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THE CORE OF A REINSURANCE MARKET*
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Universite Libre de Bruxelles

In a series of celebrated papers, K. Borch characterized the set of the Pareto-
optimal risk exchange treaties in a reinsurance market. However, the Pareto-
optimality and the individual rationality conditions, considered by Borch, do not
preclude the possibility that a coalition of companies might be better off by
seceding from the whole group. In this paper, we introduce this collective ra-
tionality condition and characterize the core of this game without transferable
utilities in the important special case of exponential utilities. The mathematical
conditions we obtain can be interpreted in terms of insurance premiums, calculated

"by means of the zero-utility premium calculation principle. We then show that the
core is always non-void and conclude by an example.

1. UTILITY FUNCTIONS IN INSURANCE

Utility functions were introduced into the actuarial world by BORCH (1961).
This notion was since then used mainly in two specific insurance models:

1. The principle of zero-utility

Introduced by BUHLMANN (1970), this premium calculation principle requires
equality of the company's utility before and after signature of an insurance
policy. Denoting by Rj the free reserves, Pj the premium (to be calculated),
Fj(xj) the distribution function of the total claim amount \$, and UJ(XJ) the
utility of the amount Xj obtained with certainty, for a given company Cj, the
principle demands that

Many authors, among which GERBER (1974a, 1974b) and LEEPIN (1975)
have shown that the exponential utility functions

1
U}{XJ) = - ( 1 - e-ctxi), ( c j > o)

Cj

characterized by a constant risk aversion

-u'j'(x)
rj{x) - " ^ T = Ch

* This paper was greatly improved after successive presentations at the Eidgenossische
Technische Hochschule in Zurich, the University of California at Berkeley and the
Oberwolfach Meeting on Risk Theory.
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58 BATON AND LEMAIRE

possess very desirable properties. In that case the premium can be explicitly
computed; one obtains

P, = ± Log Mi (c}),

where MJ{CJ) is the moment-generating function of Sj calculated at point q.
Pj will be referred to in the sequel as the exponential utility premium.

2. A Model of risk exchange

Introduced by BORCH (1960a, 1960b, 1962), this model considers a pool of
n insurance companies (Ci, . . ., Cn), willing to improve their secureness by
means of an exchange of risks treaty. Let [Rj, FJ(XJ)] be the initial situation
of Cj, evaluated by its expected utility

Uj(Xj) = U)[R,, F,{X})] = / UJ (Rj - XJ) d Fj(xj).

The members of the pool will try to increase their utilities by concluding a
treat}?

y = [yi(*i, Xn), . . . . yn{xi xn)],

where j'j{xi, . . ., xn) = yj(x) is the sum Q has to pay if the claims for the
different companies respectively amount to *i, . . ., xn.

Since all the claims must be indemnified, the treaty has to satisfy the
admissibility condition

Condition 1: Admissibility

(1) S y}(x) = S x, = z,
i-i 1-1

the total amount of the claims. After the signature of y, the utility of Q
becomes

Uj(y) = J UJ [Rj - yj(x)]dFN{x),

where ON is the positive orthant of En and FN(X) the n-dimcnsional distribution
function of the claims x = (xi, .. ., xn).

Condition 2: Pareto-optimality

A treaty y is efficient or Pareto-optimal if there is no jp' such that Uj(y') >
Uj(y) for all j , with at least one strict inequality. Du MOUCHEL (1968) has
characterized the Pareto-optimal treaties by means of the following theorem.
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Theorem l

Providing all utility functions are such that u'}(x) > o and u'}'(x) < o, a treaty
•y is Pareto-optimal if and only if there exists n non-negative constants ki = l,
Ii2, . . ., kn, such that, with probability l,

(2) k} u'j [Rj - yj(X)] = K u[ [ A \ - yx(x]\ j = 1 , . . . , « .

Let K = {ki, . . ., kn). Using very mild technical conditions, it is not difficult
to show [Du MOUCHEL (1968), LEMAIRE (1973)] that one and only one Pareto-
optimal treaty always exists for given K. However, there usually exists an
infinity of K that satisfy (1) and (2), even when one takes into consideration
the fact that no company will enter the pool if its utility is decreased:

Condition 3: Individual rationality

For al l ; = 1, . . ., n Uj{y) ^ Uj(xj).

The non-uniqueness of the solution is easily explained by the fact that no
sharing rule appears in the definition of Pareto-optimality. Cooperation
increases global welfare, and nothing is said about the way the companies will
divide the benefits of their mutual agreement. The different admissible values
of K correspond to all the possible wa3's of sharing the profits; each company
has interest to obtain a kj as high as possible, in order to pay as less as possible.
The interests of the members of the pool are thus partially complementary
(as a whole, the group will prefer a Pareto-optimal treaty), and partially con-
flicting (each company will have to bargain over its constant kj). This is
characteristic of a game-theoretic situation; indeed, it has been shown by
LEMAIRE (1973) that the risk exchange market is in fact a game without
transferable utilities.

In the case of exponential utilities, the solution of (2), with the constraint
(1), is a familiar quota-share treaty

_ _ l / c '

y}{X) = q}z + y}{o), with

W(° = Rj ~ qi > [Ri + - Log —

Each company will pay a share qj of each claim, inversely proportional to its
risk aversion. In order to compensate for the fact that the least risk-averse
companies will pay greater amounts, side-payments or monetary compensa-
tions yj(o) between the players occur. A consequence of the admissibility
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n

condition is that S jj(o) = o. Note that the quotas are determined by the
1-1

risk aversion parameters only, so that the bargaining process will only involve
the monetary compensations: another feature of exponential utilities is that
the players will negotiate on amounts of money, not on abstract constants kj.

2. CHARACTERIZATION OF THE CORE OF THE MARKET

Parcto-optimalitj' has often been called group rationality: considered as
a group, the members of the pool can do no better than to agree on a Pareto-
optimal treaty. However, this condition does not preclude the fact that some
of the players might be better off by seceding and forming a sub-coalition.
We arc going to reduce the set of the Pareto-optimal treaties by computing
the core of the game, i.e. by requiring that no sub-coalition has an incentive
to quit the pool.

From now on we shall consider only Pareto-optimal treaties. Let N be the
set of all the companies, 5 c N any sub-coalition, v(S) the set of the Pareto-
optimal treaties for S, i.e. the set of all the agreements that S, playing separately
from N\S, can achieve, y' is said to dominate y with respect to coalition 5 if

(i) Uj(y') > U}(y) for all j e S (with at least one strict inequality)

(ii) 5 can enforce y" : y' e v(S).

V' is said to dominate p if there is a coalition S such that v' dominates y
with respect to 5. The core is the set of all the non-dominated treaties. In
other words, instead of requiring, in addition of (l) and (2), the condition
of individual rationality, we shall introduce the much stronger

Condition 4: Collective rationality

No coalition has interest in quitting the pool.

Obviously, this condition implies both conditions 2 and 3 (which are col-
lective rationality applied, respectively, to all the one-player coalitions, and
to the grand coalition N).

Assume that coalition S cN has decided to form. Let Pf be the exponential
utility premium C; would require to take over a share

kes

1

ot the portfolio of all the companies C^ e 5, with a/ = — .
Cj

In particular, P^ (or more simply Pj) is the premium c} would demand
without any reinsurance.

Let us suppose finally that all the claim amounts 5; are independent.
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Lemma l.

Pf'

-z
Cj -*——>'

Log

Log
/ !

Proof: we know that

Log

where M*^\x) is the moment-generating function of the distribution of the
quota qjts of £*:• The fact that

completes the proof.

Lemma 2.
Let {Si, . . ., Sr) be a partition of S c N. Then

£ (Pf - Pf) + i 2_ (if • - Pf) > o.
les

Proof: L (Pf - Pf) + S 2_ {Pf' - Pf)

- 1 [«' Z Lo^Mi ( Y 1 ^ . ) - « / 2 L°e
+ 2 2 h 2 L o g M ^

- 2 (2afc) L°gM*

- 2 [ 2 «*•+ 2 2

2 (2a*-) L°gMi
 (T 1 ^ . ) + 2 2 ( 2
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r 2 ( 2 a*) Log Mi (lT~^) (since 5i - U 5j U S(s

in the sequel we shall note So = S\

22
l - l . - o ( 6 5 ,

' - I

°g M< (-) - r 2 * L°g M« (

(where a = 2-, a*- rt^ = 2L a*- & = ^ a t)
kes i 6 ; ( isw

r r

= 2 [« Log Mt (!) - b Log M( f!) + 2 2 2 «i Log M« (-)

< < 1

- (r- i) 2 * Log Mi (!) - r 2 b Log Mi (!)

f r= 2 V L°gM< (-) - b L°g M* (T)1 + 2 2 2 U Log M( (-
IES L \ a l \v11 i - i «-o <es, L \ f l

i

- b Log Mi (!]].

GEKBER (1974a) has shown that - Log M{c) is an increasing function of c.
c

It can be deduced that c Log Ml - J is a decreasing function of c. Since a ^ b

and ai ̂  b, all the terms between square brackets are non-negative and the
lemma is proved.

Corollary 1:

For all S c N

Pf + S_ Pf

Proof:

Apply lemma 2 to the coalition S = N and the partition {S, S}. This intuitively,
obvious corollary enhances the merits of cooperation. It can be extended to
all partitions of N.
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Lemma 3:

Let {Si, . . ., Sr) be a partition of N. Then

which amounts to

S 2 Pf* > S
1 - 1 )es, (EK

S 2 (Pf« - If) > 0.
I - 1 (65,

Proo/:

In all respects similar to lemma 2.

Lemma 4:

If /li, . . ., Ar, Bx, . . ., Br are real numbers such that

Ai + . . . + Ar < Bx + . . . + Br,

there exists real n u m b e r s ai , . . ., a r such t h a t ai + . . . + a r = 0 and

Ai + 01.1 < Bi

Ar + ar < Br.

Proof:

The property is true for r = 2. In fact, since Ai + Az < B\ + Bi, we have
Ai + As, — Bi < B2, and there exists an e > 0 such that

Ai + A2 - JBI + z < Bz.

Let ai = Bi — A\ — e. Then

Ax + ai = 4 i +" Bi - 4 i - e = Bi - e < Bi

Ai + a2 = /I2 — ai = A2 — Bx + Ax + e < B2.

Suppose the lemma verified for a given r, and let us demonstrate the property
for r + 1. We have

Ai + . . . + Ar+x < Bx + . . . + Br+x,

or 4 i + . . . + Ar-i + {Ar + Ar+x) < Bx + . . . + B r _ i + (B r + B r + i ) .

There exists, b y induct ion , (3i, . . ., p r such t h a t |3i 4- . . . + p r = 0 and

r_i + Pr-i < Br_i

r + Ar+x) + $r<Br + Br+i.
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The last inequality can be written

{Ar + Pr) + Ar+l < Br + Br+1.

There exists a y such that

Ar + pr + y < Br

Ar+l - Y < Br+l.

It is then sufficient to put

oci = Pi, . . . , ocr_i = p r_i , <xr = P + y, a r+i = - y.

Theorem 2:

y = (yi, • . . , yn) belongs to the core of the pool if and only if

S y,(o) = o

yj{xi, . . . , xn) = 1] z + yj[o), w i th I '~1

[ ^ y,(o) ^ 2 (Pf -

y S c J V

(S # ^).

Proo/:

(a) Necessity

Suppose J' belongs to the core. It is then Pareto-optimal, and
n

yj(xi, ..., xn) = qj.z 4- yy(o), with S y (̂o) = o.

If the last condition is not verified, there exists a non-void S c N such that

S y,(o)> £ (Pf-P?).

Using lemma i,

Cj

Lemma 4 makes sure that there exists (zj(o)jes such that

2 Z)(o) = 0

( s «J - Z, Log Mi H )I(3) - 1 2 , LogM( ( 2 « J - Z Log Mi I » ) I + zy(o) < ^(o) .
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Consider the sub-treaty z = (ZJ)JES, defined by

For all j e S, we have

1 f f -e,\Rf- v ' - s ij-2,(0)1-]

I/y(z) = i J 1 - e
 L ^ H™ J

1
= - 11 -

Mk

where 0^ is the positive orthant of E\s\, and Fs(%) t n c |S|- dimensional distribu-
tion function of [[xk)keS].

In the same way, we obtain

U,(P) = }

Then Uj{z) > Uf{y) if and only if

taking logarithms

7. [2 Log M

which is precisely relation (3). So Uj(z) > Uj(y), for all j e S, in contradic-
tion with the fact that y belongs to the core.

(b) Sufficienc}'.

Consider y such that yj{xi, . . ., xn) = qj z + yj{o), with

S yj{o) = 0
/ - 1

£ y/o) ^ L {Pf - Pf), for all S c N (S # ^)
i€S
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If v docs not belong to the core, there exists a coalition S c N and a treaty
[(zj)}es] such that

YJeS,

with a least one strict inequality. Since we can assume z to be Parcto-optimal,

with 2 Zj(o) = o.

Since Ut(z) = - i - e-
c*R> ec'z'(0) i l Mk (TT-1 )

and t/j(r) = ^ I i - c-e,«, ̂ ^c) jTT Mk \—^—Jj v j e S.

We have, taking logarithms,

2 ( ^ ) ( \ /

Summing over all j e S, and using 2 Zj{o) = o, we obtain

V V [' V / 1 \ J V / l W
Z W(°) > Z , 7 Zv Log Mk I— - I - - Z , Log Mfc I - Itea

or
£ y,(o) > S [Pf -

contradicting the hypothesis.

Corollary.

f = (vi, . . ., yn) belongs to the core of the pool if and only if

Vi(xi xn) = qj z + y}{o), ; = l, . . ., «

with S y}{o) < S (Pf - Pf) v S c J V

if we define PJ = o.
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Proof:

Applying condition £ Jjip) < 2 (Pf — Pf) for S = N, we obtain

2 y,(o) = S y,(o) *S S (Pf - Pf) = 0.
leN 1-1 iEN

Since £ (P° — P^) = 0 and S y (̂o) + £ 3 (̂0) = o, we have

successively
n

£ y,(o) = o
( - 1

S yy(o) > 0

S y,(o) < 0 = S (P» - Pf)

In other words, condition 2 y (̂o) = 0 may be replaced by

S y,(o) < S (Pf - Pf)

S y,(o) < L (P? -

So, not only conditions 2 and 3, but also condition 1 derives from collective
rationality.

Interpretation:

In addition to the fact that it characterizes the core, theorem 2 may be in-
teresting in the sense that it links two apparently very different concepts,
a collective notion (the core of a game without transferable utilities), and an
individual notion (a premium calculation principle).

Applied to a one-player coalition, the core condition becomes

y , (o)<Pj- Pf ; = 1, . . . , n .

The second member is the difference between the exponential utility pre-
miums before and after reinsurance. Everything happens as if each company
evaluates its portfolio' by the exponential utility premium: the certainty
equivalent of any portfolio is this premium. A positive second member means
that Cj finds profitable to participate to the pool. It will however only enter
the market if its "fee" or side-payment does not exceed the profit.

Applied to the two-player coalition {1, 2}, the core condition becomes

yi(o) + y,(o) < [Pi1-2* P>
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P\ • ' is the premium Cx would ask to assume a share of its own and

C2S, portfolios. The term between the first square brackets represents the
positive or negative profit C\ would make by not seceding from the pool with
C2. The condition requires that, globally, coalition {1, 2} has no interest to
play alone, in the sense that the sum of the side payments required from its
members is small enough not to incite them to quit the pool. The difference

is the benefit coalition {1, 2} enjoys from participating to the pool. If this
term were negative, (1,2] would have interest to separate and create a 2-
company pool. Note that nothing is said about the way those 2 companies will
share this benefit: the core only introduces global conditions.

Note:

The conditions of theorem 2 not only provide upper limits for the side-pay-
ments, but also lower limits. Indeed, since

2 y}{o) = - 2_ y}(o) V S,

we have

(3) - S_ (Pf - Pf) < S y,(o) ^ 2 (Pf - Pf)
ies ;6-s yes

3. EXISTENCE OF THE COKE

The main disadvantage of the core is that there exists large classes of games
for which it is empty. Fortunately, theorem 3 shows that the core of the risk
exchange market always exists.

Theorem 3:

The core of the market is non-void.

Proof:

The core can be characterized by conditions (3), or, in an equivalent way, by

( 2_ (Pf - Pf) ^ 2 yf(o) < 2 (Pf - Pf) for all 5 c iV

(4) such that Cn $ S

( yi(o) + . . . + yn(o) = 0

Note t h a t condi t ions (4) only restr ict the values of }'i(o), . . . , yn-i(o).

This is obvious because, if Cn e So,

2 yj(o) = - E yj(o) and Cn $ So,
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SO - 2 [Pf° - Pf) < 2_ )/,(o) < 2_ (Pf«

and - 2_ {Pf° - Pf) ^ 2 y,(o) < 2 (Pf«

It only remains to prove that there exists (n— i) constants yi(o), . . . ,
yn_i(o) verifying conditions (4) (then we shall obtain yn{o) using yB(o) =

— 2 yy(o)). This system has a solution if, for all S c N such that Cn $ S

and for all partitions (Si, . . ., Sr) of 5,

- S_ (Pf - Pf) < 2 (Pf - Pf)
>e.s tea

2 (Pf - Pf) > - 2 2_ {Pp - Pf)
1ES 1 - 1 ;€.5,

- 2_ {Pf - Pf) < 2 2 [Pf' - Pf).
(65 1 - 1 jes,

This is a consequence of corollary 1 and lemmas 2 and 3.

4. EXAMPLE

Let us consider the following example, introduced by LEMAIRE (1979). Suppose
that the pool consists of 3 companies, whose risk aversion coefficients aie
respectively ci = .3, a = .6, cz = .1. All the companies have the same
distribution of claim amounts, namely a F-distribution

x> o

0 elsewhere

a
with parameters a = 1.152 and - = .96. The mean is equal to m = — = 1.2,

a
the variance a = -5 = 1.25. Using the moment-generating function of this

T

distribution

M(t) = (1 -

we obtain the following conditions for the core

.388 ^ yi(o) < ..610

.818 < yz(o) < 1.469
1.22 < yi(o) + ya(o) < 1.448.
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The core is shown in Figure l. Note that the core (hachured area) is sub-
stantially smaller than the set of the Pareto-optimal treaties (dotted area).

V,(o)

\ v
v \

3. \

5

IIXIIMIIII il rat ion ili!\ c

1 c u l k U n i i i t i u n i l i U {(., c3}

AX
i \ \
t \ ! 5 \ .

Note:

For n > 3, the core is more difficult to represent, since it forms a convex
compact polyhedron in the n-i -dimensional Euclidian space with axis 3'i(o),
. . . , yn-i(o) It is characterized by a set of in~x— l double inequalities.
This number of constraints increases tremendously with n.
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