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Abstract

Recently, Keith used the theory of modular forms to study 9-regular partitions modulo 2 and 3. He
obtained one infinite family of congruences modulo 3, and meanwhile proposed an analogous conjecture.
In this note, we show that 9-regular partitions and 3-cores satisfy the same congruences modulo 3. Thus,
we first derive several results on 3-cores, and then generalise Keith’s conjecture and get a stronger result,
which implies that all of Keith’s results on congruences modulo 3 are consequences of our result.
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1. Introduction

A partition of a positive integer n is a nonincreasing sequence of positive integers
whose sum is n. For a positive integer `, a partition is called `-regular if none of its
parts is divisible by `. We denote the number of `-regular partitions of n by b`(n), and
follow the convention that b`(0) = 1. The generating function of b`(n) satisfies

∞∑
n=0

b`(n)qn =
(q`; q`)∞
(q; q)∞

,

where (a; q)∞ = (1 − a)(1 − aq)(1 − aq2) · · · .
In recent years, the divisibility and distribution of b`(n) modulo m has been widely

studied in the literature; see [1, 2, 5–10, 13, 15–22]. Recently, infinite families of
congruences modulo 2 and modulo 3 for b`(n) have received a great deal of attention.
For example, Andrews et al. [2] gave some infinite families of congruences modulo
2 and modulo 3 for 4-regular partitions. In [22], Webb studied an infinite family of
congruences modulo 3 for 13-regular partitions.
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More recently, Xia and Yao [24] derived several infinite families of congruences
modulo 2 for b9(n). In [14], Keith considered congruences modulo 3 for b9(n) and
obtained the following main result.

Theorem 1.1 [14, Theorem 3]. For all n ≥ 0 and a ≥ 1,

b9

(
4an +

10 · 4a−1 − 1
3

)
≡ 0 (mod 3). (1.1)

Furthermore, Keith proposed the following conjecture on congruences modulo 3
for b9(n).

Conjecture 1.2. For all n ≥ 0, a ≥ 1 and k = 3, 13, 18 or 23,

b9

(
52an +

52a−2 − 1
3

+ 52a−2k
)
≡ 0 (mod 3) (1.2)

and
∞∑

n=0

b9(5n + 3)qn ≡ q
(q45; q45)∞
(q5; q5)∞

(mod 3). (1.3)

Equating the coefficients of q5n+1 and q5n, q5n+2, q5n+3, q5n+4 on both sides of (1.3)
respectively, we obtain that

b9(25n + 8) ≡ b9(n) (mod 3), (1.4)

and for k = 3, 13, 18 or 23,

b9(25n + k) ≡ 0 (mod 3). (1.5)

From (1.4) and (1.5), and induction on a, it is not hard to obtain (1.2).
Thus to confirm the conjecture, we only need to prove (1.3). Recently, Xia and

Yao [23] have found a proof of (1.3) by employing some q-series identities discovered
by Ramanujan and Hirschhorn. An attempt to present an elementary proof of Keith’s
conjecture is the motivation for this note.

We aim to derive the following main result, which generalises (1.3) and leads to an
affirmative answer to Keith’s conjecture.

Theorem 1.3. Let p ≡ 2 (mod 3) be a prime. Then

∞∑
n=0

b9

(
pn +

2p − 1
3

)
qn ≡ q(p−2)/3 (q9p; q9p)∞

(qp; qp)∞
(mod 3). (1.6)

Remark. This result follows from Theorem 2.3, which can also be derived by two
results of Hirschhorn and Sellers [12]. Based on a special case of Ramanujan’s 1ψ1

summation formula, Theorem 2.3 is deduced immediately. In contrast to Hirschhorn
and Sellers’ work, the techniques we use here are more elementary and direct.
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2. Some results on 3-cores

Let at(n) denote the number of partitions of n that are t-cores, where a partition is a
t-core if it has no hook numbers that are divisible by t. Then it is well known that the
generating function of at(n) satisfies

∞∑
n=0

at(n)qn =
(qt; qt)t

∞

(q; q)∞
.

First we present a simple relation concerning bp2 (n) and ap(n) for any prime p.

Lemma 2.1. Given a prime p, for all n ≥ 0,

bp2 (n) ≡ ap(n) (mod p). (2.1)

Proof. It is straightforward to check that

(q; q)p
∞ ≡ (qp; qp)∞ (mod p).

Replacing q by qp, we obtain

(qp; qp)p
∞ ≡ (qp2

; qp2
)∞ (mod p)

and
(qp2

; qp2
)∞

(q; q)∞
≡

(qp; qp)p
∞

(q; q)∞
(mod p).

This yields that bp2 (n) ≡ ap(n) (mod p). �

As an immediate corollary of Lemma 2.1, we have

b9(n) ≡ a3(n) (mod 3), (2.2)

which prompts us to shift our attention from 9-regular partitions to 3-cores.
We now introduce the following special case of Ramanujan’s 1ψ1 summation

formula, which will play a key role throughout the note.

Lemma 2.2. For |q| < |x| < 1,
∞∑

n=−∞

xn

1 − aqn =
(q; q)2

∞(ax; q)∞(q/ax; q)∞
(a; q)∞(q/a; q)∞(x; q)∞(q/x; q)∞

. (2.3)

Proof. For a proof of (2.3), see [2]. �

Theorem 2.3. Let p ≡ 2 (mod 3) be a prime. Then
∞∑

n=0

a3

(
pn +

2p − 1
3

)
qn = q(p−2)/3 (q3p; q3p)3

∞

(qp; qp)∞
(2.4)

and
∞∑

n=0

a3

(
pn +

2p − 1
3

)
qn =

∞∑
n=0

a3(n)qpn+(p−2)/3. (2.5)
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Proof. Employing the generating function of a3(n), the second statement follows
immediately from the previous one, so it suffices to prove (2.4).

With q replaced by q6, x by q2, a by q in (2.3), we deduce that

(q3; q3)3
∞

(q; q)∞
=

∞∑
n=−∞

q2n

1 − q6n+1 . (2.6)

We first consider the case p ≥ 5. According to the congruence classes modulo p,
we obtain

∞∑
n=−∞

q2n

1 − q6n+1 =

∞∑
n=−∞

p−1∑
k=0

q2(pn+k)

1 − q6(pn+k)+1 =

∞∑
n=−∞

p−1∑
k=0

∞∑
j=0

q2(pn+k)+(6(pn+k)+1) j. (2.7)

Write k0 = (5p − 1)/6 and γ(p) = (2p − 1)/3. Let 0 ≤ k ≤ p − 1. If k , k0, then 6k + 1 is
not divisible by p. Hence, 2k + (6k + 1) j ≡ γ(p) (mod p) holds if and only if j ≡ γ(p)
(mod p). If k = k0, it is clear that, for any j ≥ 0,

2(pn + k0) + (6(pn + k0) + 1) j ≡ γ(p) (mod p).

Extracting those terms in (2.7) whose power of q is congruent to γ(p) modulo p and
using (2.6),

∞∑
n=0

a3(pn + γ(p))qpn+γ(p) =

∞∑
n=−∞

p−1∑
k=0
k,k0

∞∑
j=0

q2(pn+k)+(6(pn+k)+1)(p j+γ(p))

+

∞∑
n=−∞

∞∑
j=0

q2(pn+k0)+(6(pn+k0)+1) j

=

∞∑
n=−∞

p−1∑
k=0
k,k0

q2(pn+k)+γ(p)(6(pn+k)+1)

1 − qp(6(pn+k)+1)

+

∞∑
n=−∞

q2(pn+k0)

1 − q6(pn+k0)+1 .

Dividing both sides of the above equation by qγ(p) and replacing qp by q yields
∞∑

n=0

a3(pn + γ(p))qn =

∞∑
n=−∞

p−1∑
k=0
k,k0

q4(pn+k)

1 − q6(pn+k)+1 +

∞∑
n=−∞

q2n+1

1 − q6n+5

=

∞∑
n=−∞

q4n

1 − q6n+1 −

∞∑
n=−∞

q4(pn+k0)

1 − q6(pn+k0)+1 +

∞∑
n=−∞

q2n+1

1 − q6n+5 .

Employing the fact that
∞∑

n=−∞

q4n

1 − q6n+1 =

∞∑
n=−∞

q−4n−4

1 − q−6n−5 = −

∞∑
n=−∞

q2n+1

1 − q6n+5 ,
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and applying (2.3) with x = q4p, a = q5p, q = q6p,
∞∑

n=0

a3(pn + γ(p))qn = −q4k0

∞∑
n=−∞

q4pn

1 − q6pn+5p

= −q4k0
(q6p; q6p)2

∞(q9p; q6p)∞(q−3p; q6p)∞
(q5p; q6p)∞(qp; q6p)∞(q4p; q6p)∞(q2p; q6p)∞

= −q4k0
1 − q−3p

1 − q3p

(q6p; q6p)3
∞(q3p; q6p)3

∞

(qp; qp)∞

= q(p−2)/3 (q3p; q3p)3
∞

(qp; qp)∞
.

We now consider the case p = 2. Since
∞∑

n=−∞

q2n

1 − q6n+1 =

∞∑
n=−∞

∞∑
k=0

q2nq(6n+1)k,

we have
∞∑

n=0

a3(2n + 1)q2n+1 =

∞∑
n=−∞

∞∑
k=0

q2nq(6n+1)(2k+1) =

∞∑
n=−∞

q8n+1

1 − q12n+2 ,

and thus
∞∑

n=0

a3(2n + 1)qn =

∞∑
n=−∞

q4n

1 − q6n+1

=
(q6; q6)2

∞(q5; q6)∞(q; q6)∞
(q; q6)∞(q5; q6)∞(q4; q6)∞(q2; q6)∞

=
(q6; q6)3

∞

(q2; q2)∞
.

This completes the proof. �

Remark. Applying (2.2), we can immediately obtain our main result, Theorem 1.3,
on 9-regular partitions which is analogous to Theorem 2.3 on 3-cores.

As a consequence of Theorem 2.3, we can obtain the following result by comparing
the coefficients of qn on both sides of (2.5).

Theorem 2.4. Let p ≡ 2 (mod 3) be a prime and 0 ≤ r ≤ p − 1 be an integer with
r , (p − 2)/3. Then, for any n ≥ 0,

a3

(
p2n +

p2 − 1
3

)
= a3(n) (2.8)

and
a3

(
p2n + pr +

2p − 1
3

)
= 0. (2.9)
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Based on Theorem 2.4 and by induction, we have the following corollary.

Corollary 2.5. Let p ≡ 2 (mod 3) be a prime and 0 ≤ r ≤ p − 1 be an integer with
r , (p − 2)/3. Then, for any α ≥ 1 and n ≥ 0,

a3

(
p2αn +

p2α − 1
3

)
= a3(n) (2.10)

and

a3

(
p2αn + p2α−1r +

2p2α−1 − 1
3

)
= 0. (2.11)

Remark. Hirschhorn and Sellers [12] derived (2.9) and (2.10) by establishing an
explicit formula for a3(n) in terms of the factorisation of 3n + 1. Baruah and Nath
[3, 4] presented two different proofs of (2.10).

Another application of Lemma 2.2 to the study of 3-cores is as follows.

Theorem 2.6. For all n ≥ 0,

a3(n) = d1,3(3n + 1) − d2,3(3n + 1), (2.12)

where dr,3(n) denotes the number of positive divisors of n congruent to r modulo 3.

Proof. Replacing q with q3, x with q, a with −q in (2.3),

(q3; q3)3
∞

(q; q)∞
=

∞∑
n=−∞

qn

1 + q3n+1 =

∞∑
n=0

( q2n+1

1 + q3n+2 +
qn

1 + q3n+1

)
. (2.13)

Thus,
∞∑

n=0

a3(n)q3n+1 =

∞∑
n=0

( q6n+4

1 + q9n+6 +
q3n+1

1 + q9n+3

)
=

∞∑
n=0

∞∑
k=0

((−1)kq(3n+2)(3k+2) + (−1)kq(3n+1)(3k+1))

=

∞∑
n=0

∞∑
k=0

(q(3n+2)(6k+2) − q(3n+2)(6k+5) + q(3n+1)(6k+1) − q(3n+1)(6k+4))

=

∞∑
n=0

∞∑
k=0

(q(3n+1)(3k+1) − q(3n+2)(3k+2)).

This yields that

a3(n) =
∑

0<d|(3n+1)
d≡1 (mod 3)

1 −
∑

0<d|(3n+1)
d≡2 (mod 3)

1 = d1,3(3n + 1) − d2,3(3n + 1),

which completes the proof. �
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Remark. Theorem 2.6 was first proved by Granville and Ono [11] using the theory of
modular forms. Hirschhorn and Sellers [12] presented an elementary proof of (2.12).
Recently Baruah and Nath [4] gave a new proof of Theorem 2.6 with the help of a
classical result by Lorenz.

3. Generalisation of Keith’s conjecture
We now present a stronger result, which includes Keith’s conjecture as a special

case.

Theorem 3.1. Suppose that R is a positive integer and R =
∏n

i=1 r2γi
i , where the ri are

distinct primes congruent to 2 modulo 3 and γi ≥ 1. Then, for all n ≥ 0,

b9

(
Rn +

R − 1
3

)
≡ b9(n) (mod 3) (3.1)

and
b9(Rn + t) ≡ 0 (mod 3), (3.2)

provided that there exists 1 ≤ i ≤ n such that ordri (3t + 1) is odd and less than 2γi.

Proof. Applying (2.2) and (2.10), for any α ≥ 1 and n ≥ 0,

b9

(
p2αn +

p2α − 1
3

)
≡ b9(n) (mod 3), (3.3)

where p ≡ 2 (mod 3) is a prime.
From (3.3),

b9

(
r2γi

i n +
r2γi

i − 1
3

)
≡ b9(n) (mod 3).

It follows that if j , i then

b9(n) ≡ b9

(
r2γ j

j

(
r2γi

i n +
r2γi

i − 1
3

)
+

r2γ j

j − 1

3

)
≡ b9

(
r2γ j

j r2γi
i n +

r2γ j

j r2γi
i − 1

3

)
(mod 3).

Repeating this argument yields (3.1).
Assume that ordri (3t + 1) = 2βi − 1 with 1 ≤ βi ≤ γi. Then 3t + 1 can be written as

3t + 1 = d · r2βi−1
i

where d is not divisible by ri. It is easy to see that d must be congruent to 2 modulo 3
and

d − 2
3
.

ri − 2
3

(mod ri).

Let (d − 2)/3 = lri + s with 0 ≤ s < ri. Then we can rewrite Rn + t as

Rn + t = r2βi
i

( Rn

r2βi
i

+ l
)

+ r2βi−1
i s +

2r2βi−1
i − 1

3
.

Hence, (3.2) follows immediately from (2.2) and (2.11). This completes the proof. �
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Remark. For fixed a ≥ 1, let R = 52a and t = 1
3 (52a−2 − 1) + 52a−2k. When k = 3, 13, 18

or 23, it is easy to see that ord5(3t + 1) = 2a − 1. According to the second part of
Theorem 3.1, the first claim of Conjecture 1.2 holds.

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.2. Let p ≡ 2 (mod 3) be a prime. For a ≥ 1, 0 ≤ b < a and n ≥ 0,

b9

(
p2an +

cp · p2b+1 − 1
3

)
≡ 0 (mod 3), (3.4)

whenever cp ≡ 2 (mod 3) and is not divisible by p.

Remark. In fact Theorem 1.1 is a special case of (3.4). Letting p = 2, b = a − 1 and
c2 = 5, Theorem 1.1 follows immediately.
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