SOME REMARKS ON IA AUTOMORPHISMS OF FREE GROUPS

J. McCOOL

1. Introduction. Let A_{n} be the automorphism group of the free group F_{n} of rank n, and let K_{n} be the normal subgroup of A_{n} consisting of those elements which induce the identity automorphism in the commutator quotient group F_{n} / F_{n}^{\prime}. The group K_{n} has been called the group of IA automorphisms of F_{n} (see e.g. [1]). It was shown by Magnus [7] using earlier work of Nielsen [11] that K_{n} is finitely generated, with generating set the automorphisms

$$
\begin{aligned}
x_{i j}: x_{i} & \rightarrow x_{j} x_{i} \bar{x}_{j} \\
x_{k} & \rightarrow x_{k}
\end{aligned} \quad \begin{array}{ll}
(k \neq j) \\
\end{array}
$$

and

$$
\begin{array}{cl}
x_{i j k}: x_{i} \rightarrow x_{i} x_{j} x_{k} \bar{x}_{j} \bar{x}_{k} & (i \neq j<k \neq i) \\
x_{m} \rightarrow x_{m} & (m \neq i),
\end{array}
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ is a chosen basis of F_{n}.
A presentation of the subgroup C_{n} of K_{n} generated by the $x_{i j}$ was found in [10]; the case $n=3$ is given already in [4] and [5]. In [4] Chein also found a (rather awkward) presentation for $K_{3}(1)$, where $K_{n}(1)$ denotes the intersection in A_{n} of K_{n} with the subgroup $S\left(x_{2}, \ldots, x_{n}\right)$ consisting of those automorphisms which fix each of x_{2}, \ldots, x_{n}. In particular, Chein showed that $K_{3}(1)$ is generated by the set $\left\{x_{12}, x_{13}, x_{123}\right\}$. The first result we wish to report in the present paper is a description of $K_{n}(1)$ for all $n \geqq 3$, namely

Theorem 1. Let Y, Z be free groups of rank $n-1$, with bases y_{2}, \ldots, y_{n} and z_{2}, \ldots, z_{n} respectively, and let θ be the homomorphism of the direct product $Y \times Z$ onto the free abelian group with basis a_{2}, \ldots, a_{n} given by $\theta\left(y_{i}\right)=a_{i}$ and $\theta z_{i}=\bar{a}_{i}(2 \leqq i \leqq n)$. Then
(a) $K_{n}(1)$ is isomorphic to the kernel of θ, and
(b) $K_{n}(1)$ is finitely generated (by the set of all $x_{1 j}$ and $x_{1 j k}$), but is not finitely presentable.

[^0]Here in fact y_{i} represents the automorphism which send x_{1} to $x_{1} x_{i}$ and fixes all other x_{t}, while z_{j} maps x_{1} to $\bar{x}_{j} x_{1}$ and fixes the other x_{t}, so that

$$
\bar{x}_{1 i}=y_{i} z_{i} \quad \text { and } \quad x_{1 j k}=\bar{y}_{k} \bar{y}_{j} y_{k} y_{j}
$$

(our convention being that automorphisms of F_{n} are applied on the right).

The theorem gives a reasonable description of the structure of $K_{n}(1)$, namely that $K_{n}(1)$ is the semidirect product of the commutator subgroup Y^{\prime} of the free group Y, by the free group on $x_{12}, \ldots, x_{1 n}$, where each $x_{1 j}$ acts on Y^{\prime} just as the corresponding y_{j}. In the case $n=3$, the group has a simple presentation:

Corollary 1. The group $K_{3}(1)$ has presentation

$$
\left\langle a_{n}, b_{m}(n, m \in \mathbf{Z}) ; a_{n} b_{m}=b_{m-1} a_{n+1}(n, m \in Z)\right\rangle .
$$

Let us write $S\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$ for the elements of A_{n} which fix each of the conjugacy classes $x_{i}^{0}(2 \leqq i \leqq n)$, and $K_{n}^{0}(1)$ for the intersection of K_{n} and $S\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$. Then, denoting by I_{n} the group of inner automorphisms, we have

Theorem 2.
(a) $K_{n}^{0}(1)$ is generated by the set of all $x_{i j}$ and $x_{1 j k}$.
(b) $K_{n}^{0}(1)$ is not f.p.
(c) The quotient $K_{3}^{0}(1) / I_{3}$ is the free product of $K_{3}(1)$ and the infinite cycle generated by x_{31}.

We note that $K_{3}(1)$ embeds in the quotient $K_{3}^{0}(1) / I_{3}$, since its intersection with I_{3} is trivial. Now $K_{3}^{0}=K_{3} / I_{3}$ is generated by (the image of) the set $V=x_{12}, x_{23}, x_{31}, x_{123}, x_{213}, x_{312}$, and Theorems 1 and 2 enable us to describe the relations satisfied by any subset of V containing just one of the $x_{i j k}$. Also, it has been shown by Bachmuth [1] that the subgroup T_{3} of K_{3}^{0} generated by $x_{123}, x_{213}, x_{312}$ is free of rank three. It could be asked therefore if we have obtained enough relations to present K_{3}^{0} on the generating set V. We shall show later that this is not the case, and then make use of our result to disprove a conjecture of Chein [4]. The conjecture, which is repeated as a question in problem 5 of [2], is to the effect that the normal closure N of C_{3} in K_{3} has trivial intersection with the subgroup T_{3}. In view of the result of Bachmuth cited above, this is equivalent to the assertion that the quotient group K_{3} / N is isomorphic to F_{3}. We show

Theorem 3. The group K_{3} / N is a quotient of the group L with presentation

$$
L=\left\langle x, y, z ;\left[y x, x^{r} y^{r}\right]=\left[z y, y^{r} z^{r}\right]=\left[x z, z^{r} x^{r}\right]=1 \quad(r \in \mathbf{Z})\right\rangle .
$$

The group L is not f.p.
2. Presentations of $S\left(x_{2}, \ldots, x_{n}\right)$ and $S\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$. We shall need, in order to obtain our main results, presentations of $S\left(x_{2}, \ldots, x_{n}\right)$ and $S\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$. These are given in the following results, whose proofs will be given later:

Proposition A. $S\left(x_{2}, \ldots, x_{n}\right)$ has presentation with

$$
\text { generators: } \quad \tau, y_{i}, z_{i} \quad(2 \leqq i \leqq n)
$$

and

$$
\text { relations: } \tau^{2}=1, \tau y_{i} \tau=z_{i},\left[y_{i}, z_{j}\right]=1 \quad(2 \leqq i, j \leqq n) \text {. }
$$

Here τ is the automorphism sending x_{1} to \bar{x}_{1} and fixing the other x_{t}, while y_{i}, z_{i} are as described previously. We note that $S\left(x_{2}, \ldots, x_{n}\right)$ is the semidirect product of $Y \times Z$ by the two-cycle τ.

Next we have
Proposition B. $S\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$ has presentation T_{n} with

$$
\text { generators: } \quad \tau, y_{i}, z_{j}, x_{r s} \quad(2 \leqq i, j \leqq n, 1 \leqq r \neq s \leqq n)
$$

and
relations:

$$
\begin{aligned}
& y_{j} z_{j}=x_{1 j},\left[y_{j}, z_{j}\right]=1 \\
& {\left[x_{i j}, x_{k j}\right]=1 \text {, }} \\
& {\left[y_{j}, x_{i j}\right]=1,\left[z_{j}, x_{i j}\right]=1} \\
& {\left[y_{i}, z_{j}\right]=1 \quad(i \neq j)} \\
& {\left[x_{i j}, x_{r s}\right]=1 \quad(i, j, r, s \text { distinct })} \\
& {\left[y_{j}, x_{r s}\right]=1,\left[z_{j}, x_{r s}\right]=1 \quad(1, j \neq r, s)} \\
& \left.x_{i 1} y_{s} \bar{x}_{i 1}=y_{s} x_{i s}, \bar{x}_{i 1} z_{s} x_{i 1}=z_{s} x_{i s} \quad(i \neq s) \quad\right\} Q 4 \\
& \left.\tau y_{i} \tau=z_{i}, \tau x_{i j} \tau=x_{i j} \quad(j>1), \tau x_{k 1} \tau=\bar{x}_{k 1} \quad\right\} Q 6 \\
& \tau^{2}=1 \\
& \text { \}Q7 } \\
& \left.x_{s j} y_{s} \bar{x}_{s j}=\bar{y}_{j} y_{s} y_{j}, x_{s j} z_{s} \bar{x}_{s j}=\bar{z}_{j} z_{s} z_{j} \quad(j \neq 1, s \neq j) \quad\right\} Q 9 \\
& \left.y_{s} x_{s 1} \bar{y}_{s}=x_{s 1} \bar{x}_{1 s}, z_{s} x_{s 1} \bar{z}_{s}=x_{1 s} x_{s 1} \quad\right\} Q 10 .
\end{aligned}
$$

The presentation given has a number of redundancies, which occur naturally in the course of the proof. We note that the presentation exhibits $S\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$ as the semidirect product of the subgroup $S^{+}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$ generated by the y_{i}, z_{j} and $x_{r s}$, by the cycle τ, and that a presentation of $S^{+}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$ is obtained from the above merely by deleting the generator τ and the relations $Q 6$ and $Q 7$.
3. Proof of theorem 1. To prove Theorem 1, we note that if

$$
g=v\left(y_{2}, \ldots, y_{n}\right) w\left(z_{2}, \ldots, z_{n}\right)
$$

is any element of $Y \times Z$, then

$$
x_{1} g=w\left(\bar{x}_{2}, \ldots, \bar{x}_{n}\right) x_{1} \widetilde{v}\left(x_{2}, \ldots, x_{n}\right),
$$

where if $v\left(y_{2}, \ldots, y_{n}\right)=y_{i_{1}}^{\epsilon_{1}} \ldots y_{i_{\mathrm{k}}}^{\epsilon_{k}}$ then \widetilde{v} is the reverse word $y_{i_{k}}^{\epsilon_{k}} \ldots y_{i_{1}}^{\epsilon_{1}}$. Since $x_{1} g \tau$ is $x_{1} g$ with x_{1} replaced by \bar{x}_{1}, it follows that $S\left(x_{2}, \ldots, x_{n} \cap K_{n}\right.$ consists of those $g=v w$ in $Y \times Z$ as above such that, for each $i(2 \leqq$ $i \leqq n$), the exponent sum of z_{i} in w is equal to the exponent sum of y_{i} in v. This is precisely the kernel of the homomorphism θ described in the theorem, and hence part (a) has been established.

To show that $K_{n}(1)$ is the subgroup H (say) generated by the $x_{1 i}=y_{i} z_{i}$ together with the $x_{1 j k}=\left[\bar{y}_{k}, \bar{y}_{j}\right]$, we note that $x_{1 i}$ acts on Y just as y_{i}, so that clearly H contains Y^{\prime}. Now the subgroup generated by the $x_{1 i}$ and Y^{\prime} contains Z^{\prime} also. Hence H is a normal subgroup of $Y \times Z$ contained in $K_{n}(1)$, and with the same quotient group as $K_{n}(1)$. It follows that $H=K_{n}(1)$, proving the first statement in part (b) of the theorem. The discussion of this paragraph also substantiates the remark that $K_{n}(1)$ is the semidirect product of Y^{\prime} by the $x_{1 i}$.

To prove that $K_{n}(1)$ is not f.p., we may apply the result of Bieri (see e.g. [3], p. 118) that if N is a f.p. normal subgroup of a finitely generated group G of cohomological dimension two, then either N is free or N is of finite index in G. Since $K_{n}(1)$ is clearly not free, and not of finite index in $Y \times Z$, it is not f.p.

To prove Corollary 1, we exploit the fact that when $n=3$ the homomorphism θ splits, with e.g. the subgroup generated by y_{2} and z_{3} being a splitting subgroup. Thus we have the standard presentation

$$
\left\langle y_{2}, y_{3}, z_{2}, z_{3} ;\left[y_{i}, z_{j}\right]=1 \quad(2 \leqq i, j \leqq 3)\right\rangle
$$

of $Y \times Z$. We now add the generators a_{0}, b_{0}, where $a_{0}=y_{2} z_{2}$ and $b_{0}=$ $y_{3} z_{3}$, and delete the generators y_{3}, z_{2} to obtain the presentation

$$
\left\langle y_{2}, z_{3}, a_{0}, b_{0} ;\left[y_{2}, z_{3}\right]=\left[y_{2}, a_{0}\right]=\left[z_{3}, b_{0}\right]=\left[a_{0} \bar{y}_{2}, b_{0} \bar{z}_{3}\right]=1\right\rangle .
$$

Now if we define $a_{n}=z_{3}^{-n} a_{0} z_{3}^{n}$ and $b_{n}=y_{2}^{-n} b_{0} y_{2}^{n}$ then the relation

$$
\left[a_{0} \bar{y}_{2}, b_{0} \bar{z}_{3}\right]=1
$$

can be rewritten as $a_{0} b_{1}=b_{0} a_{1}$, and conjugation of this by $y_{2}^{n} z_{3}^{m}$ yields $a_{m} b_{n+1}=b_{n} a_{m+1}$. Thus $Y \times Z$ has presentation
generators: $y_{2}, z_{3}, a_{n}, b_{n} \quad(n \in Z)$
relations: $\quad\left[y_{2}, z_{3}\right]=\left[y_{2}, a_{n}\right]=\left[z_{3}, b_{n}\right]=1$

$$
\bar{z}_{3} a_{n} z_{3}=a_{n+1}, \bar{y}_{2} b_{n} y_{2}=b_{n+1}
$$

$$
a_{n} b_{m}=b_{m-1} a_{n+1}
$$

$$
(n, m \in Z)
$$

This exhibits $Y \times Z$ as the semidirect product of the group H with generators a_{n}, b_{n} and defining relations $a_{n} b_{m}=b_{m-1} a_{n+1}(n, m \in Z)$, by the free abelian group on y_{2}, z_{3}. Since $a_{0}, b_{0} \in K_{3}(1)$, it is clear that $H=K_{3}(1)$. This proves the corollary.

We note that in H we have $a_{n}=b_{0}^{-n} a_{0} b_{1}^{n}$ and $b_{n}=a_{0}^{-n} b_{0} a_{1}^{n}$. It is not difficult to show that H can be presented on a_{0} and the b_{m} by

$$
\begin{array}{r}
\left\langle a_{0}, b_{m}(m \in z) ; a_{0} b_{1}^{n} b_{m} b_{1}^{-(n+1)} \bar{a}_{0}=b_{0}^{n} b_{m-1} b_{0}^{-(n+1)}\right. \\
\quad(n, m \in Z)\rangle,
\end{array}
$$

and from this a presentation on the generators a_{0}, b_{0}, b_{1} can be obtained. The fact that the above presentation is an $H N N$-extension of the free group on the b_{n} can be used to give an easy direct proof of the fact that $K_{3}(1)$ is not f.p.
4. Proof of theorem 2. It is clear that $K_{n}^{0}(1)$ is contained in the subgroup $S^{+}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$ of $S\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$, and that the $x_{i j}$ and $x_{1 j k}$ are in $K_{n}^{0}(1)$. It now follows that $K_{n}^{0}(1)$ contains the subgroup L of $S^{+}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$ generated by the $x_{r s}, Y^{\prime}$ and (therefore) Z^{\prime}. We show that L is a normal subgroup of $S^{+}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$. Since $S^{+}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$ is generated by the $x_{r s}$ and y_{j}, it is enough to show that L is closed under conjugation by the $y_{j}^{ \pm 1}$. Now the following relations are obtained easily from the indicated relations of Proposition B:

$$
\begin{array}{ll}
y_{j} x_{1 s} \bar{y}_{j}=\left[y_{j}, y_{s}\right] x_{1 s} & \\
y_{j} x_{r s} \bar{y}_{j}=x_{r s} & \text { if } 1, j \neq r, s \\
y_{j} x_{r 1} \bar{y}_{j}=\bar{x}_{r j} x_{r 1} & \text { if } j \neq r \\
y_{j} x_{j s} \bar{y}_{j}=\left[y_{j}, \bar{y}_{s}\right] x_{j s} & \text { if } s \neq 1, j \neq s \\
y_{j} x_{j 1} \bar{y}_{j}=x_{j 1} \bar{x}_{1 j} & \tag{Q10}
\end{array}
$$

and the desired result follows. Thus L is a normal subgroup, and the corresponding quotient group is obviously free abelian of rank $n-1$. Since this is also the quotient of $S^{+}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$ by $K_{n}^{0}(1)$, it follows that $L=K_{n}^{0}(1)$, and this proves part (a) of Theorem 2.

To prove that $K_{n}^{0}(1)$ is not f.p., we note that the natural homomorphism from F_{n} to F_{n-1} with kernel the normal closure of x_{n} induces a homomorphism Ψ_{n} from $K_{n}^{0}(1)$ to $K_{n-1}^{0}(1)$, and that each $x_{j n}$ and $x_{n j}$ is in $\operatorname{ker} \Psi_{n}$, as is each $x_{1 n j}$ and $x_{1 j n}(1 \leqq j \leqq n-1)$. Now the remaining $x_{r s}$ and $x_{1 r s}$ generate $K_{n-1}^{0}(1)$, so that clearly $\operatorname{ker} \Psi_{n}$ is the normal closure in K_{n}^{0} of the finite set of $x_{j n}, x_{n j}, x_{1 n j}$ and $x_{1 j n}(1 \leqq j \leqq n-1)$. Hence it will follow that $K_{n}^{0}(1)$ is not f.p. provided this is true when $n=3$. Thus part (b) of the theorem will follow once we have established part (c).

We now take the presentation of $S^{+}\left(x_{2}^{0}, x_{3}^{0}\right)$ obtained from the presentation of Proposition B (with $n=3$) by deleting the generator τ and the relations $Q 6$ and $Q 7$. To this presentation we add the relations

$$
x_{21} x_{31}=x_{12} x_{32}=x_{13} x_{23}=1
$$

in order to factor out the group I_{3} of inner automorphisms. If we then eliminate x_{21}, x_{32} and x_{23} using the above relations, we obtain the following presentation of $S^{+}\left(x_{2}^{0}, x_{3}^{0}\right) / I_{3}$:

$$
\text { generators: } y_{2}, y_{3}, z_{2}, z_{3}, x_{12}, x_{13}, x_{31}
$$

and

$$
\begin{array}{lll}
\text { relations: } & {\left[y_{i}, z_{j}\right]=1, y_{i} z_{j}=x_{1 j}} & (2 \leqq i, j \leqq 3) \\
& x_{31} y_{2} \bar{x}_{31}=y_{2} \bar{x}_{12}, \bar{x}_{31} z_{2} x_{31}=z_{2} \bar{x}_{12} & \\
& \bar{x}_{31} y_{3} x_{31}=y_{3} \bar{x}_{13}, x_{31} z_{3} \bar{x}_{31}=z_{3} \bar{x}_{13} .
\end{array}
$$

Here the first line of relations comes from the first lines of $Q 2$ and $Q 3$; the remaining lines of $Q 2$ and $Q 3$ are superfluous. The second line above arises from $Q 4$ with $i=3$ and $s=2$, while the third line arises from $Q 4$ with $i=2, s=3$, and x_{21} replaced by \bar{x}_{31}. This yields all $Q 4$ relations. The relations from $Q 9$ and $Q 10$ are easily seen to be superfluous.

We note that the presentation obtained exhibits $S^{+}\left(x_{2}^{0}, x_{3}^{0}\right) / I_{3}$ as an $H N N$-extension with base $Y \times Z$ and stable letter x_{31}, where $x_{31} y_{2} \bar{x}_{31}=\bar{z}_{2}$ and $x_{31} z_{3} \bar{x}_{31}=\bar{y}_{3}$; i.e., the 'associated subgroups' are the (free abelian) groups $\left\langle y_{2}, z_{3}\right\rangle$ and $\left\langle\bar{z}_{2}, \bar{y}_{3}\right\rangle$. In terms of the presentation of $Y \times Z$ on the generating set $y_{2}, z_{3}, a_{n}, b_{n}(n \in Z)$ which we obtained in section 3, we can describe $S^{+}\left(x_{2}^{0}, x_{3}^{0}\right) / I_{3}$ as having the following presentation:

$$
\text { generators: } y_{2}, z_{3}, a_{n}, b_{n}, x_{31} \quad(n \in Z)
$$

and

$$
\begin{aligned}
\text { relations: } & {\left[a_{n}, y_{2}\right]=\left[b_{n}, z_{3}\right]=\left[y_{2}, z_{3}\right]=1 } \\
& a_{n} b_{m}=b_{m-1} a_{n+1} \\
& \bar{z}_{3} a_{n} z_{3}=a_{n+1}, \quad \bar{y}_{2} b_{n} y_{2}=b_{n+1} \\
& \bar{z}_{3} x_{31} z_{3}=\bar{b}_{0} x_{31}, \quad \bar{y}_{2} x_{31} y_{2}=\bar{a}_{0} x_{31} \quad(n, m \in Z) .
\end{aligned}
$$

This exhibits $S^{+}\left(x_{2}^{0}, x_{3}^{0}\right) / I_{3}$ as the semidirect product of the free product $\left\langle x_{31}\right\rangle * K_{3}(1)$ by the free abelian group on y_{2}, z_{3}. Thus $K_{3}^{0}(1) / I_{3}$ is the free product of $K_{3}(1)$ and the cycle generated by x_{31}, as claimed.
5. Proof of theorem 3. Let us write $y_{i j}$ for the element of A_{n} which maps x_{i} to $x_{i} x_{j}$ and fixes the other x_{t} 's, and $z_{i j}$ for the element sending x_{i} to $\bar{x}_{j} x_{i}$
and fixing the remaining x_{t} 's (so that our previous y_{i}, z_{i} are now denoted by $y_{1 i}, z_{1 i}$ respectively). We have

$$
a_{n}=z_{13}^{-n} x_{12} z_{13}^{n}, \quad b_{n}=y_{12}^{-n} x_{13} y_{12}^{n} .
$$

We now define elements c_{n}, d_{n} of $K_{3}^{0}(2)$, and elements e_{n}, f_{n} of $K_{3}^{0}(3)$ by

$$
c_{n}=z_{21}^{-n} x_{23} z_{21}^{n}, \quad d_{n}=y_{23}^{-n} x_{21} y_{23}^{n}
$$

and

$$
e_{n}=z_{23}^{-n} x_{31} z_{32}^{n}, \quad f_{n}=y_{31}^{-n} x_{32} y_{31}^{n} .
$$

Now $b_{0} c_{0}=d_{0} e_{0}=f_{0} a_{0}=1$ in K_{3} / I_{3}, and it follows from Theorem 1 that K_{3} / I_{3} is a quotient of the group \hat{K}_{3} with presentation

$$
\text { generators: } \quad a_{n}, b_{n}, c_{n}, d_{n}, e_{n}, f_{n}
$$

and

$$
\begin{array}{ll}
\text { relations: } & b_{0} c_{0}=d_{0} e_{0}=f_{0} a_{0}=1 \\
& a_{n} b_{m}=b_{m-1} a_{n+1}, c_{n} d_{m}=d_{m-1} c_{n+1}, \\
& e_{n} f_{m}=f_{m-1} e_{n+1} \quad(n, m \in Z) .
\end{array}
$$

We shall show that K_{3} / I_{3} is a proper quotient of \hat{K}_{3}. For this purpose, we use the following table

	$\mathbf{a}_{\mathbf{n}}$	$\mathbf{b}_{\mathbf{n}}$	$\mathbf{c}_{\mathbf{0}}$	$\mathbf{d}_{\mathbf{0}}$	$\mathbf{d}_{\mathbf{1}}$
y_{12}	a_{n}	b_{n-1}	\bar{b}_{-1}	$d_{0} \bar{a}_{0}$	$\bar{b}_{0} d_{1} \bar{a}_{0} \bar{b}_{-1}$
$\boldsymbol{\rho}$	\bar{a}_{n}	b_{-n}	c_{0}	d_{0}	$\bar{c}_{0} d_{-1} c_{0}$
$\boldsymbol{\theta}$	\bar{a}_{n}	b_{1-n}	\bar{b}_{1}	$d_{0} a_{0}$	$d_{-1} c_{0} a_{0} \bar{b}_{1}$

The entries of the table are elements of A_{3} / I_{3}, where ρ is the element taking x_{2} to \bar{x}_{2} and fixing x_{1} and x_{3}, and $\theta=\rho y_{12}$. The entries are obtained by conjugation of the top elements by the elements at the left; thus, e.g. $y_{12} d_{1} \bar{y}_{12}=\bar{b}_{0} d_{1} \bar{a}_{0} \bar{b}_{-1}, \rho b_{n} \bar{\rho}=b_{-n}$, etc. We now use the table to compute $\theta c_{-1} \bar{\theta}$ and $\theta d_{n} \bar{\theta}$. We have

$$
\begin{aligned}
\theta c_{-1} \bar{\theta} & =\theta d_{0} c_{0} \bar{d}_{1} \bar{\theta}=d_{0} a_{0} \bar{b}_{1} b_{1} \bar{a}_{0} \bar{c}_{0} \bar{d}_{-1} \\
& =d_{0} \bar{c}_{0} \bar{d}_{-1}=\bar{c}_{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\theta d_{n} \bar{\theta} & =\theta\left(\bar{c}_{-1}^{n} d_{0} c_{0}^{n}\right) \bar{\theta}=c_{-1}^{n} d_{0} a_{0} \bar{b}_{1}^{n} \\
& =c_{-1}^{n} d_{0} b_{0}^{-n} a_{-n}=c_{-1}^{n} d_{0} c_{0}^{n} a_{-n} \\
& =c_{-1}^{2 n} d_{n} a_{-n} .
\end{aligned}
$$

Now in K_{3} / I_{3} we have the relation

$$
\bar{c}_{-1} \bar{d}_{r} d_{0} c_{-1}=\bar{d}_{r+1} d_{1} \quad(r \in Z)
$$

Conjugating by θ yields

$$
\begin{equation*}
c_{-1} \bar{a}_{-r} \bar{d}_{r} \bar{c}_{-1}^{2 r} d_{0} a_{0} \bar{c}_{-1}=\bar{a}_{-r-1} \bar{d}_{r+1} \bar{c}_{-1}^{2(r+1)} c_{-1}^{2} d_{1} a_{-1} . \tag{5.1}
\end{equation*}
$$

We now note that in the quotient of $K_{3}(1)$ by the normal closure H of the set $\left\{a_{0}, b_{0}\right\}$, we have

$$
b_{r}=\bar{a}_{0}^{r} b_{0} a_{1}^{r}=a_{1}^{r}, \quad \text { and } \quad a_{t}=\bar{b}_{0}^{t} a_{0} b_{1}^{t}=b_{1}^{t}=a_{1}^{t} .
$$

Hence $K_{3}(1) / H$ is infinite cyclic, and generated by a_{1}. It is now clear that adding the relations $a_{0}=c_{0}=e_{0}=1$ to the group \hat{K}_{3} yields the free group on a_{1}, c_{1}, e_{1}. However, adding the same relations to K_{3} / I_{3} yields, in view of relation (5.1) above, the relation

$$
\bar{c}_{1} a_{1}^{r} c_{1}^{-r} c_{1}^{2 r} c_{1}=a_{1}^{r+1} c_{1}^{-(r+1)} c_{1}^{2(r+1)} c_{1}^{-2} c_{1} \bar{a}_{1},
$$

so that

$$
a_{1}^{r} c_{1}^{r} c_{1} a_{1}=c_{1} a_{1} a_{1}^{r} c_{1}^{r},
$$

i.e.,

$$
\left[c_{1} a_{1}, a_{1}^{r} c_{1}^{r}\right]=1 \quad(r \in Z) .
$$

This establishes the first part of Theorem 3, since by symmetry we will have the relations

$$
\left[e_{1} c_{1}, c_{1}^{r} e_{1}^{r}\right]=\left[a_{1} e_{1}, e_{1}^{r} a_{1}^{r}\right]=1
$$

in the group K_{3} / N.
To show that the group L of Theorem 3 is not f.p., we consider the quotient group L_{1} obtained by adding the relation $z=1$ to L. We have

$$
L_{1}=\left\langle x, y ;\left[y x, x^{r} y^{r}\right]=1 \quad(r \in Z)\right\rangle
$$

If we put $w=y x$ and replace y by $w \bar{x}$ we obtain

$$
L_{1}=\left\langle x, w ;\left[w, x^{r}(w \bar{x})^{r}\right]=1 \quad(r \leqq Z)\right\rangle
$$

Thus $[w, x w \bar{x}]=1$ in L_{1}, and then using

$$
\left[w, x^{s+1}(w \bar{x})^{s+1}\right]=\left[w, x^{s+1} w \bar{x}^{s+1} x^{s} w \bar{x}^{s} \ldots x w \bar{x}\right]
$$

if $s \geq 1$, it follows that $\left[w, x^{s} w \bar{x}^{s}\right]=1$ for all $s \in Z$. It is then clear that

$$
L_{1}=\left\langle x, w ;\left[w, x^{s} w \bar{x}^{s}\right]=1 \quad(s \in Z)\right\rangle
$$

Thus L_{1} is the restricted wreath product of the infinite cycle on w by the infinite cycle on x. This group is easily seen to be non f.p.
6. Proof of the propositions. In this section we shall assume familiarity with the notation and results of [9] (see also [6]). In [10] we used (the improved version of) Theorem 1 of [9] to obtain a presentation of $C_{n}=$ $S\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$. It is not difficult to extend the analysis of [10] to obtain a result for the subgroup $S\left(x_{r+1}^{0}, \ldots, x_{n}^{0}\right)$ of A_{n} consisting of those elements of A_{n} which fix the conjugacy classes $x_{r+1}^{0}, \ldots, x_{n}^{0}$ (where r is an integer with $0 \leqq r \leqq n$). We state this as

Proposition C. $S\left(x_{r+1}^{0}, \ldots, x_{n}^{0}\right)$ has presentation with generators: the union of
(a) the set Ω_{r}, and
(b) those type 2 whitehead automorphisms $(A ; a)$ of A_{n} such that for each i with $r+1 \leqq i \leqq n$ we have $x_{i} \in A-a$ if and only if $\bar{x}_{i} \in A-a$.

And
relations: All relations of type $R 1-R 10$ in [8] which involve only the above generators, together with the multiplication table for the group Ω_{r}.

Proof. Let M_{2} be the complex described in Section 4 of [9] for the tuple $U=x_{r+1}^{0}, \ldots, x_{n}^{0}$. Then it is easy to see (as in [10]) that each type 2 edge of M_{2} is in fact a loop. This observation enables us to construct M_{2} as follows:

Let M_{1} be the one-point (labelled) complex corresponding to the presentation in the statement of the proposition, and let $P(n)$ be the onepoint complex corresponding to the multiplication table of Ω_{n}. Now take $P_{r}(n)$ to be the covering complex for $P(n)$ corresponding to the subgroup Ω_{r} of Ω_{n}. At each point p of $P_{r}(n)$ there is a (unique) copy of $P(r)$. Note that M_{1} also contains a (unique) copy of $P(r)$. To each point p of $P_{r}(n)$ we attach a copy of M_{1}, identifying the copy of $P(r)$ in M_{1} with the copy of $P(r)$ at p. The resulting complex, M_{2}^{\prime} say, is a subcomplex of M_{2} which contains the 1 -skeleton of M_{2}. Now M_{2} is a labelled complex; if we take this same labelling on M_{2}^{\prime}, then we obtain M_{2} from M_{2}^{\prime} merely by adding 2-cells corresponding to all loops of M_{2}^{\prime} with boundary label the $R 6$ relator $T^{-1}(A ; a) T(A T ; a T)^{-1}$ of $[8]$ which are not in the attached copies of M_{1} (noting that the excluded loops already correspond to 2-cells).

From the above construction it is easy to see that $\pi_{1}\left(M_{2}, U\right)=\pi_{1}\left(M_{1}\right)$, as required.

We now specialize the above result to the case $r=1$, in order to prove Proposition B. We note firstly that from part (a) of the generating set we obtain only the generator τ of T_{n}. The generators $y_{i}, z_{j}, x_{t s}$ of T_{n} are included in those supplied by part (b) of the generating set, and if $(A ; a)$ is a generator coming from (b) then $(A ; a)^{ \pm 1}$ will either be a product (without repetition) of elements of the set $x_{21}, \ldots, x_{n 1}$ or a similar product of elements of the set $y_{j}, z_{j}, x_{2 j}, \ldots, x_{n j}$, for some $j \geqq 2$; moreover, the fact that this is so will be conveyed by the relations $R 1$ and $R 2$. Thus
$S\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$ is generated by τ and the $y_{i}, z_{j}, x_{t s}$. We shall present the group on this set, and in determining the defining relations required we must therefore suitably modify those provided by Proposition C. We now examine the list $R 1-R 10$ of [8] to do this:

From $R 2$: we obtain the relations $Q 2$. We note that the additional relations from $R 1$ and $R 2$ merely enable us to eliminate the 'superfluous' ($A ; a$) generators.

From $R 3$: we obtain the relations $Q 3$.
From $R 4$: The general $R 4$ relation may be written

$$
(B-b+\bar{b} ; \bar{b})(A ; a)=(A+B-b ; a)(B-b+\bar{b} ; \bar{b})
$$

where $A \cap B=\emptyset, \bar{b} \in A, \bar{a} \notin B$. In our case we must have $b=x_{1}^{ \pm 1}$, since otherwise the condition of (b) of Proposition C is not satisfied. There is no real loss of generality in taking $A=x_{1}, x_{2}, x_{3}, \ldots, x_{k}, \bar{x}_{3}, \ldots, \bar{x}_{k}$, $a=x_{2}$, and $B=\bar{x}_{1}, x_{k+1}, \ldots, x_{s}, \bar{x}_{k+1}, \ldots, \bar{x}_{s}, b=\bar{x}_{1}$ for some s, k with $k<s$. Then the $R 4$ relation can be written as

$$
\left(\prod_{i=k+1}^{s} x_{i 1}\right)\left(\prod_{j=3}^{k} x_{j 2}\right) y_{2}=y_{2}\left(\prod_{i=k+1}^{s} x_{i 2}\right)\left(\prod_{j=3}^{k} x_{j 2}\right)\left(\prod_{i=k+1}^{s} x_{i 1}\right)
$$

and we have to show that this holds in T_{n}. We can delete the term $\Pi_{j=3}^{k} x_{j 2}$ from both sides, since the relations of T_{n} imply that this term commutes with the others. Now repeated use of the relation

$$
x_{i 1} y_{2}=y_{2} x_{i 2} x_{i 1}
$$

of T_{n} gives

$$
\begin{aligned}
\left(\prod_{i=k+1}^{s} x_{i 1}\right) y_{2} & =y_{2} \prod_{i=k+1}^{s}\left(x_{i 2} x_{i 1}\right) \\
& =y_{1}\left(\prod_{i=k+1}^{s} x_{i 2}\right)\left(\prod_{i=k+1}^{s} x_{i 1}\right)
\end{aligned}
$$

as required (where the last equality is obtained using the relation $\left[x_{j 2}, x_{i 1}\right]=1$ if $\left.j \neq i\right)$.

From R5: no relations arise (since otherwise some ($\left(\begin{array}{ll}\frac{a}{b} & b \\ a\end{array}\right)$ would belong to $S\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)$.

From R6: We obtain Q6.
From R7: We obtain $Q 7$.
From R8: We obtain only consequences of $Q 2$.
From $R 9$: The general $R 9$ relation is

$$
(A ; a) j(b)(A ; a)^{-1}=j(b)
$$

where $j(b)$ is conjugation by the letter b, and $b, \bar{b} \in A^{\prime}$. If $(A ; a)^{ \pm 1}$ is a product of the $x_{i j}$, then the deduction on page 1528 of $[\mathbf{1 0]}$ shows that the
required relation holds in T_{n}. Otherwise we may suppose, with no essential loss of generality, that $(A ; a)=y_{j}$ and that we have to show

$$
y_{j}\left(\prod_{\substack{i=1 \\ i \neq k}}^{n} x_{i k}\right) \bar{y}_{j}=\prod_{\substack{i=1 \\ i \neq k}}^{n} x_{i k}
$$

in T_{n}, where $k \neq 1, j$. Using the relations $Q 2$ and $Q 3$, this reduces to showing that

$$
y_{j} x_{1 k} x_{j k} \bar{y}_{j}=x_{1 k} x_{j k} .
$$

Now $\bar{x}_{1 k} y_{j} x_{1 k}=\bar{y}_{k} y_{j} y_{k}$ in T_{n}, so we need

$$
\bar{y}_{k} y_{j} y_{k}=x_{j k} y_{j} \bar{x}_{j k},
$$

and this is in $Q 9$.
From R10: The conditions $b \neq a, b \in A$ and $\bar{b} \in A^{\prime}$ ensure that $b=x_{1}^{ \pm 1}$. Now the general $R 10$ relation may be written

$$
(A ; a) j(b)(A ; a)^{-1}=j(b) j(\bar{a}),
$$

(if the $\left(A^{\prime} ; \bar{a}\right)$ term is rewritten as $j(\bar{a})(A ; a)$). There is no real loss of generality in taking $b=x_{1}$ and $a=x_{2}$. We then have

$$
(A ; a)=y_{2} \prod_{s \in S} x_{s 2}
$$

for some subset S of $1,3, \ldots, n$, and we have to show, in T_{n}, that

$$
y_{2}\left(\prod_{s \in S} x_{s 2}\right) \prod_{r=2}^{n} x_{r 1}\left(\prod_{s \in S} x_{s 2}\right)^{-1} y_{2}^{-1}=\prod_{r=2}^{n} x_{r 1} \prod_{\substack{t=1 \\ t \neq 2}}^{n} \bar{x}_{t 2} .
$$

Now using $R 9$ the terms $\left(\prod_{s \in S} x_{s 2}\right)^{ \pm 1}$ on the left-hand side of this may be deleted. We then have

$$
y_{2}\left(\prod_{r=2}^{n} x_{r 1}\right) \bar{y}_{2}=x_{21} \bar{x}_{12} \prod_{r=3}^{n} \bar{x}_{r 2} x_{r 1}
$$

in T_{n} (using $Q 10$ and $Q 4$). Now by repeated use of the relation $\left[x_{12} x_{r 2}, x_{r 1}\right]=1$ and of $\left[x_{i j}, x_{r s}\right]=1$ if i, j, r, s, are distinct, we can write the right-hand side of the last relation in the desired form. This concludes the proof of Proposition B.

Finally we consider the proof of Proposition A. The results of [9] show easily that $S\left(x_{2}, \ldots, x_{n}\right)$ is generated by τ and the y_{i}, z_{j}. The methods of [9] can also be used to present the group, but in fact consideration of the observations in the first paragraph of Section 3 is enough to provide an easy verification of the proposition.

References

1. S. Bachmuth, Automorphisms of free metabelian groups, Trans. Amer. Math. Soc. 118 (1965), 93-104.
2. - Automorphisms of solvable groups, Part 1, Proceedings of Groups - St. Andrews (1985), 1-13 (London Mathematical Society, Lecture Notes Series \# 121, Cambridge Univ. Press 1986).
3. R. Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes (1976).
4. O. Chein, Subgroups of IA automorphisms of a free group, Acta Mathematica 123 (1969), 1-12.
5. B. Levinger, A generalisation of the braid group, Ph.D. thesis, New York University (1968).
6. R. Lyndon and P. E. Schupp, Combinatorial group theory (Springer, 1977).
7. W. Magnus, Über n-dimensionale gittertransformationen, Acta Math. 64 (1934), 353-367.
8. J. McCool, A presentation for the automorphism group of a free group of finite rank, J. London Math. Soc. (2) 8 (1974), 259-266.
9. -_Some finitely presented subgroups of the automorphism group of a free group, J. of Alg. 35 (1975), 205-213.
10. On basis-conjugating automorphisms of free groups, Can. J. Math. 38 (1986), 1525-1529.
11. J. Nielsen, Die gruppe der dreidimensionalen Gittertransformationen, Kgl. Danske Videnskabernes Selskeb., Math. Fys. Meddelelser v. 12 (1924), 1-29.

University of Toronto,
Toronto, Ontario

[^0]: Received September 30, 1987.

