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SECOND PROOF OF THE IRREDUCIBILITY OF THE

FIRST DIFFERENTIAL EQUATION OF PAINLEVE

HIROSHI UMEMURA

In our paper [U2], we proved the irreducibility of the first differential
equation y" = 6y2 + x of Painleve. In that paper we explained the origin
of the problem and the importance of giving a rigorous proof. We can
say that our method in [U2] is algebraic and finite dimensional in con-
trast to a prediction of Painleve who expected a proof depending on the
infinite dimensional differential Galois theory. Even nowadays the latter
remains to be established. It seems that Painleve needed an armament
with the general theory (the infinite dimensional differential Galois theory)
in the controversy with R. Liouville on the mathematical foundation of
the proof of the irreducibility of the first differential equation (1902-03).
Thus he forgot his earlier idea of proving the irreducibility, which is
simple and natural and found in the twenty-first lecture of Lemons de
Stockholm given in 1895 (von. 1 [P]): a differential equation y" = R(x, y, / )
(here R(x, y, y') is a rational function of x, y, yf with coefficients in C)
free from moving critical points is irreducible if and only if the general
solution y(x0; y0, y'o; x) (taking the initial condition y0, y'o at x0) is an
essentially transcendental function of (y0, y£). The main result of this
paper is a second proof of the irreducibility of y" = 6y2 + x based on
this idea of Painleve (§ 3, Theorem (68)). The second proof is analytic
as the transcendental correspondence is involved. It looks more indirect
than the first proof given in [U2] but it has an advantage. In [Ul] we
had to make the definition of being irreducible precise or equivalently
we had to make the permissble operations clear. Essentially they are
the solution of linear differential equations and the substitution in Abelian
functions (see § 1). These operations are related with algebraic groups.
But in [U2] we proved a better irreducible theorem: impossibility of
solving the differential equation y" = 6y2 + x by the above 2 operations
combined with the solution of first order algebraic differential equations.
As we explained above, the first 2 operations are group theoretic but we
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do not know the nature of the latter operation. We prove that if the
second order differential equation in question is free from moving branch
points and moving transcendental singular points and if it is solvable
by these 3 operations, then it is solvable by the first 2 group theoretic
operations (Theorem (50)). Therefore the irreducibility theorem is under-
stood in a completely group theoretic way.

Here is the content of each section. In § 1, we notice the equivalence
of the 2 definitions of the rational dependence on the initial conditions.
The first one is due to the classical authors and adopted in our paper
[Ul]. The second one is an algebraic definition due to Nishioka. The
same remark is done for the definition of algebraic dependence. Some
complementary remarks on the permissible operations are also done
(Lemmas (1.1) and (1.2)).

In § 2, we clear away an ambiguity of our paper [Ul] (Corollary (4.6)
and Theorem (3.21) in [Ul]): if the general solution of an algebraic
differential equation depends rationally on the initial conditions, then it
is solvable by permissible operations (Theorems (29) and (30)). This result
is extended to algebraic differential equations whose general solution
depends algebraically on the initial conditions (Theorem (31)). Our works
were done independently of Nishioka. But his papers [N2] and [N3]
contributed very much to the simplification of arguments. Theorem (23)
is due to Nishioka [N3]. We prove Theorem (29) by the same method
as in [N3] which with Theorem (30) clears off the ambiguity. Theorem
(42) and its Corollary were implicite in the classics and Theorem (42) was
first formulated by Nishioka [N2]. Theorem (42) not only plays a substan-
tial role in the proof of other results in § 2 and § 3 but it has also theo-
retical importance. We simplyfied considerably the arguments of the
papers [N2] and [N3]. We are conscious of the following 2 points which
seem to be new in this domain though they are now routine in algebra-
ic geometry: (1) a differential equation or a differential field extension
L ~D K is characterized by its associated functor (or study not only the
extension LZD K itself but also all the base changes) (2) what is canonical
descends and is defined over the smaller base field.

In § 3, we prove a criterion for a differential equation of the second
order to be irreducible (Theorem (50)) and apply the Theorem (50) to the
first differential equation y" = 6y2 + x.

Thus we put a substantial part of the works of Painleve on the
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reducibility and the irreducibility of algebraic differential equations of

the second order in a definite form except for the following important

question. Now we have two proofs of the irreducibility of the first

differential equation. Is it possible to give the third proof depending on

the infinite dimensional differential Galois theory? The difficulty of

establishing the infinite dimensional differential Galois theory is widely

recognized. We analyzed however the works of the classical authors

and believe that the third proof is in our shooting range.

§1. Differential equations whose general solutions depend

rationally or algebraically on the initial conditions

Let us first settle our notations. An ordinary differential field (K, δ)

consists of, by definition, a field K and a derivation δ: K-> K; δ(a + 6)

= δa + δb, δ(ab) = (δά)b + a(δb) for a, b e l As we are concerned only

with ordinary differential fields, we call them simply differential fields.

Often we do not make the derivation precise and say a differential field

K. We assume that the characteristic of the field K is equal to 0. An

element c eK with δc = 0 is called a constant. The set of the constants

of K forms a subfield which we denote by Cκ. A differential field exten-

sion (Ku <5i) of (K, δ) is a field extension Kλ of K such that the derivation

δx coincides with δ on K. A differential polynomial ring K[Y] (of one

variable) over a differential field (K, δ) is a polynomial ring K[Y0, Yu Y2,

• ] of infinite variables Yt (i e N), the derivation δ on the subring K of

K{Y} being extended on K{Y} by δ(Yt) = Yt+1 for i > 0. Let L D K be

a differential field extension and y e L. We denote by K(y} (resp. K{y})

the differential field (resp. ring) generated by y over K. Let (Ll9 δx) and

(L2, d2) be two differential field extensions of K. Then Lλ ®κ L2 is a

differential ring by defining a derivation δ by δ(a (x) b) = (δa) ® 6 + a<g)δb

for a eLu b e L2. The quotient field of an integral domain A will be

denoted by Q(A). For example if the field extension LXZ) K is regular,

we can speak of a differential field Q(LX ®κ L2). The differential field of

the meromorphic functions over a domain D c C will be denoted by K(D).

In our papers [Ul] and [U2], we introduced the permissible operations

of constructing new functions from a set of known functions. We work

in a differential field of the meromorphic functions over a domain D of

C Let us recall the permissible operations.

(O) If f(x) is a known function, then the derived function f(x) is a
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new known function.
(PI) If / and g are known functions, then the sum / + g, the dif-

ference f — g and the product fg are new known functions. Moreover if
g ψ G, then the quotient fjg is also a new known function.

(P2) Let au a2, , an be n known functions. Then an algebroid
function / o r a solution / of an algebraic equation

Γ + ajn'1 + a2f
n~2 + + an = 0

is a new known function.

(P3) If / is a known function, then the quadrature fdx is a new

known function.
(P4) Let au a2, , an be n known functions. Then any solution /

of a linear differential equation

((d/dxY + a^d/dx)"-1 + + an)f = 0

is a new known function.
(P5) Let Γ c Cn be a lattices such that Cn/Γ is an abelian variety.

Let fu f2, ••-,/„ be known holomorphic functions. We denote by F a
holomorphic map D -> Cnx «-> (/i(x), /2(x), , /TO(x)). Then φ op o F is a new
known function for any meromorphic function φ on the abelian variety
Cn/Γ. Here we have to avoid the constant function taking the value
infinity.

For a meromorphic function on a domain D, we identify it with its
restriction on a subdomain of D since we are interested in the structure
of the field extensions. In other words though we do not mention it
explicitly, the restriction of a known meromorphic function on to a
subdomain is a new known function.

We proved in [Ul] that these permissible operations are related with
the algebraic group. However we introduced another permissible opera-
tion (P6) in [U2], which breaks the peaceful world of algebraic groups.

(P6) Let F(y, / ) = 0 be an algebraic differential equation with
known coefficients. Then any solution / of F(y9 / ) = 0 is a new known
function.

In [Ul], we proved the permissible operations are not independent.
For example we showed that a combination of (O), (PI) and (P4) gives
(P2). The proof given there depends on an integral representation of a
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root of an algebraic equation. We give here another proof. The advan-
tage of the new proof is that it is independent of the topology of C.

LEMMA (1.1). The permissible operation (P2) is a finite iteration of

(0), (PI) and (P4).

Proof, Let S be a starting set of the known functions. Let K be
a differential field generated by S. Any element of K is known from S
by a finite iteration of the permissible operations (0) and (PI). Let au

α2, , an e S and / is a meromorphic solution of an algebraic equation

fn + ajn-1 + + an = 0

which is irreducible over K. Then K(f) is a differential field and
(K(f): K) = n. Therefore /, /', /(2), ,f(n) are linearly dependent over K.
Hence there exist b0, bu b2, --,bneK such that bQfw + bj^ + •
+ bnf = 0. Therefore / is a new known functions from the 6/s by (PI),
(P4) and hence from the set S by a finite iteration of the permissible
operations (O), (PI) and (P4).

We introduced classical functions (Definition (2.27) in [Ul]). They
are meromorphic functions obtained from the set C of the constant func-
tions by finite iterations of permissible operations (O), (PI), (P2), , (P5).
Some of our colleagues pointed out that the composition of two classical
functions are classical.

LEMMA (1.2). Let /, g be two classical functions. Then the composition
fog is a classical function.

Proof. We prove the lemma by induction on the number of iteration
used to get the function /. The lemma is true when / is a constant
function. Let us assume that the lemma is true when the function / is
obtained from the set C of the constant functions by at most i-time
iteration. Let Kt be a set of functions obtained from C by at most i-time
iterations. Let / be obtained from C by an (ί + l)-iteration.

Case (0). If there exists FeKt such that / = F', then Fog is clas-
sical by induction assumption. Hence {Fog)f is classical. Since we have
(Fogy = (FΌg)g' and since gf is classical, by (PI) (FΌg) = (Fog)\gr)^
is classical if gf Φθ. If g; = 0, then g is constant and fog is also con-
stant and hence classical.

Case (PI). If there exist F, GeKt such that f=F+G (or F - G,
FG, F/G), then fog = (Fog) + (Gog) is classical by induction assumption
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and (PI). The substraction, the product and the quotient are treated

similarly.

Case (P4). If there exist au α2, , an eKt such that

then we get

We may assume that g is not constant. We have (fog)' = (f'°g)g' and

(f°g)" = (fogW + (/Όίίί" and hence

Since the similar relation holds for (f°g)U) (j > 2), (*) gives us a non

trivial homogeneous linear differential equation of order π, satisfied by

(fog) with classical coefficients. Therefore fog is classical.

Case (P5). Let au α2, , αn 6 ϋΓ* and Γ c C n be a lattice such that

CTC/Γ is an abelian variety. Let F: 2}->Cn, x^(aua2, -—9an) and ψ

an abelian function with respect to Γ (φ is a meromorphic function over

Cw invariant by Γ) such that f = φ<>F. Then since fog = (φoF)og =

φo(Fog) and since α^og is classical by induction hypothesis, fog is clas-

sical too.

Since we proved in [Ul] that the operations (P2) and (P3) are partic-

ular combinations of (O), (PI), (P2),, , (P5), the lemma is proved.

We prove in [Ul] the permissible operations (O), (PI), (P2), , (P5)

are dominated by the algebraic groups defined over C. Let fl C C be a

domain and G an algebraic group defined over C. For a holomorphic

map F: D ->G, we have defined in [Ul] a holomorphic map dF: D -• Lie G,

where Lie G is the Lie algebra of G. Let us recall briefly the definition

of dF. The holomorphic curve F: D^ G defines a tangent vector XF{X)

at F(x) e G along D. We translate it to a tangent vector at 1 e G by the

right translation RF(x)-i. dF: Z)-»LieG is defined by (dF)(x) = 22F(x)-i*-XF(x).

We introduced the operation (Q).

(Q) Let /i,/2, * ,/d be holomorphic known functions over D. Let

F: D - ^ G b e a holomorphic map such that with a suitable base of Lie G,

dF: D-+LieG~Cd i s g i v e n b y x ~ ( Λ ( x ) , f2(x), - , f d ( x ) ) . T h e n φoF is

a new known function for any rational function ψ e C(G) on G.

We proved
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THEOREM (2). Let S be a starting set of known meromorphic functions.

A meromorphic function is obtained from S by a finite iteration of the

permissible operations (0), (PI), (P2),, , (P5) if and only if it is obtained

from S by a finite iteration of (0) and (Q).

In the study of the structure of algebraic differential equations, it

is often more advantageous to work in an abstract setting than in con-

crete analytic terms. Let K be a differential field and Cκ be the field

of the constants of K. We defined in [Ul] for a K-valued point v: Spec K

—> G (or more precisely for the corresponding irrational point v: Specif

—* G®CκK) °ver Cκ a logarithmic derivative lδ(v') eK®Cκ Lie G (see also

Kolchin [K2]). We can characterize the permissible operations in a group

theoretic way.

THEOREM (3). Let M be a differential field of known meromorphic

functions on a domain D and L be the differential field of all the mero-

morphic functions on D. We assume that M contains the field C of the

constant functions on D: C c M c L . To apply the operations (O), (Q), to

M is equivalent to allowing the following extension of the differential field

M. Let v: Spec L —> GM = G ®c M be an L-valued point over M. The

corresponding L-rational point Spec L^>GL = G®CL is denoted by v\ If

lδ(ι/) eLie G®CL lies in Lie G®cM, then the image 0GM, v/mυ aL is a

differential field of newly known functions. Moreover this differential field

is finite type over M as an abstract field extension.

We are interested in the meromorphic solutions but it is convenient

to work in bigger differential fields. A natural generalization of the

operation (Q) is as follows.

DEFINITION (4). Let M C L be an extension of differential field. Let

C = CM be the field of the constants of M and G an algebraic group

defined over C. Let v: Spec L —> GM = G<8)CM be an L-valued point.

The corresponding L-rational point will be denoted by ι/: Spec L —> GL.

If lδ(ιf) e Lie GL = Lie G®CL lies in Lie G ®c M, then the image of 0GMίV/mυ

in L is called a G-primitive extension of M.

Notice that the extension is of finite type over M and is a differential

field (cf. [U2] Remark 18.3 and [K2]).

The following Proposition is crucial ([U2], Corollary 18.2 and [K2]).

PROPOSITION (5). Let LZD K be a G-primίtive extension. If the field
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extension is regular, then the differential field Q(L®KL) is generated over

iγ{L) (resp. h(L)) by constants, where ix (resp. ί2): L-+L <g>κ L c Q(L ®κ L)

is defined by a -* a (x) 1 (resp. 1 ® a).

Let ΰ C C be a domain and x be the parameter on C. We denote

by K(D) the field of the meromorphic function on D. Let R be a C-

algebra of holomorphic functions on D and F(Y0, Yu Y2, , Yn) £ #[Y0, Yi,

Y2, - •> Yn] a polynomial. We write often F(x; Yo, Yu Y2, , Yn) to show

that the coefficients of F(Y) are functions of x. We have a map i: D->

Speci? by putting i(x) = {/ei?|/(jc) = 0}. If i? is of finite type over C, i

induces a morphism ί: D -> (Spec i?)an of analytic spaces. Let 3f be an

algebraic subvariety defined by F in An + 1®C JR = AΛ+1 X Spec R: & =

V(F) C AJ+1 = Spec Λ[y0, Yl5 , YJ. Similarly we define X = {(*, ^ ) e ΰ

X ^4c+1|^(^> z) — 0} which is an analytic space. We have a diagram

y v. #•

D : — > Spec R .

If R is of finite type over C, we proved that the diagram

Λ. > tZ

D : > (Spec Rfn

is cartesian in the category of the analytic spaces ([Ul] § 3). We denote

by Xξ the fibre p~\ξ) over a point ξ e D and we use the similar notation

for q.

We are interested in an algebraic differential equation

(6) F(x; y,y, ...,/«>) = 0.

In general in the theory of algebraic differential equation, we assume,

without expressing it, that the polynomial F(Y0, Yu Y2, , Yn) is abso-

lutely irreducible. Let x o e ΰ b e a general point so that the coefficients

of the polynomial F are regular at x0, the algebraic variety Xo = XXQ =

{(z0, zu , zn) eCn+1\F(x0; zθ9 zί9 , zn) = 0} is irreducible ([Ul]) and so

that the Zariski open set U={ze XQ\dF/dYn(xύ; z) Φ 0} c X, is not empty.

For ze U, there exists a solution y(xQ; z; x) of (6) taking the initial value

z at xo; /°(*o; ô, ̂ 1, , zn; xQ) = ^ for 0 < i < n. The function y(x0; z; x)

is holomorphic both in x and z = fe, ^, , zn). To be precise for any
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point P e U, there exist an open neighbourhood V a U ot P, an open

neighbourhood W C D of xQ and a holomorphic function y(xQ; z; x) on

V X W of (2, x) which satisfies the differential equation and takes the

initial value z e V at x0. As we see in Painleve's Legons de Stockholm

[P], the nature of the solution y(xQ; z; x) as the function of the initial

conditions z is closely related with the degree of the difficulty of solving

the differential equation (6). For example we proved in [Ul] that if

y(xQ: z; x) depends rationally on the initial conditions z, we can solve the

equation (6) starting from the ring R of the known functions by a com-

bination of linear differential equations and abelian functions (cf. [Ul]

and §2, Theorem (29) and Theorem (30)). We notice that this result

contains as a special case a theorem of Poincare.

THEOREM (Poincare). Let F(x;y,y') = 0 be an algebraic differential

equation without moving critical points. Then we can solve it starting from

the known functions by linear differential equations and elliptic functions

(the coefficients of F being known functions).

A precise assertion will be given under more general assumptions

(§ 2, Theorems (28), (30) and (31)).

Let us recall and examine the definition that the general solution

y(x0; z; x) depends rationally on the initial conditions z since we are

going to generalize it so that we can prove an irreduciblity theorem by

studying the general solution as a function of the initial conditions.

DEFINITION (7). We say that the general solution y(x0; z0, zu , zn; x)

of (6) depends rationally on the initial conditions if there exist a general

point x0 (fixed once for all), a non-empty open set V d U d Xo for the

usual topology, a domain xoe D' C D and a polynomials Ct(x; Yo, Yu ,

Yn), Di(x; Yo, Yί9 , Yn) with coefficients in a ring of holomorphic func-

tions on Ό' such that (1) :y(i)(#o; z; x) is holomorphic for (z, x) e V X Όf for

0 < i < n, (2) Diixo; z0, zu , zn) Φ 0 for (z, x) e V X D'. (3) yw(x0; z0,

Zu , zn\ x) = CJDiix; z0, zu , zn) for (z, x) e V X D'.

As we see in Proposition (16) below, the geometric meaning of

Definition (7) is that replacing Df by a smaller domain if necessary, the

map z—>(y(x0; z; Xx), y'(x0; z; ^ ) , ',y(n\x0', z; Xt)) defines a birational cor-

respondence between the algebraic varieties Xo and Xx = {(z0, zl9 , zn)
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Remark (8). In Definition (7), by a general point x0 e D, we mean a

point xQeD such that the function 3FldYn(x0; Y) on Zo is not constantly

equal to 0 and such that p'Xxo) is irreducible and reduced. These con-

ditions are satisfied for any point of a dense open set of D. We see later

the definition is independent of the reference point xQ. Namely if there

exists a point satisfying the conditions of the definition, then the con-

ditions of the definition are satisfied by any point of a dense open subset

of Zλ

Notice we proved the following result in [Ul], which we do not use

in the sequel. If the ring R is of finite type over C, Definition (7) implies

that

(9) there exist a C-algebra R' consisting of holomorphic functions on

Ώf and containing R and of finite type over C and an algebraic variety

j2fcX 0 X #<g>ΛB' = CXiΦc-KO XR'(^®BR;) such that (1) & defines an

iί'-birational correspondence between the algebraic varieties XQ X Spec R'

and ££ X Spec R Spec R' or equivalently at each point ueSipecR', the fibre

Z£u defines a birational correspondence of Xo and 2£u such that

(2) (z,y(x0; z; x), / ( * 0 ; z; x), , y< >(*0; z; x))eX0 X XiiXo) = ((X, X i?') χB.

{β ®R R'))i{X) is in & for x e D' (see Proposition (16) below).

X Spec BO X SpecR (X X SPec* Spec BO

We look for equivalent conditions to Definition (7). Let z — (zθ9 zu

• , zn) be the generic point of XQ and xQ be as above. We consider z

as a variable point in an open set of U C XQ for the usual topology.

We have the following conditions.

(9.1) The general solution of the differential equation (6) depends

rationally on the initial conditions.

(9.2) There exist a (fixed general) point x0, a non-empty open set V

of XXQ for the usual toplogy and a domain xQe D' a D such that the

functions y(x0; z; x)9 y(x0; z; x), - - -, yw(x0; z; x) in (z, x) are holomorphic

on VxD' and such that the field K{Df){y{x^ z; x), y(xQ; z; x), -,y<n)(x0;

z; x)) is a subfield of the field K{Π)(z^ zu ,zn). Here all the functions

and fields are considered in the field of meromorphic functions on Vx

D'.

(9.3) There exist a (fixed general) point x0, a non-empty open set V
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of XXQ for the usual topology and a domain xQ e D/ d D such that the

functions y(x0; z; x); y'(x0; z; x), ,y(n)(x0; z, x) in (z, x) are holomorphic

on VxD' and such that the field K(D')(y(x,\ z; x), ,/(x0; z; x), , v'(x0;

z; x)) coincides with the field K(D')(z^ zu , 2n) the same identification

as in the condition (2) being done.

LEMMA (10). The conditions (9.1) and (9.2) are equivalent. The con-

dition (9.3) implies the conditions (9.2) and (9.1).

Proof. The equivalence of the conditions (9.1) and (9.2) follows from

the definition. The condition (9.3) is stronger than (9.2).

Nishioka introduced the following definition of rational dependence

on the initial conditions in an abstract setting.

DEFINITION (11). Let L Z> K be a differential field extension. We

assume that the field extension L Z> K is regular and of finite type. We

say that the extension L~D K depends rationally on the initial conditions

if there exists a differential field extension M ZD K such that the quotient

field Q(L®KM) which is a differential field extension of M, is generated

over M by constants (cf. [N3]).

Remark (11.1). It follows from the definition that for any differential

field extension JZD K, an extension LZD K depends rationally on the

initial conditions if and only if the extension Q(L <S)K J ) 3 J depends

rationally on the initial conditions. We can say that the notion of the

rational dependence on the initial conditions of L Z> K is free from the

base change.

Let us see how Definitions (7) and (11) are related. Let us take in

Definition (7) as K the differential field generated over C by R. Thus

K is a differential subfield of K(D). Unfortunately a differential ideal

{F} generated by F(Y0, Yu , Yn) in a differential polynomial ring K{Y)

is not prime. But it determines a differential prime ideal 3̂ of the generic

solution such that the quotient differential field of K{Y}/ψ is iΓ-isomorphic

to K(y(x«; z; x), y(1)(x0; z; *), , / w ) ( * 0 ; z; x)) (see Kolchin [K2], Chap. IV,

§6). Let M be the differential field K(D'). Then M and K(y(x0; z; x),

j>(1)(x0; z; x), , y{n)(x0; z; x)) are linearly disjoint over K. Therefore

M(y(x0; z; x), yω(x0; z; x), •••, yin)(xQ; z; x)) is isomorphic to the quotient

field of K(y(xQ; z; x), ;y(1)(x0; * ; * ) , - • • , y(n)(xQ; z; x)) ®κ M. It follows from

Definition (7) t h a t the field M(y(x0; z; x), y(1)(x0; z; x), , y(n)(x0; z; x)) is
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contained in a field M(z0, zu , zn) generated over M by the constants

Zo, zu - ,zn; M(y(xQ; z; x), yω(xQ; z; x), ,y { n \x*; z; x)) c M(zOi zu , zn).

Let us put M, = M(y(xQ; z; x), yw(x<>; z; x), , yin)(x<>; z\ x)) and M2 =

M(z0, ZU - , 2n). We have a diagram

where C^, CMl and C^2 denote the field of constants of the differential

fields. It follows from the following proposition (due to Kolchin [K2],

Chap. II, § 1, Corollary 2 on p. 88) that Mx = MCMl.

PROPOSITION (12). Let M c N be a differential field extension generated

over M by constants so that N = CNM. Then there is a 1:1 correspondence

between the elements of the following two sets.

(1) The set S of the intermediate differential fields M ClJ a N.

(2) The set T of the intermediate fields CM C D C CN.

Here the map S->T is given by Jf) CN for J e S and the map T7—• S

is given by DM for D eT. In particular for any Je S we have J = CjM.

We have seen above that Definition (7) is a special case of Definition

(11). Let us now show the converse. Let us denote by L a differential

field K(y(x0, z; z), y(1)(x0, z; x), ,yin)(x0; z; x)) which is a regular differ-

ential field extension of K. We assume that there exists a differential

field M such that the quotient field Q(L (g)κ M) is generated over M by

constants. Since L is finitely generated over K and since in the defini-

tion only a finite number of elements are involved, we may assume

that the differential field K is finitely generated over Q as a differential

field and M is finitely generated over if as a differential field. Hence

the differential field M is finitely generated over Q. Therefore by a

theorem of Seidenberg [S2] we may assume that there exists a subdomain

fl'cfl such that KaMc:K(D'). Here we identify the field K of

meromorphic functions on D with a subfield of meromorphic functions

on D' a D by restriction. It follows from the proof of [S2] that the
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choice of the domain Ό' is rather free. In fact it is shown in [S2] in

the course of the proof that there exists a subset E' C D such that

(1) D — Ef is a countable union of analytic subsets of D and such that

(2) for any point x1e D — E/ we can choose a subdomain Ώ' containing xλ

satisfying K C M C K(D'). We may assume that there exists a non-empty

open set V d U C XQ for the usual topology such that the functions

y(xQ; z; x), yn)(xQ; z; x), , j>(w)(x0; z; x) in (z, x) are regular on V X D'.

Moreover we may assume that

(13) for XίeD', {(y(x0; z; x,), y«\x0; z; Xί), . . ,/w )(x0; z; xd e U\z e V}

contains an open set of XXχ for the usual topology. We consider all the

involved fields as subfields of the meromorphic functions o n F x D\ Then

since K(y(x0; z; x), ^(1)(x0; z; x), , y(n)(x0', z; x)) and M are linearly disjoint

over K, M(y(xQ; z; x), y{ί)(xQ; z; x), ,/w )(x0; z; x)) is isomorphic to the

quotient field of K(y(x0; z; x), y(1)(xQ; z; x), , yin)(xQ; z; x))®κM and hence

generated over M by constants uu u2, , ut. Let M7 = C(M) C K(D')

dK(Vx D') and 2/ = L(M0 = M'(y(x0; z; x), y<«(^; 2;; x), , y™(xQ; z; x)).

Then 1! is generated over M' by constants wu w2, , wm in L r: M^yίxo;

z; x), j(1)(x0; e; x), , y{n\x^ z; x)) = M'{wu ιv2, , u;m). Hence there exist

polynomials C,(*; W), A(x; w ) e M m , Wi, , WJ, ^ ( « ; F), F / Λ ; Y) e

M'[ Y, Y1? , Yn] 0 < i < Λ, 1 < j < m such that

( i ) y{ί)(x0; z; x) = CtIDt(x; wu w2, , wm) for 0 < i < n,

(ii) ^ = EJFό(y(x,\ z; x), y(1)(x0; * ; * ) , • • • , ^ ( n ) ( ^ 0 ; «; x)) for 1 < j < in.

Let now x'o e Df such t h a t D4(αcί; 0;^ w;2, , w;m) 9^ 0. Let if =

Spec C[wί9 w2, , wm]. We have a C-rational map f:iΓ—+XX0, w =

(10!, H;2, , M J -* (ColDo(x'o; w), CJD^xΌ; w), , CnIDn(x'Q; w)) of the alge-

braic variety ^ to Xj./. We show that the map / is birational. The

rational map is dominant by (13). Let a, b be general points of Ψ*. If

CO/AW; a) = CQIDQ(XΌ; b), then C0IDQ(x; a) and ColDo(x; b) are solutions of

the differential equation (6) taking the same initial conditions and hence

C0/D0(x; a) = C0/D0(x; b). It follows from (i) and (ii) a = b and the degree

of the rational map / is equal to 1. Namely / is birational; C(XX0) ~

We have a diagram

(15)
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where CL, and CM> denote the fields of constants of U and M'. It follows

from [K2], Chap. II, §1, Corollary 1 that M and CL, are linearly

disjoint over C, hence M\iΓ®GM') ~ M'(wu w2, , wm). Consequently

M'(Xa, ®c M') ~ M\nr ® c M
f) ~ M'(wu w2, . , wm) = M'ίyfo; *; x), Mx0;

2:; x), ,j(w)(x0; 2; x)). Therefore the condition of Definition (7) is satis-

fied if we take x'o for the reference point. Hence Definitions (7) and (11)

are equivalent in the analytic case.

The above argument shows the equivalence of the conditions (9.1)

and (9.3). However we notice in the converse, it may happen that we

have to choose a new reference point. The choice is rather free as we

noticed above.

PROPOSITION (16). The notation being as above. The following con-

ditions are equivalent.

(1) The general solution of the differential equation depends rationally

on the initial conditions.

(2) There exists a (general) point x0 and a domain xoe D/ d D such

that a field K(Df)(y(x^ z; x), /(xo; z; x), , y(n)(xQ; z; x)) coincides with a

sub field K(D')(z^ zu •> zn)

(3) There exist a point x0 e D and a domain xQe U c D such that

(z09 zl9 --, zn) -> (y(x0; z; x), /(x0, z; x), , y{n)(x0; z; x)) gives a K{D')-

birational equivalence of XQ (x)c K(Df) and ££ ®R K(D').

Proof. The conditions (2) and (3) are equivalent by definition. The

condition (1) follows from (2) by definition. The above argument shows

the condition (1) implies the condition (2).

The following proposition is also a result of the above argument.

PROPOSITION (17). // the general solution of the differential equation

depends rationally on the initial conditions, then there is a dense open set

E of D such that for any x0 e E and for any point p eUd XXo, there exists

an open neighbourhood V c U of p and a subdomaίn x0 e Όf C D and

polynomials satisfying the condition of Definition (7). Namely the definition

that the general solution depends rationally on the initial conditions is

free from the reference point.

Proof. Let ξ e D such that Xς is reduced and irreducible and such

that dF/dYn(ξ; z) is not constantly equal to 0 on I ? . Let y(ξ;z;x) be

the general solution taking the initial condition z at ξ. Let ξ' be another
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point satisfying the same condition. Then the extension K(y(ξ z; x)> is

iί-isomorphic to K(y(ξ'; z; x)>. As we have seen above, if the condition

of Definition (7) is satisfied, then the condition of Definition (11) is

satisfied. When we proved the converse, first we had to realize M~D K

(such that Q(K(y(ξ z; x)}0K M) is generated over M by constants) as

a subfieid of K(D') for some sudomain Όf C D (here we notice that M

is determined independently from f). As we explained above, this can be

done almost freely: except for an enumerative points of D, we can find

a neighbourhood D' C D satisfying the required conditions. Next if we

choose a point x0 e D' such that D^xΌ; wu w2, , wm) Φ 0, then the

argument above shows that x0 can be a reference point of Definition (7).

Therefore any point of a non-empty Zariski open set of Ό' can be chosen

as a reference point.

A natural generalization of rational dependence on the initial con-

ditions is that the general solution y(x0; z; x) is an algebraic function of

the initial conditions z e Xo. We have equivalent conditions.

LEMMA (18). Notation being as above, the following conditions are

equivalent.

(1) There exist a (fixed general) point xQ e D and a domain xoe Όf c D

such that a field K{Df)(z^ zu , zn, y(x0; z; x\ y'(xQ; z; x), , y(n\x0; z\ x))

is algebraic over K(D')(z0, zu , zn). Here the involved functions are

considered as functions on Ώf X V for a suitable open set V on XXQ for

the usual topology as in (9.2). Hence all the fields are subfields of the

field of the meromorphic functions on Όr X V.

(2) There exist a fixed general point x0 and a domain xQ e Όf C D

such that the field K(D')(z^ zu , zn, y(xQ; z; x), y'(x0; z; x), , y(n)(x0; z;

x)) is algebraic over K(Π)(y(x^ z; x), /(xo; z\ x\ -,ym(x0; z; x))-

(3) There exist a fixed general point x0 and a domain x0 6 U C D

such that the transcendence degree of the field K(D')(z0, zlf •••,£„), y(xQ;

z; x), y'(x0; z; x)9 ,yw(x0; z; x)) over K(Df) is n.

Proof The equivalence of the conditions follows from tr. d.

zu , zn): K(Df)} = n, tr. d. [K(Df)(y(x,, z; x), y'(x0; z; x), .,y ( n\x0; z; x):

K(Π)} = n.

We introduce the notion of the algebraic dependence on the initial

conditions.
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DEFINITION (19). If the equivalent conditions of Lemma (18) are
satisfied, we say that the general solution of the differential equation
depends algebraically on the initial conditions.

We have a similar characterization as Proposition (16).

LEMMA (19.1). The following conditions are equivalent.

(1) The general solution of the differential equation (6) depends alge-

braically on the initial conditions.

(2) There exist a general point x0 and a subdomain xoe D' c D such

that (zQ, zu , zn) -> (y(xQ; z; x), y*(xQ; z; x), , yin)(xQ; z; x)) defines K(D')-

algebraίc correspondence between X{i®cK(D/) and S£®RK{D').

If the ring R is of finite type over C, then there conditions are equi-

valent to the following condition (3).

(3) There exist a general point x0 and a subdomain xQeD' c D, a

C-algebra R' consisting of holomorphic functions on Df containing R and

of finite type over C and an algebraic variety % C JSζ, X X ®R Rf = (Xo X

Spec R') X Spec R,(2£ X spec R Spec B!) such that (i) ^ defines an R-algebraic

correspondence between the algebraic varieties Zo^cSpeci?7 and % XSVGCR

Spec Rf or equίvalently at each point u e Spec R\ the fibre ^u defines an

algebraic correspondence between XQ and 9£u and such that (ii) (zθ9 zu ,

^n, y(xol z\ x), /(xo; z x), , yw(xQ; z; x)) eX0X XHx) is in % for xe D'

(i: Όf —• Spec Rf being the natural morphism).

The proof is similar to that of Proposition (16) and is omitted.
As in the case of the rational dependence on the initial conditions,

we can generalize Definition (19) to an abstract setting.

DEFINITION (20). Let L D K be an extension of ordinary differential
field. We assume that the field extension L Z) K is regular and of finite
type. We say that the extension LZD K depends algebraically on the
initial coditions if there exists a differential field extension JlίD K such
that the quotient field iV of L (g)κ M which is a differential field extension
of M, is algebraic over a field generated over M by the field CN of the
constants.

Remark (20.1). It follows from the definition that for any differential
field extension J Z) K, an extension LZ) K depends algebraically on the
initial conditions if and only if the base change Q(L ®κ J)~D J depends
algebraically on the initial conditions (cf. Remark (11.1)).
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As in the case of the rational dependence, we can show the equi-

valence of Definitions (19) and (20) in the analytic setting.

§ 2. Theorems on the reduction of a differential equation

As there is an ambiguity in the statement of Theorem (5.3) of fUl]

which says that we can solve an algebraic differential equation by a

finite iteration of permissible operations if the general solution depends

rationally on the initial conditions, we should clarify the assertion. The

ambiguity comes from the word general. Let us clear away the defect.

Let if be a differential field and F(Y0, Yu , Yv)eK{Y} be an absolutely

irreducible polynomial. The polynomial F defines the prime differential

ideal $β of the general component ([K], Chap, IV, § 6, Theorem 3).

DEFINITION (21). A generic solution of a differential equation F = 0

over if is a if-isomorphism φ of the quotient differential field of the ring

K{Y}lψ to an extension L z> K of the differential field K.

Since the isomorphism φ is uniquely determined by the images

φ(Y0), p(Yi), — ,φ(Yn)eL or even by φ(Y0), we call by abuse of language,

(φ(Y0), φ(Yχ), , ψ{Yn)) oτ φ(YQ) a generic solution of F = 0 over K.

EXAMPLE (21.1). Let D be a domain and K a differential field of

meromorphic functions on D. Let F(x; Yo, Yu , Yn) = F(Y0, Yu , Yn)

€ K{Y} be an absolutely irreducible polynomial. By replacing D by a
smaller subdomain, we may assume that the coefficients of F are regular
on D. Let x0 e D be a general point so that (1) XXQ is irreducible and
the function dFjdYn(x^ YQ9 Yu , Yn) on XXQ is not constantly equal to 0.
F o r a n y p o i n t of X'Xo = [z e XXQ\dF/dYn(x; zQ; z u - , z n ) Φ 0}, t h e r e e x i s t s

an open neighbourhood V in XXQ for the usual topology and a neigh-

bourhood Ώf of xQ such that dFldYn(x; zQ, zu , zn) Φ 0 if (x; z0, zu , z)

ef l 'X 7 and such that we can speak of the holomorphic solution

y(x0; z; x) for (z, x) e U X V with y(x0; z; xQ) = z0, y(1\x0; z; x0) = zu ,

y(n)(x0; z; x0) = zn. Taking z as variable point in U, (y(xQ; z; x), J(1)(xoί %l %),

- --, y(n)(xQ; z; x)), which is customarily called the generic solution of

F = 0 in the analysis, is a generic solution of F = 0 over K(D) and hence

over K. We may replace D by any subdomain so far as it is a neigh-

bourhood of the point x0.

The objective of Painleve [P] is the discovery of special functions

defined by algebraic differential equations of order 2. To examine whether
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he obtained essentially new functions, he had to treat the problem of

reduction. For this purpose we should generate functions from the known

functions. It is natural to start from the field C of the constant func-

tions (cf. [U3]). The function should be meromorphic over a domain D

of the complex plane and parameters should take numerical values if

there are any. The classical authors particularly Painleve and J. Liouville

are conscious that this idea is analogous to the number theory. In the

number theory, we start from the field Q of the rational numbers and

study algebraic and transcendental numbers in C. Namely we have a

correspondence:

Number theory Analysis

Q < > The field C of the constant functions on D
n n
C < >• The field K(D) of the meromorphic functions on D

From this point of view, the general solution y(xQ; z; x) which contains

a variable z is incovenient. The initial conditions should not be a variable

point but a C-valued point of XXo.

DEFINITION (22). Let R be a differential ring of holomorphic functions

on a domain D c C and F(x; Yo, Yu , Yn) ei?{Y} be an absolutely

irreducible polynomial. Let W C XXQ be a non-empty dense open set for

the usual topology of the algebraic variety [ 7 = {z eXXo\dFldYn(x0; z) Φ 0}

CZXXQ. By a solution of JF = 0 with general initial conditions at x0, we

mean any solution y(x) whose initial conditions (y(x0), y\xύ), , yin)(xo)) is

in W.

THEOREM (23) ([N3]). Let LID K be a regular extension of a differ-

ential field K. We assume that the field L is finitely generated over K as

an abstract field and the field of the constants of L coincides with that of

K. If the field Cκ of the constants of K is algebraically closed, then the

following 2 conditions are equivalent.

(1) The extension L z> K depends rationally on the initial conditions.

(2) The extension L Z) K is a subfield of a strongly normal extension

of K (for the definition see below).

If moreover the field K is algebraically closed, then the above cond-

itions (1) and (2) are equivalent to the following conditions.

(3) The extension L D K is a subfield of a G-prίmίtίve extension of
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K for an algebraic group G defined over the field Cκ of the constants of

K (cf. [K2], [Ul], [U3] and Definition (4), Proposition (5)).

Before we start the proof of the theorem, let us recall the definition

of a strongly normal extension. We restrict ourselves to regular exten-

sions.

DEFINITION (23.0). A regular differential field extension M z> N is

strongly normal if the following conditions are satisfied:

( i ) The field extension M "D N is finitely generated;

(ii) The field of constants CM of M coincides with CN;

(iii) A differential field Q(M®NM) is generated over ί2(M) (which we

sometimes denote by M) by constants, where ί2: M-^M®NM c Q(M®NM)

is a morphism of differential fields defined by ί2{m) = 1 ® m for m e M.

The equivalence of the conditions (2) and (3) of the theorem is a

question of Galois cohomology and well known (cf. [K2], Chap. VI, in

particular Corollary 2 (a), (b) on p. 425).

The theorem is essentially due to Nishioka. We give a proof of the

theorem as we need Theorem (29) below which is proved by the same

spirit as the above theorem. We considerably simplify the argument of

Nishioka. In what follows, we assume that the extension L ZD K is simple

(L = K(y}) for the following two reasons. First, the extension is gen-

erated over K by a finite number of elements yu y2, - - ,ymeL as an

abstract field. But in the proof, we have to consider not only the y/s

but also their derivatives and their higher derivatives. This fact makes

the notation complicated yet the proof is essentially the same as the

special case L = K(y). Secondly if KD Q(χ) with δ(x) = 1, then the

differential field L is generated over K by a single element by [K2], Chap.

II, § 8, Proposition 9.

Proof of Theorem (23). Let us show that the condition (2) implies

the condition (1). If the condition (2) is satisfied, then there exists a

differential field extension M^>K containing L such that Q(M®KM) is

generated over ί2(M) by constants. Q(L ®N M) is a differential subfield of

Q(M®KM). It follows from Proposition (12) that Q{L®KM) is generated

over M by constants and the condition (1) is satisfied. It remains to

show that the condition (1) implies the condition (2). It follows from

the definition that there exists a differential field M such that Q(L ®κ M)
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is generated over M by constants: there exist constants c,, c2, , cr such

t h a t Q ( L ® κ M) = M ( c u c2, • • •, c r ) . I f K ( y ) = K ( y , y \ / 2 > , •••,/'>), t h e n

(23.1) M(cu c, , cr) = M(y, /, y«\ , /•>) .

The geometric meaning of (23.1) is as follows. Let Y = Spec CM[cu c2, ,

cτ]. We may assume that C ^ ^ . . . ^ = <?#(<?!, c2, •• ?c r) so that M(c1? c2,

• , cr) = Q(M(g)σjr Cjrfe, c2, , cr)) by [K2], Chap. II, 1, Corollary 1 and

hence Y®CMM is M-birationally equivalent to Spec M[^, / , y(2\ •• ,y ( s )].

It follows from (23.1) that we can find polynomials At(Uu U2, •••, Ur),

B(UU U2, ., Ur)eM[Uu U2, , Ur] and C/Y^, 7(1)

? , Y^)9 D(Y(0), Y(1),

• , Y(s)) e M[Y(0), Y(1\ , Y(s)] for 1 < i < s, 1 < j < r such that we have

(23.2) /*> = At(c)/B(c) with S(c) ^ 0

c, = C0)ID(y) with D(y) ^ 0

for 1 < ί < 5, 1 < j < r, where we denote (cu c2, , cr) (resp. (y, / , ,

ys^)) by c (resp. j/) (23.2) defines an M-birational correspondence Φ:

Y®CMM~ * Spec Aί[y,y, ,y°] . Conversely let us notice that

(23.3) Q(L®KM) is generated over M by constants if and only if

there exist polynomials Ai9 B, Cp D and the constants c/s satisfying the

condition (23.2).

The proof is done in several steps.

(23.4) We may assume CM = Cκ.

Let Mo be a differential algebra generated over K by the coefficients

of C, D and of the A/s and C/s. In view of (23.3) we have to look for

a K-morphism of differential algebras f: M^—^M satisfying the following

conditions:

(23.5) M is differential field extension of K;

(23.6) CMτ=Cκ;

(23.7) Df(y) ( = Df(y<8>ΐ)) is not equal to 0, where Df denotes the

polynomial obtained from D by applying to each coefficients a morphism

Id ®/: L ®κ Mo -> L ®κ M;

(23.8) Using the similar notation as in (23.7) and letting c3 = (CjlDY(y)

for 1 <./ < r, which are constants in Q(L®K M), we have B{(cu c2, , cr)

Φ0.

Notice that if the conditions (23.6) and (23.7) are satisfied, we have

necessarily (Id®/)(/*>) = (AjBY(c) and (Id®/)(c,) = (CJDYiyΘl).

We can find /: M 0 ->M satisfying the conditions (23.5), (23.6), (23.7)
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and (23.8) by the following result of Ritt-Kolchin (Theorem 1 in [Kl]).

THEOREM (24). Let K be an {ordinary) differential field with an alge-

braically closed field of constants Cκ. Let MQ be a differential K-algebra

and 0 Φ u be element of Mo. We assume that the differential K-algebra

Mo is of finite type over K (the differential ring Mo is generated over K by

a finite number of elements, their derivatives and higher derivatives). Then

there exists a K-morphίsm f: Mo -> M of the differential K-algebra Mo to a

differential over-field M of K such that f(u) Φ 0 and Cκ = C%.

(25.1) We may assume that CM = Cκ and that there exist differential

Isomorphisms fk: K{y} -^ M for 1 < k < I and polynomials Au B e M[U],

Cp D eM[Y] (1 < i < s, 1 < j < r) satisfying the following conditions:

(25.1.0) The condition (23.2) (and hence the condition (23.1) also)

holds;

(25.1.1) D(zk) Φ 0 where zk = fk(y) and zk = (zk, z'k, .,«<•>) for 1 < k

<i;

(25.1.2) If we put cf = CJD(zk), then B(c?\ c?>, , c?>) Φ 0 for

1 < k < Z;

(25.1.3) We have zφ = A,/£(c(fc)) for 0 < i < s and cf = CJD(zk) for

l < J < r ;

(25.1.4) If we put E = K(zk)^k^ C M, then y ® 1 e Q(K(y) ®κ M) is

in CQ(K<y>ΘM)Έ, where E a M is identified with a subfield of K(y}(g)κM

C Q(K(y} (x)̂  M) by the canonical inclusion.

The condition (25.1.4) implies E(y) = CE^E by Proposition 12, here

strictly speaking y should be denoted by y ® 1 which would contribute

to a notational complication.

Let us now denote Cκ = CM by C and C[cu c2, , cr] by C[c], Let

Y(m) be the set of the C-rational points of Y = Spec C[c\. In the language

of E.G.A. Chap. I, Y(TO) is the maximal spectra of C[c]. Y(m) is the

intuitive algebraic variety Y (we notice that C is algebraically closed).

Let J be a C-algebra and f(c) eJί ®cC[c] ^ Jί\c\ For c e Y(m)J we

denote by f(c) the image of /(c) by the ^-morphism Jt ®c [C[c] -> o#

induced by the C-morphism C[c] ~> C taking values at the C-rational

point c.

SUBLEMMA (25.2). Lei U be a non-empty open set of Y(TO). // /(c) = 0

for any ceU, then f(c) = 0.
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Proof of sublemma. Let f(c) = 2 L i &% ® bt{c) with at e J(, bt e C[c].

If / Φ 0, then we may assume that the α/s (resp. 6/s) are linearly inde-

pendent over C. Then 0 = f(c) = 2*= 1

 α* ® &*(c) Since the α/s are line-

arly independent over C and since fe(c) e C, we conclude &*(c) = 0 for

any c e U and hence 6* = 0 which is a contradiction.

COROLLARY (25.3) TO SUBLEMMA. Let 0 Φ feJ([c\. Then {c e Y(m) |/(c)

= 0} is α proper closed subset of Y(TO) if it is not empty.

Proof of the Corollary. In fact if / = Σ\=1 at ® bt with the α/s (resp.

the 6/s) linearly independent over C, then the above argument shows

{c e F ( m ) |/(c) = 0} = {ce F(w) |b t(c) = 0 for 1 < i < /}. Hence the subset is

closed. It follows from the sublemma that this subset can not be the

whole space Y(mr

COROLLARY (25.4) TO SUBLEMMA. Ai9 B, Cj and D being as in (23.2),

there exist a non-empty Zariski open set U of Y(m) satisfying the following

conditions]

(1) If c eU, then the morphism M[c] —> M induced by c can be ex-

tended to M[c]Bic) —> M (M[c]β[c] is the localization of M[c] with respect to

We));
(2) If cell, denoting y(c), /(c), , yω(c) e M be the images of y(c),

y(c)> ' *> y{s\c) €M[c]Bίcl by the above morphism, we have

D(y(c\y'(c\ '..,y

( i ) y{ί)(c) = AtIB(cl9 c2, , cr) and

c, = C , Ό ( y ( c ) , / ( c ; , •••,y< >(c))

for 0 <ί <s, 0 <j <r.

Proof of Corollary (25.4), The first condition is satisfied if B(c) Φ 0

and therefore on a non-empty open set V of Y(m) by Corollary (25.3).

As for the second condition for sufficiently large N, we have G(c) =

B(c)ND(y,y', •• ,3/(s)) is in M[c]. Therefore on a non-empty open set W

of Y(m), the function G(c) never vanishes by Corollary (25.3). Now it is

sufficient to take U = V 0 W.

SUBLEMMA (25.5). Let FZD k be a field extension and a be an element

of F. Then the following conditions are equivalent.

(1) The element a is in k.

(2) φt(a) = φ2(ά) where ψx (resp. φ2) is a morphism of F into F®kF
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defined by φ^b) = b® 1 (resp. φ2(b) = l®b) for b eF.

Proof. It is evident that the condition (1) implies (2). Conversely

the condition (2) implies (1) since any ^-module is free.

Let us come back to the proof of (25.1). Using the open set U of

Corollary (25.4), we put $ = K(y(c)}ceu- We show that y is in ${cu c2,

• , cr)(d Q(L ®κ M) = M(cu c2, , cr)). In fact this implies that there

exist a finite number of points c(1), c(2), , c ω of U such that y is in a

differential field K{ ;y(ew)>i<fc<i (cu c2, , cr). Let J57 = i f ^ f e ) ) ^ ^ . If we

take Aί, Z?, Cj and JD as in Corollary (25.4), then the conditions (25.1.1),

(25.1.2), (25.1.3) and (25.1.4) are satisfied. Let ψi: M(c) -> M(c)(g),(c) M(c)

(i = 1, 2) be two morphisms defined by φx{a) = α ® 1, >̂2(α) = 1 ® α for

α e M(c). In view of Sublemma (25.5), it is sufficient to show that φ^y)

= φ%(y) or y®l — l®y is equal to zero in M(c)®/(c)M(c). y<8)l — l ® y

in question is an image of y®l — l®y in (M[c] ®/ [ c ]M[c])B ( c ) X B ( c ) and

hence it is sufficient to show y ® l — l ® y = 0 i n (M[c] (x)^c)M[c])B(c)0ΰ(c).

Since M[c] is faithfully flat over ίf[c]? B(c)®B(c) is not a zero divisor in

M[c]®,MM[c]. Therefore it is sufficient to show that B(c)®B(c)(y® 1

- l®y) = 0 in Af[c]®/[e]M[c] - ( M Θ . M ) ® ^ C[c]. By Sublemma (25.2)

it is sufficient to show that B(c) ® B(c)(y ® 1 — 1 ® y)(c) = 0 for any c e U.

Since B(c) ® B(c) is not a zero divisor in M[c] ® / [ 8 ] M[c] (notice ^[c] = δ),

the latter condition is equivalent to y(c) ® 1 — 1 ® y(c) = 0 in (M[c] ® / [ g ]

M[c]). This is so since y(c) is in ^ = K(y)ceu.

(26.1) In addition to the requirements of (25.1), we may assume that

the differential field K(y) is if-isomorphic to K{z^).

In fact let us consider an extension L = Q(L ®κ L) of ί2(L) = L2 where

h: L -> L ®k L c Q(L (8)̂  L) is defined by i2(α) = 1 ® a for aeL. The

extension L Z) L2 depends rationally on the initial conditions by Remark

(11.1). Therefore we can find Jt 3 L2 and L2-morphisms ^ : L2{y}->^

(1 < i < h) and polynomial with zt = /i(^) satisfying (25.1.1), (25.1.2) and

(25.1.3) over L2. It is sufficient to take Jt for M, the polynomials for

L2(y}/L2 and iί-morphisms /?;: iί{<y}->^ induced by /*.

Here is the conclusion from (25.1) and (26.1). By (25.1.4) we may

assume Ai9 BeE[c], Cj9 DeE[y] and now taking E for M, we can find

a differential field extension M of K and z, zl9 z29 , zte M satisfying

the following conditions (see Remark (28) below).

(27.0) M = K(z,zuz2, ••.,zι).
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(27.1) The field of the constants of M coincides with that of if.

(27.2) A differential subfield K(z) of M is if-isomorphic to if <y>.

(27.3) Q(L®KM) is generated over M by the constants; Q(L®kM)

= M(cu c2, , cr), cu c2, , cr being constants.

(27.4) y«\c) = A%{c)IB{c\ with At{c\ B(c) e M[cu c2, • , cr] for 0<i

< s and c, = CΊ(y, y<», , yω)ID(y, y(1>, , y(s)) with C,(y, y(1), , y< >),

^ J'(1), , y(s)) e ΛΓ[y, y(1), , y<*>] for 1 < j < r.

(27.5.1) There exist C-morphisms C[cu c2, , cr] -• C, (c) -* (c(fc)) for

l<k<L Since M[d, c2, , cr] ~ M®c C[cu c2, , cr] by [ϋΓ2], Chap. II,

§ 1, Corollary 1, these morphisms define M-morphisms M[cu c2, , cr] —>M

such that B(c(fc)) Φ 0 and such that / j )(e( fc)) = A/c(fc))/B(ccfc0 = zψ for

(27.5.2) Moreover D(y{c^\ /(c(fc)), ,3^(s)(c(fc))) = D(zk9 zί,--, 4S)) ^ 0

for 1 < k < I and cf = Cfa, z'k, , zίs))ID(zk, z*k, , 4S)) for 1 < j < s

and for 1 < k < I

By (27.0), (27.1), •••,(27.5) it is sufficient to show that M = K(z, zu

• , Zι) is a strongly normal extension of K. Let us show that an extension

Q(M®KM) of φ2(M) is generated by constants, where φ2: M->M®KM

C Q{M®K M) denotes a morphism defined by a —• 1 ® a for a eM. If we

write y = z® 1, then K^y)-ψ1(M) is isomorphic to Q{L®KM). Therefore

identifying M with φ2{M) by ?̂2, we can find constants Cj, c2, , cr e

C ^ ^ w = CQ(L(8>jrJf), A,, B, 92(M)[c] and C7 . D eφ2(M)[yfy\ •• ,v(s)] satis-

fying the following conditions

(27.6) B(c) Φ 0 and y«\c) = Af/B(c) for 1 < i < s;

(27.7) D(y, / , , y(ί)) Φ 0 and C j = CJD (y, / , , y(5)) for 1 < i < r.

In particular y = 2(x)l is in CQ (^Θ χ i t f ) ^2(M). Since D(l®zk, 1® 4 , , 1

<g) 4β>) ^ 0 by (27.4) and since the if-morphism K{zk <g> 1} -> if {1 (x) zk} C

^2(M) fe ® 1 -• 1 ® 2fc) induces an M-morphism K{zk ® l}φ2{M) ^ if {-εfc ® 1}

®κ ψ2(M) -> ̂ (M), D(zk (x) 1, ^ ® 1, , zis) ® 1) f̂c 0 and hence we can

define cf = CJD{zk ® 1, zf

k ® 1, , zk

s) ® 1). It follows from (27.4) and

(27.5.1) that we have a ^2(M)-morphism K{y} φ2(M) -> φ2{M), y = z® 1 ->zk

and hence a if-morphism if {y}-^ ^)2(M) = M. Therefore we have a if-

morphism if {y} —• if {̂ fc ® 1} by (27.2) which induces a <p2(M)-morphism

if {y}^2(M) - if {y} ®* ^(M) -> if {zk ® l}φ2(M) = ψ2{M){zk ® 1}. This defines

a 92(M)-morphism ^2(M){^®1, C0(z ® ΐ)/D(z ® 1)} -> ψ2(M){zk ® 1, C0(*fc<8>l)

)} and hence the cfvs are constants in Q(M®KM). Since

, l®cf } , , l®c(

r

k)) Φ 0 by (27.5.2) and since we have φ2(M)-
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morphisms φ2(M){zk <g) 1} -> φ2(M)(zk (g) 1 -> 1 ® 2fc). Therefore we have a

^2(M)-morphism

, c1? c2, , cr, AJB(c), AJB(c), • , As/S(c)} ->

P > 1, cί*\ cf \ , c<*>, Ao/B(cw), Λ/Bίc^), , A,/B(c<*>)}

for l<k<l, we get zfc (g) 1 = AQ/B(cίk\ cf \ , c?>) and *fc <g) 1 is in

φ2(M)(cϊ*\ c<*>, , c?>) c C ρ ( X Θ ^ 2 ( M ) .

Remark (28). In the last reduction the following fact is used.

Let A(c), B(c) e M[c] and c e F ( m ) such that B(c) Φ 0. If A/S(c) e M(c)

lies in ^(c), then there exist s/(c), @(c) e E[c] such that A/B(c) = J / / ^ ( C )

with ^(c) ^ 0.

Let us see the proof of this fact. Let m = {/(c) € M[c] | f(c) = 0} and
m = {/(c) e J?[c]|/(c) = 0}. Since M[c] ~E[c] ®EM and since £ is a field,
M[c] is flat over E[c], Hence the local ring M[c]m is flat over E[c]m.
Since A/B e M[c]m is in E(c), therefore there exist A, B e E[c] such that
A/B = A/B: A = (A/β)B. Namely we have A = ( i / ΰ ) β e £ [ c ] m n β ( M [ c ] J

which is equal to B(E[c]m) since M[c]m is flat over E[c]m (cf. [B], Chap.

I, §2, 6, Corollaire). Consequently we have A/B = A/β = C e E[c]m.

The argument of (25.1) and (26.1) gives us the following result.

THEOREM (29). Let C a K be a field of known meromorphic functions

on a domain D. If the general solution of the differential equation (6)

depends rationally on the initial conditions, then there exist solutions fu /2,

• ,/r of (6) meromorphic on a subdomaίn of D such that (̂xo z ; * ) ^

K{fufi, - - >/r)(2o, ZD ' ' •> zn) (here we denote by y(x0; z\ x) the general

solution of (6) taking the initial conditions z = (zθ9 zu , zn) at x0 and

hence z0, zu , zn are constants) and such that each of the solutions f/s

is obtained from K by a finite iteration of the permissible operations (0),

(PI), (P2), . . .,(P5).

Since we can prove the theorem similarly as Theorem (23), we content

ourselves with an outline of a proof. First let us notice that the exten-

sion K(y(x0; z; x)} ZD K may have a non-trivial constant field extension.

It follows from the definition that we can characterize the rational

dependence by the birational correspondence (23.2). Therefore if we take

a particular solution y(x0; z; x) with general initial conditions zl9 z2, , zn

at xQ, then the extension K(y(x0; z; x)> 3 K depends rationally on the
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initial conditions by the argument in (23). Hence by Theorem (23) K <

y(xo;z;x)} is contained in a strongly normal extension of K. Hence

extending K algebraically if necessary, we may assume K(y(x0; z; X)} is

in a G-primitive extension of K. Therefore y(x0; z; x) is obtained from K

by a finite iteration of the permissible operations (0), (PI), (P2), , (P5)

by Theorem (2) and Theorem (3). The argument of (25.1) shows that if

we know a finite number of solutions fu /2, , fm with general initial

conditions, K(fu f2, ,/m><j(x0; z\ jθ> is generated over K(f, f2, •• ,/m>

by constants.

To make our assertions and arguments clear, let us prove the fol-

lowing result which originated also in the Stockholm lessons. In fact

the following theorem is a Corollary of Theorem (29).

THEOREM (30). Let R be a differential ring of holomorphίc functions

on a domain flcC and F(x; Yθ9 Yu , Yn) e R[YQ, Yu , Yn] be an ab-

solutely irreducible polynomial. If the general solution of an algebraic

differential equation F(x; y,y', , yin)) = 0 depends rationally on the

initial conditions, then any solution with general initial conditions is

obtained from R by a finite iteration of the permissible operations (O),

(PI), . . . ,(P5).

Theorems (29) and (30) clarify Corollary (4.6) in [Ul] and the same

clarification should be done for Theorem (3.21) in [Ul]. More generally

we can prove

THEOREM (31). Let R be a differential ring of holomorphic functions on

a domain flcC and F(x; Yo, Yu , Yn) e R{Y} be an absolutely irreducible

polynomial. If the general solution of an algebraic differential equation

F(x',y,y\ '' -,yin)) = 0 depends algebraically on the initial conditions, then

any solution with general initial conditions is obtained from R by a finite

iteration of the permissible operations (0), (PI), , (P5).

We reduce this theorem to Theorem (29). We can find an idea of

the reduction in the Legons de Stockholm. Nishioka [N2] formulated

the idea in an algebraic context and made it transparent. We complete

his result to make its application easy. In fact we prove the theorem

in [N2] under a weaker assumption and moreover our proof is simpler.

However we are inspired by [P] and [N2].
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DEFINITION (32.1) ([N2], [K2]). A multi-index is an infinite sequence

J=(jo,jltj2, * •) of non-negative integers jn (neN) such that the jn

9s

are equal to 0 except for a finite number. Let / = (in) and J = (jn) be

two multi-indices. We say that the index I is lower than the index J

or the index J is higher than the index I if there exists an integer m

with im < jm and in = jn for n> m. Let M be a differential field and

M{Y} be a differential polynomial ring. Let AeM{Y}. Then A can be

written in the form ΣJO,JYJ, where we denote by YJ a monomial Π̂ =o Yίn

and J runs through the set of the multi-indices and the a/s are equal

to 0 except for finite indices.

The rank of the non-zero differential polynomial A(Y) = ΣjdjYJ is

the highest multi-index J such that a,j Φ C.

Let N Z) M be an extension of the differential field M and y e N. If

tr. d. [M(y}: M] is finite (M(y} denotes a differential subfield of N

generated by y over M), then there exists a non-zero differential poly-

nomial A(Y) such that A(y) = 0. Among such polynomials, there exists

one A(Y) = ΣjajYJ which is of minimal rank. This polynomial is

unique up to multiplication by an element of K and hence is uniquely

determined under the additional assumption AΣ = 1 for the highest multi-

index I.

DEFINITION (32.2). We call this unique polynomial the minimal poly-

nomial of y over M. Let C be the field of the constants of M(y}. We

call the minimal polynomial of y over MC the characteristic polynomial

of y over M and denote it by Ch(y; M), where MC is a differential field

generated by M and C.

LEMMA (33). Let M(y} 3 Mf ZD M be a differential intermediate field.

Then the following conditions are equivalent.

(1) M=M'.

(2) The minimal polynomial of y over Mf coincides with the minimal

polynomial of y over M.

Proof. We must show that the condition (2) implies (1). Let F'(Y0,

YD , Ym) with dF'jdYm Φ 0 be the minimal polynomial of y over M1

and F(Y0, Yu , Yn) with dF/dYn Φ 0 be the minimal polynomial of y over

M. If F = F', then since m = tr. d. [M(y}; M] = tr. d. [M\y); M'] and

n = tr. d. [M(y}; M], the assumption implies that m = n and that y,y\

''',y{n~x) are transcendental over Mf and yin) is algebraic over M(y,
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y,. , /»-»); M(y, y, -. , /-*>) c M'(y, y, , y*-l)) c M(y, y,.. .,/«>).
Therefore M\y,y\ • ,yn" 1 )) is algebraic over M(y,yf, ,;y(n~ι))> since

y,/, * ,y n" J ) is transcendental. As F(;y,/, ,^(w-1}, y(TO)) and F\y,y',

- - ',y(n~υ, Y(n)) are respectively the minimal polynomials of y{n) over

M(y,y, , f - 1 } ) and M'(y,/, >,y*-ι)), we conclude M(y,y\ - .,yCn"1))

= M\y, y , , y*"1 '). Hence M = M7.

Let L 3 if be a differential field extension. We assume that the field

extension L Z) K is differentially generated by a simple element y over

if; L = K(y} (cf. [K2], Chap. § 8, Proposition 9). Let I D if be an differ-

ential field extension. We have a diagram.

Q(L®KM) = LM

I

We identify L and M with subfields in Q(L (g)κ M). In this situation, we

denote the characteristic polynomial Ch(y; M) by Ch(y; M/K).

LEMMA (34). We have an inequality:

rank of Ch(y; K) > rank of Ch(y; M/K).

Proof. The assertion follows from the inclusion KCL{ Y} C MCLM{ Y}

and the definition.

COROLLARY (35). There exists among differential field extension of K

an extension M D K such that the rank of Ch(^; MjK) is minimal.

As we see below, the field MID K giving the minimal rank is not

unique but the characteristic polynomial Ch(y; M\K) is uniquely deter-

mined.

LEMMA (36). Let MX~D M2 Z> K be differential field extensions such that

the rank of Ch(y; MJK) is minimal Then Ch(y; MJK) = Ch(y; MJK).

Here we identify Q(L <S)K M2) with a subfield of Q(L (g)κ Mt) and hence

Q(L®KM2){Y} with a subring of QiL^zM^Y} by the inclusion M2 c Mu

Proof The characteristic polynomial Ch(y MJK)[Y] e M2CLM2{Y} c

M,CLMl{Y) satisfies Ch(y;MJK)(y) = 0. It follows from the definition of

the minimal polynomial Ch(y; MJK), rank of Ch(y; MJK) < rank of

Ch(;y; MJK). By the minimality of the rank of Ch(y; MJK), we have

rank of Ch(y; MJK) < rank of Ch(y; MJK). Therefore the rank of
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Ch(y; MJK) is equal to the rank of Ch(j>; M2/K). Since the minimal

polynomial is unique, we have Ch(y; MJK) = Ch(y; M2/K).

COROLLARY (37). The characteristic polynomial Ch(j>; MjK) of minimal

rank is uniquely determined and independent of the field MZ) K.

DEFINITION (38). We call the characteristic polynomial in the corol-

lary the absolute characteristic polynomial of y over K and denote it by

CΆ(ylK).

The absolute characteristic polynomial CH(ylK) is a polynomial with

coefficients in Q(L ®k M) for suitable differential field extension MZD K.

PROPOSITION (39). The coefficients of the absolute characteristic poly-

nomial CH(ylK) are in L.

Proof. First we assume that K is algebraically closed. Let M Z) K

be a differential field extension such that Ch(y; M/K) is the absolute

characteristic polynomial CΉ.(y/K). We have two isomorphisms iλ and i2

of M into M®κMd Q(M®KM); iί(a) = a®l, ι2(α) = l(g)α for aeM.

Therefore we have two isomorphisms of L®KM to L®K(M®KM) =

(L ®κ M) ®L (L ®κ M) which induces two isomorphisms jx and j 2 : Q(L ®κ M)

-+ Q(L®KM)®LQ(L®KM) c Q((L®KM)®L(L®KM)) = Q(L®K(M®KM));

jΊ(α) = a ® 1, j2(a) = 1 ® a for a e Q(L ®κ M). We have a commutative

diagram:

Q(L ®κ M) ^ > Q(L ®κ M) ®L Q(L ®κ M) c Q(L ®κ Q(M®K M))

M —1> Q(M®KM)

for / = 1, 2. The polynomials CH;ί(^/i?') for Z = 1, 2 are characteristic

polynomials by Lemma (36). Therefore CΆ3x(ylK) = CHJ2(;y/M). Namely

let aj eQ(L®κM) be a coefiicient of CH(y/K). Then Ί(αj) = j2(aj) in

Q(L (8)̂  M) ®L Q(L ®κ M). It follows from Sublemma (25.5) that ad is in

L. Now assume that K is not necessarily algebraically closed. Let K

be an algebraic closure of K. It follows from what we have proved

CK(ylK) = CK(y/K) is in Q(L(x)*K){Y}. As in the definition of CH(ylK)

only a finite number of elements are involved, we may assume that there

exists a finite algebraic extension MziK such that CR(y/K) = Ch(y;

M/K). We may further assume that the extension M ZD K is Galois with

Galois group G. Therefore L®KM which is a field, is Galois over L
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with Galois group G,

Let g: M -+ M be a if-automorphism. By the unicity of the minimal

polynomial Ch(y; MjK) is G-invariant or Cΐί(ylK) = Ch(j>; M\K) is in

L.

EXAMPLE (40). We can reformulate the definition of rational depend-

ence and algebraic dependence in terms of characteristic polynomiaL The

extension L = K(y} 3 K depends rationally (resp. algebraically) on the

initial conditions if and only if the rank of the absolute characteristic

polynomial CΉ.(y/K) is equal to (1, 0, •) (resp. lower than (0, 1,0, •))•

LEMMA (41) ([Nl], Proposition)). Let K c L be a differential field

extension, which is regular and Fu F2 C L he differential subfields contain-

ing K. We assume that the fields Fx and F2 depends rationally on the

initial conditions. Then the field F generated by Fx and F2 depends

rationally on the initial conditions.

Proof. First we assume that K is algebraically closed. There exists

differential field extensions Mx and M2 of K such that Q(F2®κMί) is

generated over Mx by constants and such that Q{FX ®κ M2) is generated

over M2 by constants. Let M = QiM, ®κ M2). Then Q(F, ®κ M) =

Q(Q(Fi ®κ M^ ®M. M) is generated over M by constants since Q(F1 ®κ Mi)

is generated over Mt by constants (ί = 1, 2). Hence Q{FλF2 ®κ M) =

Q(Fί®κM)Q(F2®κM) (dQ(L®κM)) is generated over M by constants.

Now we treat the general case where K is not necessarily algebraically

closed. Let K be an algebraic closure of K. Then we can apply the

argument above for Q(L ®κ K) z> Q(F, ®κ K), Q(F2 ®κ K) =) K. The dif-

ferential fields Q(FX ®κ K) and Q(F2 ®κ K) depend rationally on the initial

conditions. Since Q(FX ®κ K)Q(F2 ®κ K) = Q(FXF2 ®κ K), F,F2 = F depends

rationally on the initial conditions.

THEOREM (42). There exists a differential intermediate field L = K{y}

Z) F D K satisfying the following conditions.
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(1) The extension F ZD K depends rationally on the initial conditions.

(2) The minimal polynomial of y over F coincides with the absolute

characteristic polynomial CH(yjK).

(3) Let L D NZD K be a differential intermediate field such that the

extension Nz) K depends rationally on the initial conditions. Then N is

a subfield of F.

The differential field F is characterized by the conditions (1) and (2).

F is also characterized by the condition (3).

Proof. Let M ZD K be a differential field extension such that the

characteristic polynomial Ch(y; M/K) gives the absolute characteristic

polynomial CK(y/K).

L =

By Proposition (39), the coefficients of CΉ.(y/K) is in L. Let F be a

differential subfield of L generated over K by the coefficients of CΉ.(y/K).

Q(F®KM) is isomorphic to FM in MCM<y> and hence FM = MCFM; FM is

generated over M by constants by Proposition (12). It follows from Lemma

(33), MCM<y> = FM. Since CΉ.(y/K) is the minimal polynomial of y over

FM and since CH(ylK) is in L{Y}, CΉ.(y/K) is the minimal polynomial

of y over F. The assertions (1) and (2) are proved. Let LlD Nz> K be

an intermediate differential field which depends rationally on the initial

conditions. Let us assume that N is not contained in F. Then L Z) FN

= Ff 2 F 3 K and the extension F/ Z> K depends rationally on the initial

conditions by Lemma (41). It follows from Lemma (34) there exists a

differential field extension Λf z> K such that Ch(y; M/K) = CU(y/K) and

such that Q(Ff ®κ M) = F'M{CQ(L®κM)) is generated over M by constants.

It follows from Lemma (33) and the definition of CΆ(yjK), the inclusion

Q(F®KM) = FMdF/M= Q(F'®KM) should be an equality. Hence

F = F\ which is a contradiction and N should be a subfield of F.

Now we are able to prove Theorem (31).

Proof of Theorem (31). Let y = y(x0; z; x) be the general solution in
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the usual analytic sense and let K be a differential field generated over

C by R. Let L = K(y) 3 K. It follows from Example (40) that the rank

of CΆ(yjK) is lower than (0, 1, 0, •)• By Theorem (42), we can find a

differential subfield K C M c L such that the extension M D K depends

rationally on the initial conditions and such that L is algebraic over M.

We may assume that K Z) Q(x) with xf = 1 and then it follows from [K2],

Chap. II, § 8, Proposition 9 that M = K(w) for an appropriate element

weM and there exists a differential polynomial G(W) e K{W} such that

M(w} is a generic solution of a differential equation G(w) = 0. Since

a solution of F = 0 with general initial conditions is algebraic over a

differential field generated over K by a solution of G = 0 with general

initial conditions, it is obtained from i£ by a finite iteration of the per-

missible operations (O), (PI), (P2), , (P5) by Theorem (29).

COROLLARY (42.1). Let L~D K be a differential field extension which

is regular and finitely generated as an abstract field extension. Then there

exists an intermediate differential field LID JVZ) K satisfying the following

conditions.

(i) The extension NZ) K depends rationally on the initial conditions.

(ii) Let L~D I D K be a differential intermediate field such that the

extension M ID K depends rationally on the initial conditions. Then M is

a subfield of N.

Proof Let x be a variable over K and JΓ = K(x) which is a differ-

ential over-field of K if we define δ(x) = 1. Let Se = Q(L Θκ K(x)). Then

by [K2], Chap. II, §8, Proposition 9, $£ is generated over X by a single

element: & = Jf(y). We can apply Theorem (43): namely there exists

a differential intermediate field if ID Jί Z) 3f which depends rationally on

the initial conditions and which is maximum among such subfields. Since

the subfield Jί is unique, by the descent theory we can find a interme-

diate field LZ)NZ)K such that Q(N®κtf) = Jί (cf. Weil [W], Theorem

4).
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Since L Π Jί = N, N is a differential subίield of L. The extension N Z) K

depends rationally on the initial conditions since the extension Jί Z) JΓ

has this property. The intermediate field L~D JV D K satisfies the condi-

tion (ii) for the same reason as above.

For the geometric meaning of the intermediate field M see Proposi-

tion (49) in § 3.

Remark (42.2). By Corollary (42.1), we can generalize Theorem (31)

to a differential system.

§ 3. Criterion of irreducibility for a second order differential

equation free from moving singular points

Let R be a C-algebra of holomorphic functions on a domain D c C .

Let F(YQ, Yj) eR[Y0, YJ be an absolutely irreducible polynomial. We

introduced the fibration p: X—>D in §1. Replacing D by a subdomain

if necessary, we may assume that the fibres of p are irreducible and

dF/dYί is not constantly equal to 0 on any fibre of p ([Ul]). For an

algebraic differential equation F(y, yf) = 0, we can speak of fixed singular

points, the singular points (branch points and transcendental singular

points) of a solution y(xQ9 z9 x) independent of the initial conditions z at

a fixed general point xQ. Other singular points of y(xθ9 z, x) depending

on the initial conditions z are not easy to describe. It is known that

these singular points are branch points. We have the following classical

theorem (cf. [F], Chap. IX and [Ml]).

THEOREM (43). The following conditions are equivalent.

(1) F{x\y,yf) = 0 is free from movable branch points.

(2) For any point x0 e D different from the fixed singular points, there

exists a dense open set V of U = {z eX^dFjdY^x^ z) Φ 0} and a sub-

domain xQ e DQ C D such that the function y(xQ; z; x) in (z9 x) is meromorphίc

on Vx Do.

(3) There exist a point xoe D different from the fixed singular points

and a dense open set V of U = {z e XXQ\dF/dYι(xQi z) Φ 0} and a subdomain

xoeDoc:D such that the function y(x0; z; x) in (z, x) is meromorphίc on

VχD0.

(4) The general solution y(x0; z; x) of F — 0 depends rationally on

the initial conditions.

(5) Let K be a differential field of meromorphic functions generated
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by R and 36 be the non-singular projective model of the algebraic function

field Q(K[Y0, Y1]/F(Y0, YM, Yj) of one variable over K. Then for any

point p e 36, the local ring Θv is closed under the derivation δ.

For the second order algebraic differential equation the structure of

singular points is more complicated. There are equations free from

movable singular points whose general solution does not depend rationally

on the initial conditions. Moreover there may be movable transcendental

singular points. Let F(Y0, Yu Y2) e R[Y0, Yu Y2] be an absolutely irreducible

polynomial. What the classical authors were looking for is the algebraic

differential equation of second order satisfying the following condition.

CONDITIONS (44). There exist a dense open set Όf of D satisfying the

following the conditions.

(1) For any point x0 e D\ XXo is reduced and irreducible and

dF/dY2(x0; z) is not constantly equal to 0 on XXQ.

(2) For any point 2 points xu x2 e Ώ' and for any path Γ in Df the

correspondence z-> {y(xύ z; x2), y\xΰ z; x2). y"(xi', z; x2)) induced by the

analytic continuation along Γ defines a biholomorphic map between dense

open sets for the usual topology of XXχ and XX2.

EXAMPLE (45). The first differential equation of Painleve satisfies

the conditions (44). In fact it is proved in Painleve: Memoire sur les

equations differentielles dont Γintegrale general est uniforme, vol. 3, [P]

that we can take (in the conditions (44)) C for Όf and any point of C

for x0 (see also pp. 346-351 of [I]). Okamoto [O] clarified this fact in the

modern langulage of foliation.

DEFINITION (46). Let L = K(y} Z) K be a differential field extension

with tr. d. [L: K] = 2. If the rank of the absolute characteristic poly-

nomial CH(ylK) is lower than (0, 0, 1, 0, •) (jn = 0 except for n = 2

and j2 = 1), we say that the extension LZD K depends semi-transcenden-

tally on the initial conditions. If the rank of the absolute characteristic

polynomial CΆ(yjK) is higher than or equal to (0, 0, 1, 0, •) (jn = 0

except for n = 2 and j2 — 1), we say that the extension L 3 K depends

essentially transcendentally on the initial conditions.

It follows from Theorem (42) that LZD K depends semi-transcenden-

tally on the initial conditions if and only if there exists an intermediate

differential field L ID Fi) K such that tr. d. [L: F] < 1 and such that the
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extension Fz) K depends rationally on the initial conditions. Hence the
definition that L ID K depends semi-transcendentally on the initial con-
ditions is independent of the particular generator y over K.

Let us study the differential equation (6) in § 1. Let R be a ring
of holomorphic functions on a domain D such that F(YQ, Yu , Yn) e
R[YQ, YU - , Yn]. Let us assume that R is a C-algebra of finite type.
We are interested in the case n = 2 with 9F/9F2 ^ 0.

(47) F(x;y,y/,y//) = 0.

Hence for the general solution y of (47), we have tr. d. [K(y}: K] = 2,
where K is the differential field generated by R.

DEFINITION (48). Let y = y(x0; z; x) be the general solution of (47).
If the extension K(y} Z> K depends semi-transcendentally (resp. essentially
transcendentally) on the initial conditions, we say that the general solu-
tion of (47) depends semi-transcendentally (resp. essentially transcenden-
tally) on the initial conditions.

Remarks (48.1). Let L = K(y} and JZDK be a differential field
extensions with tr. d. [L: K] — 2. Then the extension L D K depends semi-
transcendentally (resp. essentially transcendentally) on the initial condi-
tions if and only if the extension Q(L ®κ J)Z) J has the same property
as L 3 K (cf. Remarks (11.1) and (20.1)).

(48.2) By Theorem (42), the general solution y of (47) depends semi-
transcendentally on the initial conditions if and only if there exists an
intermediate differential field K(y)^N^>K such that tr.d. [N: K] ^ 1
and such that NZD K depends rationally on the initial conditions. Geo-
metrically, this is equivalent to saying that the transformation between
two initial conditions or two fibres of p: X-+D induced by solutions as
explained in the sentence following Definition (7), maps a non-constant
rational function on a fibre of p to a (non-constant) algebraic function
on the other fibre, which is the original intuitive definition introduced
by Painleve and from which the word semi-transcendental is motivated
(see Proposition (49) below). We notice that his definition is different
from ours. According to our Definition (48), if the general solution
depends algebraically on the initial conditions, then it depends semi-
transcendentally on the initial conditions, whereas Painleve excludes this
type of equations from the definition of semi-transcendental dependence.
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The following Proposition explains the geometric meaning of the

semi-transcendental dependence on the initial conditions.

PROPOSITION (49). We assume that the ring R is of finite type over C

The following conditions for the differential equation (47) are equivalent

(i) The general solution depends semί-transcendentally on the initial

conditions.

(ii) For a general point x0 e D, there exist a C-algebra Rf containing

R and of finite type over C consisting of holomorphic functions on a sub-

domain xQ 6 D' and an algebraic subvariety & c XXo X XR. = (XXQ ® C -R') XR'

(%®R Rf) such that (0) y(x0; z; x) is regular for (z, x) e V X Π (where V

is an appropriate open set of U = {zeXXo\dFldY"(x0; z) Φ 0)}, (1) (z;y(x0; z;

x)> y(xol z\ x), Y"(xol z\ x)) is in 3?\Df for (z, x) e V X Ώ' and such that

(2) the dimension of the generic fibre of & -+ Spec R; is at most 3 (cf § 1,

(6.0)).

Proof We content ourselves with giving an outline of the proof

since the proof is done in the same spirit as in the proof of the equi-

valence of 2 definitions of rational dependence on the initial conditions

(cf. § 1). Let K be the differential field generated over C by R. If the

condition (i) is satisfied, then there exists a differential field extension

Ml) K such that tr. d. [CQiK<y>®κM: CM] > 1, where y denotes the general

solution y(x0; z; x). The argument in § 1 allows us to assume that M

consists of meromorphic functions over a subdomain Df of D. Now we

can identify K(y} (g)κ M with a ring of meromorphic functions over

Ώf X V for an open set V of XXQ. Since tr. d. [CQ(κ<y>®κM): Cκ] > 1, there

exists a constant 0 Φ c eK(y} ®KM = M(y) which is transcendental

over M. Let c = AIB(y,y,y") with A, B e M f y , / , / ' ] . Then the argu-

ment of § 1 shows that perhaps changing the reference point x0 we may

assume c = C/D(zQ, zι, z2) with C, D e M[zQ, zu z2]. This shows that tr. d.

[M(y,y',y'\zQ)zuz^: M] < 3. Since there involved only finitely many

elements, we can find a ring Rr satisfying the condition (ii). Conversely

now let us assume that the condition (ii) is satisfied. Then there exists

a differential field M of meromorphic functions over a subdomain Π such

that tr. d. [M(y, / , / ' , z0, zu z2): M] < 3. If tr. d. [CM(yιyf,r>): CM] = 0, then

C W , M » ) = CM = C. By [K2] Chap. II, 1, Corollary 1 M(y,yf,y", *0, zu z2)

- M(y, /, y") ® c C(zQ, zu z2) and hence tr. d. [M(y9 / , / ' , zo,zu z2): M] = 4.

Therefore tr.d. [Cmyfy>>y.Ί\ CM] > 1 and the condition (1) is satisfied.
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The same argument proves the following generalization of Proposition

(49) which explains the geometric meaning of the intermediate differential

field of Theorem (42).

PROPOSITION (49.1). Let K be the quotient differential field of R and

LZD K be a generic solution of (6) over K (hence L D K is K-isomorphίc

to K(y(x0; z; x)} for a general point x0). Let L~D M~D K be the intermediate

differential field of Theorem (42). Then the following conditions are equi-

valent.

(i) tr.d. [M: K] = d.

(ii) For a general point x0, there exist a C-algebra R' containing R

and of finite type over C consisting of holomorphίc functions on a sub-

domain x0 e U and an algebraic subvariety ^ C XXo X θ£ = (XXQ <g)c R
f) X R.

{X ®R R') such that (1) (z; y(x0; z; x), y'(x0; z; x), , yin)(x0; z; x)) is in ^ for

(z, x)eVχD' (where Vis an appropriate open setofU=ze XXQ\dF/dY(n)(x0 z)

Φ 0}) and (2) the dimension of the generic fibre of & -» Spec Rf is equal to

2n — d. If there exist an algebra R" containing R and of finite type over

C consisting of holomorphic functions on a subdomaίn x0 € D" and an
algebraic subvariety &'CIXXQ X %®RR" = (XXQ®CR") XR(^ΘR Rf/) such that

(1) (z; y(x; zo; x), y'(x; zo; x), ., yw(x; zo; x)) is in & for (z, x)eV'X Ό"

(where V is an appropriate open set of U = {z e XXo\dFldY{n)(x0; z) Φ 0}),

then the dimension of the generic fibre of 2£' —>• Spec R" is at least 2n — d.

We can also prove the same result for not necessarily simple exten-

sions but we do not touch here the proof since it is the same.

THEOREM (50). Let KQ be a differential field of meromorphic functions

on a domain D which is differentially finitely generated over Q (hence the

field Ko consists of denumerable number of elements). Let K be a differ-

ential field generated by Ko over C. We assume that the coefficients of

the differential equation (47) are in Ko. If the differential equation (47)

satisfies the conditions (44), then the following conditions are equivalent.

(1) Any holomorphίc solution of F — 0 with general initial conditions

at a general point is obtained from K by a finite iteration of the permissible

operations (O), (PI), (P2), , (P6).

(lr) Let y be a holomorphic solution on a subdomain of D such that

tr.d. [K0(y}; Ko] = 2: namely y is a generic solution of F = 0 over KG.

Then y is obtained from Ko by a finite iteration of the permissible opera-

tions (O), (PI), (P2), . . . , ( P 6 ) .
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(2) Any holomorphic solution of F = 0 with a general initial condi-

tions at a general point is obtained from K by a finite iteration of the

permissible operations (O), (PI), (P2), , (P5).

(20 Let y be a holomorphic solution on a subdomain of D such that

tr. d. [ifo<y>: KQ] = 2: namely y is a generic solution of F = 0 over Ko.

Then y is obtained from Ko by a finite iteration of the permissible opera-

tions (O), (PI) , (P2), . . . , ( P 5 ) .

(3) The general solution y(Xo', z; x) of F = 0 depends semί-transcend-

entally on the initial conditions.

Proof Let us show that the condition (1) implies (I7). In fact let

x0 e D be a general point and let y(x0; z; x) be the general solution. Let

.β0 = {/eî ΓoI/ is regular at x0} and m0 = {feRQ\f(xo) = 0}. Then a subset

i?0/m0 c C is countable. Therefore we can find a C-valued point z of a

Zariski open set of XXQ such that y(x0; z; x) and y'(x0*, z; x) are algebraically

independent over 220/m0. This implies that y(xo;z;x) and y(xo;z;x) are

algebraically independent over Ko. Hence we can find a generic solution

y(x0', z\ x) of F = 0 over Ko which is obtained from K by a. finite iteration

of the permissible operations (OΛ (PI), (P2), , (P6). Then y(x; z\ x) is

a generic solution of F = 0 over Ko. Since the extension KZ) KQ is

generated by constants and hence each element of K is obtained from

Ko by finite iteration of the permissible operations (PI) and (P3) and since

y(x0; z\ x) is obtained from if by a finite iteration of the permissible

operations (O), (PI), (P2), •••, (P6), therefore y(xo;z;x) is obtained from

Ko by a finite iteration of the permissible operations (O), (PI), (P2), ,

(P6). Since any generic solution of F = 0 over Ko determines a differ-

ential field extension of Ko isomorphic to KQ(y(xQ; z; x)) ZD Ko, the condi-

tion (10 is satisfied, The same argument shows that the condition (2)

implies (20- The condition (2) implies (1) since in (1) we have one more

permissible operations. For the same reason the condition (20 implies

(10- Let us show that the condition (3) implies (2). Let us assume the

condition (3). If the condition (3) is satisfied, then by Theorem (42) there

exists a differential intermediate field K C M C L = K(y(xύ; z; x)} such

that the extension M Z) K depends rationally on the initial conditions

and such that the rank of the minimal polynomial of y over M is lower

than (0, 0, 1, 0, •) or equivalently tr. d. [M(y): M] < 1. We may assume

tr. d. [M(y): M] = 1. For otherwise, the condition (3) implies (2) by

Theorem (31). Namely we may assume that y satisfies an algebraic dif-
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ferential equation G(y,y') = 0 with coefficients in M such that G(Y) is

the absolute characteristic polynomial of y. The differential field M is

generated over K by the coefficients of G. By [K2], Chap. II, § 8, Proposi-

tion 9, the differential field M is generated over if by a single element

u; M = k(u) (notice that we may assume C(x) C K so that the condition

of the proposition in [K2] is satisfied). Therefore by Theorem (30) there

exists a differential field N whose elements are obtained from if by a

finite iteration of the permissible operations (0), (Pi), (P2), , (P5) such

that Q(M®KN) is generated over N by constants cu c2, , cw.

Then y = y(xQ; z; x) is a generic solution of G = 0 over MN by definition.

The differential equation G = 0 is parametrized by cu c2, , cm; G =

G(cu c2, , cm; x; Y; Yt). We may assume by Theorem (29) that there

exist a subdomain Do C Df and a dense open set V c {z eXXo\dFldY2 φθ}

such that the elements of N are meromorphic on Do and such that N(y}

and hence K(y} are in the field of the meromorphic functions on V X Do.

We noticed there that the choice of Do is free. By [K2], Chap. II, § 1,

Corollary 1, we have MN = Q(C[cl9 c2, , c j ΘciV). Let Z = SpecC[c1?

c2, ,cTO]. Let Ψ' be the complete non-singular model of the algebraic

function field LN of one variable over MN. The iV-algebraic variety

Z®CN parametrizes the extensions of N or curves whose generic fibre

is i^/MN. There exists an iV-algebraic variety ^ 0 smooth and projective

over a Zariski open set Zo of Z®CN= Spec N[cu c2, —-9cm] such that

i^\MN is the generic fibre of ^"O/Zo. Let us denote the iV-morphism ^ 0

—• ZN by /. Let XQ be a general point of Do so that the coefficients of

the rational map /: ^ 0 -* ^ is regular at XQ and so that we have a

dominant C-morphism f: ^ = ^ 0 ^' -^ Z by reduction at x0 of /. Since

^ is C-birational to Xx,, we have a dominant C-rational map h: Xx/Q —*Z.

It follows from Condition (44) y(x0; z; x) = y(xf

0; z; x) and there exists a

dense open set V C XX,Q such that the rational map h is regular on V

and such that the function y{X^\zf\x) in (2/, x) is regular on V7 X Z)o.

Since Λ is dominant, /ι( V) contains a dense open set Z of Z for the usual
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topology. If d = (du d2, , dm) e Z is in Z, then the differential equation

G(du d2, , dm; x y, yf) = 0 whose coefficients are in iV, satisfies the con-

dition (3) of Theorem (43) for the reference point x'o since y(x*0; z
f x) with

z' e y , ^(2') = d is the general solution of G(d; x;y,y') = 0. Therefore

the condition (4) of Theorem (43) is satisfied for G(d; x y,yf) = 0 and

hence any solution of G(d;x;y, yf) = 0 with general initial conditions at

x'o is obtained from N by a finite iteration of the permissible operations

(O), (PI), (P2), , (P5) by Theorem (30). Since the field N is constructed

by finite iterations of the permissible operations (0), (PI), (P2), , (P5)

from K by Theorem (30), The condition (2) of the theorem is thus satis-

fied.

It remains to show that the condition (10 implies the condition (3).

The field Ko consists of countably many elements. As we have seen at

the begining of the proof, we can find a solution y(x) with general initial

condition at xQ such that tr. d. [KQ(y(x)); Ko] == 2. It follows from the

condition (1') and Theorems (2) and (3) that we can find a chain of dif-

ferential fields

K = Af0 C Mi C . cMm with y = y(x) e Mm ,

which are differential subfields of the field of the meromorphic functions

over a subdomain of D such that the field M* is finitely generated over

Λf<_i and such that the extension M?: Z) M^t satisfies one of the following

conditions for 1 < i < m;

(50.1) tr. d. [Mt: Mt^] = 1 and Mt = M^iz^) for an appropriate

element ^ e M ^ ;

(50.2) There exists an algebraic group Gt defined over C and a Me

valued point zt of Gt®cMt such that Mt^(zt) = Mt and lδ(Zi) e^ίΘc li-

lies in §ι®cMi-u where Qt is the Lie algebra of d.

The first case occurs in the operation (P6) and the second case appears

in the other operations by Theorem (2). We can do this starting from

the smaller field KQ. Namely we can find a chain of differential fields

Ko C Kλ C dKn with y{x) e Kn which are differential subfields of the

field of the meromorphic functions over a subdomain of D such that the

field Ki is finitely generated over Kι-X and such that the extension Kt 3

if? _! satisfies one of the following conditions;

(51. i) Ki is generated over K^ by constants;

(δl.ii) tr. d. [Kt: K^] = 1 and Kt = K^z^ for an appropriate ele-

ment ZiβKi'y
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(δl.iii) There exist an algebraic group if< defined over the field of

the constants C ^ of K^ and a ifrvalued point zx of iϊ<-i<8)<74_1i£1_1 such

that Ki-teϊ) = Kt and lδ(z%) e ̂  (g)̂  Kt lies in ^ (x^.^i^.i, where ήt is the

Lie algebra of if*.

(52) Let us assume first that there is an index ί such that tr. d.

[K^y}; K^] = 2 and tr.d. [^<y>: ΛΓJ = 0. Since tr. d. [K^y}: K^]

— 2, y is a generic solution of F = 0 over l ? ^ by [K2], Chap. IV, § 14,

Theorem 5; K^y) ~ Ki^ί{Y}lp(F) where p(F) is the differential ideal of

the general solution of F = 0 over JK"i_1.

(53) * - < * >

Subcase (54). The extension i ^ 3 !?*_! is of type (51.i).

If it is of type (51 .i), putting r = tr. d. [Kt: if^-i] we have tr. d. [Cfci:

C J = r and tr.d. [CXt<vW>: CKi] < tr.d. [lΓ,<y(*)>: ΛΓJ = 0 by [K2] Chap.

II, § 1, Corollary 1. Hence tr. d. [CKi<yix)>: CK._J = r. Similarly we have

tr. d. [Kt(y«x)y: K^] = r. Therefore tr. d. [C^_1<¥(β)>: C^,_J = tr. d. [CKi<yix)>:

CKiJ - tr. d. [ C , ^ ^ : CKi_1<y(x)>] > tr. d. [C jr<<¥(,)>: CKiJ - tr.d. [iΓ4<y(a;)>:

^-!<y(x)>] by [K2], Chap. II, § 1, Corollary 1. tr. d. [ C ^ ^ : CKiJ

- tr.d. [^<3<«): if*-i<y(*)>] = r - tr.d. [^<y(x)>: ΛΓ^^yίx))] - tr.d.

[^<3<*)>: ^ - i ] - tr. d. \Kί(y(x)y: Ki_ί(y(x)y] = tr. d. [^^(^(x)) : ΛΓ<M] = 2.

Therefore 2 = tr.d. [Ki_1(y(x)y: K^] > tr.d. [CXi_1<vW>: CXt_J > 2 and hence

(55) tr.d f C ^ ^ ^ : CXt_J = 2.

We can find a subdomain ZK of D such that i ^ C ί ίφO. By [K2],

Chap. IV, § 14, Theorem 5, we have Ki_1(y(x)y ~ QiK^YypiF)) and hence

Q(Ki^{y(x)y®Ki_1K(Π)) ~ K(D>){Y)mF\ where p(F) (resp. 5β(F)) is the

prime differential ideal of the general solutions of F = 0 in Kt{ Y) (resp.

in K(D'){Y}). Since the rank of the minimal polynomial of y(x) over

Ki-χCKi_ι<yix)> < (0,1,0, •) by (55), the general solution of F = 0 depends

algebraically on the initial conditions and the condition (3) is satisfied

since y(x) is a generic solution F = 0 over Kt^ (cf. Remark (48.1)).

Subcase (56). The extension Kt 3 Kt^ is of type (δl.iii).
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Replacing K^t by its algebraic closure in Kt(y(x)y, we may assume

that the extension Ki(y(x)} "D Kt-ι is regular. Tensoring Kt over if^i

with (53), we get

( 5 7 )

Since Q(Kt ®Kt_t Kt) is generated over φ2(Kl), which we denote also by K,,

by constants by Proposition (5) (<p2: Kί^^Ki®κ._1Ki being defined by

φ2(ά) = 10a). Since tr. d. [QiK^yix)}®^^): Kt] = 2, QO^.^x))
(g)x<_1 i Q Z) ifi is a generic solution of F = 0 over if4 and we conclude

as in the above case that the general solution of F = 0 depends alge-

braically on the initial conditions. Under the assumption (52), we have

tr. d. [Ki\ ifi_i] > 2 and hence an extension of type (δl.ii) does not appear.

Thus the case (52) is finished.

(58) Let us now assume that there exists an index i such that

tr.d. [K^(y(x)): K^] = 2 and tr.d. [K^yix)): Kτ] = 1.

Subcase (59). The extension KtZD Ki_x is of type (51.i).

Let us put r = tr.d. [K,: #,_,]. Since tr. d. [K^yix)}:

tr. d. [Ktζyix)): K^] - tr. d. [K^yix)): K^] = (tr. d. [#4<y(*)>: Kτ] + tr. d.

[Kt: Kt.λ]) - 2 = r - 1. It follows from [K2], Chap. II, § 1, Corollary 1,

tr.d.[C^< y ( : r ) >: C ^ ^ ^ ^ J < r - 1. As tr.d.

= Γ, t r . d. L^is:<_i<y(a;)> ^ X < _ J = = ^ r "•• L^X<<y(*)>

> r — (r — 1) > 1. Therefore the characteristic polynomial of y(x) is

lower than (0, 0, 1,0, •)• Since tr. d. [K^yix)): K^,] = 2, y(x) is a gen-

eric solution of F = 0 over if^. Therefore the rank of the absolute

minimal polynomial of the general solution y(x0; z; x) is lower than (0, 0,

1,0, •) and the condition (3) is satisfied (cf. Remark (20.1)).

Subcase (60). The extension Kt Z> Kt_x is of type (δl.iii).

Replacing Ki_x by its algebraic closure in Ki7 we may assume that

the extension KtZ) K^ is regular. Tensoring Kt over Kί.ί with (53), we

get (57). Since Q(Ki®κ._xKΪ) is generated over ψ2(K^) by constants by

Proposition (5) (φ2: Kί^>Kί®Ki_1Kί being defined by φ2(a) = l(g)a for

a 6 Ki), we conclude as in subcase (59) that the general solution y(x0; z; x)
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depends semi-transcendentally on the initial conditions.

Subcase (61). The extension Kt 3 K,_x is of type (δl.ii). As in the

preceding case (60), we may assume that K^x is algebraically closed in

Ki(y(x)) so that the extension Ki(y(x)} 3 K^ is regular. Replacing D

by a subdomain if necessary, we may further assume that Kt-! C K(D).

Let us put K^ = Xu Ki-^yix)) = JT2, J5Γ, = JΓ3, and ^ < ^ ) > = ^ 4 to

simplify the notation. Since tr. d. [Jf3: Xx] = 1, tr. d. [Jf4: JΓ3] = 1 and

since tr. d. [X2: Jf J = 2, hence tr. d. [Jf 4: JΓ2] = tr. d. [Jf4: JΓJ - tr. d. [JΓ2:

JΓJ = tr. d. [Jf 3: j f J + tr. d. [JΓ4: Jf8] - 2 = 0. Namely X\ is algebraic

over JΓ2. Let JΓ4 be the Galois closure of Jf 4 3 JΓ2. We denote by G

the Galois group of X [ 3 X2. We show that the extension JΓ3 Z) Xx

depends algebraically on the initial conditions. Since tr. d. [jf2: JΓJ = 2,

the extension Jf2 D JΓJ is a generic solution of F = 0 over Jf\ and hence

the differential field Jf2 is isomorphic to &2 = XΊ(y(x*\z\x)y over Jfu

where y(xQ; z; x) is the general solution of F = 0 (x0 being a general point

of Z)). It follows from the hypothesis that there exists a dense open set

V ot U={zeX0\dF/dY2(x0; z) φ 0} c Xo = {z e C31F(x0; z) = 0} such that

y(xQ; z; x) is meromorphic on D X V. Therefore we can find an extension

^4 of «£?2 consisting of meromorphic functions on a finite ramified cover-

ing q: W7 -> Z) X y such that the extension Jδf£ 3 if2 is isomorphic to the

extension JΓ4 3 Jf 2. Let Jδf3 be the differential subfield of <£?[ which cor-

responds to Jf3. Since tr. d. [if3: Jf\] = 1, we may assume if3 = XxQι)

for an appropriate element h e if3. As Λ e J§?£ is a meromorphic function

on ϊ^, we may write h — h(xQ; z; x). Since tr. d. [=£?3: JfJ = 1, Λ satisfies

a differential equation

^ ( x ; Λ, A7) = 0

with coefficients in Xx. Let Y be the projective non-singular model of an

algebraic curve {(uθ9 ux) e C21 ̂ (xo; uQ9 ux) = 0} and let us put X = W Π g " 1 ^ .

Replacing x0 if necessary, we may assume that we have a dominant

rational map X - •* Y and hence Λ(x0; 2;; Λ:) is the general solution of J^ = 0

when z varies in an open set of X for the usual topology. We may put

h(x0; z; x) = h(xQ; u; x) where u varies in an open set of Y for the usual

topology. If we take another general point xu we get a function h(x0; u;

Xι) of u defined on an open set of Y for the usual topology. We know

that

(62) the singularities of the function h(x0; u; x^ of u are at most

https://doi.org/10.1017/S0027763000001835 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001835


168 HIROSHI UMEMURA

algebraic branch points (see for example pp. 284-285 Leςons de Stockholm

in [P])

Let Aiixo; u; xx) be the i-th symmetric function of the he's for g e G.

Since A4(#0; u; xt) is a single valued function of u, when the points xo> %i

are fixed, Ai(x0; u; xt) is a meromorphic function on Yan by (62). The

point x0 is chosen and fixed once for all. We varying xx and denoting

xι by x, At(xQ; u; x) = Ai(u, x) is a rational function of u whose coefficients

are holomorpihc functions of x by the relative G.A.G.A. applied for the

projection p2: Y X D -+D (cf. [G]). We have h(x0; u; x)1 — Aι(u, x)h(x0; u;

xγ-ι + .. . + At(u, x) = 0, where I denotes the order of the Galois group

G. Therefore by Lemma (19.1), the extension <£% D 3?x (and hence also

the extension JΓ3 Z> X^) depends algebraically on the initial conditions.

Namely there exists a differential field Jί z> Xx such that tr. d. [CQ ( j r 2 0 ^, Cj\

= 1. Now we can argue as in subcase (60). Therefore the condition (10

implies (3).

In our paper [U2], we proved that any solution the first differential

equation y" = 6y2 + x of Painleve is not obtained from the field C of

constants functions by a finite iteration of the permissible operations (O),

(PI), (P2), , (P6). Among these operations, the combination of the first

6 operations (O), (PI), (P2), , (P5) is equivalent to allowing G-primitive

extensions in the language of Kolchin (cf. Definition (4)). Therefore these

operations are of group theoretic nature. However in the proof of Theo-

rem in [U2] the operation (P6) came in. Theorem (50) says that for a

differential equation satisfying the conditions (44) we can do without

the operation (6) whose we do not know the nature and hence the Theo-

rem in [U2] is quite group theoretic. Therefore the irreducibility theorem

in [U2] is understood in a perfect theoretic simplicity.

Let us show how to use Theorem (50) to prove the irreducibility of

the differential equations of Painleve.

Let us consider a differential equation

(63) A(y,y)-B(y,y)y" = 0,

where A(Y, Yf) and B(Y, Yf) are polynomials of Y and Yf with coefficients

in a differential field K of meromorphic functions on a domain D C C.

We assume that A and B are mutually prime in a unique factorization

domain K[Y, Y']. The following condition (J) plays an improtant role

in the proof of the irreducibility theorem.
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(J) For any differential field extension L of K if polynomials G, H e

L[Y, Y'] satisfy B('G) + BY'dG/dY + AdG/dY' = HG, then GeL(aL[Y, Y']),

where 'G is a polynomial obtained by applying the derivation of L on

the coefficients of G.

EXAMPLE (64). In the course of the proof of the irreducibility theorem

in [U2], we proved that the first differential equation y" = 6y2 + x satisfies

the condition (J) (if we take K = C(x)).

COROLLARY (65) TO THEOREM (50). Assume that the differential equa-

tion (47) satisfies the conditions (44) and the condition (J) over K. Let

y(x) be a particular solution (holomorphίc over a subdomain of D) such

that B(y9 / ) φ 0 and tr. d. [K(y(x)); K] > 1. Then (1) tr. d. [K(y(x)}; K]

= 2 and (2) y(x) is not obtained from K by a finite iteration of the permis-

sible operations (O), (PI), (P2), , (P5).

Proof If tr. d. [K(y(x)}: K] = 1, then there would be a non-zero

polynomial E(Y9 Y')eK[Y, F7] such that E(y,y') = 0. Since y(x) is not

algebraic over K, we have dE/BY' Φ 0 and y(x) would be algebraic over

K(y). We choose among such E a minimal polynomial G(y, Y;) of y' over

K(y) whose coefficients are in K[y]. Since y is transcendental over K,

we may further assume that the polynomial G(y, Y') e K[y] [Y'] with

coefficients in a unique factorization domain K [y] is primitive. Differ-

entiating G(y,y% we would get 0 = 'G(y,/) + yfdGjdY{y,yf) + y"dGldY\y,

/ ) = >G(y, y ) + ydGldY(y, y) + A/S(y, y)dGldY'(y, y). Therefore (£('G)

+ By/3G/3Y+A3G/3YO(%y) = 0 and hence the polynomial (J5CG) +

BY'dGldY + AdGldY'){y, Yf) would be divisible by the minimal polynomial

G(y, Y') in K(y)[Y']: there would exist a polynomial H(;y, 70 eJf(y)[Y/]

such that

BY'dG/dY + AdG/dY')(y, Y') = H(y, Y')G(y, F ) .

Since y is transcendental over K, we would get

(66) (BUG) + BY'dGldY + AdGldYf)(Y, Y') = /ί(Y, Y')G(Y, YO

in if(Y)[Y/]. Since G(Y, YO is primitive, (66) would imply #(Y, YO e

K(Y)\Y'} is in JS:[Y, Yy] and G would be in K. This contradicts the

assumption dGjdYf Φ 0 and the first assertion is proved. To prove the

second assertion we need

https://doi.org/10.1017/S0027763000001835 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001835


170 HIROSHI UMEMURA

LEMMA (67). // the differential equation (47) satisfies the condition

(J), then the general solution y(x0; z; x) depends essentially transcendentally

on the initial conditions.

Proof of the lemma. Assume that the general solution y = y(x0; z; x)

depends semi-transcendentally on the initial conditions. Then there exists

a differential field M such that tr. d. [M(y9 / ) : M] = 2 and such that

tr. d. [CM(VtVΊ: CM] > 1. Therefore there exists a constant c eM(y, y') which

is transcendental over M. Let c = C/E(y,y') with 0 Φ C(Y, Y'), E(Y, Y')

eM[Y, Y']. We may assume that C and E are mutually prime in a

unique factorization domain M[Y, Y']. Differentiating c = C/E, we get

(C(y, y))Έ(y, / ) - C(y, y)(E(y9 / ) ) ' = 0. Therefore ('C(y, / ) + y'dCldY(y, / )

+ A/B(y, y')dCldY\y, yf))E{y, / ) - C(y, y)(Έ(y9 / ) + y'dEldY(y, / ) +
A/B(y, y)dEldY'(y, /)) = 0. Multiplying B(y9 y') we get {(B^C) + BY'dC/dY

+ AdCldYf)E - C(B(Έ) + SY^ίJ/ay + A3B/3yθ} (y, yO = 0. Since y and

y7 are algebraically independent over M and since C and JE are mutually

prime, there exists a polynomial HeM[Y,Yf] such that £CC) + BY'dC/dY

+ AdCjdY' = iίC which is an equality in the polynomial ring M[Y, Y'].

Since the condition (J) is satisfied, C(y, yf) is in M or C is not a function

of y and y'. The above equality shows also that there exists a polynomial

IeM[Y, Y'} such that B(Έ) + BY'dE/dY + Aaί /aY7 = IE. Consequently

the polynomial E(y,y') is free from y and yf and c = C\E(y,yf) is in M.

This is a cotradiction and the general solution depends essentially tran-

scendentally on the initial conditions.

Now we are ready to prove the irreducibility theorem.

THEOREM (68). Any holomorphic solution y(x) of y" = 6y2 + x is not

classical. In other words, y(x) is not obtained from the field C of the

constant functions by a finite iteration of permissible operations (0), (PI),

(P2), - ,(P5).

Proof. As we have seen in Examples (45) and (64), for the differential

equation y" = 6yz + x, the conditions (44) and (J) are satisfied over C(x).

It follows from Lemma 0.8 in [U2] that y(x) is not algebraic over C(x).

Thus tr. d. [C(x){y(x}: C(x)] > 1. Now Theorem follows from Corollary

(65).

https://doi.org/10.1017/S0027763000001835 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001835


FIRST DIFFERENTIAL EQUATION OF PAINLEVE 171

REFERENCES

[B] Bourbaki, N., Algebre commutative, Chapitres 1 a 4. Paris: Masson 1985.
[Bu] Buium, A., Differential function fields and moduli of algebraic varieties, Lect.

Notes Math., 1226. Berlin Heidelberg New York: Springer 1986.
[E.G.A.] Grothendieck, A. and Dieudonne, J., Elements de geometrie algebrique I, Grund.

math. Wiss., 166. Berlin Heidelberg New York: Springer 1970.
[F] Forsyth, A. R., Theory of differential equations Part II, Ordinary equations,

not linear, London: Cambridge University Press 1900.
[G] Grothendieck, A., Sur les faisceaux algebriques et les faisceaux analytiques

coherents, Sem. H. Cartan, Expose 2 (1956/57), New York Amsterdam: Benja-
min 1967.

[I] Ince, E., Ordinary differential equations, London: Longmans 1927.
[Kl] Kolchin, E., Existence Theorems connected with the Picard-Vessiot theory of

homogeneous linear ordinary differential equations, Bull. Amer. Math. Soc, 54
(1948), 927-932.

[K2] , Differential algebra and the algebraic groups, New York and London:
Academic Press 1973.

[Ml] Matsuda, M., Algebraic differential equation of the first order free from para-
metric singularities from the differential-algebraic stand point, J. Math. Soc.
Jap., 30 (1978), 447-455.

[M2] , First order algebraic differential equations, Lect. Notes Math., &04, Berlin
Heidelberg New York: Springer 1980.

[Nl] Nishioka, K., A note on the transcendency of Painleve's first transcendent,
Nagoya Math. J., 109 (1988), 63-67.

[N2] , General solutions depending rationally on arbitrary constants, Nagoya
Math. J., 113 (1989), 1-6.

[N3] , Differential algebraic function fields depending rationally on arbitrary
constants, Nagoya Math. J., 113 (1989), 173-179.

[O] Okamoto, K., Sur les feuilletages associes aux equations du second ordre a
points critiques fixes de P. Painleve, Japan J. Math., 5 (1979), 1-79.

[P] Painleve, P., Oeuvres, Paris: Edition du C. N. R. S. 1972.
[SI] Seidenberg, A., Abstract differential algebra and the analytic case, Proc. Amer.

Math. Soc, 9 (1958), 159-164.
[S2] , Abstract differential algebra and the analytic case II, Proc. Amer. Math.

Soc, 23 (1969), 689-691.
[Ul] Umemura, H., Birational automorphism groups and differential equations,

prepared for the Proc. Franco-Japanese colloquium on differential equations,
Strasbourg, 1985.

[U2] , On the irreducibility of the first differential equation of Painleve, Alge-
braic Geometry and Commutative Algebra in honor of Masayoshi NAGATA,
Tokyo: Kinokuniya 1987, 771-789.

[W] Weil, A., The field of definition of a variety. Amer. J. Math., 78 (1956), 509-524
(= Collected papers vol. II, 291-306. Berlin Heidelberg New York: Springer
1980).

Department of Mathematics
Kumamoto University
Kumamoto, 860 Japan

https://doi.org/10.1017/S0027763000001835 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001835



