Correlating Fluorescence Microscopy with Electron Microscopy

Stephen W. Carmichael and Jon Charlesworth, Mayo Clinic

The use of fluorescent probes is becoming more and more common in cell biology. It would be useful if we were able to correlate a fluorescent structure with an electron microscopic image. The ability to definitively identify a fluorescent organelle would be very valuable. Recently, Ying Ren, Michael Kruhlak, and David Bazett-Jones devised a clever technique to correlate a structure visualized in the light microscope, even a fluorescing cell, with transmission electron microscopy (TEM).

Two keys to the technique of Ren et al. are the use of grids (as used in the TEM) with widely spaced grid bars and the use of Quetol as the embedding resin. The grids allow for cells to be identified between the grid bars, and in turn the bars are used to keep the cell of interest in register throughout the processing for TEM. Quetol resin was used for embedding because of its low autofluorescence and sectioning properties. The resin also becomes soft and can be cut and easily peeled from glass coverslips when heated to 70°C.

For demonstrating the technique, Ren et al. grew neuroblastoma cells on coverslips. After fixing and permeabilizing the cells, they were exposed to monoclonal antibodies for promyelocytic leukemia (PML) protein. The specimen was then treated with a second antibody that was tagged with a fluorophore. The coverslips were mounted on slides using a glycerol-based mounting media and the fluorescing cells (or cell) of interest were identified at high magnification then imaged at low magnification with a light microscopy. The grid was then transferred to the electron microscope at low (to determine the position of the cell of interest with respect to the grid bars) and high (to obtain the highest resolution of fluorescence labeling present) magnification. The grid was then transferred to the electron microscope where conventional TEM and electron spectroscopic imaging were employed. Correlative fluorescence and ultrastructural images from the region(s) of interest were compared and contrasted. With this method detail at the suborganelle level was obtained. We followed the methods of Ren et al. in our lab, and it worked on the first try.

It will be exciting to see the interesting uses for this advance in correlative microscopy.

1 The authors gratefully acknowledge Dr. David Brazett-Jones for reviewing this article. Jon Charlesworth is the Coordinator of the Electron Microscopy Core Facility at Mayo Clinic.

When LN\textsubscript{2} is not practical

Introducing Sahara

PGT Sahara SD Detector is quickly becoming the detector of choice for X-ray applications requiring excellent energy resolution, high count rate capability, and low energy sensitivity, ...without liquid nitrogen!

Excellent Energy Resolution
No liquid nitrogen, no water-cooling
No moving parts, or vibration

For more information visit our web site: www.pgt.com/sahara.html

Princeton Gamma-Tech, Inc.
C/N 863
Princeton, NJ 08542-0863
Web site: www.pgt.com

Tel: (609) 924-7310
Fax: (609) 924-1729
Toll free: 800-229-7484
e-mail: sales@pgt.com
High Resolution Sputter Coater 208HR shown with Rotary-Planetary-Tilting Stage and Thickness Controller MTM-20

The Cressington 208HR offers the most sophisticated features in its class, at an outstanding value

Superior Features

• Wide Choice of Coating Materials
 Magnetron head design and effective gas handling allow a wide choice of target materials

• Precision Thickness Control
 Thickness optimized to the FE-SEM operating voltage using the MTM-20 high resolution thickness controller

• Multiple Sample Stage Movements
 Separate rotary, planetary and tilting movements allow optimized coating distribution and coverage

• Variable Chamber Geometry
 Chamber geometry is used to adjust deposition rates from 1.0nm/sec to 0.002nm/sec to optimize structure

• Wide Range of Operating Pressures
 Independent power / pressure adjustment allows operation at argon gas pressure ranges of 0.2-0.005mbar

• Compact Modern Benchtop Design
 Space and energy saving design eliminates need for floor space, water, specialized electrical connections

Coating Difficult Samples for the FE-SEM

The High Resolution Sputter Coater 208HR offers real solutions to the problems encountered when coating difficult samples for FE-SEM. In order to minimize the effects of grain size the 208HR offers a full range of coating materials and gives unprecedented control over thickness and deposition conditions. To minimize charging effects the 208HR stage design and wide range of operating pressures allows precise control of the uniformity and conformity of the coating. The HIGH/LOW chamber configuration allows easy adjustment of working distance.
COMING EVENTS

✓ PITCON 2004
March 7-12, 2004, Chicago, IL
www.pitcon.org
✓ TMS
March 14-18, 2004, Charlotte, NC
cleobert@tms.org
✓ Advanced Course on Light Microscopy
March 22-26, 2004, University of California, Santa Barbara
www.lifesci.ucsb.edu/mcdb/events/imaging_workshop/index.php
✓ Focus on Microscopy 2004
April 4-7, 2004, Philadelphia, PA
www.focusonmicroscopy.org
✓ Materials Research Society
April 12-16, 2004, San Francisco, CA
info@mrs.org
✓ SCANNING 2004
April 27-29, 2004, Washington, DC
www.scanning.org
✓ Asia-Pacific Congress on Electron Microscopy
June 7-11, 2004, Kanazawa, Japan
keih@kanazawa-med.ac.jp
✓ 12th Int'l. Congress of Histochemistry and Cytochemistry
July 24-29, 2004, LaJolla, CA
www.fishc.org/index2004.html/
✓ Cryo-HRSEM/STEM/TEM
July 28-30, 2004, Atlanta, GA
rapkari@emory.edu
✓ Microscopy and Microanalysis 2004
August 1-5, 2004, Savannah, GA
www.msa.microscopy.com
✓ EMC 2004 (former EUREM)
August 22-27, 2004, Antwerp, Belgium
www.emc2004.be
✓ Society for Neuroscience
October 23-28, 2004
info@sfn.org

2005
✓ Materials Research Society
April 12-16, 2005, San Francisco, CA
info@mrs.org
✓ Scanning 2005
May 5-7, 2005, Monterey, CA
scanning@fams.org
✓ Microscopy and Microanalysis 2005
July 31- August 4, 2005, Honolulu, HA
www.msa.microscopy.com
✓ Materials Research Society
November 29- December 3, 2004, Boston, MA
info@mrs.org
✓ American Society for Cell Biology 2003
December 4-8, 2004, Washington, DC
www.ascb.org

2006
✓ Microscopy and Microanalysis 2006
August 6-10, 2006, Chicago, IL
www.msa.microscopy.com

Please check the "Calendar of Meetings and Courses" in the MSA journal "Microscopy and Microanalysis" for more details and a much larger listing of meetings and courses.

MICROSCOPY TODAY

The objective of this publication is simply to provide material of interest and value to working microscopists!

The publication is owned by the Microscopy Society of America (MSA) and is produced six times each year in odd months, alternating with MSA's peer-reviewed, scientific journal Microscopy and Microanalysis. We greatly appreciate article and material contributions from our readers—"users" as well as manufacturers/suppliers. The only criterion is that the subject matter be of interest to a reasonable number of working microscopists. Microscopy Today has authors from many disparate fields in both biological and materials sciences, each field with its own standards. Therefore MT does not have a rigid set of style instructions and encourages authors to use their own style, asking only that the writing be clear, informative, and accurate. Length: typical article length is 1,500 to 2,000 words plus images. Longer articles will be considered. Short notes are encouraged for our Microscopy 101 section.

MICROSCOPY TODAY

Ron Anderson, Editor
ron.anderson@attglobal.net
José Mascorro, Technical Editor
jmascor@tulane.edu
Dale Anderson, Art Director
dale.anderson@attglobal.net

Regular Mail to:
PO Box 499
Wappingers Falls, NY 12590

Couriers Mail to:
21 Westview Drive
Poughkeepsie, NY 12603

Telephones:
1-(845)463-4124 • Fax: (845)463-4125 • Cell: (914) 453-2917

E-mail:
microtoday@attglobal.net

WWW Page:
http://www.microscopy-today.com

Disclaimer: By submitting a manuscript to Microscopy Today, the author warrants that the article is original (or that the author has the right to use any material copyrighted by others). The use of trade names, trademarks, etc., does not imply that these names lack protection by relevant laws and regulations. Microscopy Today, the Microscopy Society of America, and any other societies stated, cannot be held responsible for opinions, errors, or for any consequences arising from the use of information contained in Microscopy Today. The appearance of advertising in Microscopy Today does not constitute an endorsement or approval by the Microscopy Society of America of the quality or value of the products advertised or any of the claims, data, conclusions, recommendations, procedures, results or any information found in the advertisements. While the contents of this magazine are believed to be accurate at press time, neither the Microscopy Society of America, the editors, nor the authors can accept legal responsibility for errors or omissions.

© Copyright, 2004, The Microscopy Society of America. All rights reserved.
Get answers.

NORAN System SIX X-ray Microanalysis System

With dedicated acquisition electronics, automatic set-and-forget analysis and operation features, Spectral Imaging, and our exclusive COMPASS component analysis software option, the NORAN System SIX is already earning a reputation for flexibility, ease of use, and comprehensive X-ray microanalysis.

Now with new features that make the NORAN System SIX even better:
- Drift Compensation
- Full Standards Quant
- Particle Sizing
- Column Communication
- Analysis Automation
- And more.

See for yourself.
Contact us at +1 800 532 4752
or visit us at www.thermo.com