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objective. An estimated 293,300 healthcare-associated cases of Clostridium difficile infection (CDI) occur annually in the United States. To
date, research has focused on developing risk prediction models for CDI that work well across institutions. However, this one-size-fits-all
approach ignores important hospital-specific factors. We focus on a generalizable method for building facility-specific models. We demonstrate
the applicability of the approach using electronic health records (EHR) from the University of Michigan Hospitals (UM) and the Massachusetts
General Hospital (MGH).

methods. We utilized EHR data from 191,014 adult admissions to UM and 65,718 adult admissions to MGH. We extracted patient
demographics, admission details, patient history, and daily hospitalization details, resulting in 4,836 features from patients at UM and 1,837
from patients at MGH. We used L2 regularized logistic regression to learn the models, and we measured the discriminative performance of the
models on held-out data from each hospital.

results. Using the UM and MGH test data, the models achieved area under the receiver operating characteristic curve (AUROC) values of
0.82 (95% confidence interval [CI], 0.80–0.84) and 0.75 ( 95% CI, 0.73–0.78), respectively. Some predictive factors were shared between the 2
models, but many of the top predictive factors differed between facilities.

conclusion. A data-driven approach to building models for estimating daily patient risk for CDI was used to build institution-specific
models at 2 large hospitals with different patient populations and EHR systems. In contrast to traditional approaches that focus on developing
models that apply across hospitals, our generalizable approach yields risk-stratification models tailored to an institution. These hospital-specific
models allow for earlier and more accurate identification of high-risk patients and better targeting of infection prevention strategies.
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An estimated 293,300 healthcare-associated cases of Clos-
tridium difficile infection (CDI) occur annually in the United
States.1 Earlier identification of patients at high risk for CDI
can allow for earlier treatment with improved outcomes2,3 as
well as implementation of infection prevention measures, such
as patient isolation, contact precautions, and management of
the environment to decrease the potential for nosocomial
transmission.4

To date, most prior work in learning risk-stratification
models for CDI has focused on “one-size-fits-all”models limited

to a small number of risk factors.5–10 However, past research has
shown that a model that leverages the entire structured contents
of the electronic health record (EHR) can perform statistically
significantly better than a model based on a limited set of
curated risk factors drawn from the literature.11Moreover, there
is considerable evidence that hospital-specific factors can play
an important role in predicting patient risk of CDI.12–14

We present a generalizable machine-learning approach to
using the structured data in an EHR to build a CDI risk-
stratification model tailored to an individual facility. Using this
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approach, we learned separate facility-specific risk-stratifi-
cation models for CDI using EHR data collected during the
regular course of patient care at 2 different hospitals.

We report on the successful application of this approach to
different patient populations, different facilities, and different
EHRs, and we show that it can be used to produce models that
predict CDI several days in advance of clinical diagnosis. The
approach can be used at other institutions to create facility-
specific predictive models that could be utilized prospectively
to provide daily, automated, risk prediction for CDI, to target
both clinical and infection prevention interventions more
effectively.

methods

Study Population

The study cohort consisted of adult inpatients admitted to the
University of Michigan Hospitals (UM) and the Massachusetts
General Hospital (MGH). At UM, we considered all admis-
sions that started and ended during the 6-year period between
January 1, 2010, and January 1, 2016. At MGH, we considered
all admissions between June 1, 2012, and June 1, 2014.

To focus on healthcare-associated cases, we excluded
patients discharged before the third calendar day and those
who tested positive for CDI within the first 2 calendar days of
admission.15 Patients with duplicate positive laboratory tests
for toxigenic C. difficile, defined as having a prior positive test
within 14 days,16 were excluded. Additionally, UM excluded
patients admitted to the inpatient psychiatric unit. This deci-
sion was based on the fact that psychiatric inpatients at UM are
located in a secure region of the hospital isolated from other
patients and caregivers. At MGH, psychiatric patients may be
located throughout the hospital, and thus were included in the
MGH analysis.

Identification of CDI Cases

The testing protocols for CDI were similar at both study sites.
CDI cases were identified using a tiered approach in which
clinical specimens submitted for C. difficile testing were first
processed using a combined glutamate dehydrogenase (GDH)
antigen enzyme immunoassay (EIA) and toxin A/B EIA (C. Diff
Quik Chek Complete, Alere, Kansas City, MO). In instances of
concordance (ie, both negative or both positive), the results are
reported as negative or positive. In instances of discordance,
reflex testing by polymerase chain reaction (PCR) for presence
of toxin B gene (tcdB) using a commercial assay was conducted.
The Xpert C. difficile assay (Cepheid, Sunnyvale, CA) was used
at MGH. At UM, the GeneOhm assay (Becton Dickinson,
Franklin Lakes, NJ) was used through 2013 and the Simplexa
assay (Focus Diagnostics, Cypress, CA) was used thereafter. At
MGH, formed stools were not rejected from the microbiology
laboratory during the study period. At UM, formed stools were
rejected beginning inMay 2015. At each institution, the decision
to test rested with the clinicians caring for the patient.

Data Extraction and Preprocessing

We considered the structured contents of the EHR. During
the study period, each hospital utilized an EHR system that
consisted of a combination of locally developed and
commercial software. Rather than trying to develop a common
mapping across variables, we instead focused on a generali-
zable data extraction method.
We split variables into 2 main categories: (1) time invariant

and (2) time varying. Time-invariant variables are available at the
time of admission and do not change over the course of
the admission. These variables include patient demographics
(eg, gender), statistics on encounter history (eg, number of
inpatient admissions in last 90 days), and treatment and diag-
noses associated with the most recent previous hospitalization.
Time-varying variables, extracted daily for each patient, included
laboratory results, procedure codes, medications, and vital signs
collected during the hospitalization. In addition, exposure to the
pathogen was estimated based on daily in-hospital locations
and both hospital-level and ward-level colonization pressure.11,17

All data considered were structured (ie, we did not consider
free text notes); some variables were continuous and others
categorical. We mapped all categorical data (eg, medications) to
binary features (eg, if a patient received a medication on a given
day, then for that patient the binary feature associated with that
medication and that day is set to “1,” and “0” otherwise). For
many of the continuous features (eg, glucose levels, white blood
cell count [WBC]), we used the reference ranges available in
the EHR. If the value fell outside of the normal reference range,
then a flag was set in the database (eg, “high”). We mapped
each combination of variable and flag to a binary feature
(eg, “WBC=high”). For continuous variables without reference
ranges (eg, heart rate and age), we used either well-established
ranges (eg, heart rate: 60–100 beats perminute) or discretized the
continuous values based on quintiles (combining homogeneous
quintiles) and mapped each quintile to its own binary feature.
Finally, we concatenated the time-invariant with the time-

varying features for each patient day. This approach results in a
high-dimensional binary feature vector representing each
patient admission day. We extracted data up to, but not
including, the calendar day of the positive C. difficile test and
the day of discharge.
While the procedure described above was applied uni-

formly, the data are represented differently between hospitals.
For example, medication orders at UM are encoded based on
the medication identification (medID), the main ingredient,
and the medication class code, whereas only the medID was
present at MGH. In addition, MGH did not have electronic
records of vital signs, including heart rate, respiratory rate,
blood pressure (diastolic and systolic), peripheral capillary
oxygen saturation, and temperature.

Statistical Methods

We labeled patient admissions according to whether
the patient was diagnosed with CDI during the admission.
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The learning task was to predict in advance of clinical diagnosis
which patients would be diagnosed with CDI. We labeled each
day from a CDI case as positive, and negative otherwise. We
then applied multitask L2-regularized logistic regression to
produce models for each institution that were used to generate
daily estimates of patient risk. We smoothed daily risk scores
by averaging over time, a previously validated approach.18

To learn and evaluate the model, the data were split tempo-
rally: both models were tested on the last year and trained on
the preceding years. A temporal split was used because it
provides a better estimate of prospective performance than a
random split. In addition, from the training data, we excluded
data pertaining to the sample collection date and the preceding
day for positive cases. This approach prevented the model
from using empiric CDI therapy as a factor in predicting CDI.

Model Outcomes

Themodels output a daily risk score for each patient admission. If
the daily risk estimate of a patient ever exceeds a specific thresh-
old, she or he is classified as high risk. By sweeping this threshold,
we calculated the receiver operating characteristics (ROC) curve
and the area under the ROC curve (AUROC) on the held-out test
data.We computed 95% empirical bootstrap confidence intervals
(CI) for the AUROC using 1,000 Monte Carlo case resampled
bootstraps of the test set. Finally, we measured how well the
predicted probabilities matched the actual CDI rates in the test
data (ie, calibration performance). We generated a reliability
curve and computed the Brier score for each classifier.

Using a decision threshold based on the 95th percentile, we
classified patients and computed confusion matrices, repre-
senting the number of true positives, true negatives, false
positives, and false negatives. We computed the positive
predictive value (PPV), sensitivity, specificity, and negative
predictive value. In addition, we considered how far in advance
each model predicted positive cases, by measuring the time
from when a patient’s risk first exceeds the 95th percentile
decision threshold to the day the sample was collected.

In addition to model performance, we investigated model
feature weights. Because model feature weights change over
the course of an admission, we focused on those that are
shared among all days. We recorded the weights associated
with the top 10 risk and/or protective factors at each institu-
tion. We trained the models based on 1,000 Monte Carlo case
resampled, block bootstraps of the training data. This
approach produced an empirical distribution for each weight,
for which we report the standard deviation.

All preprocessing and statistical analyses were performed
in Python (Python, Wilmington, DE). The code is pub-
licly available (https://gitlab.eecs.umich.edu/jeeheh/ICHE2018_
CDIRiskPrediction.git). Using this code, individuals at other
institutions who want to develop facility-specific models can use
data extracted from their EHR to train and evaluate an
L2-regularized logistic regression risk stratification model with
time-varying parameters.

results

During the study period, UM had an average of 59,809
discharges per year. MGH had an average of 65,536 discharges
per year. The number of licensed beds increased at both
institutions over the course of the study period, from 849 to
993 beds at UM and from 950 to 999 at MGH.
After applying exclusion criteria, the final dataset included

191,014 UM admissions and 65,718 MGH admissions
(Figure 1). Within each population, we identified 2,141 noso-
comial CDI cases at UM and 552 nosocomial CDI cases at
MGH (Figure 1). Selected demographic and clinical characteri-
stics of the study populations are provided (Table 1). After
preprocessing, we considered 4,836 variables for UM data and
1,837 variables for MGH data (supplemental Table 1). Once
split into training and test sets, we trained the UM model on
155,009 patients (1,781 cases), and the MGH model on 33,477
patients (315 cases). This allocation left 36,005 patients
(360 cases), and 32,241 patients (237 cases) in the test sets for
UM and MGH, respectively.
On the held-out UM and MGH test data, the risk prediction

models achieved AUROCs of 0.82 (95% CI, 0.80–0.84) and
0.75 (95% CI, 0.73–0.78), respectively (Figure 2).
In terms of calibration performance, both classifiers

demonstrated good calibration (Figure 3), with Brier scores of
0.01 on each institution’s respective held-out data.
Selecting a decision threshold based on the 95th percentile

resulted in classifiers with a sensitivity of 0.28, specificity of
0.95, and PPV of 0.06 for UM, and a sensitivity of 0.23,
specificity of 0.95, and PPV of 0.04 for MGH (Figure 4). Using
the selected thresholds, half of the cases predicted correctly
were predicted at least 5 days in advance of sample collection
within both study populations (Figure 5).
Considering the top predictive factors (Table 2), we observe

some similarities across the 2 institutions. A 1-year history of
CDI appears as a top risk factor, while younger age and obstetrics
are protective. Aside from these clear similarities, the top 10 risk
factors and the top 10 protective factors varied by institution.

discussion

The prevention and control of hospital-associated infections
like CDI (and other multidrug-resistant organisms) is a major
problem. Despite concerted preventative efforts, the incidence
of CDI continues to rise.19 Successfully tackling this complex
problem requires a multipronged solution that relies on both
the appropriate identification and treatment of patients with
CDI and on mechanisms for managing risk and preventing the
spread of disease. This approach could include reducing
exposure to high-risk antibiotics20 and acid-suppressive
medications,21 testing for C. difficile carriage and selectively
isolating carriers,22 or even deploying currently experimental
preventative treatments such as probiotics23 and gut-specific
β-lactamases.24 At a hospital unit level, high-risk patients
could be targeted with enhanced environmental cleaning
interventions or additional auditing of cleaning practices.25–27
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The timely and appropriate deployment of such prevention
strategies would be enhanced by the early identification of
patients at greatest risk of developing CDI.2,3 While testing for
CDI should be limited to patients with clinically significant
diarrhea,28 identifying at-risk patients in advance of clinical
diagnosis or even acquisition could enable the efficient and
cost-effective application of pre-emptive interventions in a
subset of the population.4

To this end, we explored a data-driven approach based on
machine learning to automatically construct patient risk-
stratification models for CDI at 2 large academic centers.
Despite substantial differences across institutions, including
patient populations, exclusion criteria, differences in CDI testing
protocols, and availability of data, the same technique was suc-
cessfully used to train institution-specific models that identified
patients at high-risk of CDI, well in advance of clinical diagnosis.
Our approach comprehensively considers EHR data, incorpor-
ating thousands of variables. While ambitious, we have demon-
strated that the proposed approach is both feasible and flexible.

Our results highlight the advantages of an automated
approach to building institution-specific models over the
typical “one-size-fits-all” approach. If we had simply focused
on the UM data, for example, much of what our algorithm had
learned would not have applied to MGH (or any other

institution) because we did not have the same variables at
MGH. Even if vital signs had been available at MGH, mapping
features across hospitals would have been labor-intensive and
error-prone. This process would have to be repeated any time a
different hospital wanted to use the model. Furthermore, such
feature mapping would inevitably be flawed because even
when 2 variables share the same name, institutional differences
can affect the true meaning of that variable.
Within specific institutions, changes occur over time

(eg, EHR systems, testing protocols, facility structure, and
infection control policies). Such changes provide additional
motivation for developing generalizable approaches that can
also evolve over time rather than “one-size-fits-all” models.
This flexible approach enables an institution (or even units
within an institution) to (1) tailor the model to the population
of interest, the available data, and the outcome of interest
(eg, CDI) and (2) update the model as things change.
The top predictive factors differed across institutions. We

refrain from speculating about the causes of these differences;
such a discussion would require a detailed understanding of
how the factors translate between hospitals. Moreover, because
of the collinearity present among the covariates, one must be
cautious in drawing conclusions about what does or does not
confer risk. Nonetheless, examining the list of predictive

figure 1. Inclusion and exclusion criteria and demographics of study populations. The inclusion and exclusion criteria for the study
population at each institution are shown, along with the demographics of the final study populations. The period for inclusion, length of stay
duration requirements, and kind of visit differed slightly between study populations. The same exclusion criteria were applied with regards
to history of CDI within 14 days prior to admission and positive CDI within 2 calendar days of admission for both study populations. The
final study populations comprised 191,014 and 65,718 adult inpatient encounters at UM and MGH, respectively.
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factors leads to interesting and in some cases testable hypoth-
eses regarding hospital-specific risk and/or protective factors.

We achieved similar classification performance across both
institutions using a classifier based on the 95th percentile.
Moreover, our models successfully identified cases well in

advance of clinical diagnosis—at least 5 days in advance in half
of the correctly identified cases. Such early identification is an
important factor in enhancing the effectiveness of many
interventions. Going forward, risk stratification algorithms
should be compared in terms of how far in advance of clinician

table 1. Selected Characteristics of Study Cohorts

Patient Demographics
UM

(N= 191,014)
MGH

(N= 65,718)

Female, % 54.44 48.76
Age, median y (IQR) 56 (39–68) 62 (46–74)
Race, %
Black 11.25 5.58
Asian 2.28 3.46
White 78.27 81.32
Hispanic/Latino 0.08 6.61
Other 1.83 0.83
Unknown 6.28 2.20

Length of stay, median d (IQR) 5.00 (3.79–8.00) 5.13 (3.58–8.17)

Clinical characteristics

Historical
Hospitalized in prior 90 d, % 25.85 26.51
Immunosuppressants prior to admission, % 3.27 8.01
Gastric-acid suppressants prior to admission, % 7.35 16.38
Antibiotics prior to admission, % 18.70 15.29

Index admission
Immunosuppressants, % 7.73 22.72
Gastric-acid suppressants, % 20.31 54.10
Antibiotics, % 67.33 62.41
Enteral feeding, % 4.14 3.86

CDI pressure
CDI incidence, cases/10,000 PD 16.38 10.16
Encounters with CDI in prior year, % 2.37 1.48
Encounters with CDI in prior 90 d, % 1.04 0.66

NOTE. UM, University of Michigan Hospitals; MGH, Massachusetts General Hospital; IQR, interquartile range;
CDI, Clostridium difficile infection; PD, patient days.

figure 2. Discriminative performance of the institution specific classifiers on their respective held-out test sets. The receiver operating
characteristics curves illustrate the tradeoff in performance between the false-positive rate (1-specificity) and the true-positive rate
(sensitivity). Both classifiers achieve good discriminative performance as measured by the area under the ROC curve (AUROC): an AUROC
of 0.82 and an AUROC of 0.75 at UM and MGH, respectively.
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suspicion the model correctly identifies high-risk patients, in
addition to the standard measures of prediction performance.

The PPV of our classifiers fell between 4% and 6%. Notably,
however, increased PPV can be achieved by choosing a higher
threshold (eg, 99th percentile). This higher PPV, however,
comes at the cost of lower sensitivity. Managing the tradeoff
between PPV and sensitivity depends on the costs and benefits
of the intervention. Prior to considering the implementation
of practice changes based on the risk prediction, the costs and
benefits need to be assessed carefully.

This study has several limitations. First, we used only ret-
rospective data. While we tested on held-out data from the
most recent year, this approach is not equivalent to integration
into an EHR system and prospective application. Such pro-
spective testing requires considerably more resources, but it is
the logical next step in determining the potential impact of

early identification of patients at high risk for developing CDI.
Second, the approach is limited to predicting CDI cases that
will be clinically diagnosed during the current hospital stay, so
it may miss cases in which a patient acquired C. difficile during
his or her hospital visit but was discharged before diagnosis.
Third, we focused on a linear model as opposed to a nonlinear
approach.29 While this ignores potential nonlinear interactions
between features, it facilitates model interpretation and
transparency. Accounting for nonlinear interactions could
increase the predictive performance of the model by capturing
population-specific risk factors (eg, factors specific to the
ICU), but likely requires more data. Fourth, the model focuses
largely on variables related to patient susceptibility to CDI, and
not exposure, both of which are required to manifest disease.
While we include variables related to colonization pressure
and in-hospital locations, exposure-related variables account
for a relatively small fraction of the overall feature set. We
could not account for any interactions at the level of the
individual healthcare provider. Finally, we caution that the
clinical utility of such models depends on the actions taken
based on the model predictions. More research assessing the
actionability of these models is needed to determine their
appropriate role in day-to-day clinical practice.
The approach described in this study could be used to build

hospital-specific models for other pathogens (eg, methicillin-
resistant Staphylococcus aureus) and/or other outcomes
(eg, CDI severity), where there is reason to believe that both
patient-specific and institution-specific factors play an
important role. The resulting models could apply in several
different settings, serving different purposes. In clinical trials,
costs for new therapeutics are driven in large part by the ability
to enroll appropriate subjects.30,31 Good predictive models
could enable investigators to focus recruitment on patient
populations at highest risk for disease. This application could,
in turn, result in more efficient, and less costly, clinical studies.

figure 3. Measuring model calibration. Predictions are grouped into quintiles by predicted risk and plotted against observed CDI
incidence rate within each quintile. Points that fall closer to the “y= x” line are better calibrated. Classifiers for both institutions appear to be
well calibrated. This is also evident in their low Brier scores: both classifiers have scores of 0.01. Brier scores measure the accuracy of
probabilistic predictions and range from 0 to 1, where 0 represents perfectly calibrated predictions. The calibration plot for UM is shown on
the left, with MGH on the right.

figure 4. Confusion matrices of the institution specific classifiers
on their respective held-out test sets. Selecting a decision threshold
based on the 95th percentile results in classifiers that achieves very
good specificity 95.2% at both institutions and relatively good positive
predictive values of 5.6% and 4.4% at UM and MGH, respectively.
For perspective, the baseline positive predictive values (ie, fraction of
positive cases) at each institution are 1.00% and 0.74%, respectively.
Thus, both were approximately 6 times better than the baseline.
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In a research setting, the factors that confer risk and protection
can serve to generate testable hypotheses. For example,
when specific hospital locations appear to confer higher or

lower risk, a detailed examination of distinguishing features
(eg, room layout, cleaning practices, staff training, etc) may
identify specific opportunities for improvement.

figure 5. Measuring how far in advance the model correctly identifies cases. Using a threshold based on the 95th percentile, we measure the
time from when each positive patient first crosses that threshold to when they are clinically diagnosed with CDI. At both institutions, of those
patients who are correctly identified as positive (ie, the true positives) the model identifies half of the patients at least 5 days in advance (black
dashed line represents the median). The plot for UM is shown on the left, with MGH on the right.

table 2. Final Regression Coefficients With Positive Coefficients Conferring Risk and Negative Values Indicating
Protectiona

UM MGH

Feature Coefficient (± SD) Feature Coeffficient (± SD)

CDI in the year prior to admission 0.53 (0.10) Medicine service 0.33 (0.09)
ED location 0.28 (0.08) CDI in the year prior to admission 0.27 (0.08)
Tachycardia 0.27 (0.06) Propofol 0.21 (0.06)
Cefoxitin 0.23 (0.05) Age 77–89 yb 0.21 (0.06)
Fluconazole 0.21 (0.03) Chlorhexidine 0.20 (0.05)
Ondansetron 0.21 (0.03) MICU 0.18 (0.07)
Prochlorperazine 0.21 (0.04) Hospital CP 0.0126–0.0214 0.17 (0.07)
Antifungals 0.20 (0.03) Metronidazole 0.17 (0.06)
Antiemetics 0.20 (0.02) Dextrose 0.17 (0.08)
Admit Hold 0.20 (0.07) Cefepime 0.17 (0.06)

Warfarin −0.21 (0.04) Obstetrics and gynecology −0.12 (0.03)
Age 35–51 yb −0.21 (0.04) Unit CP <0.001 −0.12 (0.04)
Nonsalicylate NSAIs, antirheumatic −0.22 (0.06) Inpatient surgical unit −0.12 (0.05)
Hydrocodone −0.24 (0.06) Age 41–56 yb −0.13 (0.05)
Neurology unit −0.25 (0.06) Simvastatin −0.13 (0.05)
Orthopedic surgery unit −0.26 (0.06) Oxycodone −0.14 (0.04)
Obstetrics unit −0.26 (0.06) Obstetrics service −0.14 (0.03)
Ibuprofen −0.26 (0.04) Age 18–41 yb −0.19 (0.06)
Washtenaw County, MI −0.31 (0.06) Docusate sodium −0.21 (0.05)
Age 18–35 yb −0.36 (0.04) Admitted through the ED −0.24 (0.04)

NOTE. UM, University of Michigan Hospitals; MGH, Massachusetts General Hospital; SD, standard deviation; CDI, Clos-
tridium difficile infection; ED, emergency department; CP, colonization pressure; NSAI, nonsteroidal anti-inflammatory;
MICU, medical intensive care unit.
aWhile the model learns different models for different periods of an admission (eg, beginning of the admission vs the end of
the admission), here we present the top risk/protective factors shared across time periods. We sorted the features according
to their learned regression coefficient.
bAge ranges were based on the study population at each institution (ie, quintiles).
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