Checking ergodicity of some geodesic flows with infinite Gibbs measure

MARYREES \dagger
From the Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France

(Received 20 August 1980 and revised 13 January 1981)

Abstract. This paper concerns a problem which arose from a paper of Sullivan. Let Γ be a discrete group of isometries of hyperbolic space H^{d+1}. We study the question of when the geodesic flow on the unit tangent bundle UT $\left(H^{d+1} / \Gamma\right)$ of H^{d+1} / Γ is ergodic with respect to certain natural measures. As a consequence, we study the question of when Γ is of divergence type. Ergodicity when the non-wandering set of UT (H^{d+1} / Γ) is compact is already known from the theory of symbolic dynamics, due to Bowen, or from Sullivan's work. For such a Γ, we consider a subgroup Γ_{1} of Γ with $\Gamma / \Gamma_{1} \cong \mathbb{Z}^{v}$ and prove the geodesic flow on UT $\left(H^{d+1} / \Gamma_{1}\right)$ is ergodic (with respect to one of these natural measures) if and only if $v \leq 2$.

0. Introduction

The geodesic flow $\left\{\phi_{t}\right\}$, on the unit tangent bundle $\mathrm{UT}(M)$ of a $(d+1)$-dimensional manifold M of constant negative curvature, is a common object of study in dynamical systems and ergodic theory. Such a manifold M is of the form H^{d+1} / Γ, for Γ a discrete group of isometries of hyperbolic space H^{d+1}. In the present paper, we study the question of whether $\left(\mathrm{UT}\left(H^{d+1} / \Gamma\right),\left\{\phi_{t}\right\}, \mu\right)$ is ergodic, for certain groups Γ, and certain natural ϕ_{t}-invariant measures μ. As a consequence, we also study the question of whether Γ is of divergence type. These questions arose from [10], as will be explained shortly.

We need to recall two classical methods of studying the geodesic flows (UT $\left.\left(H^{d+1} / \Gamma\right),\left\{\phi_{t}\right\}\right)$. The first is in terms of the limit set of the group Γ. Recall that H^{d+1} has a natural boundary sphere S^{d} such that $H^{d+1} \cup S^{d}$ is compact, and that the action of Γ on H^{d+1} extends continuously to $H^{d+1} \cup S^{d} . H^{d+1} \cup S^{d}$ identifies in a natural way with the unit ball in \mathbb{R}^{d+1}. Γ acts smoothly on the unit sphere, and has the property that, for $\xi, \eta \in S^{d},\|\gamma(\xi-\eta)\|=\left|\gamma^{\prime}(\xi)\right|\left|\gamma^{\prime}(\eta)\right|\|\xi-\eta\|$, where $\|\quad\|$ denotes the Euclidean norm on \mathbb{R}^{d+1}, and $\left|\gamma^{\prime}(\xi)\right|$ is a scalar associated to the derivative of γ (clearly $\gamma^{\prime}(\xi)$ is precisely the derivative if $d=1$, when \mathbb{R}^{d+1} is the complex plane). The limit set $L_{\Gamma} \subseteq S^{d}$ of Γ is the set of accumulation points of $\{\gamma x: \gamma \in \Gamma\}$ for any $x \in H^{d+1}$. (The definition is independent of the choice of x.) Γ leaves L_{Γ} invariant. UT (H^{d+1} / Γ) is the same as $\left(\mathrm{UT}\left(H^{d+1}\right)\right) / \Gamma$ (where the action of Γ on $\mathrm{UT}\left(H^{d+1}\right)$ is given by the derivatives of the action on H^{d+1}), and $\mathrm{UT}\left(H^{d+1}\right)$ is diffeomorphic to

[^0]$\left(\left(S^{d} \times S^{d}\right) \backslash\right.$ diagonal $) \times \mathbb{R}$, in such a way that the lifts of $\left\{\phi_{t}\right\}$-orbits in (UT $\left.\left(H^{d+1}\right)\right) / \Gamma$ are the sets $\{(x, y)\} \times \mathbb{R}\left(x, y \in L_{\Gamma}\right)$. The action of Γ on UT $\left(H^{d+1}\right)$ transfers to an action sending the set $\{(x, y)\} \times \mathbb{R}$ to $\{(\gamma x, \gamma y)\} \times \mathbb{R}$. The non-wandering set X_{Γ} of the flow (UT $\left.\left(H^{d+1} \backslash \Gamma\right),\left\{\phi_{t}\right\}\right)$, when lifted to UT $\left(H^{d+1}\right)$, corresponds to $\left(\left(L_{\Gamma} \times\right.\right.$ $\left.L_{\Gamma}\right)$ diagonal) $\times \mathbb{R}$. Thus, ϕ_{t}-invariant measures on X_{Γ} correspond to Γ-invariant measures on $\left(L_{\Gamma} \times L_{\Gamma}\right) \backslash$ diagonal. By [5], $\left(L_{\Gamma} \times L_{\Gamma}, \Gamma\right)$ is topologically transitive for all non-elementary groups Γ, so ($X_{\Gamma},\left\{\phi_{t}\right\}$) is also topologically transitive. Questions of ergodicity are more subtle.

One class of Γ-invariant measures on $L_{\Gamma} \times L_{\Gamma}$ - which is included in those studied here - arises from the so-called 'conformal densities' studied by Sullivan [10] (the early work is due to Patterson [8]). A Γ-invariant conformal density of dimension δ is (abusing the notation of [10] slightly) a probability measure ν on L_{Γ} such that

$$
\frac{d \gamma_{*} \nu}{d \nu}(\xi)=\left|\gamma^{\prime}(\xi)\right|^{\delta} \quad \text { for all } \delta \in L_{\Gamma}
$$

where $\gamma_{*} \nu(f)=\nu\left(f \circ \gamma^{-1}\right)$. If μ_{ν} on $L_{\Gamma} \times L_{\Gamma}$ is defined by

$$
\frac{d \nu(\xi) d \nu(\eta)}{\|\xi-\eta\|^{2 \delta}}=d \mu_{\nu}(\xi, \eta)
$$

then μ_{ν} is a Γ-invariant measure on $L_{\Gamma} \times L_{\Gamma}$. Of course, if $L_{\Gamma}=S^{d}$, Lebesgue measure on S^{d} is a Γ-invariant conformal density of dimension d.

There is not space here for a proper review of Sullivan's results, but they include the following. Let (x, y) denote hyperbolic distance between $x, y \in H^{d+1}$. For $\alpha \in \mathbb{R}$, the Poincaré series

$$
\sum_{\gamma \in \Gamma} \exp \{-\alpha(x, \gamma x)\}
$$

converges or diverges independently of the choice of x. The critical exponent $\delta(\Gamma)$ of Γ is the supremum of the α for which the series diverges. Always, $\delta(\Gamma) \leq d$. There exists a Γ-invariant conformal density ν of dimension $\delta(\Gamma)=\delta$. (This is direct imitation of [8], where it was proved for the case $d=1$.) For any such ν (and Γ non-elementary) ($L_{\Gamma} \times L_{\Gamma}, \Gamma, \mu_{\nu}$) is ergodic if and only if Γ is of divergence type, that is, the Poincare series diverges at the critical exponent $\delta(\Gamma)$. In the case of divergence type, (L_{Γ}, Γ, ν) is also ergodic, for arbitrary ν, so there is only one Γ-invariant conformal density of dimension $\delta(\Gamma)$. The equivalence of ergodicity and divergence type is actually completely proved for $\delta \geq \frac{1}{2} d$ in [10], via a third equivalent condition, the recurrence of a certain Markov process with paths in H^{d+1} / Γ. In the classical case $\delta=d$, this process is hyperbolic Brownian motion. Aaronson and Sullivan later proved the equivalence of divergence type and ergodicity for all non-elementary groups Γ, by a method not using Markov processes.

If X_{Γ} is compact (Sullivan actually considers Γ convex co-compact, which is, if anything, a stronger condition, but the same proof works for X_{Γ} compact), then Γ is of divergence type, and ν (the conformal density) is Hausdorff measure on L_{Γ}, and the associated measure on X_{Γ} is the unique measure maximizing the entropy of ($X_{\Gamma},\left\{\phi_{t}\right\}$). By [8], all finitely generated Fuchsian groups (that is, $d=1$) are of
divergence type. Classically, Γ is of divergence type if H^{d+1} / Γ has finite hyperbolic volume, in which case $\delta(\Gamma)=d$.

The divergence type condition, or equivalence conditions, have been checked by various people, for various groups Γ_{1} with Γ_{1} a normal subgroup of $\Gamma, H^{d+1} / \Gamma$ finite volume, and $\Gamma / \Gamma_{1} \cong \mathbb{Z}^{v}$. Note that a non-trivial normal subgroup Γ_{1} of Γ has $L_{\Gamma}=L_{\Gamma_{1}}$, so that in these cases $X_{\Gamma_{1}}=\mathrm{UT}\left(H^{d+1} / \Gamma_{1}\right)$. For Γ with H^{d+1} / Γ compact, it has been proved by Sullivan (via the non-existence of a Green's function on H^{d+1} / Γ_{1}) that if $\Gamma / \Gamma_{1} \cong \mathbb{Z}^{2}$, then $\delta\left(\Gamma_{1}\right)=d$ and Γ_{1} is of divergence type, and by Guivarc'h (using Brownian motion) that if $\Gamma / \Gamma_{1} \cong \mathbb{Z}^{3}$ then Γ_{1} is not of divergence type with $\delta\left(\Gamma_{1}\right)=d$. Lyons and McKean have proved [6] that if H^{2} / Γ is the thrice-punctured sphere, then the commutator subgroup $[\Gamma, \Gamma]$ (for which $\Gamma /[\Gamma, \Gamma] \cong \mathbb{Z}^{2}$) is not of divergence type, but $\delta([\Gamma, \Gamma])=1$. Their interest was in the Brownian motion result, and their proof used Brownian motion. They were also able to show, fairly easily, that if the generators of Γ are denoted a, b, and $\Gamma_{2}=\{$ words in a, b : sum of a-powers $=0\}$, then Γ_{2} is of divergence type, and $\delta\left(\Gamma_{2}\right)=1$.

I propose to add to these results, and to consider the case of a normal subgroup Γ_{1} of a group Γ with X_{Γ} compact, Γ / Γ_{1} abelian, and Γ non-elementary. This includes Γ with H^{d+1} / Γ compact, and also Schottky groups, which are useful examples to bear in mind (see the beginning of $\S 1$). Some results for 'finitely determined subabelian subgroups' of Γ will be briefly indicated in $\S 5$. A larger class of measures than those arising from conformal densities will be considered, the so-called 'Gibbs' measures ([3], 1.7 of this paper, and below). Part of the motivation comes from Bowen [4], who proved that for some groups, Hausdorff measure on the limit set of the group is 'Gibbs'.

To explain the class of measures we consider, it is necessary to recall a second classical method of studying the geodesic flow - symbolic dynamics. If Γ is such that X_{Γ} is compact, then $\left(X_{\Gamma},\left\{\phi_{t}\right\}\right)$ is a hyperbolic flow in the sense of Bowen [2], so can be realized as the suspension of a topologically mixing subshift of finite type (Y_{Γ}, σ) on finitely many symbols, where σ denotes the shift. Finite-full-support-ergodic- $\phi_{t^{-}}$ invariant measures on X_{Γ} are in one-to-one correspondence with finite-full-support-ergodic- σ-invariant measures on Y_{Γ}. So 'Gibbs' measures on X_{Γ} are defined to be those corresponding to 'Gibbs' measures on Y_{Γ}. If $\Gamma_{1} \leq \Gamma$ and $L_{\Gamma_{1}}=L_{\Gamma}$, 'Gibbs' measures on $X_{\Gamma_{1}}$ are those obtained by lifting 'Gibbs' measures on X_{Γ} in such a way that local inverses of the natural projection are measure preserving.

The paper proceeds as follows. Suppose fixed a group Γ with X_{Γ} compact, and Γ_{1} a subgroup of Γ with $L_{\Gamma_{1}}=L_{\Gamma}$. Denoting corresponding measures by the same symbol, we find, in $\S 1$, a suitable subshift (Y_{Γ}, σ), and an equivalence relation $\sim_{\Gamma_{1}}$ on Y_{Γ}, which is a subset of the σ orbit equivalence relation, such that $\left(X_{\Gamma_{1}},\left\{\phi_{t}\right\}, \mu\right)$ is ergodic if and only if ($Y_{\Gamma}, \sim_{\Gamma_{1}}, \mu$) is ergodic. In $\S 2$ it is shown that, for μ Gibbs, ($Y_{\Gamma}, \sim_{\Gamma_{1}}, \mu$) is ergodic if and only if a certain series diverges. Specializing to the case of a Γ-invariant conformal density, it is shown this is equivalent to the divergence of:

$$
\sum_{\gamma \in \Gamma} \exp \{-\delta(x, \gamma x)\}, \quad \text { for } \delta=\delta(\Gamma)
$$

In $\S \S 3,4$ it is shown that if Γ / Γ_{1} is abelian and torsion free, $\left(Y_{\Gamma}, \sim_{\Gamma_{1}}, \mu\right)$ is ergodic if and only if rank $\Gamma / \Gamma_{1} \leq 2$. This result is generalized in $\S 5$. Restricting theorem 4.7 to the conformal density case, if rank $\Gamma / \Gamma_{1}=v$, and $\delta(\Gamma)=\delta$, there exist $A, B>0$ such that

$$
A /\left(k^{\frac{1}{2} v-1}\right) \leq \sum_{\left\{\gamma \in \Gamma_{1}: A k \leq(x, \gamma x)<B k\right\}} \exp \{-\delta(x, \gamma x)\} \leq B /\left(k^{\frac{1}{2} v-1}\right)
$$

for any fixed $x \in H^{d+1}$. So, in particular, $\delta\left(\Gamma_{1}\right)=\delta$ whenever Γ / Γ_{1} is abelian and X_{Γ} is compact.

1. Symbolic dynamics for the geodesic flow, and Gibbs measures

Throughout this section, Γ is a discrete group of isometries of H^{d+1} such that $L_{\Gamma} \subseteq S^{d}$ has more than two points, and X_{Γ} is compact. We need to modify slightly Bowen's construction of symbolic dynamics for ($X_{\Gamma},\left\{\phi_{t}\right\}$), associating the symbolic representation to the group Γ. Hence we obtain (for $\Gamma_{1} \leq \Gamma$ with $L_{\Gamma_{1}}=L_{\Gamma}$) simultaneous symbolic representations $\left(Y_{\Gamma}, \sigma\right),\left(Y_{\Gamma_{1}}, \sigma\right)$ of $\left(X_{\Gamma},\left\{\phi_{t}\right\}\right),\left(X_{\Gamma_{1}},\left\{\phi_{t}\right\}\right)$. Hence an equivalence relation $\sim_{\Gamma_{1}}$ is defined on (Y_{Γ}, σ), allowing us to reformulate the problem of the ergodicity of ($\boldsymbol{X}_{\Gamma_{1}},\left\{\phi_{t}\right\}, \mu$), for ($X_{\Gamma_{1}}, \mu$) a 'lift' of (X_{Γ}, μ) (1.3, 1.5).
(1.3) and (1.5) can be omitted if one is prepared simply to consider the case of Schottky groups: if Γ is a free group on n generators $a_{1} \cdots a_{n}$ and has a fundamental region F obtained as the intersection in H^{d+1} of $2 n$ solid 'hemispheres' with the $a_{i} F$, $a_{i}^{-1} F \quad(i=1 \cdots n)$ the adjacent regions, then Y_{Γ} can be taken as $\left\{\left\{x_{i}\right\} \in\left\{a_{1} \cdots a_{n}, a_{1}^{-1} \cdots a_{n}^{-1}\right\}^{Z}: x_{i+1} \neq x_{i}^{-1}\right.$ for any $\left.i\right\}$ as in [4]. (For general method see [7] or [9].)

It will be helpful to bear in mind the following interpretation (in this case) of Bowen's definition of a Markov set of cross-sections for a flow [2]. As mentioned in the introduction, we have an identification of UT (H^{d+1}) with ($S^{d} \times S^{d} \backslash$ diagonal) $\times \mathbb{R}$ such that $\gamma \in \Gamma$ sends $\{(x, y)\} \times \mathbb{R}$ to $\{(\gamma x, \gamma y)\} \times \mathbb{R}$, and the sets $\{(x, y)\} \times \mathbb{R}$ correspond to geodesic flow orbits.
(1.1) Note that a transverse disk C to the flow (UT $\left(H^{d+1} / \Gamma\right),\left\{\phi_{t}\right\}$) can be lifted (non-uniquely) to a transverse disk C^{\prime} of (UT $\left(H^{d+1}\right),\left\{\phi_{t}\right\}$), and then all lifts are given by $\left\{\gamma C^{\prime}: \gamma \in \Gamma\right\}$. The set of geodesics through C^{\prime} is then identified with $D_{1} \times \mathbb{R}$, for $D_{1} \subseteq S^{d} \times S^{d} \backslash$ diagonal. A rectangle is then a subset C_{1} of a transverse disk C such that the set of geodesics passing through the lift $C_{1}^{\prime} \subseteq C^{\prime}$ is identified with $U \times V \times \mathbb{R}$, where $U, V \subseteq S^{d}, U \cap V=\varnothing$, $\overline{\text { interior } U}=U$, and $\overline{\text { interior } V}=V$.
$\left\{C_{1} \cdots C_{n}\right\}$ is a Markov set of cross-sections for ($X_{\Gamma},\left\{\phi_{t}\right\}$) if each C_{i} is a rectangle, and whenever some geodesic of X_{Γ} goes successively through the interiors of C_{i}, C_{i}, and nothing in between, and $C_{i}^{\prime}, C_{j}^{\prime}$ are lifts for which the same is true in UT (H^{d+1}), with $C_{i}^{\prime}, C_{j}^{\prime}$ identified with $\left(U_{i} \times V_{i}\right) \times \mathbb{R},\left(U_{j} \times V_{j}\right) \times \mathbb{R}$, then $U_{i} \subseteq U_{j}$ and $V_{i} \subseteq V_{i}$. If there is such a geodesic for C_{i}, C_{j}, we say $\left(C_{i}, C_{j}\right)$ is admissible.

Bowen [2] proves that, if $\left\{C_{1} \cdots C_{n}\right\}$ is Markov, there is a geodesic going successively through the interiors of the cross-sections in any admissible chain $C_{i_{1}} \cdots C_{i_{r}}$. Then if $Z_{\Gamma}=\left\{\left\{D_{j}\right\}_{j=-\infty}^{\infty}: D_{i} \in\left\{C_{1} \cdots C_{n}\right\}, D_{j} D_{i+1}\right.$ admissible $\}$, there is a suspension $\left(\left(Z_{\Gamma} \times \mathbb{R}\right) / \mathbb{Z}, \mathbb{R}\right)$ of $\left(Z_{\Gamma}, \sigma\right)$ under a non-constant function, and a
surjective homomorphism $\Pi_{\Gamma}:\left(\left(Z_{\Gamma} \times \mathbb{R}\right) / \mathbb{Z}, \mathbb{R}\right) \rightarrow\left(X_{\Gamma}, \mathbb{R}\right)$. Moreover, Π_{Γ} is one-one on a residual set whose image is residual. See [2] for further details. Here, σ denotes the shift $\sigma\left(\left\{D_{i}\right\}\right)=\left\{D_{i+1}\right\}, \mathbb{Z}$ denotes the integers, and the \mathbb{Z}-action on $Z_{\Gamma} \times \mathbb{R}$ is that generated by $(\mathbf{z}, t) \mapsto(\sigma \mathbf{z}, t-f(\mathbf{z}))$, if f is the function we are suspending under.
(1.2) Definition. For discrete Γ_{1}, let τ : UT $\left(H^{d+1} / \Gamma_{1}\right) \rightarrow \mathrm{UT}\left(H^{d+1} / \Gamma_{1}\right)$ be the map sending a unit tangent vector v to $-v$. Then $\tau X_{\Gamma_{1}}=X_{\Gamma_{1}} . \tau: \mathrm{UT}\left(H^{d+1}\right)=$ $\left(S^{d} \times S^{d} \backslash\right.$ diagonal $) \rightarrow \mathrm{UT}\left(H^{d+1}\right)$ sends $\{(x, y)\} \times \mathbb{R}$ to $\{(y, x)\} \times \mathbb{R}$.
(1.3) Theorem (modification of [2], § 7). There exists a Markov set of cross-sections $\mathscr{F}_{\Gamma}=\left\{b_{1} \cdots b_{s}, \tau\left(b_{1}\right) \cdots \tau\left(b_{s}\right)\right\}$ for $\left(X_{\Gamma},\left\{\phi_{t}\right\}\right)$ such that the associated subshift of finite type $\left(Z_{\Gamma}, \sigma\right)$ is topologically mixing. $\Pi_{\Gamma}:\left(Z_{\Gamma} \times \mathbb{R}\right) / \mathbb{Z} \rightarrow X_{\Gamma}$ gives rise to a one-one correspondence $\mu \mapsto\left(\Pi_{\Gamma}\right)_{*} \mu$ between finite full-support invariant ergodic measures.
Notes on proof. (1) Bowen defines hyperbolic flows only for compact manifolds, but all that is needed is that X_{Γ} be compact.
(2) In working through Bowen's proof in § 7 in [2] (and unfortunately one has to go through the whole construction making slight changes), one starts with a set of rectangles $\left\{B_{1} \cdots B_{n}, \tau B_{1} \cdots \tau B_{n}\right\}$. Note that τ interchanges stable and unstable manifolds of the flow, hence sends rectangles to rectangles.
(3) An arbitrary set of cross-sections \mathscr{F}_{Γ} will not be topologically mixing. But let p be the unique strictly positive integer for which there exists $\rho: \mathscr{F}_{\Gamma} \rightarrow \mathbb{Z} / p \mathbb{Z}$ with $\rho(\sigma(\mathbf{z}))=\rho(\mathbf{z})+1$ for all $\mathbf{z} \in Z_{\Gamma}$ (if we also define $\rho: Z_{\Gamma} \rightarrow \mathbb{Z} / p \mathbb{Z}$ by $\rho\left(\left\{z_{i}\right\}\right)=\rho\left(z_{0}\right)$), and $\left(\rho^{-1}(p \mathbb{Z}+r), \sigma^{p}\right)$ topologically mixing for all r. Since $\rho(\tau \mathbf{z})=-\rho(\mathbf{z})+r$ for all $\mathbf{z} \in Z_{\Gamma}$, some fixed r (as can be checked), there exists $C_{1} \in \mathscr{J}_{\Gamma}$ such that if $\left\{C_{1} \cdots C_{n}\right\}=$ $\rho^{-1} \rho\left(C_{1}\right)$ then either $\left\{C_{1} \cdots C_{n}\right\}=\tau\left(\left\{C_{1} \cdots C_{n}\right\}\right)$ or $\rho\left(\tau C_{i}\right)=\rho\left(C_{1}\right)+1, i=1 \cdots n$. In the first case, let $\left\{C_{1} \cdots C_{n}\right\}$ be the new set \mathscr{F}_{r}. In the second case, let $d_{i j}$ be a cross-section between C_{i} and $\tau\left(C_{j}\right)$ whenever there is a set of geodesics going successively through the interiors of $C_{i}, \tau\left(C_{j}\right)$, and nothing in between, and let $d_{i j}$ be exactly the span of this set of geodesics in some transverse disk. Also make $\tau\left(d_{i i}\right)=d_{i j}$ (this is possible). Let the new set \mathscr{F}_{Γ} be the set of $d_{i j}$ - it is topologically mixing, as required.
(4) It is not proved in [2] that $\mu \mapsto\left(\Pi_{\Gamma}\right)_{*} \mu$ is a one-one correspondence, but the proof is exactly analogous to that for Markov partitions for Axiom A diffeomorphisms in ([3] proof of theorem 4.1, page 90).

Let \mathscr{J}_{Γ} as in (1.3) be fixed.
(1.4) Definitions. (1) Let $\mathscr{L}, \mathscr{J}_{\Gamma_{1}}$ denote the lifted set of cross-sections in UT $\left(H^{d+1}\right)$, UT (H^{d+1} / Γ_{1}) for $\Gamma_{1} \leq \Gamma$. Fix a 'fundamental' set of cross-sections \mathscr{F}_{1} in \mathscr{J} with $\tau \mathscr{J}_{1}=\mathscr{J}_{1}, \gamma \mathscr{J}_{1} \cap \mathscr{J}_{1}=\varnothing$ for $\gamma \neq 1$, and $\Gamma \mathscr{J}_{1}=\mathscr{J}$. It is then natural to denote the cross-sections of $\mathscr{F}_{\Gamma_{1}}$ by $\left\{\left(C_{i}, \Gamma_{1} \gamma\right): C_{i} \in \mathscr{J}_{\Gamma}, \gamma \in \Gamma\right\}$.
(2) Let $\mathscr{K}_{\Gamma_{1}}=\left\{\left(\left(C_{i}, \Gamma_{1} \gamma_{i}\right),\left(C_{i}, \Gamma_{1} \gamma_{j}\right)\right)\right.$: there exists a geodesic in the cover of X_{Γ} in UT (H^{d+1} / Γ_{1}) going successively through the interiors of $\left(C_{i}, \Gamma_{1} \gamma_{i}\right),\left(C_{i}, \Gamma_{1} \gamma_{i}\right)$ and no other cross-section in between\}. Define $\tau: \mathscr{K}_{\Gamma} \rightarrow \mathscr{K}_{\Gamma}$ by $\tau\left(C_{i}, C_{i}\right)=\left(\tau C_{i}, \tau C_{i}\right)$. Then τ is a fixed-point-free involution of \mathscr{K}_{Γ} (assuming the cross-sections are small enough, without loss of generality).
(3) Define $\phi: \mathscr{K}_{\Gamma} \rightarrow \Gamma$ by: $\left(\left(C_{i}, \gamma\right),\left(C_{i}, \gamma \phi\left(C_{i}, C_{i}\right)\right)\right) \in \mathscr{K}_{\{1\}}$ for one, hence all, $\gamma \in \Gamma$. Note $\phi(\tau a)=\phi(a)^{-1}$ for all $a \in \mathscr{K}_{\Gamma}$. Hence, writing $\tau a=a^{-1}$, if $\mathscr{K}_{\Gamma}=$ $\left\{a_{1} \cdots a_{n} a_{1}^{-1} \cdots a_{r}^{-1}\right\}, \phi$ can be regarded as a homomorphism $\phi: F \rightarrow \Gamma$, where F denotes the free group in $a_{1} \cdots a_{r}$.
(4) Define

$$
\begin{gathered}
Y_{\Gamma_{1}}=\left\{\left\{x_{i}\right\}: x_{i} \in \mathscr{K}_{\Gamma_{1}}(i \in \mathbb{Z}), x_{i}=\left(y_{i}, z_{i}\right) \text { for } y_{i}, z_{i} \in \mathscr{F}_{\Gamma_{1}} \text { and } z_{i}=y_{i+1} \text { for all } i\right\}, \\
\tau: \mathscr{K}_{\Gamma} \rightarrow \mathscr{K}_{\Gamma} \text { induces } \tau: Y_{\Gamma} \rightarrow Y_{\Gamma} \text { by } \tau\left(\left\{x_{i}\right\}\right)=\left\{\tau x_{-i}\right\} .
\end{gathered}
$$

Projection of $\mathscr{F}_{\Gamma_{1}}=\mathscr{F}_{\Gamma} \times \Gamma / \Gamma_{1}$ onto the first coordinate induces similar projections $\mathscr{K}_{\Gamma_{1}} \rightarrow \mathscr{K}_{\Gamma}$, and $p: Y_{\Gamma_{1}} \rightarrow Y_{\Gamma}$.

Let $\sigma: Y_{\Gamma_{1}} \rightarrow Y_{\Gamma_{1}}$ denote the shift $\sigma\left(\left\{x_{i}\right\}\right)=\left\{x_{i+1}\right\} .\left(X_{\Gamma_{1}},\left\{\phi_{t}\right\}\right)$ can now be represented as a factor of a suspension of the shift $\left(Y_{\Gamma_{1}}, \sigma\right)$ in a useful way.

In general $\mathscr{K}_{\Gamma_{1}}$ has infinitely many symbols. We have a commutative diagram (figure 1), where p is the natural map induced by $p: Y_{\Gamma_{1}} \rightarrow Y_{\Gamma}, \rho: \mathrm{UT}\left(H^{d+1} / \Gamma_{1}\right) \rightarrow$ UT $\left(H^{d+1} / \Gamma\right)$ is the covering map, so that $\rho^{-1}\left(X_{\Gamma}\right)=X_{\Gamma_{1}}$ if and only if $L_{\Gamma_{i}}=L_{\Gamma}$. $\Pi_{\Gamma_{1}}, \Pi_{\Gamma}$ are both one-one on residual sets whose images are residual.

Figure 1
(1.5) Theorem. (1) Let (Y, σ) be any subshift of type 2 on symbols $\mathscr{K}=$ $\left\{a_{1} \cdots a_{r}, a_{1}^{-1} \cdots a_{r}^{-1}\right\}$ with involution $\tau: Y \rightarrow Y$ given by $\tau\left(\left\{x_{i}\right\}\right)=\left\{x_{-i}^{-1}\right\}$. Let F be the free group on generators $a_{1} \cdots a_{r}$. Let F_{1} be any subgroup of F and define a subshift of type $2\left(Y_{F_{1}}, \sigma\right)$ on the symbols $\mathscr{K} \times F / F_{1}$ by: $\left(b_{i}, F_{1} f_{i}\right)\left(b_{j}, F_{1} f_{j}\right)$ is admissible if and only if $b_{i} b_{j}$ is admissible in Y, and $F_{1} f_{i}=F_{1} f_{i} b_{i}$. Then, if $\left(Y_{\Gamma}, \sigma\right),\left(Y_{\Gamma_{1}}, \sigma\right)$ are as described in (1.4), and $\left(Y_{\Gamma}, \sigma\right)=(Y, \sigma),\left\{\left(b_{i}, F_{1} f_{i}\right)\right\} \mapsto\left\{b_{i}, \Gamma_{1} \phi\left(f_{i}\right)\right\}$ defines an isomorphism between $\left(Y_{\Gamma_{1}}, \sigma\right)$ and $\left(Y_{F_{1}}, \sigma\right)$, if $F_{1}=\phi^{-1}\left(\Gamma_{1}\right)$.
(2) If $L_{\Gamma_{1}}=L_{\Gamma}\left(\right.$ e.g. if $\left.\{1\} \neq \Gamma_{1} \triangleleft \Gamma\right)$ then $\left(Y_{\Gamma_{1}}, \sigma\right) \cong\left(Y_{F_{1}}, \sigma\right)$ is topologically transitive (i.e. for any open U, V there exists n with $\sigma^{n} U \cap V \neq \varnothing$), and periodic points are dense.
(3) For μ an ergodic finite full-support ϕ_{t}-invariant measure on X_{Γ}, let μ denote also the corresponding σ-invariant probability measure on Y_{Γ} (1.3), and the lifts to $Y_{\Gamma_{1}}, \rho^{-1} X_{\Gamma}$, for which local inverses of p, ρ are measure preserving. Similarly, for μ a σ-invariant measure on any shift (Y, σ) as in (1), let μ also denote the lift to $\left(Y_{F_{1}}, \sigma\right)$, for $F_{1} \leq F$.
(a) If $L_{\Gamma_{1}}=L_{\Gamma},\left(X_{\Gamma_{1}},\left\{\phi_{t}\right\}, \mu\right)$ is ergodic if and only if $\left(Y_{\Gamma_{1}}, \sigma, \mu\right)$ is ergodic.
(b) Let $\sim_{F_{1}}\left(\right.$ or $\sim_{\Gamma_{1}}$ if $\left.\phi^{-1}\left(\Gamma_{1}\right)=F_{1}\right)$ be the subset of the σ-orbit equivalence relation on Y generated by: $\left\{x_{i}\right\} \sim_{F_{1}}\left\{x_{i+r}\right\}(r>0)$ if $x_{0} \cdots x_{r-1} \in F_{1}$. Suppose $\left(Y_{F_{1}}, \sigma\right)$ is topologi-
cally transitive and μ has full support. Then $\left(Y_{F_{1}}, \sigma, \mu\right)$ is ergodic if and only if $\left(Y, \sim_{F_{1}}, \mu\right)$ is ergodic.
Proof. (2) This follows from topological transitivity of ($X_{\Gamma_{1}},\left\{\phi_{t}\right\}$), which follows from topological transitivity of $\left(L_{\Gamma} \times L_{\Gamma}, \Gamma_{1}\right)([5], 13.24)$.
(3) (a) $\Pi_{\Gamma_{1}}$ is a measure isomorphism, since Π_{Γ} is (1.3, see also figure 1).
(b) $\left\{x_{i}\right\} \sim_{F_{1}}\left\{x_{i+r}\right\}$ if and only if, for $\left\{\left(x_{i}, F_{1} f_{i}\right\} \in \in Y_{F_{1}}, F_{1} f_{r}=F_{1} f_{0}\right.$. 'Only if' is then clear. Ergodicity or $\sim_{F_{1}}$ implies:

$$
\left(\left(\bigcup_{n=-\infty}^{\infty} \sigma^{n}\left\{\left\{\left(x_{i}, F_{1} f_{i}\right)\right\}:\left\{x_{i}\right\} \in Y, F_{1} f_{0}=F_{1} f\right\}\right), \sigma, \mu\right)=\left(A_{f}, \sigma, \mu\right) \quad(f \in F)
$$

is ergodic. Topological transitivity of ($Y_{F_{1}}, \sigma$) implies any two $\boldsymbol{A}_{f}, \boldsymbol{A}_{f^{\prime}}$ (which are open) have non-trivial intersection, hence $A_{f}=Y_{F_{1}}$ for all $f \in F_{1}$.

The rest of this section concerns the characterization of 'Gibbs' measures on Y_{Γ}, which include conformal densities. Let (Y, σ) be any subshift of type 2 on a set of symbols \mathscr{K}.
(1.6) Definition. Let $\left[c_{0} \cdots c_{r}\right]$ denote the following subset of Y : $\left\{\left\{d_{i}\right\}: d_{i}=c_{i}, 0 \leq i \leq r\right\}$. Let $\mathscr{A}_{+}, \mathscr{A}_{++}, \mathscr{A}_{-}, \mathscr{A}_{--}$denote the σ-algebras generated by $\left\{\sigma^{n}[c]: c \in \mathscr{K}\right\}$ where n ranges over $\{n: n \leq 0\}$, $\{n: n<0\},\{n: n \geq 0\},\{n: n>0\}$.
(1.7) Definition. A σ-invariant probability measure μ on Y is Gibbs if and only if:
(1) $\mu([c])>0$ for $c \in \mathscr{K}$.
(2) There exist constants $A, B>0$ such that for all $[c d] \neq \varnothing$, and for all $f \in$ $L^{1}\left(\mathscr{A}_{-}, \mu\right), f \geq 0,\left(1-\chi_{[c]}\right) f=0$, (for $\chi_{[c]}$ the characteristic function of $[c]$ and E_{μ} conditional expectation),

$$
A \int f d \mu \chi_{\sigma^{-1}[d]} \leq E_{\mu}\left(f \mid \mathscr{A}_{++}\right) \chi_{\sigma^{-1}[d]} \leq B \int f d \mu \chi_{\sigma^{-1}[d]}
$$

(3) There exist constants $B, \alpha>0$ such that, for all $f \in L^{1}\left(\mathscr{A}_{-}, \mu\right)$,

$$
\left|E_{\mu}\left(f \mid \mathscr{A}_{++}\right)(\mathbf{x})-E_{\mu}\left(f \mid \mathscr{A}_{++}\right)(\mathbf{y})\right| \leq B(d(\mathbf{x}, \mathbf{y}))^{\alpha} \int|f| d \mu
$$

where

$$
d(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{\infty} \frac{d_{1}\left(x_{i}, y_{i}\right)}{2^{i}}, \quad \mathbf{x}=\left\{x_{i}\right\}, \quad \mathbf{y}=\left\{y_{i}\right\}
$$

and

$$
\begin{aligned}
d_{1}\left(x_{i}, y_{i}\right) & =1 & & \text { if } x_{i}=y_{i} \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Note. This definition is equivalent to that in [3] though we do not need that here. However, the correspondence there $\phi \rightarrow \mu_{\phi}$ for Hölder-continuous functions, and the fact that μ maximizes $h_{\mu}(\sigma)+\int \phi d \mu$ (for h_{μ} denoting entropy) shows that there are many τ-invariant Gibbs measures - corresponding to τ-invariant ϕ, for example.
(1.8) Lemma. Let ν be a conformal density on L_{Γ} of dimension δ. Let μ_{ν} denote both the corresponding Γ-invariant measure $d \mu_{\nu}(\xi, \eta)=c d \nu(\xi) d \nu(\eta) /|\xi-\eta|^{2 \delta}$ on $L_{\Gamma} \times L_{\Gamma}$
(normalized so the corresponding measure on X_{Γ} has mass 1) and the corresponding τ and σ-invariant probability measure on Y_{Γ}. Then μ_{ν} is Gibbs.
Proof. Let $c, d \in \mathscr{K}_{\Gamma}, c=e_{0} e_{1}, d=e_{1} e_{2}, e_{i} \in \mathscr{F}_{\Gamma}$. As in (1.1), let the set of geodesics through e_{i} be identified with $U_{i} \times V_{i} \times \mathbb{R}$, where $U_{0} \subseteq U_{1} \subseteq U_{2}, V_{0} \supseteq V_{1} \supseteq V_{2}$. Then

$$
\begin{aligned}
\mathscr{A}_{-} \cap[c] & =\left\{B \cap[c]: B \in \mathscr{A}_{-}\right\} \text {identifies with }\left\{U \times V_{1}: U \subseteq U_{0}\right\} \\
\mathscr{A}_{++} \cap \sigma^{-1}[d] & =\left\{B \cap \sigma^{-1}[d]: B \in \mathscr{A}_{++}\right\} \text {identifies with }\left\{U_{1} \times V: V \subseteq V_{2}\right\} .
\end{aligned}
$$

So on $\sigma^{-1}[d]=U_{1} \times V_{2}, E\left(f \mid \mathscr{A}_{++}\right)(\xi, \eta)$ depends only on the second coordinate η, and if f is \mathscr{A}_{-}-measurable, and zero except on $U_{0} \times V_{1}=[c], f$ depends only on the first coordinate ξ, and

$$
\chi_{U_{1} \times V_{2}}(\xi, \eta) E_{\mu}\left(f \mid \mathscr{A}_{++}\right)(\eta)=\frac{\int_{U_{1}} \frac{c f(\xi)}{|\xi-\eta|^{2 \delta}} d \nu(\xi)}{\int_{U_{1}} \frac{c d \nu(\xi)}{|\xi-\eta|^{2 \delta}}}
$$

Because $|\xi-\eta|$ is bounded above and below on $U_{1} \times V_{2}$, and is C^{1} in η, it is not hard to see that (2) is true, and (3) is true if the semi-metric d is replaced by the semi-metric ρ on $U_{1} \times V_{2}$ given by

$$
\rho\left(\left(\xi_{1}, \eta_{1}\right),\left(\xi_{2}, \eta_{2}\right)\right)=\left|\eta_{1}-\eta_{2}\right|
$$

where | denotes Euclidean metric on S^{d}. So we only need to show ρ and d are 'Lipshitz equivalent'. This follows from (1.9) since there exist constants A and $B>0$ such that for any $\left[d_{0} \cdots d_{p}\right] \neq \varnothing$, any $p, \quad A p \leq\left(x_{0}, \gamma x_{0}\right) \leq B p$, if $\gamma=$ $\phi\left(d_{0}\right) \phi\left(d_{1}\right) \cdots \phi\left(d_{p}\right), x_{0} \in H^{d+1}$ is fixed, and $\left(x_{0}, \gamma x_{0}\right)$ denotes hyperbolic distance. (These inequalities are true because any fundamental set of cross-sections \mathscr{J}_{1} is bounded, and distance between two cross-sections is bounded below.)
(1.9) Lemma. Let $\left[d_{0} \cdots d_{p}\right] \neq \varnothing, \phi\left(d_{0}\right) \cdots \phi\left(d_{p}\right)=\gamma, x_{0} \in H^{d+1}$. Then there exist constants $C, D>0$ such that:
(1) The ρ-diameter of $\left[d_{0} \cdots d_{p}\right]$ is bounded above by $C \exp \left\{-\left(x_{0}, \gamma x_{0}\right)\right\}$, and $\left[d_{0} \cdots d_{p}\right]$ contains a ball of ρ-diameter $D \exp \left\{-\left(x_{0}, \gamma x_{0}\right)\right\}$.
(2) $C \exp \left\{-\delta\left(x_{0}, \gamma x_{0}\right)\right\} \leq \mu_{\nu}\left(\left[d_{0} \cdots d_{p}\right]\right) \leq D \exp \left\{-\delta\left(x_{0}, \gamma x_{0}\right)\right\}$.

Proof. Let $d_{i}=e_{i} e_{i+1}, e_{i} \in \mathscr{F}_{\Gamma}$. Let the cross-section lift of e_{i} in \mathscr{J}_{1} (the fundamental set) correspond to $U_{i} \times V_{i} \subseteq S^{d} \times S^{d}$. So

$$
\prod_{i=0}^{i-1} \phi\left(d_{i}\right) U_{i} \subseteq \prod_{i=0}^{i} \phi\left(d_{i}\right) U_{i+1}, \quad \prod_{i=0}^{i-1} \phi\left(d_{i}\right) V_{i} \supseteq \prod_{i=0}^{i} \phi\left(d_{i}\right) V_{i+1}
$$

We need to know the Euclidean diameter, and ν-measure, of γV_{p}, and a lower bound on the diameter of the largest possible ball contained in γV_{p}. Since $U_{0} \subseteq \gamma U_{p}$, the expanding point of γ is near U_{p}, hence bounded away from V_{p}. Thus the derivative of γ on V_{p} is boundedly proportional to $\exp \left\{-\left(x_{0}, \gamma x_{0}\right)\right\}$, whence the result.
Given $e, e^{\prime} \in \mathscr{F}_{\Gamma}$, and $\gamma \in \Gamma$, there is at most one non-empty cylinder set [$d_{0} \cdots d_{p}$] with $d_{0}=e e_{1}$, and $d_{p}=e_{p} e^{\prime}$ (for some $e_{1}, e_{p} \in \mathscr{F}_{\Gamma}$), and $\phi\left(d_{0}\right) \cdots \phi\left(d_{p}\right)=\gamma$. This follows from the Markov property (1.1), because if e identifies with $U \times V \subseteq L_{\Gamma} \times L_{\Gamma}$,
and e^{\prime} identifies with $U^{\prime} \times V^{\prime}$, where $U \subseteq \gamma U^{\prime}, \gamma V^{\prime} \subseteq V$, (1.1) implies the intervening U_{i}, V_{i} are uniquely determined. Thus, (1.9) gives:
(1.10) Corollary. There exist constants $A, B>0$ such that

$$
A \exp \left\{-\delta\left(x_{0}, \gamma x_{0}\right)\right\} \leq \sum_{p,\left[d_{0} \cdots d_{p}\right]} \mu_{\nu}\left[d_{0} \cdots d_{p}\right] \leq B \exp \left\{-\delta\left(x_{0}, \gamma x_{0}\right)\right\}
$$

with $\phi\left(d_{0}\right) \cdots \phi\left(d_{p}\right)=\gamma$.
This will be needed in (4.7).
2. Ergodic equivalence relations for Gibbs measures - a 'divergence type' condition In this section (Y, σ) is a topologically mixing subshift of type 2 on a finite set of symbols $\mathscr{K}=\left\{a_{1} \cdots a_{r}, a_{1}^{-1} \cdots a_{r}^{-1}\right\}, Y$ is invariant under $\tau, \tau\left(\left\{x_{i}\right\}\right)=\left\{x_{-i}^{-1}\right\}$, and μ is a Gibbs measure on Y. For $F_{1} \leq F$, the free group on $a_{1} \cdots a_{r}, \sim_{F_{1}}$ is an equivalence relation on Y, as in (1.5). We find a 'divergence type' condition for the ergodicity of $\sim_{F_{1}}$. The proof, although it looks different, was originally based on that of ([10], § 7). We assume that $\left(Y_{F_{1}}, \sigma\right)$ (as in (1.5)) is topologically transitive.
(2.1) Lemma. (Y, σ, μ) is strong mixing (hence ergodic).

Proof. Define $\phi=\sum_{c \in \mathscr{K}} X_{[c]} \log E_{\mu}\left(\chi_{[c]} \mid \mathscr{A}_{++}\right)$, with the convention $0 \log 0=0$. Then ϕ is Hölder-continuous with respect to the semi-metric d (1.7.3). In the notation of ([3], p. 13), $\mathscr{L}_{\phi}^{*} \mu=\mu, \mathscr{L}_{\phi} 1=1$, hence μ is Gibbs in the sense of [3], and strong mixing ([3], 1.14).
Note. The lemma can also be proved directly, by approximating μ by Markov measures μ_{m} as in (3.4), and then applying a contraction mapping argument to the μ_{m} with a uniform contraction constant. (Part of (3.2) is needed for this.)
(2.2) Lemma. ($\left.Y, \sim_{F_{1}}, \mu\right)$ is ergodic for μ Gibbs if and only if $A=\left\{\mathbf{x}: \sigma{ }^{r} \mathbf{x} \sim_{F_{1}} \mathbf{x}\right.$, some $r>0\}$ has μ-measure 1 .
Proof. Suppose $\mu(A)<1$. Let $B=\left\{\mathbf{x}: \sigma^{r} \mathbf{x} \sim_{F_{1}} \mathbf{x}\right.$, some $\left.r<0\right\}$. We can define a μ-measure-preserving map $\psi: A \xrightarrow[\text { onto }]{\longrightarrow} B$ by $\psi(\mathbf{x})=\sigma^{r}(\mathbf{x})$, for r the least integer >0 with $\mathbf{x} \sim_{F_{1}} \sigma^{r}(\mathbf{x})$. By assumption, $0<\mu(Y \backslash A)=\mu(Y \backslash B)$. Choose $a, b \in \mathscr{K}$ such that $\mu\left((\boldsymbol{Y} \backslash \boldsymbol{A}) \cap\left\{\mathbf{x}: x_{0}=a\right\}\right)>0, \mu\left((Y \backslash B) \cap\left\{\mathbf{x}: x_{0}=b\right\}\right)>0$. By topological transitivity, there exists an admissible sequence $a_{0} \cdots a_{n}$ with $\pi a_{i} \in F_{1}, a_{0}=b, a_{n}=a$. Let $C=\left\{\mathbf{x}\right.$: there exist at most n integers $r_{1} \cdots r_{n}$ with $\left.\sigma^{r_{i}} \mathcal{x}_{F_{1}} \mathbf{x}\right\} . \mu(C)<1$ by topological transitivity of $\left(Y_{F_{1}}, \sigma\right) . \mu(C)>0$ by (1.7.2), because C contains

$$
\left\{\mathbf{x}: x_{i}=a_{i}, 0 \leq i \leq n, x_{i}=y_{i-n}, i \geq n \text {, some } \mathbf{y} \in Y \backslash A, x_{i}=z_{i} \text {, some } \mathbf{z} \in Y \backslash B, i \leq 0\right\}
$$

C is a set of equivalence classes. So $\sim_{F_{1}}$ is not ergodic.
If $\mu(A)=1$, then ψ is defined a.e. on Y. By the Martingale convergence theorem for $f \in L^{1}\left(\mathscr{A}_{+}, \mu\right), \lim _{n \rightarrow \infty} E_{\mu}\left(f \mid \psi^{-n} \mathscr{A}_{+}\right)$exists a.e. and equals $E\left(f \mid \bigcap_{n=0}^{\infty} \psi^{-n} \mathscr{A}_{+}\right)$. But $\psi^{-n} \mathscr{A}_{+} \subseteq \sigma^{-n} \mathscr{A}_{+}$for $n \geq 0$, and $\bigcap_{n=0}^{\infty} \sigma^{-n} \mathscr{A}_{+}$is trivial, so (Y, ψ, μ) is mixing, hence ergodic, hence $\left(Y, \sim_{F_{1}}, \mu\right)$ is ergodic.
(2.3) Definition. Let $S_{k}^{n}=\sum\left\{\mu\left[x_{0} \cdots x_{k-1}\right]\right.$: there exist $i_{0}=0<i_{1} \cdots<i_{n}=k-1$ such that $x_{i_{r}+1} x_{i_{r}+2} \cdots x_{i_{r+1}} \in F_{1}$, and no such decomposition exists for larger $\left.n\right\}$.

Let $S_{k}=\sum_{n} S_{k}^{n}, S^{n}=\sum_{k} S_{k}^{n}$.
Lemma 2.2 says $\sim_{F_{1}}$ is ergodic if and only if $S^{1}=1$.
(2.4) Theorem. ($\boldsymbol{Y}, \sim_{F_{1}}, \mu$) is ergodic if and only if $\sum_{k} S_{k}=\sum_{n} S^{n}=\infty$.

Proof. If $S^{1}=1, S^{n}=1$ for all n, and $\sum_{n} S^{n}=\infty$.
Conversely, suppose $S^{1}<1$. Let $B_{k}=\left\{\mathbf{x}: \psi^{k}(\mathbf{x})\right.$ exists $\}$. Then $\mu\left(B_{1}\right)<1$, by assumption. Choose $b \in \mathscr{K}$ such that $\mu\left(\left(Y \backslash B_{1}\right) \cap[b]\right)>0$. By topological transitivity, for each $a \in \mathscr{K}$, there exist $r, a_{0} \cdots a_{r}$ with $a_{0}=a, a_{r}=b$, and $a_{0} \cdots a_{r-1} \in F_{1}$. Hence, by (1.7.2), $\mu\left(\left[a_{0} \cdots a_{r-1}\right] \cap \sigma^{r}\left(Y \backslash B_{1}\right)\right)>0$. Hence there exist k, λ such that $\mu\left(\left(Y \backslash B_{k}\right) \cap[a]\right) \geq \lambda>0$ for all $a \in \mathscr{K}$.
B_{n} is open, hence can be represented as a disjoint union of cylinder sets. Write $B_{n, a, p}$ for the union of cylinder sets of length p which end in a.

$$
\mu\left(B_{n, a, p} \cap \sigma^{p}\left(\left(Y \backslash B_{k}\right) \cap[a]\right)\right) \geq A \lambda \mu\left(B_{n, a, p}\right),
$$

where $A<1$ is as in (1.7.2). Hence

$$
\mu\left(B_{n+k}\right)<(1-\lambda A) \mu\left(B_{n}\right) .
$$

Hence, inductively,

$$
S^{k n}<\lambda(1-\lambda A)^{n-1}
$$

Hence

$$
\sum_{n} S^{n} \leq k \sum_{n} S^{k n}<\infty
$$

We complete this section by noting that (2.4), together with the results of $\S 1$, give part of the Aaronson-Sullivan result (see introduction).
(2.5) Theorem. Let Γ be a discrete group of isometries of H^{d+1} with X_{Γ} compact, Γ non-elementary, and ν a Γ-invariant conformal density of dimension $\delta=\delta(\Gamma)$. For $\Gamma_{1} \leq \Gamma$ with $L_{\Gamma_{1}}=L_{\Gamma},\left(L_{\Gamma} \times L_{\Gamma}, \Gamma_{1}, \mu_{\nu}\right)$ is ergodic if and only if $\sum_{\gamma \in \Gamma_{1}} \exp \left\{-\delta\left(x_{0}, \gamma x_{0}\right)\right\}$ diverges for any fixed $x_{0} \in H^{d+1}$. (We are using the notation of the introduction.)
Proof. This follows from (1.5), (1.8), (1.10) and (2.4).

3. First stage in estimating the 'Poincaré series'

Throughout this section, (Y, σ) is a topologically mixing subshift of type 2 on symbols $\mathscr{K}=\left\{a_{1} \cdots a_{r}, a_{1}^{-1} \cdots a_{r}^{-1}\right\}$, and μ is a σ - and τ-invariant Gibbs measure on Y, where $\tau:\left\{x_{i}\right\}_{\mapsto}\left\{x_{-i}^{-1}\right\}$ maps Y onto $Y . F_{1}$ is a fixed subgroup of the free group F on generators $a_{1} \cdots a_{r}$ with $F / F_{1} \cong \mathbb{Z}^{v}$, some $v>0$. We fix a homomorphism with kernel $F_{1}, \boldsymbol{\theta}: F \rightarrow\left\langle\theta_{1}\right\rangle \oplus \cdots \oplus\left\langle\theta_{v}\right\rangle$, the free abelian group on generators $\theta_{1} \cdots \theta_{v}$ (regarded as real variables). So for each $c \in \mathscr{K} \subseteq F, \theta(c)$ is a linear function of the θ_{i} with integer coefficients. Sometimes, $\boldsymbol{\theta}$ or $\boldsymbol{\theta}(c)$ will mean evaluation at an element of $\mathbb{R}^{v}\left(\right.$ or $\left.(\mathbb{R} / 2 \pi)^{v}\right)$.

We also make the assumption that ($Y_{F_{1}}, \sigma$) (as in (1.5)) is topologically transitive, hence with periodic points dense. (This is meant to include ($Y_{\Gamma_{1}}, \sigma$) if $Y=Y_{\Gamma}, \Gamma_{1} \leq \Gamma$ with Γ / Γ_{1} abelian - see (1.5).)

In this section we begin to estimate

$$
S_{k}=\sum\left\{\mu\left(\left[c_{0} \cdots c_{k-1}\right]\right):\left[c_{0} \cdots c_{k-1}\right] \neq \varnothing \text { and } c_{0} \cdots c_{k-1} \in F_{1}\right\}
$$

We call $\sum_{k=1}^{\infty} S_{k}$ the Poincaré series for μ, F_{1} for a reason which is clear from (1.10).
For a cylinder $\left[c_{0} \cdots c_{k-1}\right]$, write $\boldsymbol{\theta}\left(\left[c_{0} \cdots c_{k-1}\right]\right)=\boldsymbol{\theta}\left(c_{0} \cdots c_{k-1}\right)$. If

$$
\begin{aligned}
S_{k}(\boldsymbol{\theta}) & =S_{k}\left(\theta_{1} \cdots \theta_{v}\right)=\sum_{c a k-c y l i n d e r} \mu(\mathbf{c}) \exp \{i \theta(\mathbf{c})\}, \\
S_{k}(\boldsymbol{\theta}, \mathbf{x}) & =\sum_{c \text { ak-cylinder }} \chi_{\mathbf{c}}(\mathbf{x}) \exp \{i \boldsymbol{\theta}(\mathbf{c})\}(\mathbf{x} \in Y),
\end{aligned}
$$

then

$$
\begin{aligned}
S_{k} & =\frac{1}{(2 \pi)^{v}} \int_{[0,2 \pi]^{v}} S_{k}(\boldsymbol{\theta}) d \boldsymbol{\theta}=\frac{1}{(2 \pi)^{v}} \int_{[0,2 \pi]^{v}} \int_{Y} S_{k}(\boldsymbol{\theta}, \mathbf{x}) d \mu(\mathbf{x}) d \boldsymbol{\theta} \\
& =\frac{1}{(2 \pi)^{v}} \int_{[0,2 \pi]^{v}} \int_{Y} w A\left(\boldsymbol{\theta}, \sigma^{k-1} \mathbf{x}\right) A\left(\boldsymbol{\theta}, \sigma^{k-2} \mathbf{x}\right) \cdots A(\boldsymbol{\theta}, \mathbf{x}) v(\boldsymbol{\theta}, \mathbf{x}) d \mu(\mathbf{x}) d \boldsymbol{\theta}
\end{aligned}
$$

Here, the rows and columns of the matrix $A(\theta, \mathbf{x})$ and the rows of the column vector $v(\boldsymbol{\theta}, \mathbf{x})$ are indexed by $\{c: c \in \mathscr{K}\}$,

$$
\begin{gathered}
A(c, d)(\boldsymbol{\theta}, \mathbf{x})=\exp \{i \boldsymbol{\theta}(c)\}_{\chi_{[d c]}(\mathbf{x}),}, \\
v(d)(\boldsymbol{\theta}, \mathbf{x})=\exp \{i \boldsymbol{\theta}(d)\} \chi_{[d]}(\mathbf{x}), \\
w \text { is the row vector } \underbrace{(1 \cdots 1)}_{2 r},
\end{gathered}
$$

The rows and columns of a matrix $\boldsymbol{A}_{m}(\boldsymbol{\theta})$ and the rows of the column vector $\nu_{m}(\boldsymbol{\theta})$, are indexed by $\left\{\mathbf{c}=\left[c_{0} \cdots c_{m-1}\right]\right.$: \mathbf{c} is a non-empty m-cylinder $\}$:

$$
\begin{aligned}
A_{m}(\boldsymbol{\theta})(\mathbf{c}, \mathbf{d}) & =\exp \left\{i \theta\left(c_{m-1}\right)\right\} \frac{\mu\left(\mathbf{d} \cap \sigma^{-1} \mathbf{c}\right)}{\mu(\mathbf{d})} \\
v_{m}(\boldsymbol{\theta})(\mathbf{d}) & =\exp \{i \theta(\mathbf{d})\} \mu(\mathbf{d})
\end{aligned}
$$

w_{m} is the row vector of 1 s with dimension equal to the number of non-empty m-cylinders.
The aim of this section is to prove:
(3.1) There exist constants $c>0$ and $\eta<1$ such that

$$
\left|S_{k}(\theta)-w_{m} A_{m}^{k-m}(\theta) \dot{v}_{m}(\theta)\right|<c\left(\left(1+c \eta^{m}\right)^{k-m}-1\right)
$$

(3.2) If $v=\left(v_{i}\right)$ is a vector in \mathbb{C}^{n}, let $\|v\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right|$ and for a $n \times n$ matrix $A=\left(a_{i j}\right)$, let
$\|A\|_{1}=\sup \|A v\|_{1} \leq \sup \sum\left|a_{i j}\right|$ $\|A\|_{1}=\sup _{\|v\|_{1}=1}\|A v\|_{1} \leq \sup _{j} \sum_{i}\left|a_{i j}\right|$.
(1) There exist s, B independent of m such that if $\left\|A_{m}(\theta)^{m+s} v\right\|_{1}>1-\varepsilon$ for $\|v\|_{1}=1$, then either $|\boldsymbol{\theta}(c)|<B \varepsilon^{\frac{1}{8}}$ for all $c \in \mathscr{K}$ or $|\boldsymbol{\theta}(c)-\boldsymbol{\alpha}(c)|<B \varepsilon^{\frac{1}{8}}$ for all $c \in \mathscr{K}$.

If $z=\boldsymbol{A}_{\boldsymbol{m}}(\boldsymbol{\theta})^{s} v$, then in the first case $\| z-\left.\exp (i \beta) v_{m}(\mathbf{0})\right|_{1}<B \varepsilon^{\frac{1}{8}}$, some $\beta \in \mathbb{R}$. In the second case, $\left\|z-\exp (i \beta) \Lambda_{\alpha}^{-1} v_{m}(0)\right\|_{1}<B \varepsilon^{\frac{1}{8}}$, some β. Here, α, Λ_{α}, are as in part (2).
(2) There exists at most one $\boldsymbol{\alpha}$ in \{evaluations of $\boldsymbol{\theta}: \mathscr{K} \rightarrow \mathbb{R} /\langle 2 \pi\rangle\}$ for which there is a solution γ to the equations

$$
\begin{gathered}
\gamma(c)+\boldsymbol{\alpha}(c)=\gamma(d)+\pi \bmod 2 \pi, \quad \text { for all admissible } c d, \\
\boldsymbol{\alpha}(c)=0 \text { or } \pi \bmod 2 \pi, \quad \text { for each } c \in \mathscr{K},
\end{gathered}
$$

and γ is unique up to addition of a constant, and we may assume $\gamma(c)=0$ or $\pi \bmod 2 \pi$ for each $c \in \mathscr{K}$.

If $\Lambda_{\boldsymbol{\alpha}}$ is the diagonal matrix with rows and columns indexed by non-empty m-cylinders with
$\Lambda_{\boldsymbol{\alpha}}(\mathbf{c}, \mathbf{c})=\exp \left\{i \gamma\left(c_{m}\right)\right\} \quad$ whenever $\quad \mathbf{c}=\left[c_{0} \cdots c_{m-1}\right] \quad$ and $c_{m-1} c_{m}$ is admissible (by the above equations, this is well-defined), then

$$
A_{m}(\boldsymbol{\alpha}) \Lambda_{\alpha} v_{m}(\mathbf{0})=-\Lambda_{\boldsymbol{\alpha}} v_{m}(\mathbf{0}) \quad \text { and } \quad \Lambda_{\boldsymbol{\alpha}}^{-1} A_{m}(\boldsymbol{\alpha}+\boldsymbol{\theta}) \Lambda_{\alpha}=-A_{m}(\boldsymbol{\theta})
$$

This is clear from the definitions.
The motivation behind (3.1), (3.2) is to adopt a method Jon Aaronson showed me for evaluating S_{k} for a specific Markov measure, by approximating an arbitrary Gibbs measure function S_{k} by the corresponding function for approximating Markov measures (this is (3.1)), and showing the estimates for the approximating measures work, in some sense, uniformly. Part 1 of (3.2) shows that the functions $w_{m} A_{m}(\boldsymbol{\theta})^{k-m} v_{m}(\boldsymbol{\theta})$ tend to 0 at least as fast as $\nu^{k / m^{8!}}$ (for some $\nu<1$) outside neighbourhoods of $0, \alpha$ of width $O\left(1 / m^{t}\right)$. Specifically, (3.1), (3.2) show:
(3.3) Theorem. For $m^{8 t+2} \leq k \leq m^{u}$

$$
\begin{aligned}
S_{k}= & \frac{1}{(2 \pi)^{v}} \int_{\left[-1 / m^{\prime}, 1 / m^{\prime}\right]^{v}} w_{m} A_{m}(\boldsymbol{\theta})^{k-m} v_{m}(\boldsymbol{\theta}) \\
& +(-1)^{k-m} w_{m} \Lambda_{\boldsymbol{\alpha}} A_{m}(\boldsymbol{\theta})^{k-m} \Lambda_{\mathbf{\alpha}}^{-1} v_{m}(\boldsymbol{\theta}+\boldsymbol{\alpha}) d \boldsymbol{\theta}+O\left(\eta^{m}\right)
\end{aligned}
$$

for some $\eta<1$, for any fixed t, u, where the second term is omitted if $\boldsymbol{\alpha}$ of (3.2) does not exist.
(3.1) follows from (3.4), since the coefficients of the trigonometric polynomials $S_{k}(\theta)$ and $w_{m} A_{m}(\theta)^{k-m} v_{m}(\theta)$ are all positive and add to 1 , if one of the coefficients of $S_{k}(\theta)$ is $\mu\left(c^{1}\right)+\cdots+\mu\left(c^{n}\right)$ for k-cylinders $c^{1} \cdots c^{n}$, then the corresponding coefficient of $w_{m} \boldsymbol{A}_{m}(\boldsymbol{\theta})^{k-m} v_{m}(\boldsymbol{\theta})$ is $\mu_{m}\left(c^{1}\right)+\cdots+\mu_{m}\left(c^{n}\right)$ where μ_{m} is a Markov measure determined by the measure it gives to ($m+1$)-cylinders; that is, if $k \geq m$ and $\left[c_{0} \cdots c_{k}\right] \neq \varnothing$, then

$$
\frac{\mu_{m}\left(\left[c_{0} \cdots c_{k}\right]\right)}{\mu_{m}\left(\left[c_{0} \cdots c_{m-1}\right]\right)}=\prod_{i=0}^{k-m} \frac{\mu\left(\left[c_{i} \cdots c_{i+m}\right]\right)}{\mu\left(\left[c_{i} \cdots c_{i+m-1}\right]\right)}
$$

and $\mu_{m}\left(\left[c_{0} \cdots c_{m}\right]\right)=\mu\left(\left[c_{0} \cdots c_{m}\right]\right)$.
(3.4) Lemma. There exist $c>0, \eta<1$ such that for all $k \geq m$

$$
\frac{1}{\left(1+c \eta^{m}\right)^{k-m}} \mu\left[c_{0} \cdots c_{k}\right] \leq \mu_{m}\left[c_{0} \cdots c_{k}\right] \leq\left(1+c \eta^{m}\right)^{k-m} \mu\left[c_{0} \cdots c_{k}\right]
$$

Proof. The statement is trivial for $k=m$ since $\mu=\mu_{m}$ on cylinders of length $\leq m+1$. Assume the statement is true for $k-1, k>m$. Consider only the left-hand inequality
(the other is similar)

$$
\begin{aligned}
\mu\left(\left[c_{0} \cdots c_{k}\right]\right)= & \frac{\mu\left(\left[c_{0} \cdots c_{m}\right]\right)}{\mu\left(\left[c_{1} \cdots c_{m}\right]\right)} \mu\left(\left[c_{1} \cdots c_{k}\right]\right) \\
& +\left(\mu\left(\left[c_{0} \cdots c_{k}\right]\right)-\frac{\mu\left(\left[c_{0} \cdots c_{m}\right]\right)}{\mu\left(\left[c_{1} \cdots c_{m}\right]\right)} \mu\left(\left[c_{1} \cdots c_{k}\right]\right)\right)
\end{aligned}
$$

By the inductive hypothesis, the first term is majorized by

$$
\left(1+c \eta^{m}\right)^{k-1-m} \frac{\mu\left(\left[c_{0} \cdots c_{m}\right]\right)}{\mu\left(\left[c_{1} \cdots c_{m}\right]\right)} \mu_{m}\left(\left[c_{1} \cdots c_{k}\right]\right)=\left(1+c \eta^{m}\right)^{k-1-m} \mu_{m}\left(\left[c_{0} \cdots c_{k}\right]\right)
$$

For the second term,

$$
\mu\left(\left[c_{0} \cdots c_{k}\right]\right)=\int_{\left[c_{1} \cdots c_{k}\right]} E\left(\chi_{\left[c_{0}\right]} \circ \sigma^{-1} \mid \mathscr{A}_{+}\right) d \mu
$$

By (1.7) 2-3, there exist $c>0, \eta<1$ such that

$$
\left|E\left(\chi_{\left[c_{0}\right]} \circ \sigma^{-1} \mid \mathscr{A}_{+}\right)-\frac{\mu\left(\left[c_{0} \cdots c_{m}\right]\right)}{\mu\left(\left[c_{1} \cdots c_{m}\right]\right)}\right|<c \eta^{m} \frac{\mu\left(\left[c_{0} \cdots c_{m}\right]\right)}{\mu\left(\left[c_{1} \cdots c_{m}\right]\right)}
$$

on [$c_{1} \cdots c_{k}$].
So the second term is majorized by

$$
c \eta^{m} \frac{\mu\left(\left[c_{0} \cdots c_{m}\right]\right)}{\mu\left(\left[c_{1} \cdots c_{m}\right]\right)} \mu\left(\left[c_{1} \cdots c_{k}\right]\right)
$$

which, by the inductive hypothesis, is majorized by

$$
c \eta^{m}\left(1+c \eta^{m}\right)^{k-1-m} \mu_{m}\left(\left[c_{0} \cdots c_{k}\right]\right)
$$

Adding gives the required result.
In the proof of (3.2), the standard lemma 3.5 will be used:
(3.5) Lemma. Let $a_{1} \cdots a_{n}, b_{1} \cdots b_{n}$ be any real numbers with $b_{i} \geq 0, a_{i} \leq b_{i}$. Then for $\varepsilon>0$, if $\sum_{i=1}^{n} a_{i}>(1-\varepsilon) \sum_{i=1}^{n} b_{i}$ and $I=\left\{i: a_{i} \geq(1-\sqrt{ } \varepsilon) b_{i}\right\}$, then

$$
\sum_{i \notin I} b_{i}<\sqrt{ } \varepsilon \sum_{i=1}^{n} b_{i} .
$$

As an immediate corollary, using the mean value theorem:
(3.6) Corollary. There exists a constant C such that, for any n, any complex numbers $a_{1} \cdots a_{n}$ with $\operatorname{Arg}\left(a_{i}\right)=\alpha_{i}$ and

$$
\operatorname{Arg}\left(\sum_{i=1}^{n} a_{i}\right)=\alpha, \quad \text { if }\left|\sum_{i=1}^{n} a_{i}\right|>(1-\varepsilon) \sum_{i=1}^{n}\left|a_{i}\right|
$$

and $I=\left\{j:\left|\exp \left(i \alpha_{j}\right)-\exp (i \alpha)\right| \leq C \varepsilon^{\frac{1}{4}}\right\}$ then

$$
\sum_{i \in I}\left|a_{i}\right|<\sqrt{ } \varepsilon \sum_{i=1}^{n}\left|a_{i}\right| .
$$

(3.7) Lemma. Let p be such that $\sigma^{p}[c] \cap[d] \neq \varnothing$ for any $c, d \in \mathscr{K}$ (pexists since (Y, σ) is topologically mixing). Then given ε small and r there exists $\alpha>0$ independent of m, ε
such that if $\|v\|_{1} \leq 1$ and $\left\|A_{m}^{p+r}(\theta) v\right\|_{1}>1-\varepsilon$, some θ and $w=(w(c))=A_{m}^{p+r}(\theta) v$, then

$$
\underset{\substack{\mathrm{c}=\left[c_{0}, \cdots c_{m-1}\right] \\ c_{m-\cdots} \cdots c_{m-1}=e_{0} \cdots e_{r-1}}}{ }|w(\mathbf{c})|>\alpha, \text { for all non-empty } r \text {-cylinders }\left[e_{0} \cdots e_{r-1}\right] \text {. }
$$

Proof. Write $A_{m}^{p+r}(\boldsymbol{\theta})=(\boldsymbol{A}(\mathbf{c}, \mathbf{d}))$. Write $\mathbf{e}=e_{0} \cdots e_{r-1}$ and $\mathbf{c}_{r}=c_{m-r} \cdots c_{m-1}$. Then

$$
\begin{aligned}
\sum_{\substack{\mathbf{c}=\left[\begin{array}{c}
c_{0} \cdots c_{m-1} \\
\mathbf{c}_{\mathbf{r}}=\mathbf{e} \\
\hline
\end{array}\right.}}|w(\mathbf{c})| & =\sum_{\substack{\mathbf{c}=\left[c_{0} \cdots \boldsymbol{c}_{m-1}\right] \\
\mathbf{c}_{r}=\mathbf{e}}}\left|\sum_{\mathbf{d}} A(\mathbf{c}, \mathbf{d}) v(\mathbf{d})\right| \\
& \geq\left(1-\sqrt{ } \varepsilon \sum_{\substack{\mathbf{c} \in I \\
\mathbf{c}_{\mathbf{r}}=\mathbf{e}}} \sum_{\mathbf{d}}|A(\mathbf{c}, \mathbf{d}) v(\mathbf{d})|,\right.
\end{aligned}
$$

where $I=\left\{\mathbf{c}:\left|\sum_{\mathbf{d}} A(\mathbf{c}, \mathbf{d}) v(\mathbf{d})\right| \geq(1-\sqrt{ } \varepsilon) \sum_{\mathbf{d}}|\boldsymbol{A}(\mathbf{c}, \mathbf{d}) v(\mathbf{d})|\right\}$

$$
\begin{aligned}
& \geq(1-\sqrt{ } \varepsilon) \sum_{\mathbf{d}}|v(\mathbf{d})| \sum_{\mathbf{c}: \mathrm{c}_{r}=\mathbf{e}}|A(\mathbf{c}, \mathbf{d})|-\sqrt{ } \varepsilon \text { by (3.5), } \\
& =(1-\sqrt{ } \varepsilon) \sum_{\mathbf{d}}|v(\mathbf{d})| \sum_{\varepsilon: c_{r}=\mathbf{e}} \frac{\mu_{m}\left(\sigma^{-p-r} \mathbf{c} \cap \mathrm{~d}\right)}{\mu(\mathbf{d})}-\sqrt{ } \varepsilon
\end{aligned}
$$

by definition of $A(\mathbf{c}, \mathbf{d})$,

$$
\geq B_{1}(1-\sqrt{ } \varepsilon) \sum_{\mathbf{d}}|v(\mathbf{d})| \sum_{\mathrm{c}: \mathrm{c}_{r}=\mathbf{e}} \frac{\mu\left(\sigma^{-p-r} \mathbf{c} \cap \mathrm{~d}\right)}{\mu(\mathbf{d})}-\sqrt{ } \varepsilon
$$

for B_{1} independent of m by (3.4),

$$
\begin{aligned}
& =B_{1}(1-\sqrt{ } \varepsilon) \sum_{\mathbf{d}}|v(\mathbf{d})| \frac{\mu\left(\sigma^{-p-m}[\mathbf{e}] \cap \mathbf{d}\right)}{\mu(\mathbf{d})}-\sqrt{ } \varepsilon \\
& \geq B(1-\sqrt{ } \varepsilon) \sum_{\mathbf{d}}|v(\mathbf{d})|-\sqrt{ } \varepsilon
\end{aligned}
$$

some B, by (1.7.2) (because $\sigma^{-p-m}[\mathbf{e}] \cap \mathbf{d} \neq \varnothing$),

$$
\geq B(1-\sqrt{ } \varepsilon)(1-\varepsilon)-\sqrt{ } \varepsilon=\alpha
$$

since $\|v\|_{1} \geq 1-\varepsilon$, because, as is easily checked, $\left\|A_{m}(\theta)\right\|_{1} \leq 1$ for all m, θ.
(3.8) Lemma. Again, let p be such that $\sigma^{p}[c] \cap[d] \neq \varnothing$ for any $c, d \in \mathscr{H}$. Then there exists D independent of m such that if $\left\|A_{m}^{p+m}(\boldsymbol{\theta}) v\right\|_{1}>1-\varepsilon$ for some $\theta,\|v\|_{1} \leq 1$, then there exist $\{\gamma(e): e \in \mathscr{K}\}$ such that

$$
\begin{gathered}
\sum_{\mathbf{d} \notin I}|w(\mathbf{d})|<D^{\frac{1}{4}}, \quad \text { where } w(\mathbf{d})=w=A_{m}^{p}(\boldsymbol{\theta}) v, \\
I=\left\{\mathbf{d}: \left\lvert\, w(\mathbf{d})-\exp \left(i \gamma(e)|w(\mathbf{d}) \| \leq D| w(\mathbf{d}) \left\lvert\, \varepsilon^{\frac{1}{8}}\right. \text { whenever } d \in K_{e}\right\}\right.,\right. \\
K_{e}=\left\{\mathbf{d}=\left[d_{0} \cdots d_{m-1}\right]: d_{m-1} e \text { admissible }\right\},
\end{gathered}
$$

and ε is sufficiently small independently of m.

Proof. Write $A_{m}(\theta)^{m}=(E(\mathbf{c}, \mathrm{~d}))$. Since $\sum_{\mathbf{c}}\left|\sum_{\mathbf{d}} E(\mathbf{c}, \mathrm{~d}) w(\mathrm{~d})\right|>1-\varepsilon$, we have by (3.5),

$$
\begin{align*}
\sum_{\substack{c=\left[c_{0} \cdots c_{c_{m-1}}\right] \\
c_{0}=e}}\left|\sum_{\mathbf{d}} E(\mathbf{c}, \mathbf{d}) w(\mathbf{d})\right| & \geq(1-\sqrt{ } \varepsilon) \sum_{\substack{\mathbf{c}=\left[\sum_{0} \cdots c_{m-1}\right] \\
c_{0}=e}} \sum_{\mathbf{d}}|E(\mathbf{c}, \mathbf{d}) w(\mathbf{d})|-\sqrt{ } \varepsilon \\
& \geq D(1-\sqrt{ } \varepsilon) \mu[e] \sum_{\substack{d=\left[d_{0} \cdots d_{m-1}\right] \\
d_{m-1} e \text { admissible }}}|w(\mathbf{d})|-\sqrt{ } \varepsilon \\
& >D \alpha(1-\sqrt{ } \varepsilon) \mu[e]-\sqrt{\varepsilon} \tag{1}
\end{align*}
$$

by (3.7), (1.7.2) (see (5) below).
Also by (3.5) there exists a set J of \mathbf{c} such that

$$
\begin{equation*}
\left|\sum_{\mathbf{d}} E(\mathbf{c}, \mathbf{d}) w(\mathbf{d})\right|>(1-\sqrt{ } \varepsilon) \sum_{\mathbf{d}}|E(\mathbf{c}, \mathbf{d}) w(\mathbf{d})| \quad \text { for } \mathbf{c} \in J \tag{2}
\end{equation*}
$$

and

$$
\sum_{c \in J} \sum_{\mathbf{d}}|E(\mathbf{c}, \mathbf{d}) w(\mathbf{d})|<\sqrt{ } \varepsilon
$$

By (1), for each $c_{0} \in \mathscr{K}$, there exists $\mathbf{c}=\left[c_{0} \cdots c_{m-1}\right] \in J$, if ε is sufficiently small independently of m.

Let $\gamma(c)$ be defined by

$$
\operatorname{Arg}\left(\sum_{\mathbf{d}} E(\mathbf{c}, \mathbf{d}) w(\mathbf{d})\right)=\boldsymbol{\theta}(\mathbf{c})+\gamma(\mathbf{c}) .
$$

Then (3.6) and (2) imply there exists, for $c \in J, L_{\mathbf{c}} \subseteq K_{c_{0}}\left(c=\left[c_{0} \cdots c_{m-1}\right]\right)$ such that, for $\mathbf{d} \in L_{\mathbf{c}}$,

$$
\begin{gather*}
|w(\mathbf{d})-|w(\mathbf{d})| \exp \{i \gamma(\mathbf{c})\}| \leq C|w(\mathbf{d})| \varepsilon^{\frac{1}{8}} \quad \text { for } C \text { independent of } m, \tag{3}\\
\sum_{\mathbf{d} \in K_{K_{0}} \mid L_{\mathbf{c}}}|E(\mathbf{c}, \mathbf{d}) w(\mathbf{d})| \leq \varepsilon^{\frac{1}{4}} \sum_{\mathbf{d} \in K_{c_{0}}}|E(\mathbf{c}, \mathbf{d}) w(\mathbf{d})| . \tag{4}
\end{gather*}
$$

(The facts that $\operatorname{Arg}(E(\mathbf{c}, \mathbf{d}))=\theta(\mathbf{c})$ for all \mathbf{d}, and $E(\mathbf{c}, \mathbf{d}) \neq 0$ for $\mathbf{d} \in K_{\mathrm{c}_{\mathrm{o}}}$ have been used.)
(3.4) and (1.7.2) imply there exist A, B independent of m such that

$$
\begin{equation*}
A \mu([\mathbf{c}]) \leq|E(\mathbf{c}, \mathbf{d})| \leq B \mu([\mathbf{c}]) \quad \text { for } \mathbf{d} \in K_{c_{0}}, \text { since } E(\mathbf{c}, \mathbf{d})=\frac{\mu_{m}\left(\sigma^{-m} \mathbf{c} \cap \mathbf{d}\right)}{\mu(\mathbf{d})} \tag{5}
\end{equation*}
$$

So (4) becomes:

$$
\begin{equation*}
\sum_{d \in K_{c_{0}} \backslash L_{c}}|w(\mathbf{d})| \leq \frac{B}{A} \varepsilon^{\frac{1}{4}} \sum_{d \in K_{c_{0}}}|w(\mathbf{d})| . \tag{6}
\end{equation*}
$$

So for ε sufficiently small independently of $m, L_{\mathbf{c}} \cap L_{\mathbf{c}^{\prime}} \neq \varnothing$ if $\mathbf{c}=\left[c_{0} \cdots c_{m-1}\right]$, $\mathbf{c}^{\prime}=\left[c_{0}^{\prime} \cdots c_{m-1}^{\prime}\right]$ and $c_{0}=c_{0}^{\prime}$. So (3), (6) become

$$
\begin{equation*}
\text { for } \mathbf{d} \in L_{c_{0}}\left|w(\mathbf{d})-|w(\mathbf{d})| \exp \left\{i \gamma\left(c_{0}\right)\right\}\right|<3 C|w(\mathbf{d})| \varepsilon^{\frac{1}{8}} \tag{7}
\end{equation*}
$$

and

$$
\sum_{\mathbf{d} \in K_{c_{0}} L_{c_{0}}}|w(\mathbf{d})|<\frac{B}{A} \varepsilon^{\frac{1}{4}} \sum_{d \in K_{c_{0}}}|w(\mathbf{d})|,
$$

where $L_{c_{0}}=\bigcup\left\{L_{\mathbf{c}}: \mathbf{c} \in J, \mathbf{c}=\left[c_{0} \cdots c_{m-1}\right]\right\}$ and $\gamma\left(c_{0}\right)$ is chosen to be $\gamma(\mathbf{c})$, some $\mathbf{c}=\left[c_{0} \cdots c_{m-1}\right] \in J$.

If $I=\bigcup_{c_{0}} L_{c_{0}}$ then

$$
\begin{equation*}
\sum_{\mathbf{d} \in I}|w(\mathbf{d})|<\frac{2 r B}{A} \varepsilon^{\frac{1}{4}} . \tag{8}
\end{equation*}
$$

(7) and (8) give the result.

Proof of (3.2). For some $s \geq p$ (p as in (3.7), (3.8)) yet to be chosen, we assume $\left\|A_{m}^{s+m}(\theta) v\right\|_{1}>1-\varepsilon$ for a $v,\|v\|_{1} \leq 1$.

Let $w=w^{0}=A_{m}^{p}(\boldsymbol{\theta}) v$ as in (3.7), (3.8) and $w^{t}=A_{m}^{t+p}(\theta) v, 0 \leq t \leq s-p$. Let $\left\{\gamma^{t}(e): e \in \mathscr{K}\right\}$ be the arguments corresponding to w^{t}, whose existences were proved in (3.8), i.e.

$$
\begin{equation*}
\text { for } \mathbf{c} \in I_{t} \cap K_{e},\left|w^{t}(\mathbf{c})-\exp \left\{i \gamma^{t}(e)\right\}\right| w^{t}(\mathbf{c}) \| \leq D\left|w^{t}(\mathbf{c})\right| \varepsilon^{\frac{1}{8}} \tag{1}
\end{equation*}
$$

and

$$
\sum_{\mathbf{c} \in I_{t}}\left|w^{t}(\mathbf{c})\right|<D \varepsilon^{\frac{1}{4}} .
$$

However, we also have

$$
\begin{equation*}
\text { for } \mathbf{c} \in J_{t},\left|w^{t}(\mathbf{c})-\exp \left\{i \theta\left[c_{m-t} \cdots c_{m-1}\right]+i \gamma^{0}\left(c_{m-t}\right)\right\}\right| w^{t}(\mathbf{c}) \|<G \varepsilon^{\frac{1}{8}}\left|w^{t}(\mathbf{c})\right| \tag{2}
\end{equation*}
$$

and

$$
\sum_{\mathbf{c} \in \in J_{t}}\left|w^{t}(\mathbf{c})\right|<G \varepsilon^{\frac{1}{8}},
$$

for a G independent of m, if s is bounded independently of m. (2) follows from the fact that, if $\boldsymbol{A}_{m}^{t}(\boldsymbol{\theta})=\left(F_{t}(\mathbf{c}, \mathbf{d})\right)$, then $\arg F_{t}(\mathbf{c}, \mathbf{d})=\boldsymbol{\theta}\left[c_{m-t} \cdots c_{m-1}\right]$ if $\mathbf{c}=\left[c_{0} \cdots c_{m-1}\right]$, and then

$$
\sum_{\mathbf{d}} F_{t}(\mathbf{c}, \mathbf{d}) w^{0}(\mathbf{d})=\exp \left\{i \theta\left[c_{m-t} \cdots c_{m-1}\right]\right\} \sum_{\mathbf{d}}\left|F_{t}(\mathbf{c}, \mathbf{d})\right| w^{0}(\mathbf{d})=w^{t}(\mathbf{c})
$$

Put

$$
\begin{gathered}
J_{t}=\left\{\mathbf{c}: \sum_{\mathbf{d} \in I_{0}}\left|F_{t}(\mathbf{c}, \mathbf{d}) \| w^{0}(\mathbf{d})\right| \leq \varepsilon^{\frac{1}{8}}\left|w^{t}(\mathbf{c})\right|\right\} . \\
\sum_{\mathbf{c} \in J_{t}}\left|w^{t}(\mathbf{c})\right| \leq \frac{1}{\varepsilon^{\frac{1}{8}}} \sum_{\mathbf{d} \notin I_{0}} \sum_{\mathbf{c}}\left|F_{t}(\mathbf{c}, \mathbf{d}) \| w^{0}(\mathbf{d})\right| \leq \boldsymbol{\varepsilon}^{\frac{1}{8}} \quad \text { by }(1) .
\end{gathered}
$$

Combining (1) and (2) gives

$$
\begin{equation*}
\left|\exp \left\{i \gamma^{t}\left(d_{t}\right)\right\}-\exp \left\{i \theta\left[d_{0} \cdots d_{t-1}\right]+i \gamma^{0}\left(d_{0}\right)\right\}\right|<(D+G) \varepsilon^{\frac{1}{8}} \tag{3}
\end{equation*}
$$

for any non-empty cylinder [$d_{0} \cdots d_{t}$], any $t \leq s-p$, if ε is sufficiently small independently of m, since, by (3.7), the set of $\mathbf{c}=\left[c_{0} \cdots c_{m-1}\right]$ with $c_{m-t} \cdots c_{m-1}=$ $d_{0} \cdots d_{t-1}$ is not contained in $I_{t} \cup J_{t}$.

Fix d_{0}, t, d_{t} and let $\theta\left[d_{1} \cdots d_{t-1}\right]$ vary with the restriction that $\left[d_{0} \cdots d_{t}\right] \neq \varnothing$. For t large enough (depending only on $(Y, \sigma), \theta)$ the $\theta\left[d_{1} \cdots d_{t-1}\right]-\theta\left[d_{1}^{\prime} \cdots d_{t-1}^{\prime}\right]$ will generate a subgroup of finite index in $\left\langle\theta_{1} \cdots \theta_{v}\right\rangle$ (since $\left(Y_{F_{1}}, \sigma\right.$) is topologically transitive, and periodic points are dense). So there exist $H, q>0$ (q integer) independent of m such that $\exp \{i \theta(c)\}$ lies within $H \varepsilon^{\frac{1}{8}}$ of $\langle\exp (2 \pi i / q)\rangle$ for all $c \in \mathscr{K}$. For ε sufficiently small independently of m, this uniquely defines $\boldsymbol{\theta}_{0}: \mathscr{K} \rightarrow\langle 2 \pi / q\rangle /\langle 2 \pi\rangle$ with $\left|\boldsymbol{\theta}(c)-\boldsymbol{\theta}_{0}(c)\right|<B \varepsilon^{\frac{8}{8}}$.

It has now been proved that θ must lie within $O\left(\varepsilon^{\frac{1}{8}}\right)$ of a finite set of points. The rest of the proof is algebraic manipulation - in the course of which we show the cardinality of the finite set is ≤ 2.

Replacing the $\gamma^{t}(c)$ by $\beta+\gamma_{0}^{t}(c)$ (some fixed $\beta \in \mathbb{R}$) which are $O\left(\varepsilon^{\frac{1}{8}}\right)$ close, we can assume $\gamma_{0}^{0}(a) \in\langle 2 \pi / q\rangle$, some $a \in \mathscr{K}$, and (3) can become

$$
\begin{equation*}
\gamma_{0}^{t}\left(d_{t}\right)=\theta_{0}\left[d_{0} \cdots d_{t-1}\right]+\gamma_{0}^{0}\left(d_{0}\right) \bmod 2 \pi \tag{4}
\end{equation*}
$$

whenever $\left[d_{0} \cdots d_{t}\right] \neq \varnothing$. Since (Y, σ) is topologically mixing, we deduce that θ_{0} and one $\gamma_{0}^{0}(a)$ determine all $\gamma_{0}^{t}(b)$ (all t, all $b \in \mathscr{K}$). In particular, all $\gamma_{0}^{t}(b)$ lie in $\langle 2 \pi / q\rangle$. Since (4) is satisfied with $\gamma_{0}^{0}, \gamma_{0}^{t}$ replaced by $\gamma_{0}^{1}, \gamma_{0}^{t+1}$, subtract the modified equation from (4), and deduce that, if t is large enough for $[a] \cap \sigma^{-t}[b] \neq \varnothing$ for all $a, b \in \mathscr{K}$,

$$
\begin{equation*}
\gamma_{0}^{t+1}(b)-\gamma_{0}^{t}(b)=\gamma_{0}^{1}(a)-\gamma_{0}^{0}(a)=\lambda_{\theta_{0}} \bmod 2 \pi \tag{5}
\end{equation*}
$$

for some constant $\lambda_{\boldsymbol{\theta}_{0}} \in\langle 2 \pi / q\rangle$ for all $a, b \in \mathscr{K}$. So, putting $t=1$ in (4), we obtain

$$
\begin{equation*}
\gamma_{0}^{0}(b)+\lambda_{\boldsymbol{\theta}_{0}}=\boldsymbol{\theta}_{0}[a]+\gamma_{0}^{0}(a) \bmod 2 \pi, \quad \text { whenever }[a b] \neq \varnothing \tag{6}
\end{equation*}
$$

where $\lambda_{\boldsymbol{\theta}_{0}} \in\langle 2 \pi / q\rangle$ and $\gamma_{0}^{0}(a) \in\langle 2 \pi / q\rangle$ for all $a \in \mathscr{K}$. $\boldsymbol{\theta}_{0}$ completely determines $\lambda_{\boldsymbol{\theta}_{0}}$, and determines the $\gamma_{0}^{0}(a)$ up to addition of a constant.

It is clear from (6) that the set of $\boldsymbol{\theta}_{0}$ we are considering lie in a finite group, and $\boldsymbol{\theta}_{0} \mapsto \lambda_{\boldsymbol{\theta}_{0}}$ is a group homomorphism. We shall show it is injective. So suppose $\lambda_{\boldsymbol{\theta}_{0}}=0$. (6) gives:

$$
\begin{equation*}
\gamma_{0}^{0}(b)=\gamma_{0}^{0}(a) \quad \text { whenever there exists }\left[d_{0} \cdots d_{t}\right] \neq \varnothing \text { with } d_{0}=a, d_{t}=b \tag{7}
\end{equation*}
$$

and $\boldsymbol{\theta}_{0}\left[d_{0} \cdots d_{t-1}\right]=0$.
But this condition is satisfied for all $a, b \in \mathscr{K}$, since the shift ($Y_{\operatorname{Ker}_{0},}, \sigma$) (in the notation of (1.5)) is topologically transitive by assumption. Substituting in (6), we obtain $\boldsymbol{\theta}_{0}=0$. So $\boldsymbol{\theta}_{0} \mapsto \lambda_{\boldsymbol{\theta}_{0}}$ is injective.

Now for any $\boldsymbol{\theta}_{0}$, (6) implies $\gamma_{0}^{0}(d)=\gamma_{0}^{0}(e)$ if there exists c with $c d, c e$ admissible. So if $\delta(d)=-\gamma_{0}^{0}\left(c^{-1}\right)$ whenever $c d$ is admissible, δ is well-defined.

We now use the uniqueness of γ_{0}^{0} given $\boldsymbol{\theta}_{0}$. If $[c d e] \neq \varnothing$,

$$
\delta(e)+\lambda_{\boldsymbol{\theta}_{0}}=-\gamma_{0}^{0}\left(d^{-1}\right)+\lambda_{\boldsymbol{\theta}_{0}}=-\gamma_{0}^{0}\left(c^{-1}\right)+\boldsymbol{\theta}_{0}\left(d^{-1}\right)=\delta(d)-\boldsymbol{\theta}_{0}(d)
$$

Hence $\lambda_{\boldsymbol{\theta}_{0}}=\lambda_{-\theta_{0}}=-\lambda_{\theta_{0}}$, and $\lambda_{\theta_{0}}=0$ or $\pi \bmod 2 \pi$. By the injectivity of the homomorphism, there is at most one $\boldsymbol{\theta}_{0}$ with $\lambda_{\theta_{0}}=\pi \bmod 2 \pi$. Let $\boldsymbol{\alpha}$ be this $\boldsymbol{\theta}_{0}$ if it exists. The corresponding γ_{0}^{0} satisfying (6) is the γ required in statement (2) of the theorem.

4. Second stage in estimating the 'Poincaré series'

We continue with the notation of $\S 3$, and the estimation of S_{k}. The main result is theorem 4.7. Recall that S_{k} depends on a σ-invariant and τ-invariant Gibbs measure μ on a subshift of finite type (Y, σ), and on a homomorphism $\theta: F \rightarrow \mathbb{Z}^{v}$. Recall F is the free group on the symbols $\mathscr{K}=\left\{a_{1} \cdots a_{r}, a_{1}^{-1} \cdots a_{r}^{-1}\right\}$ of Y.

By theorem 3.3, we are reduced to estimating, for $m^{8 t+2} \leq k \leq(m+1)^{8 t+2}$ (any fixed t)

$$
\frac{1}{(2 \pi)^{v}} \int_{\left[-1 / m^{\prime}, 1 / m^{\prime}\right]^{u}}\left[w_{m} A(\boldsymbol{\theta})^{k-m} v_{m}(\boldsymbol{\theta})+(-1)^{k-m} w_{m} \Lambda_{\boldsymbol{\alpha}}^{-1} A(\boldsymbol{\theta})^{k-m} \Lambda_{\boldsymbol{\alpha}} v_{m}(\boldsymbol{\theta}+\boldsymbol{\alpha})\right] d \boldsymbol{\theta}
$$

Here we are using the notation of (3.2). The general method is to obtain a local diagonalization of $A_{m}(\theta)$, hence reducing the calculation to estimating the integral of $\lambda_{m}(\boldsymbol{\theta})^{k-m}$, for $\lambda_{m}(\boldsymbol{\theta})$ the largest eigenvalue of $\boldsymbol{A}_{m}(\boldsymbol{\theta})$. This integral is estimated by
studying the second-order terms of $\lambda_{m}(\theta)$. As remarked before, this is a generalized version of a calculation for a specific Markov measure shown to me by Aaronson.

The main stages in the estimation are:
(4.1) Lemma (needed for (4.2)). $\boldsymbol{A}_{m}(\boldsymbol{\theta})$ is conjugate to its adjoint $\left(\boldsymbol{A}_{m}(\boldsymbol{\theta})\right)^{*}$, by some $C_{m}(\boldsymbol{\theta})$, with $C_{m}(\mathbf{0})$ fixing $v_{m}(\mathbf{0})$, and $C_{m}(\boldsymbol{\theta})$ continuous in θ.
(4.2) Theorem. Suppose $\boldsymbol{A}_{m}(\boldsymbol{\theta})$ is a $p \times p$ matrix. There exists a C^{∞} map λ_{m} from $\left[-c / m^{2}, c / m^{2}\right]^{v}$ to $[0,1]$, and a C^{∞} map P_{m} from $\left[-c / m^{2}, c / m^{2}\right]^{v}$ to $\left\{P: P: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}\right.$ is a projection with image space of dimension 1$\}$ for some $c>0$, such that λ_{m}, P_{m} have the following properties. $\operatorname{Ker} \boldsymbol{P}_{m}(\boldsymbol{\theta}), \operatorname{Im} \boldsymbol{P}_{m}(\boldsymbol{\theta})$ are invariant under $\boldsymbol{A}_{m}(\boldsymbol{\theta}) . \boldsymbol{A}_{m}(\boldsymbol{\theta}) \boldsymbol{v}=$ $\lambda_{m}(\boldsymbol{\theta}) v$ for $v \in \operatorname{Im} P_{m}(\boldsymbol{\theta}) . \quad \lambda_{m}(\mathbf{0})=1, \operatorname{Ker} P_{m}(\mathbf{0})=\left\{(v(\mathbf{c})): \sum_{c} v(\mathbf{c})=0\right\}, \operatorname{Im} P_{m}(\mathbf{0})=$ $\mathrm{sp}(\mu(\mathbf{c}))$. There exist constants C_{k}, n_{k} independent of $\underset{m}{\mathbf{m}}$ such that $\left|D^{k} \lambda_{m}(\theta)\right|$, $\left\|D^{k} P_{m}(\theta)\right\|_{1} \leq C_{k} m^{n_{k}}$. It will be useful to note that we can take $n_{1}=1$.
(4.3) Corollary. For $k \geq m^{2}$

$$
\begin{aligned}
& \int_{\left[-c / m^{2}, c / m^{2}\right]^{v}} w_{m} A_{m}(\theta)^{k-m} v_{m}(\theta) d \theta \\
& \quad=(1+O(1 / m)) \int_{\left[-c / m^{2}, c / m^{2}\right]^{v}}\left(\lambda_{m}(\theta)\right)^{k-m} d \theta+O\left(\beta^{m}\right), \quad \text { some } \beta<1 . \\
& \int_{\left[-c / m^{2}, c / m^{2}\right]^{v}}(-1)^{k-m} w_{m} \Lambda_{\alpha}^{-1} A_{m}(\theta)^{k-m} \Lambda_{\alpha} v_{m}(\theta+\alpha) d \theta \\
& \quad=(-1)^{k}\left(B_{m}+O(1 / m)\right) \int_{\left[-c / m^{2} . c / m^{2}\right]^{v}}\left(\lambda_{m}(\theta)\right)^{k-m} d \theta+O\left(\beta^{m}\right),
\end{aligned}
$$

for some B_{m} with $\left|B_{m}\right| \leq 1$.
Proof. Write

$$
\begin{gathered}
v_{m}(\theta)=P_{m}(\theta) v_{m}(\theta)+\left(I-P_{m}(\theta)\right) v_{m}(\theta), \\
w_{m}=w_{m}\left(P_{m}(\theta)\right)^{T}+w_{m}\left(I-P_{m}(\theta)\right)^{T} .
\end{gathered}
$$

Thus, $w_{m} A_{m}(\theta)^{k-m} v_{m}(\theta)$ decomposes into four terms. By (3.2), $\left\|A_{m}(0)^{m+s}\right\|_{1}<\beta<1$ on $\operatorname{Ker} P_{m}(0)$, for some $\beta<1$. By the given bounds on derivatives in (4.2), this estimate also holds for θ with $\left|\theta_{i}\right| \leq c / m^{2}$.

Also, $w_{m}\left(I-P_{m}(0)^{T}\right) P_{m}(0) v_{m}(0)=0$. By the bounds on derivatives, this quantity is $\leq O(1 / m)$ for $\left|\theta_{i}\right| \leq c / m^{2}$. (Note that a bound on $\left\|P_{m}(\theta)-P_{m}(0)\right\|_{1}$ gives the same bound for $\left\|P_{m}(\theta)^{T}-P_{m}(\boldsymbol{0})^{T}\right\|_{\infty}$.) Thus, the dominating term of the four is

$$
\lambda_{m}(\theta)^{k-m} \cdot w_{m} P_{m}(\theta)^{T} P_{m}(\theta) v_{m}(\theta)
$$

and, similarly, in the second part of the integral, the dominating term is

$$
\lambda_{m}(\theta)^{k-m} \cdot(-1)^{k-m} w_{m} \Lambda_{\alpha}^{-1} P_{m}(\theta)^{T} P_{m}(\theta) \Lambda_{\alpha} v_{m}(\theta+\alpha)
$$

The result follows, since for each of these dominating terms, the coefficient of $\lambda_{m}(\theta)^{k-m}$ is within $O(1 / m)$ of the coefficient at $\theta=0$.
Note. If we consider $S_{k}+S_{k+1}$ instead of S_{k} we can just consider the integral

$$
\int_{\left[-c / m^{2}, c / m^{2}\right]^{v}} \lambda_{m}(\theta)^{k-m} d \boldsymbol{\theta}
$$

because then the second terms cancel. We have to do this, because it can happen that $S_{k}=0$ for k odd in explicit examples. (For instance, the reduced word length of any element of the commutator subgroup of the free group on two generators is even.)
(4.4) Theorem. The first derivative of λ_{m} at $\mathbf{0}, D \lambda_{m}(\mathbf{0})$, is $\mathbf{0}$. The second derivative satisfies

$$
\begin{aligned}
\sum_{i, i=1}^{v} \frac{\partial^{2} \lambda_{m}(\mathbf{0})}{\partial \theta_{i} \partial \theta_{j}} \theta_{i} \theta_{j}= & -\sum_{c \in \mathscr{K}} \mu(c)(\boldsymbol{\theta}(c))^{2} \\
& +2 \sum_{c, d \in \mathscr{K}} \sum_{r=1}\left(\mu\left(\sigma^{-r}[d] \cap[c]\right)-\mu([c]) \mu([d])\right) \boldsymbol{\theta}(d) \boldsymbol{\theta}(c) \\
& +H_{m}\left(\theta_{1} \cdots \theta_{v}\right) \\
= & G\left(\theta_{1} \cdots \theta_{v}\right)+H_{m}\left(\theta_{1} \cdots \theta_{v}\right)
\end{aligned}
$$

with $\mid H_{m}\left(\theta_{1} \cdots \theta_{v} \mid<A \beta^{m}\left(\theta_{1}^{2}+\cdots+\theta_{v}^{2}\right)\right.$, some $A, \beta, \beta<1$, and the expression for the quadratic polynomial G is convergent. Thus, the second-order terms of λ_{m} are essentially independent of m. Presumably, the same is also true of higher derivatives.
(4.5) Corollary.

$$
\begin{aligned}
& \int_{\left[-1 / m^{n_{3}{ }^{+1}}, 1 / m^{n^{+}+1}\right]^{v}} \lambda_{m}(\theta)^{k-m} d \theta \\
& \quad=\int_{\left[-1 / m^{n_{3}+1}, 1 / m^{n_{3}+1}\right]} \exp \left\{\frac{1}{2}(k-m)\left(G(\theta)+O\left(|\theta|^{2}\right)\right)\right\} d \boldsymbol{\theta}
\end{aligned}
$$

Proof. $x \mapsto \exp (x)$ has derivative and inverse derivative 1 at $x=0$. Because of the bound on third derivatives in (4.2), and the bound on H_{m} in (4.4), $\left|\lambda_{m}(\theta)-\left(1+\frac{1}{2} G(\theta)\right)\right| \leq O\left(|\theta|^{2} / m\right)$ for $\left|\theta_{i}\right| \leq 1 / m^{n_{3}+1}$.
(4.6) Theorem.

$$
\sum_{i, j=1}^{v} \frac{\partial^{2} \lambda_{m}(\mathbf{0})}{\partial \theta_{i} \partial \theta_{j}} \theta_{i} \theta_{j} \leq-K\left(\theta_{1}^{2}+\cdots+\theta_{v}^{2}\right)
$$

for all m, for some constant K.
The required theorem is now a corollary of this. We consider the integral in (4.5) for $k \geq m^{8 n_{3}+10}$, and replace the variable $\left(\theta_{1} \cdots \theta_{v}\right)$ by $\left(k^{\frac{1}{2}}\right)\left(\theta_{1} \cdots \theta_{v}\right)$.
(4.7) Theorem. If μ is $a \sigma$ - and τ-invariant Gibbs measure on (Y, σ, τ) and F_{1} is a subgroup of the free group on the symbols $\left\{a_{1} \cdots a_{r}, a_{1}^{-1} \cdots a_{r}^{-1}\right\}$ of Y with $F / F_{1} \cong_{\boldsymbol{\theta}} \mathbb{Z}^{v}$ and $\left(Y_{F_{1}}, \sigma\right)$ topologically transitive, then

$$
S_{k}+S_{k+1} \sim \frac{2}{(2 \pi)^{v} k^{v / 2}} \int_{\mathbf{R}^{v}} \exp \left\{\frac{1}{2} G\left(\theta_{1} \cdots \theta_{v}\right)\right\} d \theta_{1} \cdots d \theta_{v}
$$

where G is a negative definite quadratic polynomial of rank v, and

$$
S_{k}=\sum\{\mu(\mathbf{c}): \mathbf{c} \text { is a } k \text {-cylinder with } \boldsymbol{\theta}(\mathbf{c})=\mathbf{0}\} .
$$

Hence, $\left(Y, \sim_{F_{1}}, \mu\right)$ is ergodic if and only if $v \leq 2$.
In particular, the assumption that $\left(Y_{F_{1}}, \sigma\right)$ is topologically transitive holds if $\left(Y_{F}, \sigma\right)$ and $\left(Y_{F_{1}}, \sigma\right)$ are simultaneous symbolic representations for the geodesic flows $\left(X_{\Gamma},\left\{\phi_{t}\right\}\right)$ and $\left(X_{\Gamma_{1}},\left\{\phi_{t}\right\}\right)$ as in $\S 1$, for Γ a discrete group of isometries with X_{Γ}
compact, $\Gamma_{1} \leq \Gamma$ with $\Gamma / \Gamma_{1} \cong \mathbb{Z}^{v}$ and $F_{1}=\phi^{-1}\left(\Gamma_{1}\right)$ for a homomorphism $\phi: F \rightarrow \Gamma$ like ϕ in (1.4). In particular, μ can then be the measure corresponding to a Γ-invariant conformal density of dimension $\delta=\delta(\Gamma)$ on $L_{\Gamma}=L_{\Gamma_{1}}$, and the estimate (1.10) implies there exist constants $A, B>0$ such that

$$
\frac{A}{k^{\frac{1}{2} v-1}} \leq \sum_{\substack{A k \leq\left(x, \gamma \chi_{0}\right) \leq B k \\ \gamma \in \Gamma_{1}}} \exp \left\{-\delta\left(x_{0}, \gamma x_{0}\right)\right\} \leq \frac{B}{k^{\frac{1}{2} v-1}}
$$

for any fixed $x_{0} \in H^{d+1}$, where $\left(x_{0}, \gamma x_{0}\right)$ denotes the hyperbolic distance between x_{0} and γx_{0}.

Hence Γ_{1} has the same critical exponent δ as Γ, and Γ_{1} is of divergence type if and only if $v \leq 2$.
We have given an outline of the proof. It remains to prove (4.2), (4.4), and (4.6). First we have to prove the lemma 4.1:
Proof of (4.1). Define $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ by $T(v(\mathbf{c}))=(w(\mathbf{c}))$ with $w(\mathbf{c})=v\left(\mathbf{c}^{-1}\right)$, where $\mathbf{c}^{-1}=\left[c_{m-1}^{-1} \cdots c_{0}^{-1}\right]$ if $\mathbf{c}=\left[c_{0} \cdots c_{m-1}\right]$. Then if

$$
\left.A_{m}(\boldsymbol{\theta})=A(\mathbf{c}, \mathbf{d})\right), T A_{m}(\boldsymbol{\theta}) T^{-1}=(B(\mathbf{c}, \mathbf{d}))
$$

where $B(\mathbf{c}, \mathbf{d})=A\left(\mathbf{c}^{-1}, \mathbf{d}^{-1}\right)$, so

$$
\begin{aligned}
B(\mathbf{c}, \mathbf{d}) & =\exp \left\{i \theta\left(c_{0}^{-1}\right)\right\} \frac{\mu\left[\mathbf{d}^{-1} \cap \sigma^{-1} \mathbf{c}^{-1}\right]}{\mu\left[\mathbf{d}^{-1}\right]} \\
& =\frac{\mu\left[\mathbf{c} \cap \sigma^{-1} \mathbf{d}\right]}{\mu[\mathbf{c}]} \cdot \exp \left\{-i \boldsymbol{\theta}\left(d_{m-1}\right)\right\} \cdot \frac{\exp \{i \theta[\mathbf{d}]\}}{\mu[\mathbf{d}]} \cdot \frac{\mu[\mathbf{c}]}{\exp \{i \theta[\mathbf{c}]\}} \\
& =\frac{A(\mathbf{d}, \mathbf{c})}{\exp \{i \theta[\mathbf{d}]\}} \frac{\mu[\mathbf{d}]}{\mu[\mathbf{c}]} \exp \{i \theta[\mathbf{c}]\}
\end{aligned}
$$

So $(B(\mathbf{c}, \mathbf{d}))$ is conjugate to $(\overline{A(\mathbf{d}, \mathbf{c})})=\left(\boldsymbol{A}_{m}(\boldsymbol{\theta})\right)^{*}$ by a diagonal matrix.
Proof of (4.2). Consider the function $F: \mathbb{R}^{v} \times \mathbb{C}^{p+1} \rightarrow \mathbb{C}^{p+1}$ given by

$$
F\left(\boldsymbol{\theta}, \lambda, y_{1} \cdots y_{p}\right)=\binom{\left(\lambda-A_{m}(\boldsymbol{\theta})\right)(\boldsymbol{\mu}+\mathbf{y})}{\sum_{i=1}^{p} y_{i}} \quad \text { where } \boldsymbol{\mu}=(\mu(\mathbf{c})), \mathbf{y}=\left(y_{i}\right)
$$

Then $F(\mathbf{0}, 1,0)=\mathbf{0}$. We want to use the implicit function theorem to solve the equation $F\left(\boldsymbol{\theta}, \lambda_{m}(\boldsymbol{\theta}), \mathbf{y}(\boldsymbol{\theta})\right)=\boldsymbol{\theta}$ for $\boldsymbol{\theta}$ near $\mathbf{0}$. We use the standard procedure of defining

$$
\begin{gathered}
\binom{\lambda_{m}^{0}(\boldsymbol{\theta})}{\mathbf{y}^{0}(\boldsymbol{\theta})}=\binom{1}{\mathbf{0}} \\
\binom{\lambda_{m}^{r+1}(\boldsymbol{\theta})}{\mathbf{y}^{r+1}(\boldsymbol{\theta})}=\binom{\lambda_{m}^{r}(\boldsymbol{\theta})}{\mathbf{y}^{\prime}(\boldsymbol{\theta})}-\left(D F_{\lambda_{m}^{r}, \mathbf{y}^{\prime}}\right)^{-1} F\left(\boldsymbol{\theta}, \lambda_{m}^{r}, \mathbf{y}^{r}\right),
\end{gathered}
$$

choosing a suitable set of θ for which $D F_{\lambda_{m}^{\prime}(\boldsymbol{\theta}) \boldsymbol{y}^{\prime}(\boldsymbol{\theta})}$ is invertible, and the sequence converges to a solution. Each component of F is a quadratic polynomial in λ, \mathbf{y}, quadratic term $\lambda\binom{\mathbf{y}}{\mathbf{0}}$, and

$$
D F_{\lambda, y}=\left(\begin{array}{cc}
\boldsymbol{\mu}+\mathbf{y} & \lambda-\boldsymbol{A}_{\boldsymbol{m}}(\boldsymbol{\theta}) \\
0 & 1 \cdots 1
\end{array}\right) .
$$

By (3.2), $\left\|\left(D F_{1.0}\right)^{-1}\right\| \leq D m$, some constant D, since $\left\|A_{m}(0)^{m+s}\right\|_{1}<\beta$, some $\beta<1$ on sp $\left\{(v(\mathbf{c})): \sum_{\mathbf{c}} v(\mathbf{c})=0\right\}$. So if $\left|\theta_{i}\right|,\left|\lambda_{m}^{r}-1\right|\left\|\mathbf{y}^{r}\right\|_{1} \leq D^{\prime} / m$, then $\left\|\left(D F_{\lambda_{m}^{r}, \mathbf{y}^{r}}\right)^{-1}\right\|_{1} \leq 2 D m$. If $\left\|F\left(\boldsymbol{\theta}, \lambda_{m}^{0}, \mathbf{y}^{0}\right)\right\|_{1} \leq \varepsilon_{0}$ for $\left|\theta_{i}\right| \leq b_{m}, i=1 \cdots v$, then it can be proved inductively that, for such $\theta=\left(\theta_{1} \cdots \theta_{v}\right)$,

$$
\left\|\binom{c_{m}^{r}(\boldsymbol{\theta})-1}{\mathbf{y}^{r}(\boldsymbol{\theta})}\right\|_{1} \leq \sum_{s=0}^{r-1}(2 D m)^{2 s} \varepsilon_{0}^{2 s} \quad(r \geq 1)
$$

(if this is also $\leq D^{\prime} / m$), and

$$
\left\|F\left(\boldsymbol{\theta}, \lambda_{m}^{r}(\boldsymbol{\theta}), \mathbf{y}^{r}(\boldsymbol{\theta})\right)\right\|_{1} \leq(2 D m)^{2 r-1} \varepsilon_{0}^{2 r}
$$

Thus it suffices to make $\left|\theta_{i}\right|, \sum_{s=0}^{\infty}(2 D m)^{2^{s}} \varepsilon_{0}^{2 s} \leq D^{\prime} / m$, for which it suffices to make $\max _{i}\left|\theta_{i}\right| \leq c / m^{2}$, some constant c.
$\binom{\lambda_{m}^{r}}{\mathbf{y}^{r}}$ then converges to $\binom{\lambda_{m}}{\mathbf{y}}$ satisfying

$$
\frac{\partial}{\partial \theta_{i}}\binom{\lambda_{m}}{\mathbf{y}}=\left(D F_{\lambda_{m}, \mathbf{y}}\right)^{-1}\binom{\frac{\partial}{\partial \theta_{i}}\left(A_{m}(\boldsymbol{\theta})\right)(\mathbf{y}+\boldsymbol{\mu})}{0}
$$

Inductively, $\left\|D^{k}\binom{\lambda_{m}}{\mathbf{y}}\right\|_{1} \leq E_{k} m^{n_{k}}$ for constants n_{k}, E_{k}, since $\left\|\left(D F_{\lambda, \mathbf{y}}\right)^{-1}\right\| \leq 2 D m$.
The bound on the $\left\|\|_{1}\right.$ norm of $\left(\begin{array}{cc}\mu & I-A_{m}(0) \\ 0 & 1 \cdots 1\end{array}\right)^{-1}$ gives a bound on the $\| \|_{\infty}-$ norm of $\left(\begin{array}{cc}1 & I-A_{m}(0)^{T} \\ \vdots & \\ 1 & \mu^{T} \\ 0 & \text {. Hence we can, by an exactly dual process, extend the }\end{array}\right)^{-1}$ eigenvalue 1 of $\boldsymbol{A}_{m}(\mathbf{0})^{T}$ to an eigenvalue $\lambda_{m}(\boldsymbol{\theta})$ of $\boldsymbol{A}_{m}(\boldsymbol{\theta})^{T}$, and the eigenvector $\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)$ to an eigenvector $\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)+(z(\boldsymbol{\theta})(\mathbf{c}))$ (the eigenvalue is, of course, the same) with $\sum_{\mathbf{c}} \mu(\mathbf{c}) z(\boldsymbol{\theta})(\mathbf{c})=0$. All estimates are now in terms of the $\left\|\|_{\infty}\right.$ norm. $P_{m}(\boldsymbol{\theta})$ is defined by its kernel and its image. Its image is $\operatorname{sp}(\boldsymbol{\mu}+\boldsymbol{y}(\boldsymbol{\theta}))$. Its kernel is Ann ($\mathrm{sp}((1 \cdots 1)+\mathrm{z}(\boldsymbol{\theta}))$), where Ann denotes the annihilator. Using the duality of the \| $\|_{1}$ and $\left\|\|_{\infty}\right.$ norms, we obtain the bounds on the $\| \|_{1}$ norms of $P_{m}(\theta)$ and its derivatives.

By lemma 4.1, $\overline{\lambda_{m}(\boldsymbol{\theta})}$ is also an eigenvalue of $A_{m}(\boldsymbol{\theta})$, and since $A_{m}(\boldsymbol{\theta})-\overline{\lambda_{m}(\boldsymbol{\theta})}$ has kernel of dimension one for $\left|\theta_{i}\right| \leq c / m$ (because $\left\|A_{m}(\boldsymbol{\theta})^{m+s}\right\|_{1}<\beta<1$ on $\left.\operatorname{sp}\left(v: \sum_{\mathbf{c}} v(\mathbf{c})=0\right)\right)$, the corresponding eigenvector extends $\boldsymbol{\mu}$ smoothly. By the uniqueness in the implicit function theorem, $\lambda_{m}(\boldsymbol{\theta})=\overline{\lambda_{m}(\boldsymbol{\theta})}$, and so $\lambda_{m}(\boldsymbol{\theta})$ is real. So, since clearly $\left|\lambda_{m}\right| \leq 1, \lambda_{m}$ maps into $[0,1]$.

Proof of (4.4). Let F be as in (4.2). Note that

$$
\left(D F_{1,0}\right)^{-1}=\left(\begin{array}{cc}
1 \cdots 1 & 0 \\
B & \mu
\end{array}\right)
$$

where, if

$$
M=\underbrace{(\boldsymbol{\mu} \cdots \boldsymbol{\mu})}_{p \text { times }}
$$

then $B\left(I-A_{m}(0)\right)=\left(I-A_{m}(0)\right) B=I-M=I-P_{m}(0)$, and $B \mu=0 . B$ exists since $I-A_{m}(0)$ has one-dimensional kernel by (3.2). Moreover, if $\sum_{\mathbf{c}} v(\mathbf{c})=0$, then $B v=$ $\sum_{r=0}^{\infty} A_{m}(\mathbf{0})^{r} v$, and by (3.2) this series converges, since on this subspace $\left\|A_{m}(\mathbf{0})^{m+s}\right\|_{1}<$ $\beta<1$, some β. Recall from (4.2) that

$$
\begin{equation*}
\frac{\partial}{\partial \theta_{i}}\binom{\lambda_{m}}{\mathbf{y}}=\left(D F_{\lambda, y}\right)^{-1}\binom{\frac{\partial}{\partial \theta_{i}}\left(A_{m}(\theta)(\mathbf{y}+\mu)\right)}{0} . \tag{1}
\end{equation*}
$$

Differentiating this, we see that $\partial^{2} \lambda_{m} / \partial \theta_{j} \partial \theta_{i}$ is the first row of

$$
\begin{align*}
& \left(D F_{\lambda, y}\right)^{-1}\binom{\frac{\partial^{2} A_{m}}{\partial \theta_{j} \partial \theta_{i}}(\mu+\mathbf{y})}{0}-\left(D F_{\lambda, y}\right)^{-1}\left(\begin{array}{cc}
\frac{\partial y}{\partial \theta_{j}} & \left(\frac{\partial \lambda_{m}}{\partial \theta_{j}} I-\frac{\partial A_{m}}{\partial \theta_{j}}\right) \\
0 & 0
\end{array}\right)\left(D F_{\lambda, y}\right)^{-1}\binom{\frac{\partial A_{m}}{\partial \theta_{i}}(\mu+\mathbf{y})}{0} \\
& \quad+\left(D F_{\lambda, y}\right)^{-1}\left(\begin{array}{cc}
0 & \frac{\partial A_{m}}{\partial \theta_{i}} \\
\vdots & 0
\end{array}\right)\left(D F_{\lambda, y}\right)^{-1}\binom{\frac{\partial A_{m}}{\partial \theta_{j}}(\mu+\mathbf{y})}{0}-\left(D F_{\lambda, y}\right)^{-1}\left(\begin{array}{cc}
0 & \frac{\partial A_{m}}{\partial \theta_{i}} \\
\vdots \\
0 & 0
\end{array}\right)\binom{\frac{\partial \lambda_{m}}{\partial \theta_{i}}}{0} \tag{2}
\end{align*}
$$

(1), together with the fact that $\mu[c]=\mu\left[c^{-1}\right]$, and $\theta[c]=-\theta\left[c^{-1}\right]$, gives $\partial \lambda_{m}(\mathbf{0}) / \partial \theta_{i}=0 . \sum_{\mathbf{c}} y(\mathbf{c})=0$ gives $\sum_{\mathbf{c}} \partial y(\mathbf{c}) / \partial \theta_{i}=0$. So

$$
\frac{\partial^{2} \lambda_{m}}{\partial \theta_{j} \partial \theta_{i}}(\mathbf{0})=(1 \cdots 1)\left(\frac{\partial^{2} A_{m}(\mathbf{0})}{\partial \theta_{j} \partial \theta_{i}}+\frac{\partial A_{m}(\mathbf{0})}{\partial \theta_{j}} B \frac{\partial A_{m}(\mathbf{0})}{\partial \theta_{i}}+\frac{\partial \mathbf{A}_{m}(\mathbf{0})}{\partial \theta_{i}} B \frac{\partial A_{m}(\mathbf{0})}{\partial \theta_{i}}\right) \mu .
$$

If $v=(v(\mathbf{c}))=\left(\mu(\mathbf{c}) \cdot i \boldsymbol{\theta}\left(c_{m-1}\right)\right)$, where $\mathbf{c}=\left[c_{0} \cdots c_{m-1}\right]$ and Δ is the diagonal matrix with $\Delta(\mathbf{c}, \mathbf{c})=\mu(\mathbf{c})$, then

$$
\sum_{i, j=1}^{v} \theta_{i} \theta_{j} \frac{\partial^{2} \lambda_{m}(\mathbf{0})}{\partial \theta_{i} \partial \theta_{j}}=v^{T}\left(\Delta^{-1}+2 \Delta^{-1} A_{m}(\mathbf{0}) B\right) v .
$$

Letting μ_{m} be the Markov measure of $\S 3$, and recalling the definition of $A_{m}(\theta)$, we find that

$$
\begin{align*}
\sum_{i, i=1}^{v} \theta_{i} \theta_{j} \frac{\partial^{2} \lambda_{m}(\mathbf{0})}{\partial \theta_{i} \partial \theta_{j}}= & -\sum_{c \in \mathscr{K}} \mu_{m}(c)(\boldsymbol{\theta}(c))^{2} \\
& +2 \sum_{c, d \in \mathscr{H}} \sum_{r=1}^{\infty}\left(\mu_{m}\left(\sigma^{-r}[d] \cap[c]\right)-\mu_{m}[d] \mu_{m}[c]\right) \theta(c) \theta(d) \tag{3}
\end{align*}
$$

(The last term is added on for convenience. It is zero since $\mu_{m}[c]=\mu_{m}\left[c^{-1}\right]$ and $\theta(c)=-\theta\left(c^{-1}\right)$.) We claim that

$$
\begin{equation*}
\sum_{c, d \in \mathscr{K}} \sum_{r=m(m+s)}^{\infty}\left|\mu_{m}\left(\sigma^{-r}[d] \cap[c]\right)-\mu_{m}([d]) \mu_{m}([c])\right| \leq B(m+s) \sum_{r=m}^{\infty} \beta^{r} \tag{4}
\end{equation*}
$$

for some constant B. This is because $\mu_{m}\left(\sigma^{-r}[d] \cap[c]\right)-\mu_{m}([d]) \mu_{m}([c])$ is $\boldsymbol{w}_{d}^{T} A_{m}(\mathbf{0})^{m+r}\left(v_{c}-\mu_{m}(c) \boldsymbol{\mu}\right)$, where

$$
\begin{aligned}
v_{c}(\mathbf{e}) & =\mu_{m}(\mathbf{e}) & & \text { if } \mathbf{e}=\left[e_{0} \cdots e_{m-1}\right] \quad \text { with } e_{m-1}=c, \\
& =0 & & \text { otherwise }, \\
w_{d}(\mathbf{e}) & =1 & & \text { if } e_{0}=d, \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

By (3.2), this is majorized by $B \mu_{m}(c) \beta^{(m+r) /(m+s)}$, because $\left\|v_{c}-\mu_{m}(c) \cdot \mu\right\|_{1} \leq$ $2 \mu_{m}(c)$, and the sum of the coefficients of $v_{c}-\mu_{m}(c) \cdot \mu$ is 0 .

We shall need in (4.6) (and can use now) a result from [3], 1.10-1.14, which cannot be deduced from § 3 here.

If μ is Gibbs, there exist constants $A, \beta, \beta<1$, such that if \mathbf{a}, \mathbf{b} are any two cylinder sets with a length t,

$$
\begin{equation*}
\left|\mu\left(\mathbf{a} \cap \sigma^{-r} \mathbf{b}\right)-\mu(\mathbf{a}) \mu(\mathbf{b})\right|<A \beta^{r-t} \mu(\mathbf{a}) \mu(\mathbf{b}) \tag{5}
\end{equation*}
$$

It follows from (5) that the series

$$
\sum_{r=1}^{\infty}\left|\mu\left(\sigma^{-r}[d] \cap[c]\right)-\mu([d]) \mu([c])\right|
$$

converges. By (3.4), the earlier terms in the series (3) are approximated by the corresponding ones for μ. Thus $\sum_{i, j=1}^{v} \theta_{i} \theta_{j} \partial^{2} \lambda_{m}(0) / \partial \theta_{i} \partial \theta_{j}$ tends to

$$
-\sum_{c \in \mathscr{K}} \mu(c)(\boldsymbol{\theta}(c))^{2}+2 \sum_{c, d \in \mathscr{K}} \sum_{r=1}\left(\mu\left(\sigma^{-r}[d] \cap[c]\right)-\mu([c]) \mu([d])\right) \cdot \boldsymbol{\theta}([c]) \boldsymbol{\theta}([d])
$$

as $m \rightarrow \infty$, the difference being $\leq O\left(\eta^{m}\right)$, some $\eta<1$.
Proof of (4.6). Instead of proving $\lambda_{m}(\boldsymbol{\theta})$ is boundedly negative definite of rank v, we shall prove it for $\left(\lambda_{m}(\theta)\right)^{p}$, for some suitable p independent of m. This is the same, because $D \lambda_{m}(\mathbf{0})=0$ implies $D^{2} \lambda_{m}^{p}(0)=p \cdot D^{2} \lambda_{m}(0)$. We can also obtain an expression for $D^{2}\left(\lambda_{m}^{p}\right)$ by differentiating

$$
\binom{\left(\lambda_{m}^{p}-A_{m}(\boldsymbol{\theta})^{p}\right)(\boldsymbol{\mu}+\mathbf{y})}{\sum_{\mathbf{c}} y(\mathbf{c})}=\mathbf{0}
$$

as we did for $p=1$ in (4.4). Then we obtain

$$
\begin{equation*}
\sum_{i, j=1}^{v} \theta_{i} \theta_{j} \frac{\partial^{2}\left(\lambda_{m}^{p}\right)(\mathbf{0})}{\partial \theta_{i} \partial \theta_{j}}=v_{p}^{T}\left(\Delta^{-1}+2 \Delta^{-1} A_{m}(0)^{p} B_{p}\right) v_{p} \tag{1}
\end{equation*}
$$

where $\quad v_{p}=\left(v_{p}(\mathbf{c})\right), \quad v_{p}(\mathbf{c})=\mu(\mathbf{c}) \cdot i \theta\left[c_{m-p} \cdots c_{m-1}\right] \quad$ if $\quad \mathbf{c}=\left[c_{0} \cdots c_{m-1}\right], \quad$ and $B_{p}\left(I-A_{m}(\mathbf{0})^{p}\right)=\left(1-A_{m}(\mathbf{0})^{p}\right) B_{p}=I-M$, for M as in theorem 4.4, so that

$$
B_{p} v_{p}=\sum_{r=0}^{\infty} A_{m}(\mathbf{0})^{r p} v_{p} .
$$

Let

$$
\begin{equation*}
B_{p} v_{p}=i \Delta w_{p} \tag{2}
\end{equation*}
$$

So $v_{p}=i\left(I-A_{m}(0)^{p}\right) \Delta w_{p}$, and w_{p} is real. Then

$$
v_{p}^{T}\left(\Delta^{-1}+2 \Delta^{-1} A_{m}(0)^{p} B_{p}\right) v_{p}=-w_{p}^{T}\left(\Delta-\Delta\left(A_{m}(0)^{p}\right)^{T} \Delta^{-1} A_{m}(0)^{p} \Delta\right) w_{p}
$$

Write $\Delta\left(A_{m}(\mathbf{0})^{p}\right)^{T} \Delta^{-1} A_{m}(\mathbf{0})^{p} \Delta=\left(E_{p}(\mathbf{c}, \mathbf{d})\right)$. Then

$$
\begin{equation*}
E_{\mathbf{p}}(\mathbf{c}, \mathbf{d})=\sum_{\mathbf{e} m \text {-cylinder }} \frac{\mu_{m}\left(\sigma^{-p} \mathbf{c} \cap \mathbf{e}\right) \mu_{m}\left(\sigma^{-p} \mathbf{d} \cap \mathbf{e}\right)}{\mu_{m}(\mathbf{e})} \tag{3}
\end{equation*}
$$

Note that

$$
\sum_{\mathbf{c}} E_{p}(\mathbf{c}, \mathbf{d})=\sum_{\mathbf{c}} E_{p}(\mathbf{d}, \mathbf{c})=\mu_{m}(\mathbf{d}) .
$$

Note that, for any matrix $\left(a_{i j}\right)$, if $\sum_{i} a_{i j}=\sum_{i} a_{i i}=a_{i}$, then

$$
\begin{aligned}
\sum_{i} a_{i} x_{i}^{2}-\sum_{i, j} a_{i j} x_{i} x_{j} & =\frac{1}{2}\left(\sum_{i, j} a_{i j} x_{i}^{2}+\sum_{i, i} a_{i j} x_{j}^{2}-2 \sum_{i, j} a_{i j} x_{i} x_{j}\right) \\
& =\frac{1}{2} \sum_{i, j} a_{i j}\left(x_{i}-x_{j}\right)^{2} .
\end{aligned}
$$

Thus, (1) becomes

$$
\begin{equation*}
\sum_{i, i=1}^{v} \theta_{i} \theta_{j} \frac{\partial^{2} \lambda_{m}^{p}(\mathbf{0})}{\partial \theta_{i} \partial \theta_{i}}=-\frac{1}{2} \sum_{\mathbf{c}, \mathbf{d}} E_{p}(\mathbf{c}, \mathbf{d})\left(w_{p}(\mathbf{c})-w_{p}(\mathbf{d})\right)^{2} \tag{4}
\end{equation*}
$$

From (2),

$$
w_{p}(\mathbf{c})=\left(1 / \mu_{m}(\mathbf{c})\right) \sum_{r=0} \sum_{\mathbf{d} m-\mathrm{cylinder}} \mu_{m}\left(\boldsymbol{\sigma}^{-p r} \mathbf{c} \cap \mathbf{d}\right) \boldsymbol{\theta}\left[d_{m-p} \cdots d_{m-1}\right]
$$

(for $\mathbf{d}=\left[d_{0} \cdots d_{m-1}\right]$),

$$
\begin{aligned}
\boldsymbol{w}_{p}(\mathbf{c}) & =\left(1 / \mu_{m}(\mathbf{c})\right) \sum_{r=1} \sum_{d \in \mathscr{H}} \mu_{m}\left(\sigma^{m-r} \mathbf{c} \cap \mathbf{d}\right) \boldsymbol{\theta}(\mathbf{d}), \\
& =\boldsymbol{\theta}[\mathbf{c}]+\left(1 / \mu_{m}(\mathbf{c})\right) \sum_{r=1} \sum_{d \in \mathscr{H}} \mu_{m}\left(\sigma^{-r} \mathbf{c} \cap \mathbf{d}\right) \boldsymbol{\theta}(\mathbf{d}), \\
& =\boldsymbol{\theta}[\mathbf{c}]+\left(1 / 2 \mu_{m}(\mathbf{c})\right) \sum_{r=1} \sum_{d \in \mathscr{K}} \boldsymbol{\theta}(\mathbf{d})\left(\mu_{m}\left(\sigma^{-r} \mathbf{c} \cap \mathbf{d}\right)-\mu_{m}\left(\sigma^{-r} \mathbf{c} \cap \mathbf{d}^{-1}\right)\right) .
\end{aligned}
$$

Hence we claim

$$
\begin{equation*}
\left|w_{p}(\mathbf{c})-\boldsymbol{\theta}[\mathbf{c}]\right| \leq K_{1}\left(\theta_{1}^{2}+\cdots+\theta_{v}^{2}\right)^{\frac{1}{2}} . \tag{5}
\end{equation*}
$$

For by (4) of (4.4), the tail of the series ($r \geq m(m+s)$) tends to 0 . By (3.4), the terms $r \leq m(m+s)$ can be replaced by the corresponding ones for μ. By (5) of (4.4), we can bound $\left|\mu\left(\sigma^{-r} \mathbf{c} \cap d\right)-\mu\left(\sigma^{-r} \mathbf{c} \cap d^{-1}\right)\right|$ by $2 A \beta^{r-1} \mu(\mathbf{c}) \mu(d)$, and the claim is proved.

Now $E_{p}(\mathbf{c}, \mathbf{d}) \neq 0$ only if $\left[c_{0} \cdots c_{m-p-1}\right]=\left[d_{0} \cdots d_{m-p-1}\right]$, for $\mathbf{c}=\left[c_{0} \cdots c_{m-1}\right]$ and $\mathbf{d}=\left[d_{0} \cdots d_{m-1}\right]$, in which case, by (3) and (1.7.2), $\quad E_{p}(\mathbf{c}, \mathbf{d}) \geq$ $\alpha_{p} \cdot \max \left(\mu_{m}[\mathbf{c}], \mu_{m}[\mathbf{d}]\right)$, for α_{p} independent of m (but not p). By topological transitivity of $\left(Y_{\operatorname{Ker} \boldsymbol{\theta}}, \sigma\right)$, we can find p, and two p-cylinders \mathbf{c}^{\prime}, \mathbf{d}^{\prime} with $c_{0}^{\prime}=d_{0}^{\prime}$ $\left(\mathbf{c}^{\prime}=\left[c_{0}^{\prime} \cdots c_{p-1}^{\prime}\right]\right.$ and $\left.\mathbf{d}^{\prime}=\left[d_{0}^{\prime} \cdots d_{p-1}^{\prime}\right]\right)$ and

$$
\begin{equation*}
\left|\boldsymbol{\theta}\left(\mathbf{c}^{\prime}\right)-\boldsymbol{\theta}\left(\mathbf{d}^{\prime}\right)\right| \geq 3 K_{1}\left(\theta_{1}^{2}+\cdots+\theta_{v}^{2}\right) \tag{6}
\end{equation*}
$$

Then, if $\mathbf{c}=\left[c_{0} \cdots c_{m-p-1}, c_{0}^{\prime} \cdots c_{p-1}^{\prime}\right], \mathbf{d}=\left[c_{0} \cdots c_{m-p-1}, d_{0}^{\prime} \cdots d_{p-1}\right]$, from (5), (6) we have

$$
\begin{equation*}
|w(\mathbf{c})-w(\mathbf{d})| \geq K_{1}\left(\theta_{1}^{2}+\cdots \theta_{v}^{2}\right)^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

The sum of the $E(\mathbf{c}, \mathbf{d})$ for such \mathbf{c}, \mathbf{d} is minorized by $\alpha_{p} \mu\left[c_{0}^{\prime} \cdots c_{p-1}^{\prime}\right]$, which is independent of m. So

$$
\sum_{i, i} \frac{\partial^{2} \lambda_{m}^{p}(\mathbf{0})}{\partial \theta_{i} \partial \theta_{j}} \theta_{i} \theta_{j} \leq-K_{1}^{2} \alpha_{p} \mu\left[c_{0}^{\prime} \cdots c_{p-1}^{\prime}\right]\left(\theta_{1}^{2}+\cdots+\theta_{v}^{2}\right)
$$

and hence the expression $\sum_{i, j} \frac{\partial^{2} \lambda_{m}(\mathbf{0})}{\partial \theta_{i} \partial \theta_{j}} \theta_{i} \theta_{j}$ is boundedly negative definite as required.

5. Finitely determined subabelian groups

The results in this section will be rather sketchy. As in $\S \S 2-4$, we consider a topologically mixing subshift of finite type (Y, σ) on symbols $\mathscr{K}=$ $\left\{a_{1} \cdots a_{r}, a_{1}^{-1} \cdots a_{r}^{-1}\right\}$ with a τ-invariant Gibbs measure μ on Y. For $G \leq F$, the free group on $a_{1} \cdots a_{r}, \sim_{G}$ is defined as in (1.5). We find a condition for $\left(Y, \sim_{G}, \mu\right)$ to be ergodic, for G 'finitely determined subabelian'. No attempt will be made to translate the definition of finitely determined to a subgroup of isometries of Γ, because I am not sure of the best way to do this in general. However, for a Schottky group Γ, when we can take $F=\Gamma$, the symbolic dynamics need no interpretation.
(5.1) Definition. $F_{r} \leq F$ is subabelian finitely determined of degree r with chain $F_{1}, F_{2} \cdots F_{r}$ if:
(1) $F=F_{0} \triangleright F_{1} \triangleright F_{2} \cdots \triangleright F_{r}$ with $F_{i} / F_{i-1} \cong \mathbb{Z}^{v_{i}}, v_{i}=v_{i}(F)$.
(2) There exists a set of free generators and their inverses, W, of F_{1}, with a finite $W_{0}^{-1}=W_{0} \subseteq W, W_{1}=W-W_{0}$, such that $F_{i} \geq \operatorname{Ker} \pi, i \geq 2$, where $\pi: F_{1}=F_{W} \rightarrow F_{W_{0}}$ is the homomorphism obtained by deleting all symbols of W_{1} in a word in F_{W}, and such that $F_{r} / \operatorname{Ker} \pi$ is subabelian finitely determined in $F_{1} / \operatorname{Ker} \pi\left(\cong F_{W_{0}}\right.$) of degree $r-1$ with chain

$$
F_{2} / \operatorname{Ker} \pi, \ldots, F_{r} / \operatorname{Ker} \pi .
$$

Thus this definition is inductive on r. We start by defining F_{1} subabelian finitely determined of degree 1 if $F / F_{1} \cong \mathbb{Z}^{v_{1}}$, some v_{1}. Note this condition eliminates the possibility $F \triangleright F_{r}$ and $F / F_{r} \cong \mathbb{Z}^{v_{1}+\cdots+v_{r}}(r>1)$. It is easy to construct examples of subabelian finitely determined subgroups.
(5.2) Theorem. If F_{r} is subabelian finitely determined of degree r in F with chain $F_{1} \cdots F_{r}$, and $v_{i}=v_{i}(F)$, and $\left(Y_{F_{r}}, \sigma\right)$ (as in (1.5)) is topologically transitive, then $\left(Y, \sim_{F_{r}}, \mu\right)$ is ergodic if and only if $v_{i}(F) \leq 2, i=1 \cdots r$.
Proof. §§ 2-4 show the theorem is true for $r=1$. The proof is by induction. Suppose it is true for all subshifts and subgroups with $r-1$. Suppose $v_{1} \leq 2$, so that $\left(Y, \sim_{F_{1}}, \mu\right)$ is ergodic. Let W, W_{0}, W_{1} be as in (5.1). We shall construct a new shift $\left(Y_{1}, \mu\right)$ on symbols $\mathscr{K}_{1}=\left\{b_{1} \cdots b_{s}, b_{1}^{-1} \cdots b_{s}^{-1}\right\}$ together with a map $q: \mathscr{K}_{1} \rightarrow W_{0} \cup\{1\}$ with $q\left(c^{-1}\right)=q(c)^{-1}$, hence inducing an isomorphism $q: F_{\mathscr{K}_{1}} \rightarrow F_{1} / \operatorname{Ker} \pi$ (with the notation of (5.1)), and a τ-invariant Gibbs measure μ_{1} on Y_{1} such that ($Y_{1}, \sim_{G_{i}}, \mu_{1}$) is ergodic if and only if $\left(Y, \sim_{F_{i}}, \mu\right)$ is, $i \geq 2$, where $G_{i}=q^{-1}\left(F_{i} / \operatorname{Ker} \pi\right)$. This is the inductive step.

Let W_{1}^{\prime} be the group generated by W_{1}. Define $w: Y \rightarrow\left(W_{0} \cup W_{1}^{\prime}\right)^{\mathbb{Z}}$ (actually only defined almost everywhere with respect to μ) as follows. For almost every $\mathbf{x} \in Y$,
$\mathbf{x}=\left\{x_{i}\right\}$, there is a unique way of inserting words of the form $c_{1} \cdots c_{n} c_{n}^{-1} \cdots c_{1}^{-1}$ between x_{i} and x_{i+1} for $i \neq-1$, so that $c_{i} \in \mathscr{K}, c_{1} \cdots c_{n}$ is a proper endpart of a word in W_{0}, and the augmented sequence from x can be decomposed into words y_{i}, with $y_{i} \in W_{0} \cup W_{1}^{\prime}$ for all i, not both y_{i}, y_{i+1} in W_{1}^{\prime} for any i, and x_{0} part of the word $y_{0}=z_{-t} \cdots z_{-1} x_{0} \cdots z_{u}$, say, so that both $z_{-t} \cdots z_{-1}$ and $x_{0} \cdots z_{u}$ decompose into words of W. (Here, some of the z_{i} are the added symbols.) We are using here the fact that $\left(Y, \sim_{F_{1}}, \mu\right)$ is ergodic.

Define $w_{i}(\mathbf{x})=y_{i}$. Let G denote the set of endparts of words in W_{0}. Define $p: Y \rightarrow\left(\left(W_{0} \cup\{1\}\right) \times \mathscr{K}^{2} \times G^{2}\right)^{\mathbf{Z}}$ by

$$
p(\mathbf{x})=\left\{p_{i}(\mathbf{x})\right\}=\left\{\left(p_{i 0}(\mathbf{x}), c_{i}(\mathbf{x}), d_{i}(\mathbf{x}), w_{i 1}(\mathbf{x}), w_{i 3}(\mathbf{x})\right)\right\}
$$

where $p_{i 0}(\mathbf{x})=w_{i}(\mathbf{x})$ if $w_{i}(\mathbf{x}) \in W_{0},=1$ if $w_{i}(\mathbf{x}) \in W_{1}^{\prime} . w_{i 1}(\mathbf{x}), w_{i 3}(\mathbf{x})$ are defined by writing $w_{i}(\mathbf{x})=w_{i 1}(\mathbf{x}) w_{i 2}(\mathbf{x}) w_{i 3}(\mathbf{x})$, where $w_{i 2}(\mathbf{x})$ is the piece of word from the original sequence \mathbf{x}, and $w_{i 1}(\mathbf{x}), w_{i 3}(\mathbf{x})$ are the inserted pieces. $c_{i}(\mathbf{x}), d_{i}(\mathbf{x})$ are the first and last elements respectively of the word $w_{i 2}(\mathbf{x})$.

Let \mathscr{K}_{1} be the set of symbols from the sequences of $p(Y)$, and $q: \mathscr{K}_{1} \rightarrow W_{0} \cup\{1\}$ projection onto the first coordinate. $p(Y)$ itself is not shift-invariant, but if Y_{1} is the shift-invariant set generated by $p(Y),\left(Y_{1}, \sigma\right)$ is a subshift of finite type on \mathscr{K}_{1}, which is finite. $\tau: \mathscr{K}_{1} \rightarrow \mathscr{K}_{1}$ is defined by $\tau(w, c, d, r, s)=\left(w^{-1}, d^{-1}, c^{-1}, s^{-1}, r^{-1}\right)$. There is a unique σ - and τ-invariant measure μ_{1} on Y_{1} with $\mu_{1}(A)=\mu\left(p^{-1} A\right)$ whenever $A \subseteq p Y$. It can be checked that μ_{1} is Gibbs.
$G_{r}=q^{-1}\left(F_{r} / \operatorname{Ker} \pi\right)$ is now subabelian finitely determined of degree $r-1$ in F_{1}, with chain $G_{2} \cdots G_{r}$. We claim that ($Y_{1}, \sim_{G_{i}}, \mu_{1}$) is ergodic if and only if $\left(Y, \sim_{F_{i}}, \mu\right.$) is ergodic. Suppose ($Y_{1}, \sim_{G_{i}}, \mu_{1}$) is ergodic. Since words in W_{0} have length at most n, say, this means that for almost all $\mathrm{x}=\left\{x_{i}\right\}$, the product $x_{0} \cdots x_{p}$ is in $F_{i} z_{p}$, for some word z_{p} in the symbols of \mathscr{K} of length at most n, for infinitely many p. It follows from the properties of Gibbs measures that the product $x_{0} \cdots x_{p} \in F_{i}$ infinitely often. Hence ($Y, \sim_{F_{i}}, \mu$) is ergodic by lemma 2.2. The converse is immediate, once the notation is understood.

I am greatly indebted to Jon Aaronson (see [1]) who first showed me how to prove the main theorem - in § 4 - for Markov measures with Schottky groups. I should like to thank him, and T. Lyons, H. McKean and D. Sullivan, for fruitful discussion concerning these related problems.

I should also like to thank St Hilda's College, Oxford for a Junior Research Fellowship during the time of this work.

REFERENCES

[1] J. Aaronson \& M. Keane. Deterministic random walks and returns to zero. J. London Math. Soc. (in the press).
[2] R. Bowen. Symbolic dynamics for hyperbolic flows. Amer. J. Math. 95 (1973), 429-460.
[3] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer Lecture Notes in Math. no. 470. Springer: Berlin, 1975.
[4] R. Bowen. Hausdorff dimension of quasi-circles. I.H.E.S. Publ. Math. 50 (1979), 11-25.
[5] W. H. Gottschalk \& G. A. Hedland. Topological Dynamics. Amer. Math. Soc. Coll. Publ. no. 36 (1955).
[6] T. Lyons \& H. McKean. Winding of the plane Brownian motion. Advances in Math. (in the press).
[7] M. Morse. Symbolic Dynamics (notes by R. Oldenburger). I.A.S.: Princeton, 1966.
[8] S. J. Patterson. The limit set of a Fuchsian group. Acta. Math. 136 (1976), 241-273.
[9] C. Series. Symbolic dynamics for geodesic flows. Acta. Math. (in the press).
[10] D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. I.H.E.S. Publ. Math. 50 (1979), 171-202.

[^0]: † Address for correspondence: Dr Mary Rees, Institute des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France.

