SUBLATTICES OF A FREE LATTICE

BJARNI JÓNSSON

Introduction. Professor R. A. Dean has proved (1, Theorem 3) that a completely free lattice generated by a countable partially ordered set is isomorphic to a sublattice of a free lattice. In particular, it follows that a free product of countably many countable chains can be isomorphically embedded in a free lattice. Generalizing this we show (2.1) that the class of all lattices that can be isomorphically embedded in free lattices is closed under the operation of forming free lattice-products with arbitrarily many factors. We also prove (2.4) that this class is closed under the operation of forming simply ordered sums with denumerably many summands. Finally we show (2.7) that every finite dimensional sublattice of a free lattice is finite.

The first theorem mentioned above is based on a result (1.3) of a rather general nature concerning free products of algebraic systems. It is perhaps worth noting that the amalgamation property considered there has played a role in the investigations of other embedding problems in universal algebra. Compare in this connection Fraissé (2) and Jónsson (3).

1. A theorem in universal algebra. We consider a class \mathbf{K} of algebras, or algebraic systems, $\mathfrak{Z}=\left\langle A, F_{0}, F_{1}, \ldots, F_{\xi}, \ldots\right\rangle_{\xi<\alpha}$, where A is a non-empty set, α is a finite or infinite ordinal and, for each $\xi<\alpha, F_{\xi}$ is an operation of some finite rank μ_{ξ} over A, that is, F_{ξ} is a function on $A^{\mu_{\xi}}$ to A. The ordinal α and the natural numbers μ_{ξ} are assumed to be the same for all members of K. Actually we shall identify the algebra \mathfrak{Z} with its underlying set A. Assuming the notions of isomorphism, homomorphism, and subalgebra to be known, we recall the definitions of a free \mathbf{K}-algebra and of a free \mathbf{K}-product.

We say that A is a free \mathbf{K}-algebra generated by X if and only if $A \in \mathbf{K}$, $X \subseteq A, A$ is generated by X, and for any mapping f of X into an algebra $B \in \mathbf{K}$ there exists a homomorphism g of A into B such that $g(x)=f(x)$ for all $x \in X$.

We say that A is a free \mathbf{K}-algebra if and only if there exists a set X such that A is a free \mathbf{K}-algebra generated by X.

We say that A is a free \mathbf{K}-product of $A_{i}, i \in I$, if and only if $A \in \mathbf{K}, I$ is a non-empty set, $A_{i} \in \mathbf{K}$ and A_{i} is a subalgebra of A for all $i \in I, A$ is generated by the set $\cup_{i \epsilon I} A_{i}$, and for any homomorphisms f_{i} of the algebras A_{i} into an algebra $B \in \mathbf{K}$ there exists a homomorphism g of A into B such that $g(x)=f_{i}(x)$ whenever $i \in I$ and $x \in A_{i}$.

[^0](The free K-product just defined might be properly called an inner free \mathbf{K}-product. An outer free \mathbf{K}-product of algebras $B_{i} \in \mathbf{K}, i \in I$, would consist of an algebra $A \in \mathbf{K}$ together with isomorphisms of the algebras B_{i} into A, such that A is an inner free \mathbf{K}-product of the images A_{i} of the algebras B_{i}.)

To insure the existence of free \mathbf{K}-algebras and of free \mathbf{K}-products we shall assume that \mathbf{K} is a non-trivial equational class in the wider sense, that is, \mathbf{K} is the class of all models of some finite or infinite set of equations, and there exists an algebra $A \in \mathbf{K}$ having at least two elements. We also assume that \mathbf{K} has the following property:

Definition 1.1. A class \mathbf{K} of algebraic systems is said to have the embedding property if and only if for any $A, B \in \mathbf{K}$ there exists $C \in \mathbf{K}$ such that A and B are isomorphic to subsystems of C.

These assumptions are somewhat stronger than is necessary, but they are sufficiently general for the present purpose.

Under these assumptions concerning \mathbf{K} we have:
For any non-empty set X there exists an algebra A such that A is a free \mathbf{K}-algebra generated by X.

Suppose A is a free \mathbf{K}-algebra generated by X, and f is a one-to-one mapping of X onto a subset Y of an algebra B. Then B is a free \mathbf{K}-algebra generated by Y if and only if there exists an isomorphism g of A onto B such that $g(x)=f(x)$ for all $x \in X$.

If I is a non-empty set and if $B_{i} \in \mathbf{K}$ for each $i \in I$, then there exist an algebra A and isomorphisms of all the algebras B_{i} onto subalgebras A_{i} of A such that A is a free \mathbf{K}-product of $A_{i}, i \in I$.

Suppose A is a free \mathbf{K}-product of $A_{i}, i \in I$, and for each $i \in I$ suppose f_{i} is an isomorphism of A_{i} onto a subalgebra B_{i} of an algebra B. Then B is a free \mathbf{K}-product of $B_{i}, i \in I$, if and only if there exists an isomorphism g of A onto B such that $g(x)=f_{i}(x)$ whenever $i \in I$ and $x \in A_{i}$.

Suppose with the elements i of a non-empty set I there are associated pairwise disjoint, non-empty subsets X_{i} of an algebra A, let $X=\cup_{i \in I} X_{i}$, and for each $i \in I$ let A_{i} be the subalgebra of A, which is generated by X_{i}. Then A is a free \mathbf{K}-algebra generated by X if and only if A is a free \mathbf{K}-product of $A_{i}, i \in I$, and for each $i \in I, A_{i}$ is a free \mathbf{K}-algebra generated by X_{i}.

We now introduce the amalgamation property mentioned in the introduction.

Definition 1.2. A class \mathbf{K} of algebraic systems is said to have the amalgamation property if and only if the following conditions are satisfied:

If $A, B_{0}, B_{1} \in \mathbf{K}$ and if f_{0} and f_{1} are isomorphisms of A into B_{0} and into B_{1}, respectively, then there exist $C \in \mathbf{K}$ and isomorphisms g_{0} and g_{1} of B_{0} and of B_{1}, respectively, into C, such that $g_{0} f_{0}(x)=g_{1} f_{1}(x)$ whenever $x \in A$.

Theorem 1.3. Suppose the class \mathbf{K} of algebraic systems is non-trivial and equational in the wider sense, and assume that \mathbf{K} has the embedding property
and the amalgamation property. If A is a free \mathbf{K}-product of $A_{i}, i \in I$, if B_{i} is a subalgebra of A_{i} for each $i \in I$, and if B is the subalgebra of A that is generated by the set $\cup_{i \in I} B_{i}$, then B is a free \mathbf{K}-product of $B_{i}, i \in I$.

Proof. For convenience we assume that I is the set of all ordinals $\xi<\alpha$, where α is some fixed ordinal. There exist $C \in \mathbf{K}$ and isomorphisms f_{ξ} of B_{ξ} onto subalgebras C_{ξ} of C for all $\xi<\alpha$, such that C is a free \mathbf{K}-product of $C_{\xi}, \xi<\alpha$. Consequently there exists a homomorphism h of C into B such that $h(x)=f_{\xi}^{-1}(x)$ whenever $\xi<\alpha$ and $x \in C_{\xi}$. Since B is generated by the union of the algebras B_{ξ}, h must actually map C onto B. The proof will therefore be complete if we prove that h is one-to-one.

We shall show that there exists an increasing sequence of algebras $D_{0}=C$, $D_{1}, D_{2}, \ldots, D_{\alpha}$ in \mathbf{K} and a sequence of functions $g_{0}, g_{1}, \ldots, g_{\frac{\xi}{2}}, \ldots, \xi<\alpha$, such that the following conditions hold for each $\xi<\alpha$:
(1) g_{ξ} maps A_{ξ} isomorphically into $D_{\xi+1}$.
(2) $g_{\xi}(y)=f_{\xi}(y)$ whenever $y \in B_{\xi}$.

In fact, suppose $0<\lambda \leqslant \alpha$, and suppose D_{ξ} has been defined for all $\xi<\lambda$, and g_{ξ} has been defined for all ξ with $\xi+1<\lambda$ in such a way that (1) and (2) hold whenever $\xi+1<\lambda$. If λ is a limit ordinal, then we let D_{λ} be the union of the algebras D_{μ} with $\mu<\lambda$. Thus D_{ξ} is defined for all $\xi<\lambda+1$. Since the conditions $\xi+1<\lambda+1$ and $\xi+1<\lambda$ are equivalent, we see that g_{ξ} is defined and that (1) and (2) hold whenever $\xi+1<\lambda+1$. If λ is not a limit ordinal, say $\lambda=\mu+1$, then f_{μ} maps B_{μ} isomorphically into D_{μ} (because C is a subalgebra of D_{μ}), and the identity automorphism of B_{μ} maps B_{μ} isomorphically into A_{μ}. By the amalgamation property this implies that there exist $D_{\lambda} \in \mathbf{K}$, an isomorphism g_{μ} of A_{μ} into D_{μ}, and an isomorphism k_{μ} of D_{μ} into D_{λ} such that $g_{\mu}(x)=k_{\mu} f_{\mu}(x)$ for all $x \in B_{\mu}$. We may assume that D_{λ} is an extension of D_{μ}, and that k_{μ} is the identity automorphism of D_{μ}, so that $g_{\mu}(x)=f_{\mu}(x)$ for all $x \in B_{\mu}$. Thus D_{ξ} has been selected for all $\xi<\lambda+1$ and g_{ξ} has been selected for all ξ with $\xi+1<\lambda+1$, and the conditions (1) and (2) hold whenever $\xi+1<\lambda+1$. An easy induction now establishes the existence of all the required algebras D_{ξ} and functions g_{ξ}.

Each of the algebras $D_{\xi+1}$ with $\xi<\alpha$ is a subalgebra of D_{α}, and therefore g_{ξ} maps A_{ξ} isomorphically into D_{α}. Since A is a free \mathbf{K}-product of $A_{\xi}, \xi<\alpha$, it follows that there exists a homomorphism g of A into D_{α} such that $g(y)=g_{\xi}(y)$ whenever $\xi<\alpha$ and $y \in A_{\xi}$. In particular, if $x \in C_{\xi}$, then $y=f_{\xi}^{-1}(x)=h(x)$ belongs to B_{ξ}, and therefore $g(y)=g_{\xi}(y)=f_{\xi}(y)=x$. Thus $g h(x)=x$ whenever x belongs to one of the algebras C_{ξ}, whence it follows that $g h(x)=x$ for all $x \in C$. This shows that h is one-to-one, and the proof is complete.

Corollary 1.4. Suppose the class \mathbf{K} of algebraic systems is non-trivial and is equational in the wider sense, and assume that \mathbf{K} has the embedding property and the amalgamation property. If A is a free \mathbf{K}-product of $A_{i}, i \in I$, and if for
each $i \in I, A_{i}$ is isomorphic to a subalgebra of a free \mathbf{K}-algebra with m_{i} generators, then A is isomorphic to a subalgebra of a free \mathbf{K}-algebra with

$$
\sum_{i \in I} m_{i}
$$

generators.
Proof. Let

$$
m=\sum_{i \in I} m_{i}
$$

and let F be a free \mathbf{K}-algebra generated by a set X with m elements. Then

$$
X=\bigcup_{i \epsilon I} X_{i}
$$

where the sets X_{i} are pairwise disjoint and X_{i} has m_{i} elements. If for each $i \in I, F_{i}$ is the subalgebra of F that is generated by X_{i}, then F is a free \mathbf{K}-product of $F_{i}, i \in I$. Furthermore, F_{i} is a free \mathbf{K}-algebra generated by X_{i}, whence it follows that A_{i} is isomorphic to a subalgebra B_{i} of F_{i}. If B is the subalgebra of F that is generated by the set

$$
\bigcup_{i \in I} B_{i},
$$

then we infer by (1.3) that B is a free \mathbf{K}-product of $B_{i}, i \in I$. Consequently A is isomorphic to B.

An example shows that the amalgamation property cannot be dropped from the hypothesis of (1.3) and (1.4). Let \mathbf{K} be the class of all systems consisting of a group G together with a homomorphism α of G into its centre. That is, in addition to the group axioms the systems in \mathbf{K} satisfy the conditions

$$
\alpha(x y)=\alpha(x) \alpha(y), \quad \alpha(x) y=y \alpha(x) .
$$

Regarded as a group, a free \mathbf{K}-system F generated by a set X is a direct product of a free group F_{0} generated by X and a free Abelian group F_{1} generated by the set of all elements of the form $\alpha^{k}(x)$ with $x \in X$ and $k=1,2,3, \ldots$. Since two elements of a free group commute if and only if they are powers of the same element, it follows that two elements a and b of F commute if and only if $a=u^{p} v$ and $b=u^{q} w$ where $u \in F_{0}, v, w \in F_{1}$, and p and q are integers. From this we infer that every free \mathbf{K}-system F has the following property: If $a, b \in F$, and $a b=b a$, then there exist integers p and q, not both zero, such that $a^{q} b^{-p}$ is in the centre of F. It obviously follows that every subsystem of a free system also has this property.

Let G be a free \mathbf{K}-product of G_{0} and G_{1}, where G_{1} is a free \mathbf{K}-system generated by a one-element set $\{x\}$ and G_{1} is a free Abelian group generated by an infinite set $\left\{y_{0}, z_{0}, y_{1}, z_{1}, \ldots\right\}$ together with the endomorphism α that takes y_{i} into y_{i+1} and z_{i} into z_{i+1}. Letting A_{0}, B_{0}, A_{1}, and B_{1} be the subgroups of G generated by the sets $\{x\},\left\{\alpha^{k}(x) \mid k=1,2, \ldots\right\},\left\{y_{0}, z_{0}\right\}$, and $\left\{y_{1}, z_{1}, y_{2}, z_{2}, \ldots\right\}$, respectively, and using $*$ and \times to denote free group-
products and direct products, we find that $G_{0}=A_{0} \times B_{0}$ and $G_{1}=A_{1} \times B_{1}$, and therefore $G=\left(A_{0} * A_{1}\right) \times B_{0} \times B_{1}$. It follows that no element of A_{1} except the identity belongs to the centre of G, because no other element commutes with x. Consequently $y_{0}{ }^{q} z_{0}{ }^{-p}$ does not belong to the centre of G unless $p=q=0$, and since $y_{0} z_{0}=z_{0} y_{0}$ this shows that G is not isomorphic to a subsystem of a free \mathbf{K}-system. Inasmuch as G_{0} is a free \mathbf{K}-system and G_{1} is isomorphic to the centre of a free \mathbf{K}-system, it follows that the conclusion of (1.4) fails for the class \mathbf{K}.

Observing that in the proof of (1.4) the only use made of the amalgamation property was through (1.3), we infer that the above class \mathbf{K} must also violate the conclusion of (1.3). An even simpler example of a non-trivial equational class, having the embedding property but not satisfying the conclusion of (1.3), is the class \mathbf{K} of all groups G such that $a^{2} b^{2}=b^{2} a^{2}$ for all $a, b \in G$. Since there exist non-Abelian groups having this property (for example, the group of all permutations of a three-element set), a free \mathbf{K}-algebra with two generators or, equivalently, a free \mathbf{K}-product of two infinite cyclic groups, cannot be Abelian. If A is a free \mathbf{K}-algebra generated by a two-element set $\left\{a_{0}, a_{1}\right\}$, and therefore the free \mathbf{K}-product of the infinite cyclic groups A_{0} and A_{1} generated by the sets $\left\{a_{0}\right\}$ and $\left\{a_{1}\right\}$, then the subgroup B of A generated by $\left\{a_{0}{ }^{2}, a_{1}{ }^{2}\right\}$ is Abelian, and is therefore not a free \mathbf{K}-product of the subgroups generated by $\left\{a_{0}{ }^{2}\right\}$ and $\left\{a_{1}{ }^{2}\right\}$.
2. Sublattices of a free lattice. We begin by applying the results of the preceding section to lattices. The class \mathbf{K} of all lattices is non-trivial and equational. The direct product of two lattices is therefore a lattice, and since every lattice has a one-element sublattice it follows that \mathbf{K} has the embedding property. In Jónsson (3), in the proof of Theorem 3.5, it is shown that \mathbf{K} has an amalgamation property that is stronger than the one considered here. Using (1.4) we therefore obtain:

Theorem 2.1. If A is a free lattice-product of $A_{i}, i \in I$, and if for each $i \leqslant I$, A_{i} is isomorphic to a sublattice of a free lattice with m_{i} generators, then . 1 is isomorphic to a sublattice of a free lattice with

$$
\sum_{i \in I} m_{i}
$$

generators.
Corollary 2.2. If A is a free lattice-product of $A_{i}, i \in I$, and if each A_{i} is a denumerable chain, then A is isomorphic to a sublattice of a free lattice with m generators, where m is the cardinal of I in case I is non-denumerable, and $m=3$ in case I is denumerable.

Lemma 2.3. Suppose m is an infinite cardinal and F is a free lattice with m generators. If $a, b \in F$ and $b<a$, then the lattice quotient a / b contains, as a sublattice, a free lattice with m generators.

Proof. If X is the set of generators of F, then there exists a finite subset Y of X such that a and b belong to the sublattice F^{\prime} of X, which is generated by Y. The sublattice $F^{\prime \prime}$ of F, which is generated by the set $Z=X-Y$, can be mapped homomorphically into a / b by a function f such that $f(x)=b+a x$ whenever $x \in Z$. We shall show that f is an isomorphism.

Since F is a free lattice-product of F^{\prime} and $F^{\prime \prime}$, it follows from 1.3 that the lattice D generated by a, b, and Z is a free lattice-product of $F^{\prime \prime}$ and of the two-element lattice $E=\{a, b\}$. Letting \bar{F} be a lattice obtained by adjoining a zero element 0 and a unit element 1 to $F^{\prime \prime}$ we map E and $F^{\prime \prime}$ into \bar{F} by mapping a into $1, b$ into 0 , and each element of $F^{\prime \prime}$ into itself. These isomorphisms have a common extension g which is a homomorphism of D into \bar{F}. Since f is a homomorphism of $F^{\prime \prime}$ into $D, g f$ is a homomorphism of $F^{\prime \prime}$ into \bar{F}. Furthermore, $g f(x)=g(b+a x)=0+1 x=x$ for all $x \in Z$, and therefore $g f(x)=x$ for all $x \in F^{\prime \prime}$. Consequently f is an isomorphism of $F^{\prime \prime}$ into a / b, and the proof is complete.

Given two non-empty subsets B and C of a partially ordered set A, we shall write $B \leqslant C$ if and only if either $B=C$ or else $b<c$ for all $b \in B$ and $c \in C$. It is obvious that the non-empty subsets of a partially ordered set form, under this relation, another partially ordered set.

Theorem 2.4. If $m \geqslant 3$, and if the lattice A is the union of a denumerable chain \mathscr{A} of sublattices each of which is isomorphic to a sublattice of a free lattice with m generators, then A is isomorphic to a sublattice of a free lattice with m generators.

Proof. Since a free lattice with three generators contains as a sublattice a free lattice with infinitely many generators, we may assume that m is infinite.

Let F be a free lattice with m generators and let \mathscr{B} be the family of all quotients a / b with $a, b \in F$ and $b<a$. Then \mathscr{B} is a partially ordered set. Furthermore, for any two quotients a / b and c / d in F, if $a / b<c / d$, that is, if $b<a<d<c$, then it follows by 2.3 that there exist $x, y \in F$ such that $a<y<x<d$ and therefore

$$
a / b<x / y<c / d .
$$

Consequently, if \mathscr{C} is a maximal chain in \mathscr{B}, then \mathscr{C} is dense-in-itself, and \mathscr{A} is therefore order-isomorphic to a subchain \mathscr{C}^{\prime} of \mathscr{C}. By (2.3) and the hypothesis, each of the lattices $B \in \mathscr{A}$ is isomorphic to a sublattice B^{\prime} of the corresponding quotient in \mathscr{C}^{\prime}, and we conclude that the union A^{\prime} of these lattices B^{\prime} is a sublattice of F, and that A is isomorphic to A^{\prime}.

Theorem 2.5. Suppose A is a lattice with a zero element 0 and a unit element 1 , and assume that B and C are sublattices of A such that

$$
\begin{aligned}
& B \cap C=\phi \text { and } B \cup C=\mathrm{A}-\{0,1\} \text {, } \\
& b+c=1 \text { and } b c=0 \text { whenever } b \in B \text { and } c \in C .
\end{aligned}
$$

If B and C are isomorphic to sublattices of a free lattice with m generators, where $m \geqslant 3$, then so is A.

Proof. We may assume that m is infinite. If F is a free lattice with m generators, then F is not modular, and hence there exist $a, b, c \in F$ such that

$$
\begin{equation*}
a c<b<a<b+c . \tag{1}
\end{equation*}
$$

We can further assume that a is additively irreducible. In fact, by (2.3) the lattice quotient a / b contains as a sublattice a free lattice F^{\prime} with m generators, and F^{\prime} contains an element a^{\prime} that is multiplicatively reducible (in F^{\prime} and therefore also in F), and consequently a^{\prime} is additively irreducible. Furthermore, $b<a^{\prime}<a$ and hence $a^{\prime} c \leqslant a c<b$. Thus (1) holds with a replaced by a^{\prime}. We henceforth assume that a is additively irreducible.

Again using (2.3), we select an additively irreducible element $d \in F$ with $c<d<b+c$, and we show that

$$
\begin{equation*}
a d<b+a d<a<b+c, \quad a d<c+a d<d<b+c . \tag{2}
\end{equation*}
$$

Since $c<d<b+c$, it follows that $b \nless d$ and therefore $a d<b+a d$. Also $b+a d \leqslant a$, and an equality would imply that $a=a d$ (because a is additively irreducible and $b<a)$. From this we could infer that $a \leqslant d$, hence $b+c \leqslant$ $a+c \leqslant d$, contrary to our choice of d. Thus $b+a d<a$. The inequality $a<b+c$ is part of our hypothesis (1). Since $b<a<b+c$, we have $c \nless a$, hence $a d<c+a d$. Furthermore $c+a d \leqslant d$, and equality is excluded because it would imply that $d=a d$, hence $c<d \leqslant a$. The last inequality in (2) holds because of our choice of d.

By (2.3) the lattice quotients $a /(b+a d)$ and $d /(c+a d)$ contain free lattices F_{1} and F_{2} with m generators, and by hypothesis it follows that there exist functions f and g mapping B and C isomorphically into F_{1} and F_{2}, respectively. Observing that $x+y=b+c$ and $x y=a d$ whenever $x \in F_{1}$ and $y \in F_{2}$, we obtain the desired isomorphism h of A into F by letting $h(x)=f(x)$ for all $x \in B, h(x)=g(x)$ for all $x \in C, h(0)=a d$, and $h(1)=b+c$.

In proving our last result we need the observation that a free lattice, and hence every sublattice of a free lattice, satisfies a special case of the distributive law.

Lemma 2.6. Suppose F is a free lattice and $u, a, b, c \in F$.
(i) If $u=a b=a c$, then $u=a(b+c)$.
(ii) If $u=a+b=a+c$, then $u=a+b c$.

Proof. By Whitman (4, Theorem 2, Corollary 2), the canonical representation of u,

$$
u=\prod_{i<n} u_{i}
$$

has the property that if

$$
u=\prod_{j<m} v_{j}
$$

then each of the elements u_{i} contains one of the elements v_{j}. Under the hypothesis of (i) it follows that each of the elements u_{i} either contains a or else contains both b and c, and in either case we therefore have $a(b+c) \leqslant u_{i}$. Consequently $a(b+c) \leqslant u$. The opposite inclusion is obvious, and (ii) follows by duality.

Theorem 2.7. Every finite dimensional sublattice of a free lattice is finite.
Proof. We shall actually prove the stronger statement that every finite dimensional lattice A which satisfies the condition (i) of (2.6) is finite. Assuming that this holds for all lower dimensional cases, consider the case when the dimension of A is n.

Let M be the set of all the atoms of A, choose $a \in M$, and let $N=M-\{a\}$. Then $a b=0$ for all $b \in N$, and letting

$$
c=\sum_{b \in N} b
$$

we infer from (2.6 i) together with the finiteness of the dimension of A that $a c=0$. Therefore $c \neq 1$, and by the inductive hypothesis the quotient $c / 0$ must be finite. In particular this shows that N is finite, and therefore M is finite. Since, by the inductive hypothesis, all the quotients $1 / b$ with $b \in M$ are finite, and since every member of A except the element 0 belongs to at least one of these quotients, we conclude that A must be finite.

Analysing the proof of the last theorem we can actually find an upper bound for the number of elements in an n dimensional sublattice A of a free lattice. We first prove by induction that A has at most n atoms. We simply observe that, in the notation used above, the atoms of the lattice quotient $c / 0$ are precisely the elements of N, and infer by the inductive hypothesis that N has at most $n-1$ elements. A second induction proves that A has at most $2 \cdot(\mathrm{n}!)$ elements. For each element of A, except the element 0 , is contained in one of the quotients $1 / b$ with $b \in M$, and the fact that 0 belongs to none of these quotients is more than made up for since 1 belongs to all the quotients. Actually these estimates can be considerably improved. For instance, if $n=3$, then A has at most 8 elements, and if $n>3$, then A has at most $n-1$ atoms.

Finally, Professor R. Dilworth has observed that by a slight modification of our proof it can be shown that if a sublattice A of a free lattice satisfies the double chain condition, then A is finite. The set of all lattice quotients a / b of A, ordered by set-inclusion, satisfies the minimal condition, and one need therefore only consider the case in which A has the additional property that every quotient properly contained in A is finite. Under this assumption the finiteness of A follows as in the proof of (2.7).

References

1. R. A. Dean, Sublattices of free lattices.
2. R. Fraissè, Sur l'extension aux relations de quelques propriétés des ordres, Ann. Sci. Ecole Norm. Sup. (3), 71 (1954), 363-388.
3. B. Jónsson, Universal relational systems, Math. Scand., 4 (1956), 193-208.
4. P. M. Whitman, Free lattices I, Ann. Math. (2), 42 (1941), 325-330.
5. P. M. Whitman, Free lattices II, Ann. Math. (2), 43 (1942), 104-115.

University of Minnesota

[^0]: Received December 15, 1959. These investigations were supported by a grant from the National Science Foundation.

