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SECOND PROOF OF THE IRREDUCIBILITY OF THE
FIRST DIFFERENTIAL EQUATION OF PAINLEVE

HIROSHI UMEMURA

In our paper [U2], we proved the irreducibility of the first differential
equation y” = 6y* + x of Painlevé. In that paper we explained the origin
of the problem and the importance of giving a rigorous proof. We can
say that our method in [U2] is algebraic and finite dimensional in con-
trast to a prediction of Painlevé who expected a proof depending on the
infinite dimensional differential Galois theory. Even nowadays the latter
remains to be established. It seems that Painlevé needed an armament
with the general theory (the infinite dimensional differential Galois theory)
in the controversy with R. Liouville on the mathematical foundation of
the proof of the irreducibility of the first differential equation (1902-03).
Thus he forgot his earlier idea of proving the irreducibility, which is
simple and natural and found in the twenty-first lecture of Lecgons de
Stockholm given in 1895 (von. 1 [P]): a differential equation y”’ = R(x, y, ')
(here R(x,y,y’) is a rational function of x, y, ¥ with coefficients in C)
free from moving critical points is irreducible if and only if the general
solution ¥(x; ¥, ¥o; X) (taking the initial condition v, ¥, at x,) is an
essentially transcendental function of (y,, y;). The main result of this
paper is a second proof of the irreducibility of y”’ = 6y 4+ x based on
this idea of Painlevé (§ 3, Theorem (68)). The second proof is analytic
as the transcendental correspondence is involved. It looks more indirect
than the first proof given in [U2] but it has an advantage. In [Ul] we
had to make the definition of being irreducible precise or equivalently
we had to make the permissble operations clear. Hssentially they are
the solution of linear differential equations and the substitution in Abelian
functions (see § 1). These operations are related with algebraic groups.
But in [U2] we proved a better irreducible theorem: impossibility of
solving the differential equation y”’ = 6y* + x by the above 2 operations
combined with the solution of first order algebraic differential equations.
As we explained above, the first 2 operations are group theoretic but we
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do not know the nature of the latter operation. We prove that if the
second order differential equation in question is free from moving branch
points and moving transcendental singular points and if it is solvable
by these 3 operations, then it is solvable by the first 2 group theoretic
operations (Theorem (50)). Therefore the irreducibility theorem is under-
stood in a completely group theoretic way.

Here is the content of each section. In § 1, we notice the equivalence
of the 2 definitions of the rational dependence on the initial conditions.
The first one i1s due to the classical authors and adopted in our paper
[Ul]. The second one is an algebraic definition due to Nishioka. The
same remark is done for the definition of algebraic dependence. Some
complementary remarks on the permissible operations are also done
(Lemmas (1.1) and (1.2)).

In § 2, we clear away an ambiguity of our paper [U1] (Corollary (4.6)
and Theorem (3.21) in [U1]): if the general solution of an algebraic
differential equation depends rationally on the initial conditions, then it
is solvable by permissible operations (Theorems (29) and (30)). This result
is extended to algebraic differential equations whose general solution
depends algebraically on the initial conditions (Theorem (31)). Our works
were done independently of Nishioka. But his papers [N2] and [N3]
contributed very much to the simplification of arguments. Theorem (23)
is due to Nishioka [N3]. We prove Theorem (29) by the same method
as in [N3] which with Theorem (30) clears off the ambiguity. Theorem
(42) and its Corollary were implicite in the classics and Theorem (42) was
first formulated by Nishioka [N2]. Theorem (42) not only plays a substan-
tial role in the proof of other results in § 2 and § 3 but it has also theo-
retical importance. We simplyfied considerably the arguments of the
papers [N2] and [N3]. We are conscious of the following 2 points which
seem to be new in this domain though they are now routine in algebra-
ic geometry: (1) a differential equation or a differential field extension
L D K is characterized by its associated functor (or study not only the
extension L DO K itself but also all the base changes); (2) what is canonical
descends and is defined over the smaller base field.

In § 8, we prove a criterion for a differential equation of the second
order to be irreducible (Theorem (50)) and apply the Theorem (50) to the
first differential equation y” = 6y* + «x.

Thus we put a substantial part of the works of Painlevé on the
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reducibility and the irreducibility of algebraic differential equations of
the second order in a definite form except for the following important
question. Now we have two proofs of the irreducibility of the first
differential equation. Is it possible to give the third proof depending on
the infinite dimensional differential Galois theory? The difficulty of
establishing the infinite dimensional differential Galois theory is widely
recognized. We analyzed however the works of the classical authors
and believe that the third proof is in our shooting range.

§1. Differential equations whose general solutions depend
rationally or algebraically on the initial conditions

Let us first settle our notations. An ordinary differential field (K, &)
consists of, by definition, a field K and a derivation 6: K — K; é(a + b)
= da + 8b, 8(ab) = (8a)b + a(ob) for a, be K. As we are concerned only
with ordinary differential fields, we call them simply differential fields.
Often we do not make the derivation precise and say a differential field
K. We assume that the characteristic of the field K is equal to 0. An
element ¢ € K with dc = 0 is called a constant. The set of the constants
of K forms a subfield which we denote by Cy. A differential field exten-
sion (K, d,) of (K, §) is a field extension K, of K such that the derivation
6, coincides with 6 on K. A differential polynomial ring K{Y} (of one
variable) over a differential field (KX, §) is a polynomial ring KI[Y,, Vi, Y,,

--] of infinite variables Y; (i € N), the derivation § on the subring K of
K{Y} being extended on K{Y} by d(Y,) = Y,,, for i >0. Let L D K be
a differential field extension and y € L. We denote by K{y) (resp. K{y})
the differential field (resp. ring) generated by y over K. Let (L, §,) and
(L,, 5;) be two differential field extensions of K. Then L, ®;L, is a
differential ring by defining a derivation § by d(a ® b) = (6a) ® b + a ® 6b
for aeL,, beL, The quotient field of an integral domain A will be
denoted by @Q(A). For example if the field extension L, D K is regular,
we can speak of a differential field Q(L, ®,L,). The differential field of
the meromorphic functions over a domain D C C will be denoted by K(D).

In our papers [U1] and [U2], we introduced the permissible operations
of constructing new functions from a set of known functions. We work
in a differential field of the meromorphic functions over a domain D of
C. Let us recall the permissible operations.

(O) If f(x) is a known function, then the derived function f/(x) is a
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new known function.

(P1) If f and g are known functions, then the sum f + g, the dif-
ference f — g and the product fg are new known functions. Moreover if
g # 0, then the quotient f/g is also a new known function.

P2) Let ay, a, --+,a, be n known functions. Then an algebroid
function f or a solution f of an algebraic equation

ff+af""+af**+ - +a,=0
is a new known function.

(P3) If f is a known function, then the quadrature dex is a new
known function.

(P4) Let a,, @y, -+, a, be n known functions. Then any solution f
of a linear differential equation

(d/dx)" + ay(dldx)"" + -+ + a)f =0

is a new known function.

(P5) Let I' C C" be a lattices such that C?/I" is an abelian variety.
Let f,, 2, -+ +,f. be known holomorphic functions. We denote by F a
holomorphic map D — C"x — (fi(x), fo(x), - -, f2(x)). Then popo F is a new
known function for any meromorphic function ¢ on the abelian variety

C*/I'. Here we have to avoid the constant function taking the value
infinity.

For a meromorphic function on a domain D, we identify it with its
restriction on a subdomain of D since we are interested in the structure
of the field extensions. In other words though we do not mention it
explicitly, the restriction of a known meromorphic function on to a
subdomain is a new known function.

We proved in [Ul] that these permissible operations are related with
the algebraic group. However we introduced another permissible opera-
tion (P6) in [U2], which breaks the peaceful world of algebraic groups.

(P6) Let F(y,¥) =0 be an algebraic differential equation with
known coefficients. Then any solution f of F(y,»’) = 0 is a new known
function.

In [U1], we proved the permissible operations are not independent.
For example we showed that a combination of (0), (P1) and (P4) gives
(P2). The proof given there depends on an integral representation of a
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root of an algebraic equation. We give here another proof. The advan-
tage of the new proof is that it is independent of the topology of C.

Lemma (1.1). The permissible operation (P2) is a finite iteration of
(0), (P1) and (P4).

Proof. Let S be a starting set of the known functions. Let K be
a differential field generated by 8. Any element of K is known from S
by a finite iteration of the permissible operations (O) and (P1). Let q,,
Qg -+, 0, €8S and f is a meromorphic solution of an algebraic equation

f*+af*'+.--+a,=0

which is irreducible over K. Then K(f) is a differential field and
(K(f): K) = n. Therefore f, f’, f®, ---,f™ are linearly dependent over K.
Hence there exist b,, b, by, ---, b, € K such that b,f™ + b,f*" 4 ...
+ b,f = 0. Therefore f is a new known functions from the b,’s by (P1),
(P4) and hence from the set S by a finite iteration of the permissible
operations (0), (P1) and (P4).

We introduced classical functions (Definition (2.27) in [U1l]). They
are meromorphic functions obtained from the set C of the constant func-
tions by finite iterations of permissible operations (0), (P1), (P2), -- -, (P5).
Some of our colleagues pointed out that the composition of two classical
functions are classical.

LEMMA (1.2). Let f, g be two classical functions. Then the composition
fog is a classical function.

Proof. We prove the lemma by induction on the number of iteration
used to get the function f. The lemma is true when f is a constant
function. Let us assume that the lemma is true when the function f is
obtained from the set C of the constant functions by at most i-time
iteration. Let K, be a set of functions obtained from C by at most i-time
iterations. Let f be obtained from C by an (i + 1)-iteration.

Case (0). If there exists F e K, such that f = F’, then Fog is clas-
sical by induction assumption. Hence (Fog)’ is classical. Since we have
(Fog) = (F'og)g’ and since g’ is classical, by (P1) (F'og) = (Fog)(g’)!
is classical if g’ #+ 0. If g’ = 0, then g is constant and fog is also con-
stant and hence classical.

Case (P1). If there exist F, Ge K, such that f=F + G (or F — G,
FG, F|G), then fog = (Fog) + (Gog) is classical by induction assumption
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and (P1). The substraction, the product and the quotient are treated
similarly.
Case (P4). If there exist a,, a,, - - -, a, € K, such that

f®+af*"+ .- +a,f=0,
then we get
() (f® + af® + - 4 a,f)og = 0.

We may assume that g is not constant. We have (fog) = (f' o g)g’ and
(fog) = (f"o8)(g) + (f -g)g” and hence

frog=(8)fog) — (fog)g"(g) "= (g)Uf-8) — (f-g)g"(g)".

Since the similar relation holds for (fog)? (j > 2), (x) gives us a non
trivial homogeneous linear differential equation of order n satisfied by
(fog) with classical coefficients. Therefore fo g is classical.

Case (P5). Let a,, @y ---,a,€ K, and I' C C" be a lattice such that
Ct/I' is an abelian variety. Let F: D —-C", x —>(a;,a, - -+, a,) and ¢
an abelian function with respect to I" (¢ is a meromorphic function over
C* invariant by I') such that f = ¢oF. Then since fog = (poF)og =
¢po(Fog) and since a,0 g is classical by induction hypothesis, fog is clas-
sical too.

Since we proved in [Ul] that the operations (P2) and (P3) are partic-
ular combinations of (0), (P1), (P2),, -- -, (P5), the lemma is proved.

We prove in [U1] the permissihle operations (O), (P1), (P2), ---, (P5)
are dominated by the algebraic groups defined over C. Let DC C be a
domain and G an algebraic group defined over C. For a holomorphic
map F: D — G, we have defined in [U1] a holomorphic map ¢F: D — Lie G,
where Lie G is the Lie algebra of G. Let us recall briefly the definition
of 9F. The holomorphic curve F: D — G defines a tangent vector X,
at F(x) € G along D. We translate it to a tangent vector at 1€ G by the
right translation Rpy-.. 0F: D—LieG is defined by @F)(x) = Ryr()-15Xr -
We introduced the operation (Q).

(Q Let £, f, - -, fs be holomorphic known functions over D. Let
F: D — G be a holomorphic map such that with a suitable base of Lie G,
oF: D —Lie G =~ C? is given by x ~ (fi(x), fy(x), - -+, fs(x)). Then ¢oF is
a new known function for any rational function ¢ € C(G) on G.

We proved
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THEOREM (2). Let S be a starting set of known meromorphic functions.
A meromorphic function is obtained from S by a finite iteration of the
permissible operations (O), (P1), (P2), - - -, (P5) if and only if it is obtained
from S by a finite iteration of (0) and (Q).

In the study of the structure of algebraic differential equations, it
is often more advantageous to work in an abstract setting than in con-
crete analytic terms. Let K be a differential field and C, be the field
of the constants of K. We defined in [U1] for a K-valued point v: Spec K
— G (or more precisely for the corresponding K-rational point v: Spec K
— G ®¢, K) over Cy a logarithmic derivative I6(v') € K ®., Lie G (see also
Kolchin [K2]). We can characterize the permissible operations in a group
theoretic way.

THEOREM (3). Let M be a differential field of known meromorphic
functions on a domain D and L be the differential field of all the mero-
morphic functions on D. We assume that M contains the field C of the
constant functions on D: CC M C L. To apply the operations (0), (Q), to
M is equivalent to allowing the following extension of the differential field
M. Let v: SpecL—>Gy = G®cM be an L-valued point over M. The
corresponding L-rational point Spec L — G, = G®L is denoted by v'. If
6(v) e Lie G L lies in Lie G®c M, then the image O, vim, C L is a
differential field of newly known functions. Moreover this differential field
is finite type over M as an abstract field extension.

We are interested in the meromorphic solutions but it is convenient
to work in bigger differential fields. A natural generalization of the
operation (Q) is as follows.

DErFINITION (4). Let M C L be an extension of differential field. Let
C = Cy be the field of the constants of M and G an algebraic group
defined over C. Let v: SpecL — Gy = G®, M be an L-valued point.
The corresponding L-rational point will be denoted by v’: Spec L — Gj.
If I6(v') € Lie G, = Lie G ® L lies in Lie G ®, M, then the image of O, ./,
in L is called a G-primitive extension of M.

Notice that the extension is of finite type over M and is a differential
field (cf. [U2] Remark 18.3 and [K2]).
The following Proposition is crucial ([U2], Corollary 18.2 and [K2]).

ProrositioN (5). Let L O K be a G-primitive extension. If the field
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extension is regular, then the differential field Q(L ®x L) is generated over
iW(L) (resp. iy (L)) by constants, where i, (resp. i,): L—>L®,L C QL QL)
is defined by a >a ® 1 (resp. 1R a).

Let DC C be a domain and x be the parameter on C. We denote
by K(D) the field of the meromorphic function on D. Let R be a C-
algebra of holomorphic functions on D and F(Y,, Y, Y,, ---, Y,) e R[Y,, Y,,
Y, -+, Y,] a polynomial. We write often F(x; Y, Y,, Y,, -+, Y,) to show
that the coefficients of F(Y) are functions of x. We have a map i: D —
Spec R by putting i(x) = {fe R|f(x) = 0}. If R is of finite type over C, i
induces a morphism i: D— (Spec R)*® of analytic spaces. Let & be an
algebraic subvariety defined by F in A"'® R = A"*' X Spec R: & =
V(F) C A%' = Spec R[Y,, Y, - -+, Y,]. Similarly we define X = {(x,2) e D
X A% F(x, 2) = 0} which is an analytic space. We have a diagram

X—Z

o s

D——i__> Spec R .

If R is of finite type over C, we proved that the diagram

X——F
P qan

D — (Spec R)®

is cartesian in the category of the analytic spaces ([U1] § 3). We denote
by X, the fibre p~'(§) over a point & € D and we use the similar notation
for gq.

We are interested in an algebraic differential equation

6) F(x; 5,5, -, y")=0.
In general in the theory of algebraic differential equation, we assume,
without expressing it, that the polynomial F(Y,, Y;, Y, -+, Y,) is abso-
lutely irreducible. Let x,€ D be a general point so that the coefficients
of the polynomial F are regular at x, the algebraic variety X, = X,, =
{20, 21, -+ 20) € C** | F(%4; 20y 21, -+, 2,) = O} is irreducible ([Ul]) and so
that the Zariski open set U = {z € X;|0F/0Y.(%,; 2) # 0} C X, is not empty.
For z e U, there exists a solution y(x,; 2; x) of (6) taking the initial value
z at x,; YP(xy; 20y 24, - -+, 2a; %) = 2; for 0 < i < n. The function y(x,; z; x)
is holomorphic both in x and z = (2, 2, - - -, 2,). To be precise for any
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point Pe U, there exist an open neighbourhood VC U of P, an open
neighbourhood W D of x, and a holomorphic function y(x,; z; x) on
VX W of (2, x) which satisfies the differential equation and takes the
initial value ze V at x,, As we see in Painlevé’s Lecons de Stockholm
[P], the nature of the solution y(x,; z; x) as the function of the initial
conditions z is closely related with the degree of the difficulty of solving
the differential equation (6). For example we proved in [U1l] that if
y(xy: z; x) depends rationally on the initial conditions z, we can solve the
equation (6) starting from the ring R of the known functions by a com-
bination of linear differential equations and abelian functions (cf. [Ul]
and §2, Theorem (29) and Theorem (30)). We notice that this result
contains as a special case a theorem of Poincaré.

TueEOREM (Poincaré). Let F(x;y,y) =0 be an algebraic differential
equation without moving critical points. Then we can solve it starting from
the known functions by linear differential equations and elliptic functions
(the coefficients of F being known functions).

A precise assertion will be given under more general assumptions
(§ 2, Theorems (28), (30) and (31)).

Let us recall and examine the definition that the general solution
y(x,; 2; x) depends rationally on the initial conditions z since we are
going to generalize it so that we can prove an irreduciblity theorem by
studying the general solution as a function of the initial conditions.

DeriNITION (7). We say that the general solution y(x,; z,, 2, + -+, 2,5 X)
of (6) depends rationally on the initial conditions if there exist a general
point x, (fixed once for all), a non-empty open set VC UC X, for the
usual topology, a domain x,€ D’ C D and a polynomials Cyx; Y, Y, ---,
Y), Di(x; Y, Y, ---,Y,) with coefficients in a ring of holomorphic func-
tions on I such that (1) y*®(x,; z; x) is holomorphic for (z, x) e V X I/ for
0<i<n, (2 Dxs; 20,2, ++,2,)F0 for (z,x)e VX D. (B yD(x,; 2,
2y, s 20 %) = Cy/Dy(x; 20, 24, - -+, 2,) for (2, x) e VX D

As we see in Proposition (16) below, the geometric meaning of
Definition (7) is that replacing D’ by a smaller domain if necessary, the
map z— (¥(%,; 2; x1), ¥ (x5 2; x1), -+ -, Y™(x,; 2; x,)) defines a birational cor-
respondence between the algebraic varieties X, and X, = {(z,, 2, - - -, 2,)
e C*"* | F(xy; 20, 2y, + + *, 2a) = O}
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Remark (8). In Definition (7), by a general point x,€ D, we mean a
point x, € D such that the function 9F/3Y,(x,; Y) on X, is not constantly
equal to 0 and such that p~'(x,) is irreducible and reduced. These con-
ditions are satisfied for any point of a dense open set of D. We see later
the definition is independent of the reference point x,, Namely if there
exists a point satisfying the conditions of the definition, then the con-

ditions of the definition are satisfied by any point of a dense open subset
of D.

Notice we proved the following result in [Ul], which we do not use
in the sequel. If the ring R is of finite type over C, Definition (7) implies
that

(9) there exist a C-algebra R’ consisting of holomorphic functions on
D’ and containing R and of finite type over C and an algebraic variety
ZCX, X ZQrR = (X, Q®c¢R) X (X ®g R’) such that (1) & defines an
R’-birational correspondence between the algebraic varieties X, X Spec R’
and Z Xz Spec R’ or equivalently at each point u € Spec R’, the fibre
%, defines a birational correspondence of X, and £, such that
@) (7, y(x0; 25 %), Y'(%05 25 %), -+, Y05 2; %)) € Xy X Fyixy = (X X R) X
(% @z R))yxy is in & for x e D’ (see Proposition (16) below).

’ag c (XO X Spec R/) X Spec B ('%. XSpeeR Spec RI)

D— Spec R’

We look for equivalent conditions to Definition (7). Let z = (z, 2,
--+,2,) be the generic point of X, and x, be as above. We consider z
as a variable point in an open set of U C X, for the usual topology.
We have the following conditions.

(9.1) The general solution of the differential equation (6) depends
rationally on the initial conditions.

(9.2) There exist a (fixed general) point x,, a non-empty open set V
of X, for the usual toplogy and a domain x,e D' C D such that the
functions y(x,; 2; %), ¥'(x0; 2; %), - -, ¥™(x,; 2; x) in (2, x) are holomorphic
on VX I and such that the field K(D')(¥(xy; z; x), ¥'(%0; 2; %), -+, Y™ (%3
z; x)) is a subfield of the field K(D')(2y, 2, - - -, 2,). Here all the functions
and fields are considered in the field of meromorphic functions on V X
D.

(9.3) There exist a (fixed general) point x,, a non-empty open set V'
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of X, for the usual topology and a domain x,€ D’ C D such that the
functions y(x,; 2; x); ¥'(x; 25 %), - - -, ¥™(x,; 2, x) in (2, x) are holomorphic
on V X IV and such that the field K(D')(y(x,; z; x), y'(%; 2; %), -+ -, ¥V'(x0;
z; x)) coincides with the field K(IY)(z, 2, - - -, 2,) the same identification
as in the condition (2) being done.

LEMMA (10). The conditions (9.1) and (9.2) are equivalent. The con-
dition (9.3) implies the conditions (9.2) and (9.1).

Proof. The equivalence of the conditions (9.1) and (9.2) follows from
the definition. The condition (9.3) is stronger than (9.2).

Nishioka introduced the following definition of rational dependence
on the initial conditions in an abstract setting.

DerFiniTION (11). Let L D K be a differential field extension. We
assume that the field extension L D K is regular and of finite type. We
say that the extension L D K depends rationally on the initial conditions
if there exists a differential field extension M D K such that the quotient
field Q(L ®, M) which is a differential field extension of M, is generated
over M by constants (cf. [N3]).

Remark (11.1). It follows from the definition that for any differential
field extension J D K, an extension L D K depends rationally on the
initial conditions if and only if the extension QL ®jJ) D J depends
rationally on the initial conditions. We can say that the notion of the
rational dependence on the initial conditions of L D K is free from the
base change.

Let us see how Definitions (7) and (11) are related. Let us take in
Definition (7) as K the differential field generated over C by R. Thus
K is a differential subfield of K(D). Unfortunately a differential ideal
{F} generated by F(Y,, Y;, ---,Y,) in a differential polynomial ring K{Y}
is not prime. But it determines a differential prime ideal {5 of the generic
solution such that the quotient differential field of K{Y}/®8 is K-isomorphic
to K(y(xy; 2; %), yP(x,; 25 %), + + -, ¥™(x,; 2; x)) (see Kolchin [K2], Chap. IV,
§6). Let M be the differential field K(D’). Then M and K(y(x,; 2; x),
yO(xy; 25 %), -+, ¥™(x,; 2; x)) are linearly disjoint over K. Therefore
M(y(xy; 2; %), YN xy; 25 %), -+ -, Y™(xy; 2; x)) is isomorphic to the quotient
field of K(y(xy; z; x), yP(xy; 2; %), - -+, y™(xy; 2; %)) ®x M. It follows from
Definition (7) that the field M(y(x,; z; x), y(xy; 2; %), -+ -, ¥™(xp; 2; %)) is

https://doi.org/10.1017/5S0027763000001835 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001835

136 HIROSHI UMEMURA

contained in a field M(z, z, ---, 2,) generated over M by the constants
2o, 21yt 00y Zay M(Y(%05 25 %), YO(0; 25 %), - -+, ¥ (X3 25 %)) © M(20, 24, -+, 20)-
Let us put M, = M(¥(x; 2; x), y“(x; 2; %), -+ -, ¥™(%; 2; %)) and M, =
M(zy, 21, - -+, 2,). We have a diagram

Mz = ,Z‘d’(j_y[2

s
M,
% \\C
M / 1,
Cu,
CM/

where Cy, Cy, and C,, denote the field of constants of the differential
fields. It follows from the following proposition (due to Kolchin [K2],
Chap. II, §1, Corollary 2 on p. 88) that M, = MCy,.

ProrosiTiON (12). Let M C N be a differential field extension generated
over M by constants so that N = CyM. Then there is a 1:1 correspondence
between the elements of the following two sets.

(1) The set S of the intermediate differential fields M C J C N.

(2) The set T of the intermediate fields C,, C D C C,.

Here the map S— T is given by JN Cy for Je€ S and the map T— S
is given by DM for D e T. In particular for any Je S we have J = C,M.

We have seen above that Definition (7) is a special case of Definition
(11). Let us now show the converse. Let us denote by L a differential
field K(y(x,, z; 2), y(x,, 2; %), - - -, ¥™(x,; 2; x)) which is a regular differ-
ential field extension of K. We assume that there exists a differential
field M such that the quotient field Q(L ®x M) is generated over M by
constants. Since L is finitely generated over K and since in the defini-
tion only a finite number of elements are involved, we may assume
that the differential field K is finitely generated over Q as a differential
field and M 1is finitely generated over K as a differential field. Hence
the differential field M is finitely generated over Q. Therefore by a
theorem of Seidenberg [S2] we may assume that there exists a subdomain
D'c D such that Kc M c K(D’). Here we identify the field K of
meromorphic functions on D with a subfield of meromorphic functions
on D' C D by restriction. It follows from the proof of [S2] that the
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choice of the domain D’ is rather free. In fact it is shown in [S2] in
the course of the proof that there exists a subset E/ C D such that
(1) D — E’ is a countable union of analytic subsets of D and such that
(2) for any point x, € D — E’ we can choose a subdomain I) containing x;
satisfying K € M C K(D’). We may assume that there exists a non-empty
open set VC UC X, for the usual topology such that the functions
Y(x; 25 %), y(xy; 25 %), -+, Y™ (%3 2; %) in (2, x) are regular on V X D'
Moreover we may assume that

(13) for x e D, {(y(x; 2; %), YO (x05 25 %1), - -+, y™(%05 2; %) € Uz € V}
contains an open set of X, for the usual topology. We consider all the
involved fields as subfields of the meromorphic functions on V X D’. Then
since K(y(x,; 2; x), y(x,; 2; %), -+ -, ¥™(%,; 2; x)) and M are linearly disjoint
over K, M(y(x,; z; x), yP(x; 2; x), -+ -, ¥™(x,; 2; x)) is isomorphic to the
quotient field of K(y(xy; z; x), ¥y (xy; 2; %), - -+, ¥™(%,; 2; x)) ®x M and hence
generated over M by constants wu,, u,, -+, 4. Let M' = C(M) C K(D')
CK(VXD)and L' = L(M') = M'(y(x; 2; %), y (%03 25 %), - - -, ¥"(%; 2; %))
Then L' is generated over M’ by constants w;, w,, - -+, w, in L': M'(y(x,;
z; %), YO (x; 25 %), -+, Y (xy; 25 %)) = M'(wy, w,, - - -, w,). Hence there exist
polynomials Cy(x; W), Dfx; w)e M'[W,, W, ---, W,l, E(x;Y), Fx;Y)e
MY, Y, ---,Y,]0<i<n,1<j< m such that

(1) y(xo; 25 %) = Cif Di(ox; wy, Wy, -+ -, wy) for 0 < i <,

() w; = E[F(¥(x; 2; %), Y05 25 %), « -+, ¥(w0; 25 %)) for 1<j<m.

Let now x{eD such that Dy(x); w, w, -, w,) #0. Let ¥ =
Spec Clw,, wy, - - -, w,]. We have a C-rational map f: # -~ X,, w=
(W, Wy, + -+, wy) = (Co/ Dy(xg; w), Ci/Dy(xy; w), - - -, Cof Do(y; w)) of the alge-
braic variety ¥ to X,. We show that the map f is birational. The
rational map is dominant by (13). Let a, b be general points of #°. If
Cy/Dy(x}; @) = Co/Dy(x5; b), then Cy/Dyx; a) and Cy/Dy(x; b) are solutions of
the differential equation (6) taking the same initial conditions and hence
Co/Dy(x; @) = Cy/Dy(x; b). It follows from (i) and (ii) ¢ = b and the degree
of the rational map f is equal to 1. Namely f is birational; C(X,) =~
C(#"). We have a diagram

r ~—_
l Cr

M l
\C: CM, ’

(15)
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where C,. and C,. denote the fields of constants of L’ and M’. It follows
from [K2], Chap. II, §1, Corollary 1 that M’ and C, are linearly
disjoint over C, hence M'(# ®cM') =~ M'(w,, w,, - - -, w,). Consequently
MI(X:;G RcM') = M'(W Qc M') = M'(w;, wy, - -, W) = M'(¥(x5 2; %), ¥(%0;
z;x), -+, ¥"(x,; 2; x)). Therefore the condition of Definition (7) is satis-
fied if we take x; for the reference point. Hence Definitions (7) and (11)
are equivalent in the analytic case.

The above argument shows the equivalence of the conditions (9.1)
and (9.3). However we notice in the converse, it may happen that we
have to choose a new reference point. The choice is rather free as we
noticed above.

ProprosiTION (16). The notation being as above. The following con-
ditions are equivalent.

(1) The general solution of the differential equation depends rationally
on the initial conditions.

(2) There exists a (general) point x, and a dcmain x,€ D' C D such
that a field K(D')(y(xy; 2; x), ¥ (x5 25 %), - - -, y™(x,; 2; %)) coincides with a
subfield K(D')(2y, 21, *  * Zu)-

(8) There exist a point x,€ D and a domain x,€ D' C D such that
(20, 21+ +, 20) = (Y205 25 %), Y (%o, 25 %), -+ -, y™(%; 25 %)) gives a K(D)-
birational equivalence of X, Q¢ K(D') and ¥ R K(D).

Proof. The conditions (2) and (8) are equivalent by definition. The
condition (1) follows from (2) by definition. The above argument shows
the condition (1) implies the condition (2).

The following proposition is also a result of the above argument.

ProrosiTioN (17). If the general solution of the differential equation
depends rationally on the initial conditions, then there is a dense open set
E of D such that for any x,€ E and for any point pe U C X, , there exists
an open neighbourhood VC U of p and a subdomain x,e D’ C D and
polynomials satisfying the condition of Definition (7). Namely the definition
that the general solution depends rationally on the initial conditions is
free from the reference point.

Proof. Let & € D such that X, is reduced and irreducible and such
that 0F/0Y,.(¢; z) is not constantly equal to 0 on X.. Let y(&;z;x) be
the general solution taking the initial condition z at §&. Let & be another
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point satisfying the same condition. Then the extension K{y(¢; z; x)> is
K-isomorphic to K{¥(&’; z; x)>. As we have seen above, if the condition
of Definition (7) is satisfied, then the condition of Definition (11) is
satisfied. When we proved the converse, first we had to realize M D K
(such that Q(K<{¥(; z; x)) Qg M) is generated over M by constants) as
a subfield of K(I') for some sudomain I’ C D (here we notice that M
is determined independently from &). As we explained above, this can be
done almost freely: except for an enumerative points of D, we can find
a neighbourhood D’ C D satisfying the required conditions. Next if we
choose a point x,€D’ such that DyJx;; w, w,, ---, w,) # 0, then the
argument above shows that x, can be a reference point of Definition (7).
Therefore any point of a non-empty Zariski open set of D’ can be chosen
as a reference point.

A natural generalization of rational dependence on the initial con-
ditions is that the general solution y(x,; z; x) is an algebraic function of
the initial conditions z€ X;,. We have equivalent conditions.

LemmA (18). Notation being as above, the following conditions are

equivalent.

(1) There exist a (fixed general) point x,€ D and a domain x,€ D' C D
such that a field K(D')(2y, 21, * * *, 2ay Y(%o; 2; %), ¥ (%05 2; %), « -+, Y™(%0; 25 X))
is algebraic over K(D')z, 2z, +--,2,). Here the involved functions are

considered as functions on D' X V for a suitable open set V on X, for
the usual topology as in (9.2). Hence all the fields are subfields of the
field of the meromorphic functions on D' X V.

(2) There exist a fixed general point x, and a domain x,€ D' C D
such that the field K(D')(zy, 2, -+ +, 2,, Y(%0; 25 %), ¥'(%,; 25 %), + -+, ¥ (xy; 2;
x)) is algebraic over K(D')(y(x,; 2; x), ¥ (x5 25 %), + + -, ¥™(x,; 2; X)).

(8) There exist a fixed general point x, and a domain x,€ D' C D
such that the transcendence degree of the field K(D')(zy, 21, -+ -, 24), ¥(%s;
2; %), ¥(x; 25 %), -+, ¥ (xy; 2; x)) over K(D') is n.

Proof. The equivalence of the conditions follows from tr. d. [K(D')(z,,
2, 0y 2 K(D)] = n, tr. d. [K(D)(¥(x, 2; %), ¥'(%05 25 %), - -+, Y™ (%3 25 %):
K(DN] = n.

We introduce the notion of the algebraic dependence on the initial
conditions.
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DerFiNITION (19). If the equivalent conditions of Lemma (18) are
satisfied, we say that the general solution of the differential equation
depends algebraically on the initial conditions.

We have a similar characterization as Proposition (16).

LEMMA (19.1). The following conditions are equivalent.

(1) The general solution of the differential equation (6) depends alge-
braically on the initial conditions.

(2) There exist a general point x, and a subdomain x,€ D’ C D such
that (2, 21, - - -, 2,) = (¥(x0; 2; %), ¥'(%0; 25 %), - -+, y™(%; 2; %)) defines K(D')-
algebraic correspondence between X, Q¢ K(D') and & Qp K(D').

If the ring R is of finite type over C, then there conditions are equi-
valent to the following condition (3).

(8) There exist a general point x, and a subdomain x,e D' C D, a
C-algebra R’ consisting of holomorphic functions on D’ containing R and
of finite type over C and an algebraic variety & C X, X & xR = (X; X
Spec R') Xspee e A% Xspecr SPeC R’) such that (1) & defines an R’-algebraic
correspondence between the algebraic varieties X, ®;Spec R’ and Z Xgpeer
Spec R’ or equivalently at each point u € Spec R’, the fibre &, defines an
algebraic correspondence between X, and %, and such that (i) (2y, 2, - - -,
Zny ¥(%05 2; %), V(%03 25 %), -+, Y% 25 x) € Xy X Xyyy I8 in & for xe D
(i: D' — Spec R’ being the natural morphism).

The proof is similar to that of Proposition (16) and is omitted.
As in the case of the rational dependence on the initial conditions,
we can generalize Definition (19) to an abstract setting.

DerinITION (20). Let L D K be an extension of ordinary differential
field. We assume that the field extension L D K is regular and of finite
type. We say that the extension L D K depends algebraically on the
initial coditions if there exists a differential field extension M D K such
that the quotient field NV of L ® M which is a differential field extension
of M, is algebraic over a field generated over M by the field C, of the
constants.

Remark (20.1). It follows from the definition that for any differential
field extension J D K, an extension L D K depends algebraically on the
initial conditions if and only if the base change Q(L®xJ) D J depends
algebraically on the initial conditions (cf. Remark (11.1)).
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As in the case of the rational dependence, we can show the equi-
valence of Definitions (19) and (20) in the analytic setting.

§ 2. Theorems on the reduction of a differential equation

As there is an ambiguity in the statement of Theorem (5.3) of [U1l]
which says that we can solve an algebraic differential equation by a
finite iteration of permissible operations if the general solution depends
rationally on the initial conditions, we should clarify the assertion. The
ambiguity comes from the word general. Let us clear away the defect.
Let K be a differential field and F(Y,, Y}, ---, Y,) € K{Y} be an absolutely
irreducible polynomial. The polynomial F' defines the prime differential
ideal % of the general component ([K], Chap, IV, § 6, Theorem 3).

DeriNiTION (21). A generic solution of a differential equation F =0
over K is a K-isomorphism ¢ of the quotient differential field of the ring
K{Y}/®8 to an extension L D K of the differential field K.

Since the isomorphism ¢ is uniquely determined by the images
o(Yy), (Y1), -+, 9(Y,) e L or even by ¢(Y;), we call by abuse of language,
(p(Yy), ¢(Yy), - - -, 9(Y,)) or ¢(Y,) a generic solution of F = 0 over K.

ExaMmpLE (21.1). Let D be a domain and K a differential field of
meromorphic functions on D. Let F(x; Y, Y, - -, Y,) = F(Y, Y, ---,Y,)
€ K{Y} be an absolutely irreducible polynomial. By replacing D by a
smaller subdomain, we may assume that the coefficients of F are regular
on D. Let x,eD be a general point so that (1) X, is irreducible and
the function 0F/0Y,(x; Yy, Yi, ---, Y,) on X,, is not constantly equal to 0.
For any point of X, = {ze X, |0F/aY.(x; 2); 2, - - -, 2,) # 0}, there exists
an open neighbourhood V in X, for the usual topology and a neigh-
bourhood I of x, such that aF/aY,(x; 2y, 21, - - -, 2,) = 0 if (x; 20, 21, + - -, 2)
€D’ X V and such that we can speak of the holomorphic solution
Hxo; 25 %) for (2, x) e UX V' with y(x; 25 %) = 20, YP(%0; 25 %) = 21, =+ -,
y™(x,; 2; x,) = z,. Taking z as variable point in U, (y(x,; 2; x), yP(x; 2; %),

-+, ¥™(xy; 2; x)), which is customarily called the generic solution of
F = 0 in the analysis, is a generic solution of F = 0 over K(D) and hence
over K. We may replace D by any subdomain so far as it is a neigh-
bourhood of the point x,.

The objective of Painlevé [P] is the discovery of special functions
defined by algebraic differential equations of order 2. To examine whether
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he obtained essentially new functions, he had to treat the problem of
reduction. For this purpose we should generate functions from the known
functions. It is natural to start from the field C of the constant func-
tions (cf. [U3]). The function should be meromorphic over a domain D
of the complex plane and parameters should take numerical values if
there are any. The classical authors particularly Painlevé and J. Liouville
are conscious that this idea is analogous to the number theory. In the
number theory, we start from the field Q of the rational numbers and
study algebraic and transcendental numbers in C. Namely we have a
correspondence:

Number theory Analysis
Q <«———> The field C of the constant functions on D
N N
C <«——> The field K(D) of the meromorphic functions on D

From this point of view, the general solution y(x,; z; x) which contains
a variable z is incovenient. The initial conditions should not be a variable
point but a C-valued point of X, .

DEFINITION (22). Let R be a differential ring of holomorphic functions
on a domain DCC and F(x;Y,Y, - --,Y,)eR{Y} be an absolutely
irreducible polynomial. Let W C X, be a non-empty dense open set for
the usual topology of the algebraic variety U = {z € X, |0F/3Y,(x;; 2) # 0}
CX,, By a solution of F =0 with general initial conditions at x, we
mean any solution y(x) whose initial conditions (y(x,), y'(x,), - - -, ¥™(x,)) is
in W.

TueoreM (23) ([N8]). Let L D K be a regular extension of a differ-
ential field K. We assume that the field L is finitely generated over K as
an abstract field and the field of the constants of L coincides with that of
K. If the field Cy of the constants of K is algebraically closed, then the
following 2 conditions are equivalent.

(1) The extension L DO K depends rationally on the initial conditions.

(2) The extension L D K is a subfield of a strongly normal extension
of K (for the definition see below).

If moreover the field K is algebraically closed, then the above cond-
itions (1) and (2) are equivalent to the following conditions.

(8) The extension LD K is a subfield of a G-primitive extension of
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K for an algebraic group G defined over the field Cx of the constants of
K (cf. [K2], [U1], [U3] and Definition (4), Proposition (5)).

Before we start the proof of the theorem, let us recall the definition
of a strongly normal extension. We restrict ourselves to regular exten-
sions.

DerFINITION (23.0). A regular differential field extension M D N is
strongly normal if the following conditions are satisfied:

(i) The field extension M DO N is finitely generated;

(ii) The field of constants C, of M coincides with C,;

(ii1) A differential field Q(M ®, M) is generated over i,(M) (which we
sometimes denote by M) by constants, where i,: M - M®, M C QUM M)
is a morphism of differential fields defined by i(m) = 1 ® m for m e M.

The equivalence of the conditions (2) and (3) of the theorem is a
question of Galois cohomology and well known (cf. [K2], Chap. VI, in
particular Corollary 2 (a), (b) on p. 425).

The theorem is essentially due to Nishioka. We give a proof of the
theorem as we need Theorem (29) below which is proved by the same
spirit as the above theorem. We considerably simplify the argument of
Nishioka. In what follows, we assume that the extension L D K is simple
(L = K{y)) for the following two reasons. First, the extension is gen-
erated over K by a finite number of elements y;,y,, ---,y.€L as an
abstract field. But in the proof, we have to consider not only the y,’s
but also their derivatives and their higher derivatives. This fact makes
the notation complicated yet the proof is essentially the same as the
special case L = K{y). Secondly if K D Q(x) with d(x) = 1, then the
differential field L is generated over K by a single element by [K2], Chap.
II, §8, Proposition 9.

Proof of Theorem (23). Let us show that the condition (2) implies
the condition (1). If the condition (2) is satisfied, then there exists a
differential field extension M O K containing L such that QM &, M) is
generated over i,(M) by constants. Q(L ®y M) is a differential subfield of
QM @i M). It follows from Proposition (12) that Q(L ®, M) is generated
over M by constants and the condition (1) is satisfied. It remains to
show that the condition (1) implies the condition (2). It follows from
the definition that there exists a differential field M such that Q(L ®, M)
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is generated over M by constants: there exist constants ¢, ¢, - - -, ¢, such
that Q(L ®K M) S M(Cl, 02, ct ity C,). If K<y> == I{(y, y,, y(z), i 'yy(s)), then
(23.1) Mcy, ¢ -+ -y 0) = M(y, Y, y®, -+, ).

The geometric meaning of (23.1) is as follows. Let Y = Spec Cylc;, ¢, + -,
c,]. We may assume that Cye,cpcy = CulCiy Gy - -+, ¢,) 80 that M(cy, ¢,
) = QM ®g, Cyle, ¢y - -+, ¢,)) by [K2], Chap. 1, 1, Corollary 1 and
bence Y®,, M is M-birationally equivalent to Spec M[y,y’, y?®, ---, ]
It follows from (23.1) that we can find polynomials AU, U, ---, U,),
B(U, U, ---,U)eM[U, U, ---, U] and C(Y®, Y®, ..., Y®¥), D(Y?, Y®,
o, Y)Y e MIYO, YO, . Y@  for 1 < i< 8,1 < j < rsuch that we have

(23.2) y9 = A 0)/Blc)  with B(c) # 0
¢, =C(9/D(y)  with DF)#0

for 1<i<s, 1<j<r where we denote (c, ¢, ---,c,) (resp. (,%, -,
¥ by c¢ (resp. y). (28.2) defines an M-birational correspondence @:
Y®¢, M->Spec M[y,y, ---,¥]. Conversely let us notice that

(23.3) Q(L®x M) is generated over M by constants if and only if
there exist polynomials A;, B, C;,, D and the constants c,’s satisfying the
condition (23.2).

The proof is done in several steps.

(23.4) We may assume Cy = Cy.

Let M, be a differential algebra generated over K by the coefficients
of C, D and of the A;’s and C,’s. In view of (23.3) we have to look for
a K-morphism of differential algebras f: M, — M satisfying the following
conditions:

(23.5) M is differential field extension of K;

(23.6) Cz = Cg;

(23.7) D’(5) (= D’(y®1)) is not equal to 0, where D’ denotes the
polynomial obtained from D by applying to each coefficients a morphism
d®f: L®; M, > L ®x M;

(23.8) Using the similar notation as in (23.7) and letting ¢, = (C,/D)’(y)
for 1 <j < r, which are constants in QL ®x M), we have B{(c,, &, - -, &,)
+ 0.

Notice that if the conditions (23.6) and (23.7) are satisfied, we have
necessarily (Id ® f)(y®) = (A./B)’(¢) and Id®f)(c) = (C,/D)'(y®1).

We can find f: M, — M satisfying the conditions (23.5), (23.6), (23.7)
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and (23.8) by the following result of Ritt-Kolchin (Theorem 1 in [K1]).

TuEOREM (24). Let K be an (erdinary) differential field with an alge-
braically clesed field of constants Cg. Let M, be o differential K-algebra
and 0 = u be element of M, We assume that the differential K-algebra
M, is of finite type over K (the differential ring M, is generated over K by
a finite number of elements, their derivatives and higher derivatives). Then
there exists a K-morphism f: M, — M cf the differential K-algebra M, to a
differential over-field M of K such that f(u) #+ 0 and Cx = Cjy.

(25.1) We may assume that C, = C; and that there exist differential
K-morphisms f,: K{y} > M for 1 <k <1 and polynomials A, Be M[U],
C, DeM[Y] 1<i<s, 1<j<r) satisfying the following conditions:

(25.1.0) The condition (23.2) (and hence the condition (23.1) also)
holds;

(25.1.1) D(2.) #+ 0 where 2z, = f,(y) and 2, = (2, 2;, -+, 2) for 1 < k

<

(25.1.2) If we put c = C,/D(Z,), then B(c{®, ¢, .-, c¢®) 0 for
1<k

(25.1.3) We have z’ = A;/B(c®) for 0 < i < s and ¢{¥ = C,/D(2,) for
1<j<r

(25.1.4) If we put E = K{2:)1<1<; C M, then y®1 e QKy) ®@x M) is
in Coxpom - E, where E C M is identified with a subfield of K{y) ®x M
C Q(K{y>®x M) by the canonical inclusion.

The condition (25.1.4) implies E{y) = Cg,E by Proposition 12, here
strictly speaking y should be denoted by y®1 which would contribute
to a notational complication.

Let us now denote Cy, = C,, by C and Cle, ¢, ---,c,] by Clc]. Let
Y, be the set of the C-rational points of Y = Spec C[c]. In the language
of E.G.A. Chap. I, Y., is the maximal spectra of Cl[c]. Y, is the
intuitive algebraic variety Y (we notice that C is algebraically closed).

Let 4 be a C-algebra and f(c) € # ®;C|c] = #[c]. For ¢e Y., we
denote by f(¢) the image of f(c) by the #-morphism # ®,[Clc] — #
induced by the C-morphism C[c] — C taking values at the C-rational
point C.

SUBLEMMA (25.2). Let U be a non-empty open set of Yo, If f(€¢) =0
for any ¢ € U, then f(c) = 0.
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Proof of sublemma. Let f(c) = > ,a,®bc) with a,e.#, b,e Clc].
If f+ 0, then we may assume that the a,’s (resp. b,’s) are linearly inde-
pendent over C. Then 0 = f(¢) = >}, a,® b,(¢). Since the a,’s are line-
arly independent over C and since b(¢) ¢ C, we conclude b,c) = 0 for
any ¢ € U and hence b, = 0 which is a contradiction.

CoOROLLARY (25.3) To SUBLEMMA. Let 0 # fe #[c]l. Then {¢ € Y, |f(©)
= 0} is a proper closed subset of Y, if it is not empty.

Proof of the Corollary. In fact if f= > ,a,® b, with the a,’s (resp.
the b,’s) linearly independent over C, then the above argument shows
{ceYu,l|fe)=0}={ce Y, b)) =0 for 1 <i<I}. Hence the subset is
closed. It follows from the sublemma that this subset can not be the
whole space Y,

CoroLLARY (25.4) TO SUBLEMMA. A,;, B, C, and D being as in (23.2),
there exist a non-empty Zariski open set U of Y., satisfying the following
conditions;

(1) If €€ U, then the morphism MI[c] — M induced by ¢ can be ex-
tended to Mlclze, = M (Mlclsy is the localization of M[c] with respect to

B(c));
(2) If ¢e U, denoting y©), v'(€), - -+, y(¢) e M be the images of y(c),
¥(c), -+, ¥(c) € M[clp; by the above morphism, we have
D(y(©), y'(©), - -+, ¥(©) # 0,
(1) ¥y9(¢) = Ay/B(C,, G, -+, C,) and

¢, = C,/D(y(@), y'©), - - -, y(©))
for 0<i<s, 0<j<r.

Proof of Corollary (25.4). The first condition is satisfied if B(€) + 0
and therefore on a non-empty open set V of Y., by Corollary (25.3).
As for the second condition for sufficiently large N, we have G(c) =
B()?*D(y,y, --+,y®) is in M[c]. Therefore on a non-empty open set W
of Y., the function G(c) never vanishes by Corollary (25.3). Now it is
sufficient to take U= VN W.

SuBLEMMA (25.5). Let F'D k be a field extension and a be an element
of F. Then the following conditions are equivalent.

(1) The element a is in k.

(2) oa) = ¢(a) where ¢, (resp. ¢,) is a morphism of F into FQ,F
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defined by ¢(b) = b® 1 (resp. ¢)(b) = 1® b) for beF.

Proof. It is evident that the condition (1) implies (2). Conversely
the condition (2) implies (1) since any k-module is free.

Let us come back to the proof of (25.1). Using the open set U of
Corollary (25.4), we put & = K{¥(@)):ey. We show that y is in &(c,, ¢,
e CRU R M) = M(cy, ¢, --+,¢,). In fact this implies that there
exist a finite number of points ¢®, ¢?, --.,e¥ of U such that y is in a
differential field K{(yE*) > crci(C1, Cop -+, C). Let E = K{YC)1<xer- If we
take A,, B, C; and D as in Corollary (25.4), then the conditions (25.1.1),
(25.1.2), (25.1.3) and (25.1.4) are satisfied. Let ¢,: M(c) — M(c) ®,, M(c)
(i=1,2) be two morphisms defined by ¢,(a) =a®1, ¢gla) =1Qa for
a € M(c). In view of Sublemma (25.5), it is sufficient to show that ¢,(y)
= @y(y) or y®1 — 1®y is equal to zero in M(c) ® ,,,M(c). y®1—1Qy
in question is an image of y®1 —1®y in (Mlc] Q. aMlcDseyxne and
hence it is sufficient to show y®1 — 1®y = 0 in (Mc] &, MIcDsr050-
Since M|c] is faithfully flat over &[c], B(c) ® B(c) is not a zero divisor in
Mc] ®,sM[c]. Therefore it is sufficient to show that B(c) ® B(c)(y®1
—1®y)=0in Mc] @, Mlc] = (M&, M), Clc]. By Sublemma (25.2)
it is sufficient to show that B(c) ® B(c)(y® 1 — 1® y)(©) = 0 for any c € U.
Since B(¢) ® B(¢) is not a zero divisor in M[c] ® - MIc] (notice &[c] = &),
the latter condition is equivalent to y(@©)®1 — 1@ ¥E) = 0 in (M[¢] ®
MI[e]). This is so since ¥(C) is in & = K{¥)zcv-

(26.1) In addition to the requirements of (25.1), we may assume that
the differential field K{y) is K-isomorphic to K<{z).

In fact let us consider an extension L = QL ®y L) of i(L) = L, where
i) L>L®,LCQUL®®,L) 1s defined by ia) =1®a for aeL. The
extension L O L, depends rationally on the initial conditions by Remark
(11.1). Therefore we can find # D L, and L, morphisms f;: Ly} — A
(1<i<k) and polynomial with z; = f«y) satisfying (25.1.1), (25.1.2) and
(25.1.3) over L,. It is sufficient to take .# for M, the polynomials for
Ly yY/L, and K-morphisms f,: K{y} —.# induced by f..

Here is the conclusion from (25.1) and (26.1). By (25.1.4) we may
assume A,;, Be E[c]l, C,, D¢ E[y] and now taking E for M, we can find
a differential field extension M of K and z, z, 2,, - - -, 2, € M satisfying
the following conditions (see Remark (28) below).

270) M= K{z 2,2, -, 2).
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(27.1) The field of the constants of M coincides with that of K.
(27.2) A differential subfield K(z) of M is K-isomorphic to K{y).
(27.3) QL ®x M) is generated over M by the constants; QL ®, M)

= M(cy, ¢, --+,0¢,), C, Cy, -+, C, being constants.
(27.4) y“(c) = Ac)/B(c), with Ac), B(c) € Mlc,, ¢y, - -+, ¢,] for 0<i
<s and ¢; = Cy(y,y?, -+, y)D(y, yV, - - -, ¥) with C(y, y?, ---, ¥,

D(y, y?, -+, ) e M[y,y®, - -,y for 1<j<r.

(27.5.1) There exist C-morphisms Clc, ¢, ---,c,] = C, (¢) — (€*®) for
1< k<!l Since Mle, ¢ ---,¢,] = M®;Cley, ¢, -+, c,] by [K2], Chap. II,
§ 1, Corollary 1, these morphisms define M-morphisms Mlc,, ¢, ---,¢,] > M
such that B(€®) 0 and such that y?(E") = A,(c*)/Bc"™) =z for
1<k 0<j<s,

(27.5.2) Moreover D(y(€®), y'(€®), - - -, y9(@E®)) = D(z;, 24, - -+, 25) #+ 0
for 1<k<! and ¢® = Ci(zy, 2k, -+, 23 D(24, 21, -+ -, 2) for 1<j<s
and for 1 < k<1

By (27.0), (27.1), - - -, (27.5) it is sufficient to show that M = K(z, z,
-+, 2) 1s a strongly normal extension of K. Let us show that an extension
QM Qx M) of ¢, (M) is generated by constants, where ¢, M - M &, M
C QM®y; M) denotes a morphism defined by ¢ - 1®a for a e M. If we
write y = 2® 1, then K{y) ¢, (M) is isomorphic to Q(L ®x M). Therefore
identifying M with ¢,(M) by ¢, we can find constants ¢, ¢, ---,¢C, €
Crwosin = Cousrms A B, oo(M)lc] and C,. Deg(M)[y,y', -+, y®] satis-
fying the following conditions

(27.6) B(c) #+ 0 and y*¥(c) = A,;/B(c) for 1 < i < s;

@277 D(y,y, -,y +0and ¢, = C,/D (y,5, ---,y®) for 1<i<r.
In particular y = 2®1 is in Cyuegm  ¢(M). Since D1 QR z;, 1Qz;, -+, 1
®2z) #+0 by (27.4) and since the K-morphism K{z,®1} - K{1® z,} C
0(M) (2, ®1 - 1® z;) induces an M-morphism K{z; ® 1}, (M) =~ K{z, ® 1}
Rx 0o(M) — (M), D(z,®1, 2,®1, ---,2?®1) +0 and hence we can
define ¢ = C,/D(z,®1, 2,®1, ---, 2 ®1). It follows from (27.4) and
(27.5.1) that we have a ¢,(M)-morphism K{y}-0,(M) — o, (M),y = 2@ 1— 2,
and hence a K-morphism K{y} — ¢)(M) = M. Therefore we bave a K-
morphism K{y} — K{z, ®1} by (27.2) which induces a ¢,(M)-morphism
K{y}p(M) =~ K{y} Qx (M) — K{2, ® 1}p,(M) = ¢)(M){z, ® 1}. This defines
a ¢(M)-morphism ¢,(M){z® 1, Cy(z® 1)/D(z® 1)} — (M )}z, ® 1, Cy(2: ® 1)
/D(z,® 1)} and hence the c¢{®’s are constants in QM ®jy M). Since
B1l®e®, 1®@e®, -, 1®c®) =0 by (27.5.2) and since we have ¢,(M)-
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morphisms ¢,(M){z, ® 1} — 0(M)(2, ® 1 - 1®2,). Therefore we have a
o.(M)-morphism

(PZ(M){y; 61, 623 Yy ET’ AO/B(E), Al/B(é)a Y AS/B(E)} -
oM}z ® 1, &, &%, - -, &, Ay/B@E"), AiJBE™), ---, A,/B(c")}

for 1<k, we get z,®1 = A,/B@E®, e®, ..., ¢®) and z,®1 is in
%(M)(Efk), Eék)z Y E;’c)) c CQ(L®KL>902(M)-

Remark (28). In the last reduction the following fact is used.

Let A(c), B(c) e M[c] and ¢ € Y,,, such that B(¢) #+ 0. If A/B(c)e M(c)
lies in E(c), then there exist .Z(c), #(c) € E[c] such that A/B(c) = «/%(c)
with %(¢) + 0.

Let us see the proof of this fact. Let m = {f(c) ¢ M[c]|f(c) = 0} and
m = {f(c) e Elc]|f(©) = 0}. Since M[c] ~E[c] ®;M and since E is a field,
Mic] is flat over E[c]. Hence the local ring M]Jc],, is flat over E|[c]..
Since A/B e M]cl, is in E(c), therefore there exist A, Be E[c] such that
A/B = A/B: A = (A/B)B. Namely we have A = (A4/B)B e E[c], N B(M[c],,)
which is equal to ﬁ(E[c]m) since M]|c],, is flat over E]c],, (cf. [B], Chap.
I, §2, 6, Corollaire). Consequently we have A/B = A/B =Ce El[c]..

The argument of (25.1) and (26.1) gives us the following result.

THEOREM (29). Let C C K be a field of known meromorphic functions
on a domain D. If the general solution of the differential equation (6)
depends rationally on the initial conditions, then there exist solutions f, f,
-+, f, of (6) meromorphic on a subdomain of D such that y(x,; z; x) €
Kty o fi)(2, 21, - -+, 2,) (here we denote by ¥(x,; z;x) the general
solution of (6) taking the initial conditions z = (2, 2, - -+, 2,) at x, and
hence zy, 2z, - - -, 2, are constants) and such that each of the solutions f.s
is obtained from K by a finite iteration of the permissible operations (O),
(P1), (P2), -- -, (P5).

Since we can prove the theorem similarly as Theorem (23), we content
ourselves with an outline of a proof. First let us notice that the exten-
sion K{y(x,; z; x)) D K may have a non-trivial constant field extension.
It follows from the definition that we can characterize the rational
dependence by the birational correspondence (23.2). Therefore if we take
a particular solution y(x,; Z; x) with general initial conditions 2,2, - - -, 2,
at x, then the extension K{y(x,; Z; x)> D K depends rationally on the
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initial conditions by the argument in (23). Hence by Theorem (23) K <
y(xy; Z; x)> is contained in a strongly normal extension of K. Hence
extending K algebraically if necessary, we may assume K{y(x,; Z; X)) is
in a G-primitive extension of K. Therefore y(x,; Z; x) is obtained from K
by a finite iteration of the permissible operations (0), (P1), (P2), - - -, (P5)
by Theorem (2) and Theorem (3). The argument of (25.1) shows that if
we know a finite number of solutions f, f;, - -+, f. with general initial
conditions, K{fi, fz, -+, fuy{¥(xs; 2; %)) is generated over K{f,, fo, -+, [u>
by constants.

To make our assertions and arguments clear, let us prove the fol-
lowing result which originated also in the Stockholm lessons. In fact
the following theorem is a Corollary of Theorem (29).

THEOREM (30). Let R be a differential ring of holomorphic functions
on a domain DcC C and F(x;Y, Y, ---,Y,)eR[Y, Y, - -, Y,] be an ab-
solutely irreducible polynomial. If the general solution of an algebraic
differential equation F(x;y,y, - +-,y™) =0 depends rationally on the
initial conditions, then any solution with general initial conditions is
obtained from R by a finite iteration of the permissible operations (O),
P1), ---, (P5).

Theorems (29) and (30) clarify Corollary (4.6) in [U1] and the same
clarification should be done for Theorem (3.21) in [U1l]. More generally
we can prove

THEOREM (31). Let R be a differential ring of holomorphic functions on
a domain D C C and F(x; Yy, Yy, - -+, Y,) € R{Y} be an absolutely irreducible
polynomial. If the general solution of an algebraic differential equation
F(x;y,y, -, y™) = 0 depends algebraically on the initial conditions, then
any solution with general initial conditions is obtained from R by a finite
iteration of the permissible operations (0), (P1), - - -, (P5).

We reduce this theorem to Theorem (29). We can find an idea of
the reduction in the Legons de Stockholm. Nishioka [N2] formulated
the idea in an algebraic context and made it transparent. We complete
his result to make its application easy. In fact we prove the theorem
in [N2] under a weaker assumption and moreover our proof is simpler.
However we are inspired by [P] and [NZ2].
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DerFinITION (32.1) ([N2], [K2]). A multi-index is an infinite sequence
J = (jo, J1, js, - - -) of non-negative integers j, (n € N) such that the j,’s
are equal to 0 except for a finite number. Let I = (i,) and J = (j,) be
two multi-indices. We say that the index I is lower than the index J
or the index J is higher than the index I if there exists an integer m
with i, <j. and i, =j, for n > m. Let M be a differential field and
M{Y} be a differential polynomial ring. Let A e M{Y}. Then A can be
written in the form >, a,Y’, where we denote by Y’ a monomial [[;_, Yi»
and J runs through the set of the multi-indices and the a,’s are equal
to 0 except for finite indices.

The rank of the non-zero differential polynomial A(Y) = >,a,Y’ is
the highest multi-index J such that a, = C.

Let ND M be an extension of the differential field M and ye N. If
tr. d. [M{y>: M] is finite (M{y) denotes a differential subfield of N
generated by y over M), then there exists a non-zero differential poly-
nomial A(Y) such that A(y) = 0. Among such polynomials, there exists
one A(Y)=>,a,Y’ which is of minimal rank. This polynomial is
unique up to multiplication by an element of K and hence is uniquely
determined under the additional assumption A; = 1 for the highest multi-
index I.

DEFINITION (32.2). We call this unique polynomial the minimal poly-
nomial of y over M. Let C be the field of the constants of M{y). We
call the minimal polynomial of y over MC the characteristic polynomial
of y over M and denote it by Ch(y; M), where MC is a differential field
generated by M and C.

LemmA (33). Let M{y> DO M’ D M be a differential intermediate field.
Then the following conditions are equivalent.

1) M=M.

(2) The minimal polynomial of y over M’ coincides with the minimal
polynomial of y over M.

Proof. We must show that the condition (2) implies (1). Let F'(Y,,

Y, -, Y, with 8F’[3Y, #+ 0 be the minimal polynomial of y over M’
and F(Y,, Y;, - -, Y,) with 9F/3Y, + 0 be the minimal polynomial of y over
M. If F = F’, then since m = tr.d. [M{y)>; M] = tr.d. [M'{y>; M'] and
n = tr.d. [M{y)>; M], the assumption implies that m = n and that y, y’,
-+, y®"" are transcendental over M’ and y™ is algebraic over M(y,
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Yo ) M(y, v - ) S MUy, Y - ) S My, Y, ).
Therefore M'(y,y, --,y" V) is algebraic over M(y,y, --.,y*?), since
¥, ¥, -+, y" Y is transcendental. As F(y,y, ---,y" ", Y™) and F'(y, v,
<o,y YY) are respectively the minimal polynomials of y™ over
M(y,y', - -, y®D) and M'(y,y, ---,y" "), we conclude M(y, y, ---,y" ™)
=M(y,y, -, y" 7). Hence M = M.

Let L D K be a differential field extension. We assume that the field
extension L D K is differentially generated by a simple element y over
K; L = K{y) (cf. [K2], Chap. §8, Proposition 9). Let M O K be an differ-
ential field extension. We have a diagram.

QLR M) =LM
L — l
| M
K —
We identify L and M with subfields in Q(L ®, M). In this situation, we
denote the characteristic polynomial Ch(y; M) by Ch(y; M/K).

LEMMA (34). We have an inequality:
rank of Ch(y; K) > rank of Ch(y; M/K).

Proof. The assertion follows from the inclusion KC {Y} C MC,,{Y}
and the definition.

CoRroLLARY (35). There exists among differential field extension of K
an extension M O K such that the rank of Ch(y; M/K) is minimal.

As we see below, the field M D K giving the minimal rank is not
unique but the characteristic polynomial Ch(y; M/K) is uniquely deter-
mined.

LEMMA (36). Let M, D M, D K be differential field extensions such that
the rank of Ch(y; M,/K) is minimal. Then Ch(y; M,/K) = Ch(y; M,/K).
Here we identify QL ®x M,) with a subfield of QL &x M, and hence
QUL Qx M)Y} with a subring of QUL ®x M){Y} by the inclusion M, C M,.

Proof. The characteristic polynomial Ch(y; M,/K)[Y]e M,C,,{Y}C
M,C. {Y} satisfies Ch(y; M,/K)(y) = 0. It follows from the definition of
the minimal polynomial Ch(y; M,/K), rank of Ch(y; M,/K) < rank of
Ch(y; M,/K). By the minimality of the rank of Ch(y; M,/K), we have
rank of Ch(y; M,/K) < rank of Ch(y; M,/K). Therefore the rank of
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Ch(y; M,/K) is equal to the rank of Ch(y; M,/K). Since the minimal
polynomial is unique, we have Ch(y; M,/K) = Ch(y; M,/K).

CoroLLARY (37). The characteristic polynomial Ch(y; M/K) of minimal
rank is uniquely determined and independent of the field M O K.

DErFiNITION (38). We call the characteristic polynomial in the corol-
lary the absolute characteristic polynomial of ¥ over K and denote it by
CH(y/K).

The absolute characteristic polynomial CH(y/K) is a polynomial with
coefficients in Q(L ®, M) for suitable differential field extension M D K.

PropositioN (39). The coefficients of the absolute characteristic poly-
nomial CH(y/K) are in L.

Proof. First we assume that K is algebraically closed. Let M D K
be a differential field extension such that Ch(y; M/K) is the absolute
characteristic polynomial CH(y/K). We have two isomorphisms #; and i,
of M into MR, M C QMR M); i(a) =a®1, iya) =1RQa for aec M.
Therefore we have two isomorphisms of LM to L ,( MRS ; M) =
(L ®x M)®,(L®x M) which induces two isomorphisms j;, and j,: QL & M)
> QUL MO, QLI M) C QULO M)®(LBxM)) = QLOx (M5 M));
Ji@) =a®1, jla) =1Q®a for ac QLR M). We have a commutative
diagram:

QLOM) 1 QL M) ®, QLR M) C QL ®x QUL M)

M QU®, M)

for I =1, 2. The polynomials CH’(y/K) for [ =1, 2 are characteristic
polynomials by Lemma (36). Therefore CH’'(y/K) = CH”>(y/M). Namely
let a; e QUL®x M) be a coefficient of CH(y/K). Then j(a,) = ja,;) in
QL M)R, QLR M). It follows from Sublemma (25.5) that a, is in
L. Now assume that K is not necessarily algebraically closed. Let K
be an algebraic closure of K. It follows from what we have proved
CH(y/K) = CH(y/K) is in QL ®; K){Y}. As in the definition of CH(y/K)
only a finite number of elements are involved, we may assume that there
exists a finite algebraic extension M D K such that CH(y/K) = Ch(y;
M|K). We may further assume that the extension M DO K is Galois with
Galois group G. Therefore L ®,; M which is a field, is Galois over L
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with Galois group G.

| G M

K alois

Let g: M — M be a K-automorphism. By the unicity of the minimal
polynomial Ch(y; M/K) is G-invariant or CH(y/K) = Ch(y; M/K) is in
L.

ExampPLE (40). We can reformulate the definition of rational depend-
ence and algebraic dependence in terms of characteristic polynomial. The
extension L = K{y) D K depends rationally (resp. algebraically) on the
initial conditions if and only if the rank of the absolute characteristic
polynomial CH(y/K) is equal to (1,0, - --) (resp. lower than (0, 1,0, ---)).

LemMmA (41) ([N1], Proposition)). Let K C L be a differential field
extension, which is regular and F,, F, C L be differential subfields contain-
ing K. We assume that the fields F, and F, depends rationally on the
initial conditions. Then the field F generated by F, and F, depends
rationally on the initial conditions.

Proof. First we assume that K is algebraically closed. There exists
differential field extensions M; and M, of K such that Q(F,&y M,) is
generated over M, by constants and such that Q(F, ®x M,) is generated
over M, by constants. Let M = Q(M,Q®;M,;). Then QF,Q,M) =
QQF;®x M,) ®y, M) is generated over M by constants since Q(F; ®x M)
is generated over M, by constants (i = 1,2). Hence Q(F.,F,®;M) =
QF,®x M)Q(F,®; M) (C QL ®x M)) is generated over M by constants.
Now we treat the general case where K is not necessarily algebraically
closed. Let K be an algebraic closure of K. Then we can apply the
argument above for QL®; K) D Q(F,®x K), Q(F,®, K) D K. The dif-
ferential fields Q(F; ®x K) and Q(F, ®, K) depend rationally on the initial
conditions. Since Q(F, ®x K)Q(F,®, K) = Q(F\F,®x K), F\F, = F depends
rationally on the initial conditions.

THEOREM (42). There exists a differential intermediate field L = K{y)
D F D K satisfying the following conditions.
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(1) The extension F D K depends rationally on the initial conditions.

(2) The minimal polynomial of y over F coincides with the absolute
characteristic polynomial CH(y/K).

(8) Let L > ND K be a differential intermediate field such that the
extension N D K depends rationally on the initial conditions. Then N is
a subfield of F.

The differential field F is characterized by the conditions (1) and (2).
F is also characterized by the condition (3).

Proof. Let M D K be a differential field extension such that the
characteristic polynomial Ch(y; M/K) gives the absolute characteristic
polynomial CH(y/K).

QL ®x M) = M{y)
L= Ky — A’JCW
1

zl? — M

By Proposition (39), the coefficients of CH(y/K) is in L. Let F be a
differential subfield of L generated over K by the coefficients of CH(y/K).
QF ®x M) is isomorphic to FM in MC,,,, and hence FM = MCy,; FM is
generated over M by constants by Proposition (12). It follows from Lemma
33), MCy, = FM. Since CH(y/K) is the minimal polynomial of y over
FM and since CH(y/K) is in L{Y}, CH(y/K) is the minimal polynomial
of y over F. The assertions (1) and (2) are proved. Let L D ND K be
an intermediate differential field which depends rationally on the initial
conditions. Let us assume that N is not contained in F. Then L D FN
= F’ 2 F D K and the extension F’ D K depends rationally on the initial
conditions by Lemma (41). It follows from Lemma (34) there exists a
differential field extension M O K such that Ch(y; M/K) = CH(y/K) and
such that QF' ®x M) = F'M(Cyexm) is generated over M by constants.
It follows from Lemma (33) and the definition of CH(y/K), the inclusion
QFQxM)=FMCF'M= QF'®M) should be an equality. Hence
F = F’, which is a contradiction and NN should be a subfield of F.
Now we are able to prove Theorem (31).

Proof of Theorem (31). Let y = y(x,; 2; x) be the general solution in
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the usual analytic sense and let K be a differential field generated over
Cby R. Let L =K{y)>D K. It follows from Example (40) that the rank
of CH(y/K) is lower than (0,1,0, ---). By Theorem (42), we can find a
differential subfield K € M C L such that the extension M D K depends
rationally on the initial conditions and such that L is algebraic over M.
We may assume that K D Q(x) with x’ = 1 and then it follows from [K2],
Chap. II, § 8, Proposition 9 that M = K{w) for an appropriate element
w e M and there exists a differential polynomial G(W)e K{W} such that
M{w) is a generic solution of a differential equation G(w) = 0. Since
a solution of F = 0 with general initial conditions is algebraic over a
differential field generated over K by a solution of G = 0 with general
initial conditions, it is obtained from K by a finite iteration of the per-
missible operations (0O), (P1), (P2), - - -, (P5) by Theorem (29).

CoROLLARY (42.1). Let L D K be a differential field extension which
is regular and finitely generated as an abstract field extension. Then there
exists an intermediate differential field L D N D K satisfying the following
conditions.

(1) The extension N D K depends rationally on the initial conditions.

(i) Let L D M D K be a differential intermediate field such that the
extension M D K depends rationally on the initial conditions. Then M is
a subfield of N.

Proof. Let x be a variable over K and ## = K(x) which is a differ-
ential over-field of K if we define d(x) = 1. Let ¥ = Q(L &, K(x)). Then
by [K2], Chap. II, §8, Proposition 9, & is generated over 2 by a single
element: & = #(y>. We can apply Theorem (43): namely there exists
a differential intermediate field ¥ D 4" D & which depends rationally on
the initial conditions and which is maximum among such subfields. Since
the subfield .#° is unique, by the descent theory we can find a interme-
diate field L D N O K such that QIN®y H#) = A4 (cf. Weil [W], Theorem
4).
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Since LN A4 = N, N is a differential subfield of L. The extension N D K
depends rationally on the initial conditions since the extension A4 D X
has this property. The intermediate field L D N O K satisfies the condi-
tion (ii) for the same reason as above.

For the geometric meaning of the intermediate field M see Proposi-
tion (49) in § 3.

Remark (42.2). By Corollary (42.1), we can generalize Theorem (31)
to a differential system.

§ 3. Criterion of irreducibility for a second order differential
equation free from moving singular points

Let R be a C-algebra of holomorphic functions on a domain D C C.
Let F(Y, Y.) eR[Y, Y] be an absolutely irreducible polynomial. We
introduced the fibration p: X — D in §1. Replacing D by a subdomain
if necessary, we may assume that the fibres of p are irreducible and
0F[0Y, is not constantly equal to 0 on any fibre of p ([Ul]). For an
algebraic differential equation F(y, y’) = 0, we can speak of fixed singular
points, the singular points (branch points and transcendental singular
points) of a solution y(x,, Z, x) independent of the initial conditions Z at
a fixed general point x,. Other singular points of y(x,, Z, x) depending
on the initial conditions Z are not easy to describe. It is known that
these singular points are branch points. We have the following classical
theorem (cf. [F], Chap. IX and [M1]).

THEOREM (43). The following conditions are equivalent.

(1) F(x;y,y) = 0 is free from movable branch poinis.

(2) For any point x,c D different from the fixed singular points, there
exists a dense open set V of U= {zeX, |0F[oYi(x, 2) #+ 0} and a sub-
domain x, € Dy C D such that the function y(x,; z; x) in (2, x) is meromorphic
on V X D,.

(8) There exist a point x,€ D different from the fixed singular points
and a dense open set V of U = {ze X, |0F/0Y\(x, 2) #+ 0} and a subdomain
x,€ Dy C D such that the function y(x,;z;x) in (2, x) is meromorphic on
V X D,.

(4) The general solution y(x,;z;x) of F =0 depends rationally on
the initial conditions.

(6) Let K be a differential field of meromorphic functions generated
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by R and X be the non-singular projective model of the algebraic function
field QK[Y,, Y,J/F(Y,, Y)(Y,, Y1) of one variable over K. Then for any
point p € X, the local ring @, is closed under the derivation 4.

For the second order algebraic differential equation the structure of
singular points is more complicated. There are equations free from
movable singular points whose general solution does not depend rationally
on the initial conditions. Moreover there may be movable transcendental
singular points. Let F(Y,, Y;, Y,) € R[Y,, Y;, Y;] be an absolutely irreducible
polynomial. What the classical authors were looking for is the algebraic
differential equation of second order satisfying the following condition.

ConpiTioNs (44). There exist a dense open set D of D satisfying the
following the conditions.

(1) For any point x,e€l’, X, is reduced and irreducible and
0F/[aY,(x,; 2) is not constantly equal to 0 on X, .

(2) For any point 2 points x,, x, € D’ and for any path I" in D’ the
correspondence z — (¥(x;; 2; %), ¥ (x:; 2; %). ¥'(x,; 2; x,)) induced by the
analytic continuation along I" defines a biholomorphic map between dense
open sets for the usual topology of X, and X,,.

ExampPLE (45). The first differential equation of Painlevé satisfies
the conditions (44). In fact it is proved in Painlevé: Mémoire sur les
équations différentielles dont I'intégrale général est uniforme, vol. 3, [P]
that we can take (in the conditions (44)) C for I and any point of C
for x, (see also pp. 346-351 of [I]). Okamoto [O] clarified this fact in the
modern langulage of foliation.

DerINITION (46). Let L = K{y)> D K be a differential field extension
with tr.d. [L: K] = 2. If the rank of the absolute characteristic poly-
nomial CH(y/K) is lower than (0,0,1,0,---) (j, =0 except for n =2
and j, = 1), we say that the extension L D K depends semi-transcenden-
tally on the initial conditions. If the rank of the absolute characteristic
polynomial CH(y/K) is higher than or equal to (0,0,1,0,--:) (j,=0
except for n = 2 and j, = 1), we say that the extension L D K depends
essentially transcendentally on the initial conditions.

It follows from Theorem (42) that L D K depends semi-transcenden-
tally on the initial conditions if and only if there exists an intermediate
differential field L O F D K such that tr.d. [L: F] <1 and such that the
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extension F' DO K depends rationally on the initial conditions. Hence the
definition that L D K depends semi-transcendentally on the initial con-
ditions is independent of the particular generator y over K.

Let us study the differential equation (6) in §1. Let R be a ring
of holomorphic functions on a domain D such that F(Y,, Y,  ---,Y,)¢€
R[Y, Y, ---,Y,]. Let us assume that R is a C-algebra of finite type.
We are interested in the case n = 2 with 0F/3Y, =+ 0.

47 F(x;9,5,5") = 0.

Hence for the general solution y of (47), we have tr.d. [K{y): K] = 2,
where K is the differential field generated by R.

DEFINITION (48). Let y = y(x,; 2; x) be the general solution of (47).
If the extension K{y) D K depends semi-transcendentally (resp. essentially
transcendentally) on the initial conditions, we say that the general solu-
tion of (47) depends semi-transcendentally (resp. essentially transcenden-
tally) on the initial conditions.

Remarks (48.1). Let L = K{(y) and JDO K be a differential field
extensions with tr.d. [L: K] = 2. Then the extension L D K depends semi-
transcendentally (resp. essentially transcendentally) on the initial condi-
tions if and only if the extension Q(L ®;<J) D J has the same property
as L D K (cf. Remarks (11.1) and (20.1)).

(48.2) By Theorem (42), the general solution y of (47) depends semi-
transcendentally on the initial conditions if and only if there exists an
intermediate differential field K{y) D N D K such that tr.d. [N: K] > 1
and such that N D K depends rationally on the initial conditions. Geo-
metrically, this is equivalent to saying that the transformation between
two initial conditions or two fibres of p: X — D induced by solutions as
explained in the sentence following Definition (7), maps a non-constant
rational function on a fibre of p to a (non-constant) algebraic function
on the other fibre, which is the original intuitive definition introduced
by Painlevé and from which the word semi-transcendental is motivated
(see Proposition (49) below). We notice that his definition is different
from ours. According to our Definition (48), if the general solution
depends algebraically on the initial conditions, then it depends semi-
transcendentally on the initial conditions, whereas Painlevé excludes this
type of equations from the definition of semi-transcendental dependence.
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The following Proposition explains the geometric meaning of the
semi-transcendental dependence on the initial conditions.

PrOPOSITION (49). We assume that the ring R is of finite type over C.
The following conditions for the differential equation (47) are equivalent.

(i) The general solution depends semi-transcendentally on the initial
conditions.

(ii) For a general point x,€ D, there exist a C-algebra R’ containing
R and of finite type over C consisting of holomorphic functions on a sub-
domain x, € D" and an algebraic subvariety & C X, X Zp = (X, ®c R') X
(Z ®g R) such that (0) y(x,; z; x) is regular for (z,x)e VX D' (where V
is an appropriate open set of U = {z€ X, |0F[0Y"(x,; 2) # 0)}, (1) (2; ¥(x0; 2;
x), ¥ (% 2;%), Y'(x;2;%) is in Z|D for (2,x)e VX D' and such that
(2) the dimension of the generic fibre of % — Spec R’ is at most 3 (cf. §1,
(6.0)).

Proof. We content ourselves with giving an outline of the proof
since the proof is done in the same spirit as in the proof of the equi-
valence of 2 definitions of rational dependence on the initial conditions
(cf. §1). Let K be the differential field generated over C by R. If the
condition (i) is satisfied, then there exists a differential field extension
M S K such that tr.d. [Coepeen: Cxl > 1, where y denotes the general
solution y(x,; z; x). The argument in §1 allows us to assume that M
consists of meromorphic functions over a subdomain IV of D. Now we
can identify K{y>®, M with a ring of meromorphic functions over
D’ x V for an open set V of X,. Since tr.d. [Coueerm: Cxl = 1, there
exists a constant 0 # ce K{y) ®x M = M{y) which is transcendental
over M. Let ¢ = A/B(y,y,y"’) with A, Be M[y,y’,y”]. Then the argu-
ment of §1 shows that perhaps changing the reference point x, we may
assume c¢ = C/D(z, 2, z;) with C, D e M|z, z,, z,]. This shows that tr.d.
[M(y.y',y", 20, 2, 2z): M]< 3. Since there involved only finitely many
elements, we can find a ring R’ satisfying the condition (ii). Conversely
now let us assume that the condition (ii) is satisfied. Then there exists
a differential field M of meromorphic functions over a subdomain I such
that tr.d. [M(y, ¥,y 2, 21, 25): M] < 3. If tr.d. [Cug,pren: Cul =0, then
Cuw.yyn = Cy = C. By [K2] Chap. II, 1, Corollary 1 M(y, ', y”, 2, 2, 22)
~ M(y,y,y") ®:;C(z, 21, 2,) and hence tr.d. [M(y,y,y”, 2,21, 2): M] = 4.
Therefore tr.d. [Cyy.p,ym: Cu] > 1 and the condition (1) is satisfied.
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The same argument proves the following generalization of Proposition
(49) which explains the geometric meaning of the intermediate differential
field of Theorem (42).

ProposrTiON (49.1). Let K be the quotient differential field of R and
LD K be a generic solution of (6) over K (hence L D K is K-isomorphic
to K{y(x,; z; x)) for a general point x,). Let L D M D K be the intermediate
differential field of Theorem (42). Then the following conditions are equi-
valent.

(i) tr.d. [M: K] =d.

(ii) For a general point x, there exist a C-algebra R’ containing R
and of finite type over C consisting of holomorphic functions on a sub-
domain x,€ D’ and an algebraic subvariety & C X, X & = (X,,®c¢R') Xz
(Z ®r R) such that (1) (z; y(x,; 2; %), Y (%03 2; x), -+ -, ¥y™(%,; 2; X)) is in £ for
(2, x) € VX D' (where V is an appropriate open set of U=z € X, |0F[0Y " (x,; 2)
+ 0}) and (2) the dimension of the generic fibre of % — Spec R’ is equal to
2n — d. If there exist an algebra R” containing R and of finite type over
C consisting of holomorphic functions on a subdomain x,€D” and an
algebraic subvariety ' CX, X Z ® R’ = (X,,®cR") X 2 (% ®r R") such that
(D (25 5(x; 205 %), ¥'(%x; 205 %), -+ -, y™(x; 205 %)) is in &' for (z2,x)e V' X D"
(where V' is an appropriate open set of U= {ze X, |oF/dY "™ (x,; 2) # 0}),
then the dimension of the generic fibre of &’ — Spec R” is at least 2n — d.

We can also prove the same result for not necessarily simple exten-
sions but we do not touch here the proof since it is the same.

THEOREM (50). Let K, be a differential field of meromorphic functions
on a domain D which is differentially finitely generated over Q (hence the
field K, consists of denumerable number of elements). Let K be a differ-
ential field generated by K, over C. We assume that the coefficients of
the differential equation (47) are in K, If the differential equation (47)
satisfies the conditions (44), then the following conditions are equivalent.

(1) Any holomorphic solution of F = 0 with general initial conditions
at a general point is obtained from K by a finite iteration of the permissible
operations (0), (P1), (P2), - - -, (P6).

(1) Let y be a holomorphic solution on a subdomain of D such that
tr.d. [KLy); K] = 2: namely y is a generic solution of F =0 over K,
Then y is obtained from K, by a finite iteration of the permissible opera-
tions (0), (P1), (P2), - .-, (P6).
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(2) Any holomorphic solution of F =0 with a general initial condi-
tions at a general point is obtained from K by a finite iteration of the
permissible operations (0), (P1), (P2), ---, (P5).

(2") Let y be a holomorphic solution on a subdomain of D such that
tr.d. [K{y>: K,] = 2: namely vy is a generic solution of F =0 over K,.
Then y is obtained from K, by a finite iteration of the permissible opera-
tions (0), (P1), (P2), - - -, (P5).

(8) The general solution y(x,; z; x) of F = 0 depends semi-transcend-
entally on the initial conditions.

Proof. Let us show that the condition (1) implies (1). In fact let
%, € D be a general point and let y(x,; z; x) be the general solution. Let
R, = {fe K,|f is regular at x,} and m, = {f € Ry|f(x;) = 0}. Then a subset
Ry/m, C C is countable. Therefore we can find a C-valued point Z of a
Zariski open set of X, such that y(x,; Z; x) and y'(%,; Z; x) are algebraically
independent over R,/m, This implies that y(x,; Z; x) and y'(x,; Z; x) are
algebraically independent over K,, Hence we can find a generic solution
y(xy; Z; x) of F = 0 over K, which is obtained from K by a finite iteration
of the permissible operations (0), (P1), (P2), - --, (P6). Then y(x;Z; x) is
a generic solution of F =0 over K, Since the extension K D K, is
generated by constants and hence each element of K is obtained from
K, by finite iteration of the permissible operations (P1) and (P3) and since
Y(xy; Z; x) 1s obtained from K by a finite iteration of the permissible
operations (0), (P1), (P2), - - -, (P6), therefore y(x,;Z;x) is obtained from
K, by a finite iteration of the permissible operations (O), (P1), (P2), ---,
(P6). Since any generic solution of F = 0 over K, determines a differ-
ential field extension of K, isomorphic to K, {y(x,; Z; x)) D K,, the condi-
tion (1’) is satisfied. The same argument shows that the condition (2)
implies (2). The condition (2) implies (1) since in (1) we have one more
permissible operations. For the same reason the condition (2’) implies
(1). Let us show that the condition (3) implies (2). Let us assume the
condition (3). If the condition (3) is satisfied, then by Theorem (42) there
exists a differential intermediate field K C M C L = K{y(x,; z; x)) such
that the extension M DO K depends rationally on the initial conditions
and such that the rank of the minimal polynomial of y over M is lower
than (0,0, 1,0, - --) or equivalently tr.d. [M{y): M] <1. We may assume
tr.d. [M{yY: M] =1. For otherwise, the condition (3) implies (2) by
Theorem (31). Namely we may assume that y satisfies an algebraic dif-
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ferential equation G(y,y’) = 0 with coefficients in M such that G(Y) is
the absolute characteristic polynomial of y. The differential field M is
generated over K by the coefficients of G. By [K2], Chap. II, §8, Proposi-
tion 9, the differential field M is generated over K by a single element
u; M = k{u) (notice that we may assume C(x) C K so that the condition
of the proposition in [K2] is satisfied). Therefore by Theorem (30) there
exists a differential field N whose elements are obtained from K by a
finite iteration of the permissible operations (0), (P1), (P2), - ., (P5) such
that QM ®x N) is generated over N by constants c,, ¢, * -, Cp.

K<y> = — Q(L®'KN) = N<y)

|
MN
M — |

| _—
K N

Then y = y(x,; 2; x) is a generic solution of G = 0 over MN by definition.
The differential equation G = 0 is parametrized by ¢, ¢, -+, Cn; G =
G(ey, ¢y -y Cn3 %3 Y; Y)., We may assume by Theorem (29) that there
exist a subdomain D, C I’ and a dense open set V C {z¢€ X, |0F/3Y, + 0}
such that the elements of N are meromorphic on D, and such that N{y)
and hence K(y) are in the field of the meromorphic functions on V X D,.
We noticed there that the choice of D, is free. By [K2], Chap. II, §1,
Corollary 1, we have MN = Q(Cle;, ¢, « - -, ] ®c N). Let Z = Spec Clc,,
Cy -+, Cn]l. Let ¥ be the complete non-singular model of the algebraic
function field LN of one variable over MN. The N-algebraic variety
Z @ N parametrizes the extensions of NN or curves whose generic fibre
is ¥"|MN. There exists an N-algebraic variety ¥", smooth and projective
over a Zariski open set Z, of Z&® N = Spec N[c,, ¢;, - -+, ¢,] such that
v"|MN 1is the generic fibre of ¥")/Z,, Let us denote the N-morphism 7,
—Zy by f. Let x, be a general point of D, so that the coefficients of
the rational map f: 7", >z, is regular at x; and so that we have a
dominant C-morphism f’: " = ¥, —Z by reduction at x, of f. Since
¥ is C-birational to X,,, we have a dominant C-rational map h: X,; > Z.
It follows from Condition (44) y(x,; z; x) = ¥(x}; z; x) and there exists a
dense open set V' C X,, such that the rational map A is regular on V’
and such that the function y(X};2z’;x) in (2, x) is regular on V'’ X D,.
Since A is dominant, A(V’) contains a dense open set Z of Z for the usual
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topology. If d = (di, ds, - - -, d,) € Z is in Z, then the differential equation
G(d, dy, -+ -, dy,; x;y,Y) = 0 whose coefficients are in N, satisfies the con-
dition (3) of Theorem (43) for the reference point x, since y(xj; 2’; x) with
2 e V', h(z’) = d is the general solution of G(d; x;y,y’) = 0. Therefore
the condition (4) of Theorem (43) is satisfied for G(d;x;y,y’) =0 and
hence any solution of G(d; x;y,y’) = 0 with general initial conditions at
x4 is obtained from N by a finite iteration of the permissible operations
(0), (P1), (P2), ---, (P5) by Theorem (30). Since the field N is constructed

by finite iterations of the permissible operations (O), (P1), (P2), ---, (P5)
from K by Theorem (30), The condition (2) of the theorem is thus satis-
fied.

It remains to show that the condition (1’) implies the condition (3).
The field K, consists of countably many elements. As we have seen at
the begining of the proof, we can find a solution y(x) with general initial
condition at x, such that tr.d. [K{(y(x)>; K,] = 2. It follows from the
condition (1’) and Theorems (2) and (3) that we can find a chain of dif-
ferential fields

K=M,cMc...cM, with y = y(x) e M,,,

which are differential subfields of the field of the meromorphic functions
over a subdomain of D such that the field M, is finitely generated over
M,_, and such that the extension M; D M,_, satisfies one of the following
conditions for 1 <i < m;

(50.1) tr.d. [M;: M,.,] =1 and M, = M,_(z,) for an appropriate
element z, e M,;

(50.2) There exists an algebraic group G; defined over C and a M;-
valued point z; of G;®c M, such that M, ,(z;,) = M, and 1d(z;) €3, Qc M,
lies in g, ®; M,_,, where g, is the Lie algebra of G,.

The first case occurs in the operation (P6) and the second case appears
in the other operations by Theorem (2). We can do this starting from
the smaller field K,, Namely we can find a chain of differential fields
K,c K, c.--- cK, with y(x) e K, which are differential subfields of the
field of the meromorphic functions over a subdomain of D such that the
field K, is finitely generated over K,_, and such that the extension K; D
K,_, satisfies one of the following conditions;

(51.1) K, is generated over K,_, by constants;

(51ii) tr.d.[K;: K;.,] =1 and K, = K,_{(z;) for an appropriate ele-
ment 2z, € K;;
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(51.1i1)) There exist an algebraic group H, defined over the field of
the constants C,_, of K, , and a K;-valued point z; of H;, , ®.,_, K, , such
that K, (z;) = K, and 16(z;) € h; ®¢, K, lies in §, ®,,_, K;_1, where ), is the
Lie algebra of H,.

(62) Let us assume first that there is an index i such that tr.d.
[Ki-iy); Kioi]l =2 and tr.d. [K{y): K;] = 0. Since tr.d.[K,_,{y): K]
= 2, y is a generic solution of F =0 over K, , by [K2], Chap. IV, §14,
Theorem 5; K, {y) = K, ,{Y}/p(F) where p(F) is the differential ideal of
the general solution of F = 0 over K,_,.

K y)
K, _y)

IS

-1

(53)

Subcase (54). The extension K; D K,_, is of type (51.i).

If it is of type (51.i), putting r = tr.d.[K,: K,_,] we have tr.d.[C;,:
Cx,.. ] = r and tr.d. [Cx,wy: Cx.] < tr.d. [Ki{y(x))>: K;] = 0 by [K2] Chap.
II, §1, Corollary 1. Hence tr.d.[Ck,,@y: Cx,_,] = r. Similarly we have
tr.d. [K{y{(x)>: K,_;] = r. Therefore tr.d. [Cx,_¢y5: Crxi_id = t0.d. [Criyiays:
Ci,_.] —tr. d. [Criymny: Criocwanl = tr.d. [Criyimy: Cr,_d — tr.d. [K{y(x)):
K, (y(x)>] by [K2], Chap. II, §1, Corollary 1. tr.d. [Cx,ywp: Cx._,]
— tr.d. [KLy(%): Kioy(@))] = r — tr.d. [K{p(x)): K. (y(x))] = tr.d.
[K(y(x)>: Kioi] — tr. d. [K{y(x)): K (y(x))] = tr.d. [K;_(y(x)): K] = 2.
Therefore 2 = tr.d. [K,_{y(%)): K;_;] > tr.d. [Ck,_ .y’ Ck,_,] > 2 and hence

(55) tr. d. [CK'x—l(’.ll(l‘)): CKi—l] = 2 .

We can find a subdomain IV of D such that K, , C K(D'). By [KZ2],
Chap. IV, § 14, Theorem 5, we have K,_{y(x)) =~ Q(K,_,{Y}/p(F)) and hence
QK- {y(x)) ®x,_, K(D)) = K(D){Y}/B(F), where p(F) (resp. B(F)) is the
prime differential ideal of the general solutions of F = 0 in K,{Y} (resp.
in K(D'){Y}). Since the rank of the minimal polynomial of y(x) over
K :Cxi vy <(0,1,0, --+) by (55), the general solution of F = 0 depends
algebraically on the initial conditions and the condition (3) is satisfied
since y(x) is a generic solution F = 0 over K,_, (cf. Remark (48.1)).

Subcase (56). The extension K; D K;_, is of type (51.iii).
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Replacing K,_, by its algebraic closure in K,{(y(x)>, we may assume
that the extension K,{(y(x)> D K,_; is regular. Tensoring K, over K,_,
with (53), we get

Q(Kz<y(x)> Oriy K,
QK y(x)) ®K,;_1K72) /

57
D /Q(Kz ®x,_, K1)

K,

Since Q(K,; ®x,_, K,;) is generated over ¢,(K,), which we denote also by K,,
by constants by Proposition (5) (¢,: K, — K;®y,_, K, being defined by
¢(@) = 1®a). Since tr.d. [QK; {y(x)) Rk, Ki): Ki] =2, QK;_.{y(x))
®k,.,K:)) D K, is a generic solution of F =0 over K; and we conclude
as in the above case that the general solution of F = 0 depends alge-
braically on the initial conditions. Under the assumption (52), we have
tr.d. [K;: K;_;] > 2 and hence an extension of type (51.i1) does not appear.
Thus the case (52) is finished.

(58) Let us now assume that there exists an index i such that
tr.d. [K;_ {¥(x)>: K;,,] =2 and tr.d. [K,{¥(x))>: K] = 1.

Subcase (59). The extension K; D K,_, is of type (51.i).

Let us put r =tr.d.[K,;: K,_,]. Since tr.d.[K,{(¥(x))>: K, {{y(x)>] =
tr.d. [K{y(x)>: K;_,] — tr.d. [K,_{y(x)): K,_,] = (tr.d. [K{y(x)): K] + tr.d.
[K;:K;,.\]) —2=r—1. It follows from [K2], Chap. II, § 1, Corollary 1,
tr. d. [Cricvwry: Criwiap) <7 — 1o As tr.d. [Croyayy: Crioyd = tr.d.[Cy,: Cr,_\]
=71, tr.d. [Cx, .y’ Crid = tr.d. [Crxoiymry: Crii] — tr.d [Crityary: Criscvion)
>r —(r—1) > 1. Therefore the characteristic polynomial of y(x) is
lower than (0,0,1,0, ---). Since tr.d. [K,_{y(x)>: K;_,] = 2, ¥(x) is a gen-
eric solution of FF =0 over K,_,. Therefore the rank of the absolute
minimal polynomial of the general solution y(x,; z; x) is lower than (0, 0,
1,0, ---) and the condition (3) is satisfied (cf. Remark (20.1)).

Subcase (60). The extension K; D K,_, is of type (51.iii).

Replacing K,_, by its algebraic closure in K;, we may assume that
the extension K, D K,_, is regular. Tensoring K, over K, , with (53), we
get (57). Since Q(K,;®y,_,K,;) is generated over ¢,(K,) by constants by
Proposition (5) (¢,: K, > K, ®y,_, K, being defined by ¢)a) =1®a for
a € K;), we conclude as in subcase (59) that the general solution y(x,; z; x)
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depends semi-transcendentally on the initial conditions.

Subcase (61). The extension K, D K,_; is of type (51.ii). As in the
preceding case (60), we may assume that K, , is algebraically closed in
K,{y(x)> so that the extension K,{(y(x)) D K,_, is regular. Replacing D
by a subdomain if necessary, we may further assume that K, , C K(D).
Let us put K,_, = o, K,_{(yx)> = A, K; =5, and K{y(x)) = KA, to
simplify the notation. Since tr.d.[),;: #] =1, tr.d.[F,: 4] =1 and
since tr.d. [F,: A7] = 2, hence tr.d. [F,: o] = tr.d. [, A7) — tr. d. [F,:
H)=tr.d. [ )+ tr.d. [ ] —2=0. Namely ¢, is algebraic
over X ,. Let X7 be the Galois closure of %, D X%, We denote by G
the Galois group of XD X,. We show that the extension %', D ¢,
depends algebraically on the initial conditions. Since tr.d. [ ,: #)] = 2,
the extension %, D ", is a generic solution of F = 0 over 2", and hence
the differential field ¢, is isomorphic to &£, = & {y(%; z; x)) over X1,
where y(x,; z; x) is the general solution of F = 0 (x, being a general point
of D). It follows from the hypothesis that there exists a dense open set
V of U= {zeX,|0F/aYx,;2) + 0} C X, = {ze C*|F(x,; 2) = 0} such that
¥(x,; 2; x) is meromorphic on D X V. Therefore we can find an extension
L4 of &, consisting of meromorphic functions on a finite ramified cover-
ing g: W— D X V such that the extension %, D %, is isomorphic to the
extension X4 D A,. Let &, be the differential subfield of %, which cor-
responds to &, Since tr.d.[¥%,: #] =1, we may assume %, = X ,(h)
for an appropriate element h e .%,. As he %, is a meromorphic function
on W, we may write A = h(x,; 2; x). Since tr.d.[¥%;: X|] = 1, h satisfies
a differential equation

Flx;h,h)=0

with coefficients in ;. Let Y be the projective non-singular model of an
algebraic curve {(u,, u,) € C*|F (%,; o, u;) =0} and let us put X = Wn q~(%),.
Replacing x, if necessary, we may assume that we have a dominant
rational map X > Y and hence h(x,; z; x) is the general solution of # = 0
when z varies in an open set of X for the usual topology. We may put
h(xy; 2; x) = A(x,; u; x) where u varies in an open set of Y for the usual
topology. If we take another general point x,, we get a function A(x,; u;
x,) of u defined on an open set of Y for the usual topology. We know
that

(62) the singularities of the function A(x,; u; x;) of u are at most
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algebraic branch points (see for example pp. 284-285 Lecons de Stockholm
in [P]).

 Let A,(%,; u; x,) be the i-th symmetric function of the A¢’s for geG.
Since Ay (x,; u; x,) is a single valued function of u, when the points x,, x,
are fixed, A,x,; u;x) is a meromorphic function on Y** by (62). The
point x, is chosen and fixed once for all. We varying x, and denoting
x, by x, A(x,; u; x) = A (u, x) is a rational function of u whose coefficients
are holomorpihc functions of x by the relative G.A.G.A. applied for the
projection p,: Y X D — D (cf. [G]). We have A(x,; u; x)' — Ay(u, x)A(%; u;
x)'+ .- + A,(u, x) = 0, where ! denotes the order of the Galois group
G. Therefore by Lemma (19.1), the extension %, D %, (and hence also
the extension %', D ") depends algebraically on the initial conditions.
Namely there exists a differential field .# D ", such that tr.d. [CQ(,“@,Ml o Cld
= 1. Now we can argue as in subcase (60). Therefore the condition (1’)
implies (3).

In our paper [U2], we proved that any solution the first differential
equation y” = 6y* + x of Painlevé is not obtained from the field C of
constants functions by a finite iteration of the permissible operations (O),
(P1), (P2), ---, (P6). Among these operations, the combination of the first
6 operations (0), (P1), (P2), ---, (P5) is equivalent to allowing G-primitive
extensions in the language of Kolchin (cf. Definition (4)). Therefore these
operations are of group theoretic nature. However in the proof of Theo-
rem in [U2] the operation (P6) came in. Theorem (50) says that for a
differential equation satisfying the conditions (44) we can do without
the operation (6) whose we do not know the nature and hence the Theo-
rem in [U2] is quite group theoretic. Therefore the irreducibility theorem
in [U2] is understood in a perfect theoretic simplicity.

Let us show how to use Theorem (50) to prove the irreducibility of
the differential equations of Painlevé.

Let us consider a differential equation

(63) A(y,y) — B(y,¥)y" =0,

where A(Y, Y’) and B(Y, Y’) are polynomials of Y and Y’ with coefficients
in a differential field K of meromorphic functions on a domain D C C.
We assume that A and B are mutually prime in a unique factorization
domain K[Y, Y’]. The following condition (J) plays an improtant role
in the proof of the irreducibility theorem.
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(J) For any differential field extension L of K if polynomials G, H ¢
LY, Y'] satisfy B('G) + BY'3G/0Y + AoG[aY’ = HG, then G e L (C L[Y, Y']),
where ‘G is a polynomial obtained by applying the derivation of L on
the coeflicients of G.

ExampLE (64). In the course of the proof of the irreducibility theorem
in [U2], we proved that the first differential equation y”’ = 6y* + x satisfies
the condition (J) (if we take K = C(x)).

COROLLARY (65) To TurorREM (50). Assume that the differential equa-
tion (47) satisfies the conditions (44) and the condition (J) over K. Let
¥(x) be a particular solution (holomorphic over a subdomain of D) such
that B(y,v") #+ 0 and tr.d. [K{y(x))>; K1 > 1. Then (1) tr.d.[K{y(x)); K]
= 2 and (2) y(x) is not obtained from K by a finite iteration of the permis-
sible operations (0), (P1), (P2), ---, (P5).

Proof. If tr.d.[K{y(x)): K] =1, then there would be a non-zero
polynomial E(Y, Y')e K[Y, Y’] such that E(y,»') = 0. Since y(x) is not
algebraic over K, we have 9E/0Y’ + 0 and y(x) would be algebraic over
K(y). We choose among such E a minimal polynomial G(y, Y’) of ¥ over
K(y) whose coefficients are in K[y]. Since y is transcendental over K,
we may further assume that the polynomial G(y, Y)e K[yl[Y'] with
coefficients in a unique factorization domain K[y] is primitive. Differ-
entiating G(y, y'), we would get 0 = 'G(y, y) + ¥'0G[aY(y, y") + ¥'3G[aY'(y,
¥ ="G(y, y') + ¥'0G[aY(y, y') + A/B(y, ¥)oG[aY'(y, y'). Therefore (B('G)
+ BY'3G/3Y + A3G/3Y")(y, ¥') = 0 and hence the polynomial (B('G) +
BY'3G[3Y + A3G[aY")(y, Y’) would be divisible by the minimal polynomial
G(y, Y) in K(y)[Y’]: there would exist a polynomial H(y, Y’) e K(y)[Y’]
such that

(B(G) + BY'3G[aY + AdG[aY')(y, Y') = H(y, Y)G(y, Y').
Since y is transcendental over K, we would get
(66) (B(G) + BY’3G[3Y + AdG[aY')(Y, Y') = H(Y, Y)G(Y, Y’)

in K(Y)[Y’]. Since G(Y,Y’) is primitive, (66) would imply H(Y, Y’) e
K(Y)[Y’] is in K[Y,Y’] and G would be in K. This contradicts the
assumption 8G/dY’ = 0 and the first assertion is proved. To prove the
second assertion we need
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LEMMA (67). If the differential equation (47) satisfies the condition
(J), then the general solution y(x,; z; x) depends essentially transcendentally
on the initial conditions.

Proof of the lemma. Assume that the general solution y = y(x,; z; x)
depends semi-transcendentally on the initial conditions. Then there exists
a differential field M such that tr.d.[M(y,y): M] =2 and such that
tr.d. [Cyyn: Cul = 1. Therefore there exists a constant ¢ € M(y, y’) which
is transcendental over M. Let ¢ = C/E(y,y’) with 0 = C(Y, Y’), E(Y,Y’)
eM[Y,Y']. We may assume that C and E are mutually prime in a
unique factorization domain MY, Y’]. Differentiating ¢ = C/E, we get
(C(y, MVE(y,y)— C(y. y)(E(y,y)) = 0. Therefore (C(y,y")+y'0C[aY(y,y’)
+ A/B(y, ¥)3C[aY'(y, ¥ NE(y, ¥) — C(y, ¥)(E(y, ¥) + y3E[6Y(y, ¥) +
A/B(y, y)E[QY'(y, ¥)) = 0. Multiplying B(y, y') we get {(B('C) + BY'39C/aY
+ A3C[aY)E — C(B(CE) + BY'0E[0Y + AQE[0Y')} (y,y) = 0. Since y and
y’ are algebraically independent over M and since C and E are mutually
prime, there exists a polynomial H € M[Y, Y’] such that B(C) + BY'3C/0Y
+ A9C[/dY’ = HC which is an equality in the polynomial ring M[Y, Y’].
Since the condition (J) is satisfied, C(y, y’) is in M or C is not a function
of y and y’. The above equality shows also that there exists a polynomial
IeM[Y, Y] such that BCE) + BY'9E[3Y + AQE[0Y’ = IE. Consequently
the polynomial E(y,y’) is free from y and y’ and ¢ = C/E(y,y’) is in M.
This is a cotradiction and the general solution depends essentially tran-
scendentally on the initial conditions.

Now we are ready to prove the irreducibility theorem.

THEOREM (68). Any holomorphic solution y(x) of y’ = 6y + x is not
classical. In other words, y(x) is not obtained from the field C of the
constant functions by a finite iteration of permissible operations (0), (P1),
P2), -, (P5).

Proof. As we have seen in Examples (45) and (64), for the differential
equation y” = 6y* + x, the conditions (44) and (J) are satisfied over C(x).
It follows from Lemma 0.8 in [U2] that y(x) is not algebraic over C(x).
Thus tr.d. [C(x){y(x): C(x)] > 1. Now Theorem follows from Corollary
(65).
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