taylor
rolls are slightly affected for λz = 1.2 as seen in figure 2(b), especially when compared
with other pattern wavelengths (figures 2c and 2d) and no-slip TCF (figure 2a). To quantify
this, we define the roll strength, σr, using the standard deviation of the average radial
velocity 〈ur〉t along the axial direction in the mid-gap, r = 0.5. We note that this definition
is different from what is used, for example, in Sacco et al. (2019), where the roll strength is
defined using the amplitude of Fourier modes. However, Fourier-based approaches are not
suitable for comparisons in this study due to large deviations in the roll shape discussed
later. Some care must be taken when comparing σr for rolls with a different λTR, as we can
expect different values of σr for different sized rolls, as the roll footprint varies as the roll
wavelength changes (c.f. Ostilla-Mónico, Lohse & Verzicco (2016a) and Appendix C).

Figure 3(b) shows the roll strength σr for all treatments at Rei = 104. We first observe
that the roll strength corresponding to the pattern wavelength λz = 1.2 is lower than that
of the no-slip TCF. The axial signature of the roll is weakened (as shown in figure 2b),
and this is reflected as a smaller value of σr. The wavelength of this particular SHP
pattern is almost equal to the size of a single large-scale structure in the flow (or half
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Figure 3. (a) Roll wavelength λTR obtained from autocorrelations for various flat � (red) and stepped � (blue)
SHP pattern wavelengths at Rei = 104. (b) Roll strength σr for the same cases. The black horizontal lines
represent the reference no-slip roll wavelength λTR = 2.85 and roll strength σr = 6.02 × 10−2, respectively.
The � (green) symbol represents a different roll state obtained for a flat pattern during experiments, and the ◦
(magenta) represents the stepped experiment with no treatment.

the roll wavelength). This matches our earlier numerical observations from Jeganathan
et al. (2021), which also showed dramatic effects on the large-scale structures of TCF
when the wavelength of the ideal free-slip pattern is equal to the size of a single structure
or half the roll wavelength. Physically, this weakening is caused by the axial heterogeneity,
which would generate a secondary flow in a shear flow if none are present (Anderson
et al. 2015). However, as there already is a secondary flow with a different wavelength,
this heterogeneity instead induces a mismatch that interferes with the existing structures,
and, as a result, weakens them.

We now turn to the cases with λz = 2.4 and λz = 4.8. Because secondary flows have
changed size in response to heterogeneity, as seen in figure 3(a) (�, red symbols),
the flow statistics will be affected (Ostilla-Mónico et al. 2015). Hence, the change
in σr can potentially be attributed to changes in the roll as well as to the effect of
superhydrophobicity (c.f. Appendix C). In the case of λz = 2.4, the value of σr is higher
than the value for the no-slip case, yet λTR is also smaller, so no conclusions can be drawn.
The case with λz = 4.8 shows a slightly lower value of σr than the baseline case, but λTR
is slightly higher, again preventing us from drawing clear conclusions and distinguishing
the effect of roll weakening through the SHP treatment from the effects of variation in
the roll itself. In summary, while we can see that the treatment with λ = 1.2 is somewhat
effective, as σr is lower with a smaller value of λTR, we cannot point out an optimum
flat SHP wavelength as in Jeganathan et al. (2021), at which the Taylor rolls could be
weakened, or distinguish the effects of different λz.

Furthermore, there is the possibility that the system could have roll states with a
different number of rolls for the same λz. In Taylor–Couette experiments the formation
of different roll states is achieved through control of the cylinder acceleration and phase
space trajectory (Coles 1965; Huisman et al. 2014; Wen et al. 2020). In our experiment
we do not observe multiplicity of roll states in most cases: with the acceleration profile
detailed in the methods section, as well as other acceleration profiles, we reliably obtain
a Taylor roll wavelength of λTR = 2.85 for the no-slip TCF. On the other hand, for the
special case of a λz = 1.2 flat SHP pattern, we can achieve states with different λTR even
when the system was started up with a similar acceleration profile for the cylinders. In
figure 3 we have included an additional data point (� green marker) that denotes another
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experimentally accessible state, seen more rarely than the roll state shown in figure 2(b).
This state, with a λTR = 2.27 wavelength, has a larger value for σr when compared with the
other experimentally realizable roll state, again showcasing the trend that smaller values
of λTR tend to lead to larger values of σr. This means that to fairly assess the treatment,
one must fix the roll size, such that the roll modification is not simply a matter of the
system finding it easier to access different roll states when the flat SHP pattern is present.
Furthermore, to make the treatment weaken the roll in a reproducible manner, one must
fix the roll size, which can be a challenging task.

Now, we turn to the stepped SHP patterns. Since the stepped SHP pattern is formed
due to a combination of the step feature caused by the abrasive adhesive tape and the
SHP coating, it is important to assess whether the steps themselves affect the flow. To
show the effect of steps, we have used uncoated smooth filler tape whose thickness is the
same height as the stepped SHP surface and pattern wavelength of λz = 1.2 and presented
the temporally averaged velocity in figure 2(e) for Rei = 104. Although there is some
disturbance caused by the steps in the flow, large-scale structures that can be identified
as Taylor rolls still remain. The data are represented as ◦ (magenta) in figure 3. The roll
wavelength is λTR = 2.95, very different from the applied λz, and larger than the no-slip
wavelength. The associated value of σr is smaller than that of the no-slip case. However,
due to the increased roll wavelength, it cannot be linked to a weakening of the roll.

Having checked this, figure 2( f –h) show the effect of different stepped SHP pattern
wavelengths. First, we observe that, unlike flat SHP, the roll size is now fairly constant:
λTR ≈ 2.3 as shown in figure 3(a) (�, blue symbols), as intended. We hypothesize that
the combination of steps with SHP coating reduces the number of possible solutions and
helps to fix the roll size. Since the rolls are now comparable across different pattern
wavelengths, any observed change in roll strength can be attributed only to the SHP
pattern inhomogeneity and not to the size of the formed roll. Furthermore, fixing the roll
size increases the chances of affecting them by using precise SHP pattern wavelengths
determined by theoretical and numerical methods. The success of this approach is evident
from looking at the resulting velocity field for the stepped SHP pattern wavelength of
λz = 1.2 in figure 2( f ). We again quantify this effect using the roll strength σr, and show
the results in figure 3(b) (�, blue symbols). Unlike the flat SHP pattern, we observe a
distinct trend of increasing the roll strength with pattern wavelength due to the fixed roll
size in the system. We also note the roll strength is the lowest for the stepped SHP λz = 1.2
case, which corresponds to the heavily altered roll state observed in figure 2( f ). Therefore,
once the roll sizes are fixed, the SHP pattern with λz = 1.2 is revealed to substantially
weaken Taylor rolls, which corresponds to the heterogeneity wavelengths of about half
the size of the Taylor roll, as in Jeganathan et al. (2021). We note that when applying the
stepped coating, we reliably obtain the same roll size in the experiments, unlike for the flat
treatment, ensuring the reproducibility of the roll modification and that the variations in
σr can be linked to a roll weakening.

We emphasize that these experiments show that theoretical results can be achieved in
a real-world laboratory setting using commercially available treatments. This is further
demonstrated by supplementary movie M2. This result should, however, not be taken
to mean that a priori, λz = 1.2 is better than say 1.3 or 1.4 in disrupting the existing
structures, but that treatments with a wavelength equal to approximately half the natural
size of the rolls disrupt the rolls better than those with larger wavelengths.

We have checked the effect of increasing Reynolds numbers (and of larger physical shear
experiments on our SHP treatment) by extending the analysis to a larger Rei = 2 × 104. We
visually show the weakened rolls corresponding to the treatment wavelength of λz = 1.2
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Figure 4. Reynolds number dependence. (a,b) Temporally averaged radial velocity at Rei = 2 × 104 for flat
SHP (a) and stepped SHP (b) treatments with λz = 1.2. (c) Roll strength σr for no-slip (•, black), λz = 1.2
flat SHP (�, red) and λz = 1.2 stepped SHP (�, blue) patterns, at different Rei. (d) Roll strength from treated
cases divided by the roll strength for the no-slip reference case. (e) Dimensionless torque G for the same cases.
The error bars represent the standard error of the mean of the torque collected from the sensor for 60 000 eddy
turnover times, which corresponds to 10 minutes.

for both the flat and stepped SHP patterns at Rei = 2 × 104 in figures 4(a) and 4(b),
respectively. The results show a slight change compared with figures 2(b) and 2( f ),
corresponding to Rei = 104. In addition, figure 4(c) shows the roll strength, σr, as a
function of Rei for the pattern wavelength of λz = 1.2, providing a comparison between
the no-slip TCF (• black line), flat SHP (� red line), as well as stepped SHP surface
(� blue line). We clearly see that both the flat and stepped λz = 1.2 SHP patterns make
Taylor rolls weaker across all Rei. As expected, the stepped λz = 1.2 SHP pattern is better
at weakening the rolls in the Rei range studied compared with the flat pattern due to its
ability to fix the roll size. This is further corroborated in figure 4(d), which shows the
normalized roll strength σr/σr,0, where σr,0 is the reference from the no-slip data. It can
be appreciated that the flat SHP case only causes a 10 % reduction in σr, while the stepped
case results in a reduction of between 25–35 %.

Finally, we compare the effects of the treatment wavelength λz = 1.2 for flat and stepped
SHP patterns on torque in figure 4(e). The mean torque is displayed as a dimensionless
parameter, G = 〈T̂〉t/(ρ̂ l̂ν̂2), where 〈T̂〉t is the time average of the discrete torque values,
T̂ , measured by the torque sensor for 60 000 eddy turnover times (10 min in physical time),
here l̂ is the length of the inner cylinder, and ρ̂ and ν̂ are the density and kinematic viscosity
of the working fluid, respectively. The uncertainty in the mean torque is quantified through
the standard error of the mean (Gul, Elsinga & Westerweel 2018). The standard error of
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the mean is given by ε̂T = σ̂T/
√

N, where σ̂T is the standard deviation of the torque and
N is the number of torque samples collected. For both the flat and stepped SHP patterns,
we note that the mean torque on the inner cylinder is lower when compared with the
regular no-slip TCF. This is a clear indication of the drag-reduction property of the SHP
surfaces. They show relatively similar scaling laws G ∼ Reα

i , even if the torque reductions
are smaller than those in Jeganathan et al. (2021), a point to which we will return below.
We also note that the weakening of the rolls, as quantified through σr, does not seem to
be a good predictor of the torque decrease for the flat SHP case. While this is unlike what
was seen in the simulations (Jeganathan et al. 2021), we again note that the experiments
with flat SHP patterns tend to actually achieve a multiplicity of possible solutions, and this
could be causing the erratic increases of G.

3. Direct numerical simulations

3.1. Numerical methods
To further assess the potential applicability of SHP coatings, we have performed a series
of direct numerical simulations (DNS) of a similar TCF system using a second-order
energy-conserving finite-difference code regularly used in our research group to simulate
such systems (van der Poel et al. 2015; Jeganathan et al. 2021). Direct numerical
simulations of TCF are performed in a rotating frame of reference by solving the
non-dimensional incompressible Navier–Stokes equations

∂u
∂t

+ u · ∇u + RΩ(ez × u) = −∇p + Re−1
s ∇2u, (3.1)

with the incompressibility condition

∇ · u = 0, (3.2)

where u and p are the non-dimensional velocity and pressure, respectively; t is the
non-dimensional time, Res is the shear Reynolds number defined below, ez is the unit
vector in the axial direction and RΩ is the Coriolis parameter defined below.

The rotating frame is chosen such that the velocities of both cylinders are equal and
opposite, ±Û/2 in dimensional terms. The equations are non-dimensionalized using this
velocity Û and the gap width d̂. This results in two non-dimensional control parameters,
the shear Reynolds number Res = Ûd̂/ν̂ and the Coriolis parameter RΩ = 2Ω̂ d̂/Û, where
ν̂ is the kinematic viscosity of the fluid and Ω̂ is the dimensional rotational velocity of the
rotating frame.

The domain is taken to be axially periodic, with a periodicity length L̂z, which can be
expressed non-dimensionally as an aspect ratio Γz = L̂z/d̂. Following Jeganathan et al.
(2021), the domain is set to be axially periodic with a dimensionless axial periodicity
length of Γz = L̂z/d̂ = 2.33. This fixes the wavelength of the roll pair λTR = Γz and forces
the domain to contain a single roll pair. The radius ratio η = r̂i/r̂o is fixed to η = 0.83,
where r̂i and r̂o are the radius of the inner and outer cylinders, corresponding to the
experiments. We also impose a rotational symmetry of order nsym = 10, corresponding to
a streamwise periodicity length of around 2π half-gaps, large enough to obtain asymptotic
torque and mean flow statistics (Ostilla-Mónico et al. 2015; Jeganathan et al. 2021).

Spatial discretization is performed using a second-order energy-conserving centred
finite-difference scheme. Time is advanced using a low-storage third-order Runge–Kutta
for the explicit terms and a second-order Crank-Nicholson scheme for the implicit
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treatment of the wall-normal viscous terms. More details of the algorithm can be found in
previous studies Verzicco & Orlandi (1996), van der Poel et al. (2015). The code has been
heavily validated for the TCF problem (Ostilla-Mónico et al. 2014). The spatial resolution
used is nθ × nr × nz = 384 × 512 × 768 in the azimuthal, radial and axial directions,
respectively, following Sacco et al. (2019).

In a classical TCF problem, the cylinders have a no-slip boundary condition, where
the velocity of the fluid at the wall matches the velocity of the cylinder. However, in
the present study we alternate no-slip and finite-slip boundary conditions at the wall.
Finite-slip boundary conditions are expressed by the combination of (1) a no penetration
(ur = 0) and (2) the condition that the two velocity components tangential to the wall
equal the slip length times their respective normal derivatives. In non-dimensional terms,
this is expressed as uθ = b∂ruθ and uz = b∂ruz. We implement the finite-slip boundary
condition by modifying the shear stress τ originating from the wall at the first point on the
grid. This is done by modifying the viscous term, which is first approximated using a finite
difference of shear stresses ([τ+ − τ−]/Δr). Then, these shears are approximated using a
finite difference of velocities, uz or uθ , depending on the direction being considered. With
some rearrangement, this results in a simple correction factor to the geometric factors that
multiply the velocity difference. For example, the radial shear stress for uz at the first grid
point is expressed with the following equation:

τ−
z,1 = Re−1

s
∂uz

∂r

∣∣∣∣
r1

= Re−1
s

uz(r1) − uz(ri)

r1 − ri
. (3.3)

Here uz(ri) is the axial velocity at the inner cylinder, uz(r1) is the axial velocity at the
first grid point and r1 the radial coordinate of the first grid point. In the case of no-slip,
uz(ri) is equal to the wall velocity (zero for the axial component), while in the case of
finite slip, uz(ri) is equal to the slip velocity uz,s. The slip velocity can be rewritten
as uz,s = b∂ruz(r1) = bResτ

−
z,1. Expressed this way, it can be substituted back into (3.3)

and the equation is now closed. The finite-difference approach of the code allows us
to quickly change between no-slip, finite-slip and free-slip conditions by modifying the
metric terms multiplying τ−

z,1, and can allow for potential extensions of this work that
consider a spatially or temporally dependent slip length.

The alternating no-slip and finite-slip boundaries applied in the code have a pattern
wavelength of λz = λTR/2 = 1.17 ≈ 1.2, similar to experiments. We simulate pure inner
cylinder rotation with an inner cylinder Reynolds number of Rei = 104 to match the
experiments by setting RΩ = (1 − η) = 0.17 and Res = 2/(1 + η)Rei = 1.09 × 104. We
then vary the dimensionless slip length, b = b̂/d̂, to determine the minimum slip length
required for our treatments to be effective in weakening the secondary flows. The
simulations are initialized from a zero-velocity condition and, after a transient that usually
takes around 200 large-eddy turnover times (d̂/Ûi), flow statistics are taken for around
600 large-eddy turnover times. This criteria ensures that the time-averaged torque at both
cylinders is equal to within 1 %.

3.2. Numerical results
To study the Taylor rolls in the DNS, we average the radial velocity temporally and
azimuthally, as opposed to experiments where the PIV data along the azimuth are
unavailable. Averaging azimuthally is justified by the statistical homogeneity of TCF,
and this allows us to reduce the required running time of the simulations to obtain

969 A18-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

60
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.606


V. Jeganathan, T. Shannak, K. Alba and R. Ostilla-Mónico

0 1
r

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

z

0 1
r

0 1
r

0 1
r

0 1

r

–0.10

–0.05

0

0.05

0.10(e)(b)(a) (c) (d )

Figure 5. Simulation results. Temporally and azimuthally averaged radial velocity of flat SHP patterns at Rei =
104, with pattern wavelength λz = 1.2 and various dimensionless slip lengths b = b̂/d̂. (a–e) No slip (b = 0),
b = 10−4, b = 10−2, b = 1 and free slip (b → ∞).

adequate statistics. The flow statistics are also averaged in time, as mentioned earlier. We
note that a more detailed analysis of the temporal dynamics of turbulent Taylor rolls for
fully no-slip cylinders is available in Sacco et al. (2019) for the interested reader.

Figure 5 shows the temporally and azimuthally averaged dimensionless radial velocity,
〈ur〉θ,t, for different simulated slip lengths ranging from untreated/no-slip (b = 0;
figure 5a) to ideal treatment/free-slip (b → ∞; figure 5e). As expected, Taylor rolls are
strongest when there is no treatment. This is also shown in supplementary movie M3.
As the slip length increases, the rolls gradually weaken, as seen in figure 5(b–d), with
the most effective treatment observed when the surface is fully free slip, as illustrated in
figure 5(e) and also in supplementary movie M4. To further quantify this effect, we plot the
normalized roll strength σr/σr,0 and the normalized torque G/G0 against the slip length
b in figure 6, respectively. Here, σr,0 and G0 correspond to the roll strength and torque of
the untreated no-slip reference case, respectively. The experimental data for the same Rei
and λz are also included for completeness. Remarkable agreement is observed for σr/σr,0
between the simulations and the stepped SHP experiment, where the roll size is also fixed.
For the torque, both experimental cases show less reduction than the simulation. This can
likely be attributed to higher torque losses in the experiments, such as those resulting from
axial end caps, which are absent from DNS.

A transition in behaviour, in which treatment begins to be effective, can be observed at
b ≈ 3 × 10−3. We fit both the roll strength and torque of DNS using a sigmoid function,
which are shown in (3.4) and (3.5) (solid green lines in figure 6). The curve fits reads as

σr

σr,0
= 1 − 0.362

1 + exp{−1.21(4.684 + ln b)} (3.4)

and
G
G0

= 1 − 0.3113
1 + exp{−1.135(4.872 + ln b)} . (3.5)

As is confirmed by the fits, both curves show an inflection point at b ≈ 10−2. To better
understand why this happens, we must represent the slip length in inner wall units,
b+ = b̂/δ̂ν (see the upper x axis in both panels of figure 6), where δν = ν̂/ûτ is the
viscous wall unit, ûτ =

√
τ̂w/ρ̂ the frictional velocity and τ̂w the averaged shear at the

cylinder wall. This (re)normalizes the slip length in terms of the relevant length scales in
the boundary layer. In both the normalized roll strength and torque cases of figure 6, we can
distinguish three regions of behaviour. In the first region, where the slip length is b+ < 1
(b < 10−3), the flow and, hence, the Taylor rolls remain largely unaffected. In this regime
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Figure 6. Roll strength σr (a) and torque G (b) for SHP λz = 1.2 pattern at Rei = 104 for various dimensionless
slip lengths b and b+ (�, green), normalized using the reference no-slip case. Horizontal dashed lines represent
the free-slip limit (perfect hydrophobicity). The green curves are the sigmoid fits shown in (3.4) and (3.5). The
normalized roll strength and normalized torque of the flat (�, red) and the stepped (�, blue) SHP coated TCF
experiments are also shown for Rei = 104 and λz = 1.2. The error bars on the right panel represent the standard
error of the mean torque collected from the sensor.

the effect of treatment is too weak. The slip length is smaller than the smallest physical
scale present in the problem. Hence, it is largely unfelt by the fluid. As the slip length
increases, we reach a second region, 1 < b+ < 100 (10−3 < b < 10−1). In this transitional
region the treatment is sufficiently effective so that the flow begins to be affected by the
boundary inhomogeneity. This, in turn causes the interference effects mentioned above
that progressively affect the roll strength and torque. For a treatment to be effective, it has
to be strong enough to achieve slip lengths located in this region, where the slip length
is comparable to the viscous length scale in the boundary layer. For example, the SHP
surface used in the TCF experiments has a slip length b ≈ 0.023, which is large enough
to reach this region and, therefore, can weaken Taylor rolls, as shown by figure 2( f ) of the
experimental results and DNS presented as supplementary movie M5. In the third region,
b+ > 100 (b > 10−1), the effect of inhomogeneity reaches a saturation point, where a
further increase in slip length does not significantly affect rolls. The treatment behaves as
if it were ideal (b → ∞), as the slip length is now comparable to the largest length scales
in the flow. This saturation is reflected in the normalized roll strength and torque that tend
toward the asymptotic limit of the free slip, i.e. b → ∞ or stress free, shown as dashed
lines in figure 6.

We can support the claim that the relevant length scale to the treatment’s effectiveness is
the viscous wall unit by repeating the parameter sweep of b for two additional values of Rei,
i.e. Rei = 2 × 104 and Rei = 3 × 104. In figure 7 we show G/G0 against b and b+ for all
values of Rei simulated. When plotted against b, we can clearly see how fitting a sigmoid
curve through the data results in a different inflection point, which is smaller for larger Rei.
However, when plotted in terms of b+, i.e. when the slip length is non-dimensionalized
using δ̂ν , the results collapse much better onto a single curve even if the asymptotic value of
G/G0(b → ∞) is different for different Rei. This supports our hypothesis that the relevant
parameter that controls the treatment’s effectiveness is b+.
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Figure 7. Torque G for SHP λz = 1.2 pattern for various dimensionless slip lengths normalized using the
reference no-slip case for Rei = 104 (�, green), Rei = 2 × 104 (

�
, blue) and Rei = 3 × 104 ( �, red). (a) The

curves are plotted against b the slip length normalized using the gap width, while in (b) they are plotted against
b+, i.e. the slip length non-dimensionalized using the viscous unit. The horizontal dashed lines represent the
free-slip limit (perfect hydrophobicity) for each Reynolds numbers, while the solid curves are sigmoid fits.

4. Summary

To conclude, we state that the ability of SHP coating to weaken the secondary flows
depends on the two following key factors.

(1) As seen in Jeganathan et al. (2021), the best treatment pattern depends on the
natural length scales of the secondary flow. Although these can be precisely fixed
in simulations through the use of small domains, they are often difficult to fix a
priori in experiments because of the multiple states available to the system. This can
drastically reduce the effectiveness of the treatment, as the wavelength mismatch
generated by the treatment may not interfere and weaken the existing secondary flow
if the length scales do not couple. This has been shown by the difference between flat
and stepped SHP surface experiments. Using the flat pattern, we have had difficulty
weakening the rolls due to the different roll sizes achieved in the system. However,
the stepped SHP pattern has fixed the roll aspect ratio, and we can therefore achieve
an SHP pattern that drastically affects Taylor rolls. Special care must be taken to fix
the flow length scale, as even changes of 20–30 % in the characteristic length scales
of the secondary flow are enough to reduce, or even reverse, the effectiveness of the
treatment, as shown in figure 3.

(2) Another important factor that determines the effectiveness of SHP treatment
in turbulent flows is not so much the physical size of the slip length but its
dimensionless magnitude in viscous wall units. We have shown that, for a coating
to be effective, the dimensionless slip length of the coating should be greater than
a viscous wall unit (b+ > 1). This can happen by either having a sufficiently large
slip length of the SHP coating or by making the viscous length significantly smaller.
This last point leads to the counterintuitive result that SHP treatments should work
better at higher Reynolds numbers, as long as they can retain stable air pockets that
cause hydrophobicity within its asperities and mechanically survive the imposed
shear rates. This last point merits further investigation, as it can open the door to
achieving drag reduction and flow control in many types of turbulent wall flows such
as pipes or boundary layers by the application of commercially available treatments.

In the more modest context of TCFs, there are other possible and more direct extensions
of this work. Firstly, the coatings on the cylinders could be made to have spatially varying
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strengths, and this could have a possible effect on the fixing of the roll sizes. This can be
done with our current numerical code, but experimentally (and in real-world applications)
it presents challenges. One possibility would be to use different hydrophobic coatings.
Other potential avenues include modifying the 50/50 split between hydrophobic and
untreated surfaces, or treating both cylinders. Finally, another line of research would be
using hydrophobic coatings in experimental studies in the linearly stable regime, where
the secondary flows arising from the end plates initiate the transition to turbulence (Lopez
& Avila 2017). By using these treatments, the effect of end plates could be mitigated.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.606.
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Appendix A. Slip length measurement of SHP surfaces using rheometer

To model the solid–liquid interface in macroscopic flows, it is generally assumed that the
slip length b̂ = 0, as it is in the O (nm) range, corresponding to the mean free path of
the fluid (Maxwell 1879; Landau & Lifshitz 2013). However, the slip length cannot be
neglected while modelling flow over stress-reducing surfaces such as SHP ones whose
slip length of O (mm) is much larger than the mean free path of the fluid. Therefore, it
becomes imperative to measure the slip length of the SHP surface flows. To do this, we
turn to Srinivasan et al. (2013), that uses a rheometer to measure the slip length.

A.1. Materials
We use a thin high-precision aluminum square plate of length and width of 8 cm, and a
thickness of 0.5 cm as a substrate for the SHP coating. The substrate is sandblasted to
obtain a relatively rough surface using #3 glass beads (≈ 0.85 mm diameter). This ensures
an adequate grip required to bond the SHP coatings. The SHP treatment (Ultra-Ever Dry,
UltraTech International) is applied in two spraying steps. The first step is spraying the
chemical called the ‘bottom coat’, followed by 30 min of curing, and finally spraying
the ‘top coat’. The bottom coat is not SHP, but it enables bonding and self-assembly
of microstructures needed for superhydrophobicity found in the top coat. After 12 h of
curing time, the SHP-treated aluminum plate is transferred to a rheometer for slip length
measurement.

A.2. Methods
Figure 8(a) shows the schematic of the experimental set-up. The SHP-treated aluminum
plate is placed on a temperature-controlled Peltier plate maintained at 21◦. A plate
geometry of radius R̂ = 20 mm is attached to a rheometer HR-3 Discovery Hybrid model,
TA Instruments, and placed at a distance of ĥ = 1 mm from the aluminum plate. The gap
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Figure 8. (a) Schematic of the flat plate geometry mounted on a rotational rheometer used to quantify slip
length using a 45 % glycerol–water mixture by volume as the probe liquid. (b) Torque measured by the
rheometer over the untreated (•, blue) and the SHP surface (�, yellow) at different shear rates. (c) Actual
and apparent viscosity of the mixture at different shear rates measured for the untreated and SHP surfaces,
respectively. (d) Slip length (�, green) of the SHP surface measured in μm and non-dimensionalized by the
cylinders gap d̂ of TCF experiments, at different shear rates (right axis). The dashed green line is the average
slip length (b̂ = 360 μm) calculated across the shear rates (left axis). The error bars show the standard error of
mean of slip lengths calculated by repeating the experiment three times. The blue regions show the unreliable
zone corresponding to the formation of secondary turbulent flows (Ewoldt, Johnston & Caretta 2015; Mitra
et al. 2020).

between the SHP surface and the plate geometry is filled with 45 % glycerol–water mixture

by volume. Various rotational speeds, Ω̂ , corresponding to a tip shear rate ˆ̇Γ = R̂Ω̂/ĥ in
the range of 2 s−1 < ˆ̇Γ < 600 s−1 are applied to the enclosed fluid. The resulting torques,
M̂slip, and the derived viscosities, μ̂slip, are recorded for 3 min. These are related through
the formula (Chhabra & Richardson 2011)

μ̂ = 2M̂ĥ

πΩ̂R̂4
= 2M̂

π ˆ̇Γ R̂3
. (A1)

Note that the viscosity measured is not the actual viscosity of the fluid but the apparent
viscosity caused by the surface modification. To find the actual viscosity, μ̂no slip, of the
fluid and its corresponding torque, M̂no slip, the experiment is repeated with a plate that
does not have the SHP coating for the same range of shear rate. The slip length, b̂, of the
SHP coating is then calculated for each tip shear rate using (A2) (Srinivasan et al. 2013):

M̂no slip

M̂slip
= μ̂no slip

μ̂slip
= 1 + b̂

ĥ
. (A2)

The experiment is repeated three times to verify repeatability and to report the standard
deviation of the measurements.

A.3. Results
Figure 8(b) shows that the torques obtained using a rheometer for the SHP-coated plate
are lower than that of the uncoated plate. This is expected since the SHP coating repels
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water, leading to a smaller shear stress compared with that of the uncoated surface. This
lower torque also means that the viscosity calculated by the rheometer for the SHP surface
is not the actual viscosity of the fluid but an apparent viscosity. This is clearly shown in
figure 8(c), where the viscosity calculated from the SHP plate is reduced when compared
with the actual viscosity of the working fluid captured by the uncoated plate experiment.
Figure 8(d) shows the slip length calculated using (A2), averaged across three repetitions
of the same experiment. The average slip length across all the shear rates is found to be
b̂ = 360 ± 12 μm. This corresponds to b = b̂/d̂ ≈ 0.023 in dimensionless terms, where
d̂ is the gap width used in the TCF experiments. The blue regions in figure 8(b–d) show
the onset of turbulence corresponding to the critical Reynolds number Recrit ≈ 4 (Ewoldt
et al. 2015; Mitra et al. 2020), where the data are not reliable. The maximum reliable
viscosity based on this critical Reynolds number and its corresponding torque that can be
measured by the rheometer are given by (A3) and (A4), respectively,

μ̂ >
ρ̂ĥ3

R̂Recrit

ˆ̇Γ, (A3)

M̂ >
πρ̂R̂2ĥ3

2Recrit

ˆ̇Γ 2. (A4)

Here ρ̂ in (A3) and (A4) represents the density of the working fluid.

Appendix B. Shear test of SHP samples

Superhydrophobic treatments cause superhydrophobicity on a surface by trapping air in
the asperities of a myriad of micro and nanostructures. The durability of the SHP coating
hinges on the strength of the bonds that attach these structures to the substrate. When
adequate stress is applied, these bonds could be overcome, leading to the removal of
microstructures and the loss of superhydrophobicity. This is true especially under extreme
conditions such as high pressure-driven channel flows that cause enormous stress on the
walls, where the SHP surfaces are largely implemented. Hence, there are a variety of
studies (Xue et al. 2015; Wang et al. 2016) that conduct abrasion studies to assess the
durability of coatings. However, these tests are not scenario specific and any conclusion
derived from these studies regarding the durability of the SHP coating in our TCF
experiments would require substantial approximation. Therefore, we conduct specific
shear tests on our SHP coating to study its durability.

B.1. Materials and methods
Eight samples of 1 cm length by 1 cm width are cut using a 0.25 cm thick aluminum plate.
The samples are sandblasted and SHP treated using the technique described in the previous
section. The samples are fixed on the inner cylinder of the TCF experimental set-up using
a double-sided adhesive tape. We fill the gap between the inner and outer cylinders with
demineralized water, the same working fluid used to perform all TCF experiments, and
shear the samples for Rei = 2 × 104 corresponding to a shear rate of ˆ̇Γ = 600 s−1. The
samples are subsequently removed at certain intervals, creating a range of specimens, each
sheared only for a certain duration. ImageJ (Schneider, Rasband & Eliceiri 2012) is used to
measure the contact angles of 5 μL deminearlized water droplet snapshots captured with
a Phantom VEO 710 camera.
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Figure 9. Scanning electron microscope images of the SHP surface under various durations of shear rate
ˆ̇Γ = 600 s −1: (a) 0 min, (b) 5 min, (c) 20 min, (d) 60 min and (e) 90 min. The insets show the contact angle

of a 5μL demineralized water droplet over the corresponding surfaces. ( f ) The contact angle (�, green) of

SHP surfaces at different durations of shear rate ˆ̇Γ = 600 s−1. The error bars show the standard deviation of
the contact angle obtained during the elliptical curve fitting of the droplets.

B.2. Results
Figures 9(a)–9(e) show the scanning electron microscope images of the freshly coated

SHP sample and those corresponding to various durations of shear rate ˆ̇Γ = 600 s−1.
It is clear that the SHP coating is durable at the shear rate studied, since all of the
samples observed retain microstructures that cause superhydrophobicity. Further proof of
superhydrophobicity is seen in the insets of these images, which shows that the contact
angle has remained as high as Θ = 159◦ ± 2◦. The contact angles are plotted against
different shear durations of shear rate in figure 9( f ).

Appendix C. Torque and velocity benchmarks

In this section we present a series of benchmarks for our experimental set-up. In
figure 10 we show uncompensated and compensated torques against Rei. The data for
these measurements is obtained by subtracting the torque measured when the cylinders
are filled with water from the torque measured when the cylinders are filled with air.
The latter number provides a reference estimate for the losses in the system. We add
the benchmark G = 0.202(η−1 − 1)−5/3Re5/3

i from Marcus (1984), Lathrop, Fineberg
& Swinney (1992a). The torque measurements show a degree of dispersion around the
benchmark line even though they largely follow the trend.

In figure 11 we compare the velocity data obtained from the PIV performed in
experiments to that obtained from simulations. In figure 11(a) we show the experimental
results for 〈ur〉t at the mid-gap in green, as well as the values for 〈ur〉θ,t obtained from
simulations at a similar λz in blue. We also show simulation data obtained by only
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Figure 10. Uncompensated and compensated non-dimensional torque G measurements against Rei for the
untreated cylinders. The solid line is G = 0.202(η−1 − 1)−5/3Re5/3

i (Marcus 1984; Lathrop et al. 1992a).
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Figure 11. (a) Comparison of the radial velocity at the mid-gap obtained from experiments (green) and
simulations (blue for 〈ur〉t,θ , red for 〈ur〉t) for untreated cylinders and λz ≈ 2.9. (b) Values of roll strength
σr obtained from 〈ur〉t for simulations (•, red) and experiments (�, green), and from 〈ur〉t,θ for simulations
(�, blue) at Rei = 104 for untreated cylinders.

averaging temporally and not azimuthally in red, i.e. 〈ur〉t. We can observe that both
procedures for obtaining the average radial velocity in simulations give results that have
a similar axial profile as the experiments. The data obtained from simulations by only
averaging azimuthally, i.e. 〈ur〉t, appear less statistically converged due to the smaller
amount of samples. In figure 11(b) we show the value of σr calculated from the no-slip
experiment, as well as the value obtained for σr from several simulations by using 〈ur〉θ,t
and 〈ur〉t. The numerical procedure for calculating σr from 〈ur〉θ,t results in values of σr
that match quite well the data obtained from experiments. The value of σr obtained from
〈ur〉t in simulations is slightly lower than the other values. The data also show the trend of
σr with λz described in § 2.2.

REFERENCES

AGEE, E.M. 1984 Observations from space and thermal convection: a historical perspective. Bull. Am.
Meteorol. Soc. 65 (9), 938–949.

ANDERECK, C.D., LIU, S.S. & SWINNEY, H.L. 1986 Flow regimes in a circular Couette system with
independently rotating cylinders. J. Fluid Mech. 164, 155–183.

969 A18-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

60
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.606


V. Jeganathan, T. Shannak, K. Alba and R. Ostilla-Mónico

ANDERSON, W., BARROS, J.M., CHRISTENSEN, K.T. & AWASTHI, A. 2015 Numerical and experimental
study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise
heterogeneous roughness. J. Fluid Mech. 768, 316–347.

ATKINSON, B.W. & WU ZHANG, J. 1996 Mesoscale shallow convection in the atmosphere. Rev. Geophys. 34
(4), 403–431.

AYAN, M.S., ENTEZARI, M. & CHINI, S.F. 2019 Experiments on skin friction reduction induced by
superhydrophobicity and Leidenfrost phenomena in a Taylor–Couette cell. Intl J. Heat Mass Transfer 132,
271–279.

BAKHUIS, D., EZETA, R., BERGHOUT, P., BULLEE, P.A., TAI, D., CHUNG, D., VERZICCO, R.,
LOHSE, D., HUISMAN, S.G. & SUN, C. 2020 Controlling secondary flow in Taylor–Couette turbulence
through spanwise-varying roughness. J. Fluid Mech. 883, 654–662.

BAKHUIS, D., OSTILLA-MÓNICO, R., VAN DER POEL, E.P., VERZICCO, R. & LOHSE, D. 2018 Mixed
insulating and conducting thermal boundary conditions in Rayleigh–Bénard convection. J. Fluid Mech.
835, 491–511.

BARROS, J.M. & CHRISTENSEN, K.T. 2014 Observations of turbulent secondary flows in a rough-wall
boundary layer. J. Fluid Mech. 748, 90–102.

BRAUCKMANN, H.J. & ECKHARDT, B. 2013 Direct numerical simulations of local and global torque in
Taylor–Couette flow up to Re = 30 000. J. Fluid Mech. 718, 398–427.

BUCHHAVE, P. 1992 Particle image velocimetry–status and trends. Exp. Therm. Fluid Sci. 5 (5), 586–604.
CHENG, J.-T. & GIORDANO, N. 2002 Fluid flow through nanometer-scale channels. Phys. Rev. E 65 (3),

031206.
CHHABRA, R.P. & RICHARDSON, J.F. 2011 Non-Newtonian Flow and Applied Rheology: Engineering

Applications. Butterworth–Heinemann.
COLES, D. 1965 Transition in circular couette flow. J. Fluid Mech. 21 (3), 385–425.
DANIELLO, R.J., WATERHOUSE, N.E. & ROTHSTEIN, J.P. 2009 Drag reduction in turbulent flows over

superhydrophobic surfaces. Phys. Fluids 21 (8), 085103.
DONG, H., CHENG, M., ZHANG, Y., WEI, H. & SHI, F. 2013 Extraordinary drag-reducing effect of a

superhydrophobic coating on a macroscopic model ship at high speed. J. Mater. Chem. A 1 (19), 5886–5891.
DONNELLY, R.J. 1991 Taylor–Couette flow: the early days. Phys. Today 44 (11), 32–39.
EWOLDT, R.H., JOHNSTON, M.T. & CARETTA, L.M. 2015 Experimental challenges of shear rheology: how

to avoid bad data. In Complex Fluids in Biological Systems, pp. 207–241. Springer.
GROSSMANN, S., LOHSE, D. & SUN, C. 2016 High–Reynolds number Taylor–Couette turbulence. Annu. Rev.

Fluid Mech. 48 (1), 53–80.
GUL, M., ELSINGA, G.E. & WESTERWEEL, J. 2018 Experimental investigation of torque hysteresis behaviour

of Taylor–Couette flow. J. Fluid Mech. 836, 635–648.
HOAGLAND, L.C. 1962 Fully developed turbulent flow in straight rectangular ducts: secondary flow, its cause

and effect on the primary flow. PhD thesis, Massachusetts Institute of Technology.
HU, H., et al. 2017 Significant and stable drag reduction with air rings confined by alternated superhydrophobic

and hydrophilic strips. Sci. Adv. 3 (9), e1603288.
HUISMAN, S.G., VAN DER VEEN, R.C.A., SUN, C. & LOHSE, D. 2014 Multiple states in highly turbulent

Taylor–Couette flow. Nat. Commun. 5, 3820.
HWANG, G.B., PATIR, A., PAGE, K., LU, Y., ALLAN, E. & PARKIN, I.P. 2017 Buoyancy increase and

drag-reduction through a simple superhydrophobic coating. Nanoscale 9 (22), 7588–7594.
JEEVAHAN, J., CHANDRASEKARAN, M., BRITTO JOSEPH, G., DURAIRAJ, R.B. & MAGESHWARAN, G.

2018 Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol.
Res. 15 (2), 231–250.

JEGANATHAN, V., ALBA, K. & OSTILLA-MÓNICO, R. 2021 Controlling secondary flows in Taylor–Couette
flow using stress-free boundary conditions. J. Fluid Mech. 922, A17.

KIM, N., KIM, H. & PARK, H. 2015 An experimental study on the effects of rough hydrophobic surfaces on
the flow around a circular cylinder. Phys. Fluids 27 (8), 085113.

KU, D.N., et al. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29 (1), 399–434.
LAMBLEY, H., SCHUTZIUS, T.M. & POULIKAKOS, D. 2020 Superhydrophobic surfaces for extreme

environmental conditions. Proc. Natl Acad. Sci. 117 (44), 27188–27194.
LANDAU, L.D. & LIFSHITZ, E.M. 2013 Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics,

vol. 6. Elsevier.
LATHROP, D.P., FINEBERG, J. & SWINNEY, H.L. 1992a Transition to shear-driven turbulence in

Couette–Taylor flow. Phys. Rev. A 46 (10), 6390.
LATHROP, D.P., FINEBERG, J. & SWINNEY, H.L. 1992b Turbulent flow between concentric rotating cylinders

at large Reynolds number. Phys. Rev. Lett. 68 (10), 1515–1518.

969 A18-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

60
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.606


Controlling flows with axially spaced superhydrophobicity

LEE, S. & LUEPTOW, R.M. 2001a Reverse osmosis filtration for space mission wastewater: membrane
properties and operating conditions. J. Membr. Sci. 182 (1-2), 77–90.

LEE, S. & LUEPTOW, R.M. 2001b Rotating reverse osmosis: a dynamic model for flux and rejection. J. Membr.
Sci. 192 (1-2), 129–143.

LOPEZ, J.M. & AVILA, M. 2017 Boundary-layer turbulence in experiments on quasi-keplerian flows. J. Fluid
Mech. 817, 21–34.

MARCUS, P.S. 1984 Simulation of Taylor–Couette flow. Part 1. Numerical methods and comparison with
experiment. J. Fluid Mech. 146, 45–64.

MARTÍNEZ-ARIAS, B., PEIXINHO, J., CRUMEYROLLE, O. & MUTABAZI, I. 2014 Effect of the number of
vortices on the torque scaling in Taylor–Couette flow. J. Fluid Mech. 748, 756–767.

MAXWELL, J.C. 1879 VII. On stresses in rarified gases arising from inequalities of temperature. Phil. Trans.
R. Soc. 170, 231–256.

MITRA, H., JAYARAM, P., BRATSMAN, A., GABEL, T. & ALBA, K. 2020 Characterization and rheology of
platelet-rich plasma. J. Rheol. 64 (5), 1017–1034.

MOISÉS, G.V.L., NACCACHE, M.F., ALBA, K. & FRIGAARD, I.A. 2016 Isodense displacement flow of
viscoplastic fluids along a pipe. J. Non-Newtonian Fluid Mech. 236, 91–103.

MURALIDHAR, P., FERRER, N., DANIELLO, R. & ROTHSTEIN, J.P. 2011 Influence of slip on the flow past
superhydrophobic circular cylinders. J. Fluid Mech. 680, 459–476.

NAIM, M.S. & BAIG, M.F. 2019 Turbulent drag reduction in Taylor–Couette flows using different
super-hydrophobic surface configurations. Phys. Fluids 31 (9), 095108.

NEWMAN, D.E., TERRY, P.W. & WARE, A.S. 2007 Shear flows and turbulence in nature. Comput. Sci. Engng
9 (6), 45–52.

NIKITIN, N.V., POPELENSKAYA, N.V. & STROH, A. 2021 Prandtl’s secondary flows of the second kind.
problems of description, prediction, and simulation. Fluid Dyn. 56 (4), 513–538.

NUGROHO, B., HUTCHINS, N. & MONTY, J.P. 2013 Large-scale spanwise periodicity in a turbulent boundary
layer induced by highly ordered and directional surface roughness. Intl J. Heat Fluid Flow 41, 90–102.

ORSZAG, S.A. & PATERA, A.T. 1983 Secondary instability of wall-bounded shear flows. J. Fluid Mech. 128,
347–385.

OSTILLA-MÓNICO, R., LOHSE, D. & VERZICCO, R. 2016a Effect of roll number on the statistics of turbulent
Taylor–Couette flow. Phys. Rev. Fluids 1 (5), 054402.

OSTILLA-MÓNICO, R., VAN DER POEL, E.P., VERZICCO, R., GROSSMANN, S. & LOHSE, D. 2014
Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 1–26.

OSTILLA-MÓNICO, R., VERZICCO, R., GROSSMANN, S. & LOHSE, D. 2016b The near-wall region of highly
turbulent Taylor–Couette flow. J. Fluid Mech. 788, 95–117.

OSTILLA-MÓNICO, R., VERZICCO, R. & LOHSE, D. 2015 Effects of the computational domain size on
direct numerical simulations of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids 27
(2), 025110.

OSTILLA-MÓNICO, R., ZHU, X., SPANDAN, V., VERZICCO, R. & LOHSE, D. 2017 Life stages of
wall-bounded decay of Taylor–Couette turbulence. Phys. Rev. Fluids 2 (11), 114601.

OU, J., PEROT, B. & ROTHSTEIN, J.P. 2004 Laminar drag reduction in microchannels using ultrahydrophobic
surfaces. Phys. Fluids 16 (12), 4635–4643.

PEDLOSKY, J. 1987 Geophysical Fluid Dynamics, vol. 710. Springer.
VAN DER POEL, E.P., OSTILLA-MÓNICO, R., DONNERS, J. & VERZICCO, R. 2015 A pencil distributed

finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 10–16.
QI, L., ZOU, Z., WANG, P., CAO, T. & LIU, H. 2012 Control of secondary flow loss in turbine cascade by

streamwise vortex. Comput. Fluids 54, 45–55.
RAJAPPAN, A. & MCKINLEY, G.H. 2020 Cooperative drag reduction in turbulent flows using polymer

additives and superhydrophobic walls. Phys. Rev. Fluids 5 (11), 114601.
SACCO, F., VERZICCO, R. & OSTILLA-MÓNICO, R. 2019 Dynamics and evolution of turbulent Taylor rolls.

J. Fluid Mech. 870, 970–987.
SARANADHI, D., CHEN, D., KLEINGARTNER, J.A., SRINIVASAN, S., COHEN, R.E. & MCKINLEY, G.H.

2016 Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Sci. Adv. 2
(10), e1600686.

SCHNEIDER, C.A., RASBAND, W.S. & ELICEIRI, K.W. 2012 NIH image to imageJ: 25 years of image
analysis. Nat. Meth. 9 (7), 671–675.

SCHRIMPF, M., ESTEBAN, J., WARMELING, H., FÄRBER, T., BEHR, A. & VORHOLT, A.J. 2021
Taylor–Couette reactor: principles, design, and applications. AIChE J. 67 (5), e17228.

969 A18-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

60
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.606


V. Jeganathan, T. Shannak, K. Alba and R. Ostilla-Mónico

SOORAJ, P., RAMAGYA, M.S., KHAN, M.H., SHARMA, A. & AGRAWAL, A. 2020 Effect of
superhydrophobicity on the flow past a circular cylinder in various flow regimes. J. Fluid Mech. 897,
A21.

SRINIVASAN, S., CHOI, W., PARK, K.-C., CHHATRE, S.S., COHEN, R.E. & MCKINLEY, G.H. 2013 Drag
reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matt. 9 (24), 5691–5702.

SRINIVASAN, S., KLEINGARTNER, J.A., GILBERT, J.B., COHEN, R.E., MILNE, A.J.B. & MCKINLEY,
G.H. 2015 Sustainable drag reduction in turbulent Taylor–Couette flows by depositing sprayable
superhydrophobic surfaces. Phys. Rev. Lett. 114 (1), 014501.

TAYLOR, G.I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc. Lond. A 104,
213–218.

THIELICKE, W. & SONNTAG, R. 2021 Particle image velocimetry for MATLAB: accuracy and enhanced
algorithms in PIVlab. J. Open Res. Softw. 9 (1), 12.

TRETHEWAY, D.C. & MEINHART, C.D. 2002 Apparent fluid slip at hydrophobic microchannel walls. Phys.
Fluids 14 (3), L9–L12.

TÜRK, S., DASCHIEL, G., STROH, A., HASEGAWA, Y. & FROHNAPFEL, B. 2014 Turbulent flow over
superhydrophobic surfaces with streamwise grooves. J. Fluid Mech. 747, 186–217.

VERZICCO, R. & ORLANDI, P. 1996 A finite-difference scheme for three-dimensional incompressible flows
in cylindrical coordinates. J. Comput. Phys. 123 (2), 402–414.

WANG, D., et al. 2020 Design of robust superhydrophobic surfaces. Nature 582 (7810), 55–59.
WANG, P., CHEN, M., HAN, H., FAN, X., LIU, Q. & WANG, J. 2016 Transparent and abrasion-resistant

superhydrophobic coating with robust self-cleaning function in either air or oil. J. Mater. Chem. A 4 (20),
7869–7874.

WATANABE, K., UDAGAWA, Y. & UDAGAWA, H. 1999 Drag reduction of Newtonian fluid in a circular pipe
with a highly water-repellent wall. J. Fluid Mech. 381, 225–238.

WEN, J., ZHANG, W.-Y., REN, L.-Z., BAO, L.-Y., DINI, D., XI, H.-D. & HU, H.-B. 2020 Controlling the
number of vortices and torque in Taylor–Couette flow. J. Fluid Mech. 901, A30.

WILLINGHAM, D., ANDERSON, W., CHRISTENSEN, K.T. & BARROS, J.M. 2014 Turbulent boundary layer
flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys.
Fluids 26 (2), 025111.

XUE, C.-H., GUO, X.-J., ZHANG, M.-M., MA, J.-Z. & JIA, S.-T. 2015 Fabrication of robust
superhydrophobic surfaces by modification of chemically roughened fibers via thiol–ene click chemistry.
J. Mater. Chem. A 3 (43), 21797–21804.

ZHU, X., OSTILLA-MÓNICO, R., VERZICCO, R. & LOHSE, D. 2016 Direct numerical simulation of
Taylor–Couette flow with grooved walls: torque scaling and flow structure. J. Fluid Mech. 794, 746–774.

969 A18-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

60
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.606

	1 Introduction
	2 Experiments
	2.1 Experimental methods
	2.2 Experimental results

	3 Direct numerical simulations
	3.1 Numerical methods
	3.2 Numerical results

	4 Summary
	Appendix A. Slip length measurement of SHP surfaces using rheometer
	A.1 Materials
	A.2 Methods
	A.3 Results

	Appendix B. Shear test of SHP samples
	B.1 Materials and methods
	B.2 Results

	Appendix C. Torque and velocity benchmarks
	References

