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Abstract Let C be a smooth projective curve of genus 2. Following a method by O’Grady, we construct
a semismall desingularisation M̃G

Dol of the moduli space MG
Dol of semistable G-Higgs bundles of degree

0 for G = GL(2,C),SL(2,C). By the decomposition theorem of Beilinson, Bernstein and Deligne, one
can write the cohomology of M̃G

Dol as a direct sum of the intersection cohomology of MG
Dol plus other

summands supported on the singular locus. We use this splitting to compute the intersection cohomology
ofMG

Dol and prove that the mixed Hodge structure on it is pure, in analogy with what happens to ordinary
cohomology in the smooth case of coprime rank and degree.
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1. Introduction

Let G=GL(2,C),SL(2,C). We denote byMG
Dol be the moduli space of G-Higgs bundles of

rank 2 and degree 0 on genus 2 curve C. In this article we want to study the cohomological

properties of this space from a Hodge-theoretic point of view. The main problem in doing
that is that the moduli space is singular and many fundamental theorems like Poincaré

duality or Hard-Lefschetz theorem fail for ordinary cohomology groups. To overcome this

fact one might opt for two solutions: to resolve singularities or to consider a different

cohomological invariant, namely, intersection cohomology. Here we adopt both strategies,
showing how they are strongly interrelated. We first show the following result.

Theorem 1.1. Let C be a curve of genus 2 and let MG
Dol be the moduli space of G-Higgs

bundles of rank 2 and degree 0 on C. Then there exists a symplectic desingularisation

π̃ : M̃G
Dol →MG

Dol.

This theorem was obtained independently by Bellamy and Schedler in [3] in the language

of character varieties. In fact, it is well known that, by the nonabelian Hodge theorem

[39], MG
Dol is real analytic isomorphic to the character variety of representations of the

fundamental group of C into G. The equivalence with our result is obtained by applying

the isosingularity principle [39, Theorem 10.6], which states that two corresponding

singular points on the moduli spaces admit isomorphic étale neighbourhoods. Having
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a symplectic desingularisation is indeed a special feature of this moduli space: in fact,
apart from rank 2 and degree 0 G-Higgs bundles on a genus 2 curve, the only other case

in which a symplectic resolution exists is that of degree 0 G-Higgs bundles of arbitrary

rank on an elliptic curve. For higher genera and ranks, the moduli spaces do not admit a
symplectic desingularisation; see [40] and [24].

By a theorem of Kaledin (see [23]) all symplectic resolutions are semismall (cf.

Section 1) and such a property allows application of a special version of the decomposition

theorem of Beilinson, Bernstein and Deligne [2] that asserts that the cohomology of the
resolution M̃G

Dol splits as a direct sum of the intersection cohomology of MG
Dol with

some summands supported on the singular locus, which we are able to determine. Given

this theorem, if we compute the ordinary cohomology of the resolution and subtract the
contributions coming from the summands on the singular locus, we end up with the

intersection cohomology of MG
Dol. More precisely, we prove the following result.

Theorem 1.2. Let C be a smooth projective complex curve of genus 2 and let MG
Dol be

the moduli space of G-Higgs bundles on C for G=GL(2,C),SL(2,C). Then the intersection

Poincaré polynomials of MG
Dol are

IPt(MSL
Dol) = 1+ t2+17t4+17t6;

IPt(MGL
Dol) = 1+4t+7t2+8t3+9t4+12t5+15t6+16t7+14t8+8t9+2t10.

Moreover, the Hodge structure on the intersection cohomology of MG
Dol is pure and the

Hodge diamond is

G= SL(2,C) :

0 (0 ,0 )

2 (1 ,1 )

4 17 (2 ,2 )

6 17 (3 ,3 )

G=GL(2,C) :

0 (0 ,0 )

1 2 (1 ,0 ) 2 (0 ,1 )

2 (2 ,0 ) 5 (1 ,1 ) (0 ,2 )
3 4 (2 ,1 ) 4 (1 ,2 )

4 (1 ,3 ) 7 (2 ,2 ) (3 ,1 )

5 6 (3 ,2 ) 6 (2 ,3 )
6 2 (4 ,2 ) 11 (3 ,3 ) 2 (2 ,4 )

7 8 (4 ,3 ) 8 (3 ,4 )

8 2 (5 ,3 ) 10 (2 ,2 ) 2 (3 ,5 )
9 4 (5 ,4 ) 4 (4 ,5 )

10 2 (5 ,5 ) .

Let us now give a sketch of the proof of these two results. The resolution is constructed

using a strategy developed by O’Grady in [34] and [35] to desingularise moduli spaces
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of sheaves on K3 or abelian surfaces. With this procedure, O’Grady obtains two new
examples of compact hyperkähler manifolds up to birational equivalence, which are

usually denoted by OG10 and OG6. Such examples have dimension, respectively 10 and

6, as MGL
Dol and MSL

Dol. Indeed, more is true: applying methods similar to those in [6]
and [13], one can show that there exists a degeneration of hyperkähler manifolds from

O’Grady moduli spaces to those of Higgs bundles. In view of this, the singularities of

MG
Dol have isomorphic local description to those of O’Grady examples, as we show in

Section 3.
The singular locus ΣG is given by Higgs bundles, which can be written as a direct sum

of two Higgs line bundles. For example, for G=GL(2,C) the singular locus stratifies as

ΣG =
{
(L,φ)⊕ (M,ψ) | L,M ∈ Jac(C), and φ,ψ ∈H0(KC)

}
;

ΩG =
{
(L,φ)⊕ (L,φ) | L ∈ Jac(C), and φ ∈H0(KC)

}
.

It is easy to see that in this case ΣG is isomorphic to the symmetric product

Sym2(Jac(C)×H0(KC)); thus, it is a singular eightfold with finite quotient singularities

along ΩG. The description for G= SL(2,C) is analogous mutatis mutandis.

In both cases, the resolution is obtained by a single blow up along the locus ΣG: a
crucial point in the construction is the description of the singularities of O’Grady moduli

spaces provided by Lehn and Sorger in [28].

To prove the main theorem, Theorem 1.2, we first show that the Hodge structure on
intersection cohomology groups is pure. To do that we extend the natural C∗-action on

MG
Dol, given by rescaling the Higgs field, to M̃G

Dol: this yields an isomorphism of mixed

Hodge structures between the cohomology of M̃G
Dol and that of a compact subvariety,

namely, the preimage (π ◦χ)−1(0) of the nilpotent cone in the resolution. On the one

hand, the smoothness of M̃G
Dol implies that the weights are greater than or equal to

the cohomological degree; on the other hand, because the cohomology of M̃G
Dol is that

of a compact variety, they cannot exceed it. As a result, Hj(M̃G
Dol) carries a pure

Hodge structure of weight j. Because the Hodge structure on IH∗(M̃G
Dol) is a sub-Hodge

structure of that on H∗(M̃G
Dol), it is pure as well. Indeed, one can show in the same way

that the Hodge structure on the intersection cohomology of moduli space of rank 2 Higgs
bundles is pure in any genus. Ultimately this is due to the fact that the resolution is

obtained by blowing up along C∗-equivariant subsets, so that the above argument still

works. This will be shown by the author in a forthcoming paper. It is likely that such
a result should hold also in higher rank; however, the structure of the singular locus is

more complicated and requires further attention.

Knowing the purity of the Hodge structure, we can obtain cohomology by computing

other cohomological invariants, called E-polynomials (cf. Section 1), generally much easier
to determine than Poincaré polynomials.

The E -polynomial of a variety X is defined as

E(X) =
∑
j,p,q

(−1)jhj,p,q
c upvq,
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where hj,p,q
c = dimGrFp GrWp+qH

j
c (X). Moreover, up to replacing Hj

c (X) with IHj
c (X),

one can define an analogous invariant for intersection cohomology called intersection E-

polynomial. E -polynomials satisfy the an additivity property E(X) = E(Y )+E(X \Y )
for all Y ⊂X.

By stratifying M̃G
Dol and computing E -polynomials for all strata, we end up with

E(M̃G
Dol). Moreover, we compute the E -polynomials of the contributions supported on

the singular loci. By subtracting them one gets the E -polynomial for the intersection

cohomology of MG
Dol.

We remark that, though the additivity property is false in general for intersection
E -polynomial, our method applies anyway because we compute the intersection E -

polynomial as a sum of actual E -polynomials, for which additivity property holds. Notice

that, by the purity of the Hodge structure, intersection Betti numbers with compact

support are given by

ibj,c =
∑

p+q=j

ihj,p,q
c ,

where ihj,p,q
c = dimGrFp GrWp+qIH

j
c (X). Theorem 1.2 now follows by Poincaré duality.

In the smooth coprime case, the cohomology of these spaces has been widely studied:
Poincaré polynomials for SL(2,C) were computed by Hitchin in his seminal paper on

Higgs bundles [22], for SL(3,C) by Gothen in [20] and in rank 4 by Garcia-Prada,

Heinloth and Schmitt [17]. Furthermore, in [21] Hausel and Rodriguez-Villegas derived
a conjectural formula for the E -polynomials of twisted G-character varieties focusing on

G = GL(n,C),SL(n,C). In [37] Schiffmann provided a closed formula for the Poincaré

polynomial of the moduli spaces in any coprime rank and degree. Such a formula was

shown to imply the conjectural formula of Hausel and Rodriguez-Villegas by Mellit
in [31].

In the singular case, Logares, Muñoz and Newstead [29] computed the E -polynomial of

the character varieties of SL(2,C) and GL(2,C) on curves of genus g = 1,2, and Martinez
and Muñoz extended it to g ≥ 3. In [1] Baraglia and Hekmati gave a new proof of these,

extending it to rank 3. Furthermore, they showed how to extend the approach of Hausel

and Rodriguez-Villegas used for nonsingular twisted character varieties to the singular
(untwisted) case.

To the author’s knowledge, this is the first result of computation of intersection

cohomology for Higgs bundles or character varieties. For vector bundles, where the moduli

spaces involved are compact, intersection Betti numbers were computed by Kirwan in [26].
The main motivation for this work was provided by the celebrated P =W conjecture by

De Cataldo, Hausel and Migliorini (see [5]), which asserts that the weight filtration on the

cohomology of the character variety corresponds via nonabelian Hodge theorem to the
perverse filtration arising from the Hitchin fibration. Though the conjecture is formulated

for smooth moduli spaces, it would be interesting to see whether an analogue of the P =W

conjecture exists in the singular case of moduli of Higgs bundles of non-co-prime rank
and degree and the corresponding character varieties. Indeed, for moduli spaces with a

symplectic resolution, the conjecture has been proved by the author and Mauri in [15],

relying on the results of this article.
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The article is organised as follows: in Section 2 we briefly review the theory of
intersection cohomology and decomposition theorem; in Section 3 we describe the local

geometry of the moduli space focussing on the singularities and their normal cones.

In Section 4, we construct a semismall desingularisation and apply the decomposition
theorem to split the cohomology of the desingularisation as a direct sum of the intersection

cohomology of MG
Dol plus some other summands supported on the singular locus. In

Section 5, we extend the natural C∗-action on MG
Dol to the desingularisation and state

a localisation lemma that yields to the triviality of the weight filtration both on the
cohomology of the desingularisation and on the intersection cohomology of MG

Dol. In

Sections 6 and 7, we compute the E -polynomial for the intersection cohomology of MG
Dol

and show that from it, by the triviality of the weight filtration, one can recover the
intersection Betti numbers of MG

Dol in the case of both G= SL(2,C) and G=GL(2,C).

2. Quick review of intersection cohomology and decomposition theorem

Pure Hodge theory allows the use of analytic methods to study algebro-geometric and
topological properties of a smooth algebraic variety and comes with the Hodge-Lefschetz

package, which includes deep results such as the hard Lefschetz theorem, Poincaré duality

and Deligne’s theorem for families of projective manifolds.
When working with singular or noncompact varieties, theorems in the Hodge-Lefschetz

package fail. To overcome this fact, there are two somewhat complementary approaches:

mixed Hodge theory and intersection cohomology.
In mixed Hodge theory, introduced by Deligne in [14] and [11], one still investigates the

same topological invariant, namely, the cohomology groups, whereas the structure with

which it is endowed changes. In particular, the (p,q)-decomposition of the cohomology of

smooth projective varieties is replaced by a more complicated structure. More precisely,
the rational cohomology groups are endowed with an increasing filtration W•, such that

the complexifications of the graded pieces admit a (p,q)-decomposition.

Definition 2.1. Let X be an algebraic variety. A mixed Hodge structure on Hi(X,C) is

the datum of

• a decreasing filtration F • on Hi(X,C), called the Hodge filtration;
• an increasing filtration W• on Hi(X,Q), called the weight filtration, such that

Wk/Wk−1⊗C admits a pure Hodge structure of weight k induced by F •,

where the induced filtration on Wk/Wk−1⊗C is defined as

F p(Wk/Wk−1⊗C) := (F p∩Wk⊗C+Wk−1⊗C)/Wk−1⊗C.

If Wk/Wk−1⊗C ∼=
⊕

p+q=k V
k,p,q, we say that a class in V k,p,q has weight k and type

(p,q).

Similarly, one can define a mixed Hodge structure on compactly supported cohomology.

This leads to the definition of E -polynomials.
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Definition 2.2. Let X be an algebraic variety. The E-polynomial of X is defined as

E(X)(u,v) =

2dimX∑
h=0

(−1)i
∑
h,p,q

hi,p,q
c upvq,

where hi,p,q
c = dimGrFp GrWp+qH

i
c(X) and satisfies the following properties:

(i) if Z ⊂X, then E(X) = E(Z)+E(X \Z).

(ii) E(X×Y ) = E(X)E(Y ).

Remark 2.1. If X is smooth of complex dimension n, then mixed Hodge structures are

compatible with Poincaré duality; that is, a class in Hi(X) of weight k and type (p,q)

corresponds to a class in H2n−i
c (X) of weight 2n−k of type (n−p,n− q).

Remark 2.2. (Yoga of weights). In general, finding the weight of a cohomology class

is a nontrivial task. However, there are some fundamental weight restrictions:

i) if X is nonsingular, but possibly noncompact, then weights are high; that is,

WkH
i(X) = 0 for all k < i;

ii) if X is compact but possibly singular, then weights are low ; that is,

WkH
i(X) =WiH

i(X) =Hi(X) for all k ≥ i.

In intersection cohomology theory, by contrast, it is the topological invariant that

is changed, whereas the (p,q)-decomposition turns out to be the same. Intersection

cohomology groups are defined as the hypercohomology of some complexes, called

intersection complexes, that live in the derived category of constructible complexes.
Intersection complexes are constructed from local systems defined on nonsingular locally

closed subsets of an algebraic variety with a procedure called intermediate extension (see

[2, Corollary 1.4.25, Proposition 2.1.9, Proposition 2.1.11], [18], [19]). For a beautiful
introduction with also an historical point of view, we refer to [27].

There is a natural morphism Hi(X)→ IHi(X) that is an isomorphism when X has at

worst finite quotient singularities. Intersection cohomology groups are finite dimensional,
satisfying Mayer-Vietoris theorem and Künneth formula. Although they are not homotopy

invariant, they satisfy analogues of Poincaré duality and the hard Lefschetz theorem and,

if X is projective, they admit a pure Hodge structure. The definition of intersection

cohomology is very flexible because it allows for twisted coefficients: given a local system
L on a locally closed nonsingular subvariety Y of X we can define the cohomology groups

IH(Y ,L).

Definition 2.3. Let X be an algebraic variety and let Y ⊂X be a locally closed subset

contained in the regular part of X. Let L be a local system on Y. The intersection complex
ICY (L) associated with L is a complex of sheaves on Y that extends the complex L[dimY ]

and is determined up to unique isomorphism in the derived category of constructible

sheaves by the conditions
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• Hj(ICY (L)) = 0 for all j <−dimY ,

• H−dimY (ICY (L|U ))∼= L,
• dimSuppHj(ICY (L))<−j, for all j >−dimY ,
• dimSuppHj(DICY (L)) < −j, for all j > −dimY , where DICY L denotes the

Verdier dual of ICY L.

Remark 2.3. Let X be an algebraic variety with regular locus Xreg. When L = QXreg

one just writes ICX for ICX(L) and calls it intersection cohomology complex of X. If X
is nonsingular, then ICX

∼=QX [dimX].

Definition 2.4. Let X be an algebraic variety. The intersection cohomology groups of X
are defined as

IH∗(X) =H∗−dimX(X,ICX).

In general, given any local system L supported on a locally closed subset Y of X, the

cohomology groups of Y with coefficients in L are shifted hypercohomology groups of the

intersection complex associated to L:

IH∗(Y ,L) =H∗−dimY (Y ,ICY (L)).

Taking hypercohomology with compact support, one likewise defines intersection coho-
mology groups with compact support IH∗

c (X) and IH∗
c (Y ,L).

Remark 2.4. Here the shift is made so that for a nonsingular variety intersection
cohomology groups coincide with ordinary cohomology groups.

Remark 2.5. Just as ordinary cohomology, intersection cohomology groups carry a
mixed Hodge structure (see [36]). As a result, it is possible to define an analogue of

E -polynomial for intersection cohomology, called intersection E -polynomial :

IE(X)(u,v) =

2dimX∑
h=0

(−1)i
∑
h,p,q

ihi,p,q
c upvq,

where ihi,p,q
c := dimGrpFGrWp+qIH

i
c(X).

Along with theorems of Hodge-Lefschetz package, intersection cohomology groups

satisfy an analogue of Deligne’s theorem for projective manifolds, the decomposition

theorem. The general statement of this theorem is complicated and will not be discussed
here (see, for example, [8] for an extensive survey on the topic). Roughly speaking, the

decomposition theorem asserts that, given a proper map of algebraic varieties f :X → Y ,

the derived pushforward of the intersection complex of X splits as a direct sum of the
intersection complex of Y and other intersection complexes associated to local systems

supported on some nonsingular locally closed subsets of Y. These subsets are called

supports.
In general, it is complicated to determine the supports and the local systems appearing

in the splitting. However, the decomposition theorem takes a particularly simple form

when dealing with a special kind of map, namely, semismall maps.
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Definition 2.5. Let f :X → Y be a map of algebraic varieties. A stratification for f is
a decomposition of Y into finitely many locally closed nonsingular subsets Yα such that

f−1(Yα) → Yα is a topologically trivial fibration. The subsets Yα are called the strata

of f.

Definition 2.6. Let f :X → Y be a proper map of algebraic varieties. We say that f is

semismall if there exists a stratification Y =
⊔
Yα such that for all α,

dα ≤ 1

2
(dimX−dimYα),

where dα := dimf−1(yα) for some yα ∈ Yα. A stratum is called relevant if

dα =
1

2
(dimX−dimYα).

For semismall maps, the only supports are the relevant strata and their contributions

to the pushforward of ICX consist of nontrivial summands ICY α
(Lα), where the local

systems Lα are given by the top cohomology of the fibres and turn out to have finite

monodromy. More precisely, let Yα be a relevant stratum, y ∈ Yα, and let F1, . . . ,Fl be the

irreducible (dimYα)-dimensional components of the fibre f−1(y). The monodromy of the
Fis defines a group homomorphism ρα : π1(Yα)→Sl from the fundamental group of Yα

to the group of permutations of the F is. The representation ρα defines a local system Lα

on Yα. In this case the semisimplicity of the local system Lα is an elementary consequence

of the fact that the monodromy factors through a finite group, so by Maschke theorem
it is a direct sum of irreducible representations. As a result, the local systems Lα will be

semisimple; that is, they will be a direct sum of simple local systems. With this notation,

the statement of the decomposition theorem for semismall maps is the following. For the
proof we refer to [2], [36] and [7].

Theorem 2.1. (Decomposition theorem for semismall maps). Let f :X → Y be

a semismall map of algebraic varieties and let Λrel the set of relevant strata. For each

Yα ∈ Λrel, let Lα be the corresponding local system with finite monodromy defined above.
Then there exists a canonical isomorphism in the derived category of constructible sheaves

Rf∗ICX
∼=

⊕
Yα∈Λrel

ICY α
(Lα),

with (Lα)y =H2(dimX−dimYα)(f−1(y)) for all y ∈ Yα.
Moreover, this is an isomorphism of mixed Hodge structures.

3. Local structure of the moduli space

Consider a curve C of genus 2 and let G = GL(2,C) or SL(2,C). We define MG
Dol to be

the moduli space of G-Higgs bundles on C : for G=GL(2,C) these are just ordinary Higgs
bundles of rank 2 and degree 0, whereas for G=SL(2,C) one also asks for the determinant

to be trivial.

We shall briefly recall the construction by Simpson of these moduli spaces.
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• [39, Theorem 3.8] Fix a sufficiently large integer N and set p := 2N−2. There exists
a quasi-projective scheme QG representing the moduli functor that parametrises
the isomorphism classes of triples (V ,Φ,α) where (V ,Φ) is a semistable Higgs pair
(with detV ∼= OX , tr(Φ) = 0 when G = SL(2,C)) and α : Cp →H0(C,V ⊗O(N))
is an isomorphism of vector spaces.

• [39, Theorem 4.10] Fix x ∈C and let TG be the frame bundle at x of the universal
bundle V on Q×C restricted to x. Then G×GL(p,C) acts on QG: indeed, G acts
as automorphisms of (V ,Φ) and GL(p,C) acts on the αs. The action of GL(p,C)
on QG lifts to TG. Because this action is free and every point in TG is stable with
respect to it, one can define

RG
Dol = TG/GL(p,C),

which represents triples (V ,Φ,β) where β is an isomorphism Vx → C2.
• [39, Theorem 4.10] Every point in RG

Dol is semistable with respect to the action
of G and the closed orbits correspond to the polystable pairs (V ,Φ,β) such that

(V ,Φ) = (L,φ)⊕ (M,ψ)

with L,M ∈ Jac(C) and φ,ψ ∈H0(KC). For G=SL(2,C), the condition detV =O
yields M ∼= L−1, ψ =−φ.

Proposition 3.1. [39, Theorem 4.10]. The GIT quotient RG
Dol//G is MG

Dol.

As is well known (for example, see [39, Section 1]), the singularities of MG
Dol correspond

to strictly semistable bundles. If a Higgs bundle (V ,Φ) is strictly semistable, then there

exists a Φ-invariant line bundle L of degree 0.

Proposition 3.2. Let MG
Dol be the moduli space of G-Higgs bundles.

(i) If G=GL(2,C), then the singularities of MG
Dol are

• ΣGL := {(V ,Φ) | (V ,Φ) = (L,φ) ⊕ (M,ψ) with L,M ∈ Jac(C) and φ,ψ ∈
H0(KC)}.

• ΩGL := {(V ,Φ) | (V ,Φ) = (L,φ)⊕ (L,φ) with L ∈ Jac(C), and φ ∈H0(KC)}.
(ii) If G= SL(2,C), the singularities of MG

Dol are
• ΣSL := {(V ,Φ) | (V ,Φ) = (L,φ)⊕ (L−1,φ) with L ∈ Jac(C) and φ ∈H0(KC)}.
• ΩSL := {(V ,Φ) | (V ,Φ) = (L,0)⊕ (L,0) with L2 =O ∈ Jac(C)}.

Proof. Clearly, Higgs bundles in ΣG are semistable but not stable; thus, they lie in

the singular locus. The result follows after noticing that nontrivial extensions as Higgs

bundles do not appear in MG
Dol because their G-orbit in RG

Dol is not closed.

Observe that in both cases ΩG ⊂ ΣG. In the general case of G = GL(2,C), ΣG is
parametrised by the symmetric product Sym2(Jac(C)×H0(KC)) where Z2 acts as the

involution that switches summands. ΩG is given by the fixed points of the involution and

it is parametrised by Jac(C)×H0(KC).
In the trivial determinant case, when G= SL(2,C), ΣG ∼= (Pic0(C)×H0(KC))/Z2 and

ΩG consists again of the fixed points of the involution, which are the 16 roots of the trivial

bundle.
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3.1. Local structure of singularities

Remarkably, the singularities of MG
Dol have the same local description as the singularities

of O’Grady’s examples in [34], [35] (see also [3] and [24]). Thanks to this fact, one can

copy O’Grady’s method almost verbatim to obtain a desingularisation of MG
Dol. In this

subsection the singularities of MG
Dol and their normal cones are studied, leading to the

construction of a desingularisation and the proof of its semismallness.

Let G = SL(2,C) or GL(2,C) and let g be its Lie algebra. We shall describe the

singularities of the moduli space of Higgs bundles MG
Dol with G = GL(2,C). The trivial

determinant case of G = SL(2,C) is analogous, provided that we replace End(V ) by

End0(V ).

Let Ai denote the sheaf of C∞ i-forms on C. For a polystable Higgs pair (V ,Φ), consider
the complex

0 End(V )⊗A0 End(V )⊗A1 End(V )⊗A2 0

(1)

with differential D′′ = ∂̄+[φ,−]. Splitting in (p,q)-forms, the cohomology of this complex

is equal to the hypercohomology of the double complex

0 0 0

0 0 End(V )⊗A1,0 End(V )⊗A1,1 0

0 End(V )⊗A0 End(V )⊗A1 End(V )⊗A2 0

0 End(V )⊗A0,0 End(V )⊗A0,1 0 0

0 0 0

∂̄

D′′ D′′

∂̄

=

=

This means that the cohomology groups T i of (1) fit the long exact sequence

0 T 0 H0(End(V )) H0(End(V )⊗KC)

T 1 H1(End(V )) H1(End(V )⊗KC) T 2 0.

[Φ,−]

[Φ,−]
(2)

Remark 3.1. Observe also that, by deformation theory for Higgs bundles, the T is

parametrise extensions of Higgs bundles; that is, T i = ExtiH(V ,V ) in the category of

Higgs sheaves.1 In the trivial determinant case one has to consider traceless extensions
ExtiH(V ,V )0.

1Because we are considering extensions in the category of Higgs sheaves, it would be more
natural to denote them by Exti((V ,Φ),(V ,Φ)). However, because there is no ambiguity on the
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The following results, due to Simpson, provide a local description of MG
Dol and of the

normal cones of the singular loci in terms of extensions.

Theorem 3.3. [39, Theorem 10.4]. Consider G acting on RG
Dol and suppose that v =

(V ,φ,β)∈RG
Dol is a point in a closed orbit. Let C be the quadratic cone in T 1 defined by the

map η �→ [η,η] (where [−,−] is the graded commutator) and h⊥ be the perpendicular space
to the image of T 0 in g under the morphism H0(End(V ))→ g. Then the formal completion

(RG
Dol,(V ,Φβ))̂ is isomorphic to the formal completion (C×h⊥,0)̂. Furthermore, if U is

the normal slice at v to the G-orbit in RG
Dol, then

(U,v)̂∼= (C,0)̂.

Proposition 3.4. [39, Proposition 10.5]. Let w = (V ,Φ) be a point MG
Dol and let C

be the quadratic cone in a point (V ,Φ,β) ∈ RG
Dol in the G-orbit of w. Then the formal

completion of MG
Dol at w is isomorphic to the formal completion of the GIT quotient

C//H of the cone by the stabiliser of (V ,Φ,β).

Observe that because there is a local isomorphism EndV ∼= g, an element of T 1 can

be thought of as a matrix in g with coefficient in H1(C) ∼= H0(KC)⊕H1(O). In this

interpretation, the bracket in Theorem 3.3 is the Lie bracket of g coupled with the perfect
pairing

H0(KC)×H1(O)→H1(KC).

3.1.1. Interpretation with extensions. It is also possible to describe the spaces

T i and the graded commutator more explicitly: consider the Higgs bundle (V ,Φ) as an

extension

0→ (L,φ)→ (V ,Φ)→ (M,ψ)→ 0.

The deformation theory of the above Higgs bundle is controlled by the hypercohomology

of the complex

C• : M−1L
θ−→ M−1L⊗KC

f �−→ φf −fψ

and there is a long exact sequence

0 Ext0H(L,M) H0(M−1L) H0(M−1LKC)

Ext1H(L,M) H1(M−1L) H1(M−1LKC) Ext2H(L,M) 0

θ

θ

(3)

where ExtiH(L,M) :=Hi(C•) are extensions of (M,ψ) with (L,φ) as Higgs sheaves.

Observe that

ExtiH(V ,V ) = ExtiH(L,L)⊕ExtiH(L,M)⊕ExtiH(M,L)⊕ExtiH(M,M). (4)

Higgs fields involved, in order to lighten the notation we decided just to use the pedex H to
distinguish extensions as Higgs bundles from those as vector bundles.
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When considering bundles with trivial determinant and traceless endomorphisms, M =
L−1 and ψ =−φ. Moreover,

ExtiH(V ,V )0 = ExtiH(L,L)⊕ExtiH(L,L−1)⊕ExtiH(L−1,L).2

On2 Ext groups there is a natural cup product, called the Yoneda product,

Y on : Ext1H(V ,V )×Ext1H(V ,V ) → Ext2H(V ,V )0

(α,β) �→ α∪β

and its associated Yoneda square

Υ : Ext1H(V ,V )→ Ext2H(V ,V )0, α �→ α∪α.

Thinking of elements in Ext1H(V ,V ) locally as matrices of 1-forms in g, such a product
coincides with the graded commutator in Theorem 3.3. This is precisely the same situation

described in [34, Section 1.3]: in fact, by means of decomposition (4), the Yoneda product

reads as

Ext1H(L,L)⊕Ext1H(M,L)⊕Ext1H(L,M)⊕Ext1(M,M)
Υ−→ Ext2H(L,L)⊕Ext2H(M,L)⊕Ext2H(L,M)

(a,b,c,d) 	→ (b∪ c,a∪ b+ b∪d,c∪a+d∪ c).

3.2. Normal cones of ΣG and ΩG

3.2.1. Cones of elements in ΣG.

Proposition 3.5. Let (V ,Φ) be an element of ΣGL \ΩGL. The spaces ExtiH(V ,V ) are

Ext0H(V ,V ) = Ext0H(L,L)⊕Ext0H(M,M)∼= C2

Ext1H(V ,V ) = Ext1H(L,L)⊕Ext1H(M,L)⊕Ext1H(L,M)⊕Ext1(M,M)∼= C12

Ext2H(V ,V ) = Ext2H(L,L)⊕Ext2H(M,M)∼= C2

.

Moreover, the normal cone to the orbit of ΣGL in RGL
Dol is Υ−1(0) and its fibre in v =

(V ,Φ,β) ∈RGL
Dol is

(CΣRGL
Dol)v

∼= {(b,c) ∈ Ext1H(L−1,L)⊕Ext1H(L,L−1) | b∪ c= 0}.

At the level of MGL
Dol, the same holds up to quotient by the stabiliser C∗ of points in ΣGL.

Proof. We first compute ExtiH(L,L). One has

0 Ext0H(L,L) H0(O) H0(KC)

Ext1H(L,L) H1(O) H1(KC) Ext2H(L,L) 0,

θ

θ

where the map θ sends an element f ∈H0(O) to fφ−φf . Because φ is C∞-linear, every f ∈
H0(O) commutes with it; thus, θ is the 0 map and Ext0H(L,L)∼=H0(O)∼= C. Moreover,

Ext0H(L,L)∼= Ext2H(L,L) by Serre duality3 and Ext1H(L,L)∼=H0(KC)⊕H1(O). Thus,

2Here the terms ExtiH(L−1,L−1) are not considered because of the traceless condition.
3We mean Serre duality for Higgs bundles.
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Ext0H(L,L)∼= C, Ext1H(L,L)∼= C4, Ext0H(L,L)∼= C.

We now compute ExtiH(L,M). One has

0 Ext0H(L,M) H0(LM−1) H0(LM−1KC)

Ext1H(L,M) H1(LM−1) H1(LM−1KC) Ext2H(L,M) 0

θ

θ

Although (L,φ) and (M,ψ) are not isomorphic as Higgs bundles, L and M might be

as vector bundles. However, one can see that this does not change the nature of the
description of the normal cone. Suppose first that L �∼= M : then LM−1 is a nontrivial

degree 0 line bundle, so it has no nonzero global sections and Ext0H(L,M) = Ext2H(L,M)

= 0. Also, Ext1H(L,M)∼=H0(LM−1KC)⊕H1(LM−1)∼= C2.

If L∼=M , then H0(LM−1)∼=H0(O) ∼= C and the map θ sends f to φf −fψ. Because
φ �= ψ, there are no nonzero elements in H0(O) that commute with the Higgs fields,

Ext0H(L,M) ∼= Ext2H(L,M) = 0 as before. Then the alternate sum of the dimensions of

vector spaces in the sequence yields Ext1H(L,M)∼= C2 in both cases. As a result,

Ext0H(L,M) = Ext2H(L,M) = 0, Ext1H(L,M)∼= C2.

Clearly, because (L,φ) and (M,ψ) are switched by the involution, there are isomor-

phisms ExtiH(M,L)∼= ExtiH(L,M) and ExtiH(M,M)∼= ExtiH(L,L). Then

T 0 = Ext0H(L,L)⊕Ext0H(M,M) = C2;

T 1 = Ext1H(L,L)⊕Ext1H(M,L)⊕Ext1H(L,M)⊕Ext1H(M,M)∼= C12;

T 2 = Ext2H(L,L)⊕Ext2H(M,M)∼= C2.

This completes the first part of the proof.

To prove the second statement one needs to describe the zero locus of Yoneda square
and the proof of [34, Proposition 1.4.1] applies mutatis mutandis. For ease of the reader,

we sketch it in terms of Higgs extensions.

Consider the map

Υ : Ext1H(M,L)⊕Ext1H(L,M) −→ Ext2H(L,L)∼= C

(b,c) �−→ b∪ c.

Observe that, because Ext2H(L,M) ∼= Ext2H(M,L) = 0, Υ is the map induced by Υ on
Ext1H(V ,V )/(Ext1(L,L)⊕Ext1H(M,M)).

As a consequence of Serre duality, Υ is a perfect pairing, so Υ
−1

(0) is a smooth quadric

surface in C4.

Now, the isomorphism CvRGL
Dol

∼= Υ−1(0) is a general fact of deformation theory. One
can use Luna’s slice theorem for determining the fibre: let U be the normal slice to RGL

Dol

in v and W := U ∩GLΣ; then

(CΣRDol)v ∼= (CWU)v.

Because TvW ∼= Ext1H(L,L)⊕Ext1(M,M) (cf. [34, Claim 1.4.12]) and CvU is the cone

over TvW with fibre (CWU)v, the fibre of the cone is Υ
−1

(0).
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The description of the cone in RSL
Dol is identical, provided that one replaces (M,ψ) by

(L−1,−ψ) and takes traceless extensions, so we just state the result.

Proposition 3.6. Let (V ,Φ) be an element of ΣSL. The spaces ExtiH(V ,V )0 are

Ext0H(V ,V )0 = Ext0H(L,L)∼= C;

Ext1H(V ,V )0 = Ext1H(L,L)⊕Ext1H(L−1,L)⊕Ext1H(L,L−1)∼= C8;

Ext2H(V ,V )0 = Ext2H(L,L)∼= C.

Moreover, the normal cone to the orbit of ΣSL in RSL
Dol is Υ−1(0) and its fibre in v =

(V ,Φ,β) ∈RSL
Dol is

(CΣRSL
Dol)v

∼= {(b,c) ∈ Ext1H(L−1,L)⊕Ext1H(L,L−1) | b∪ c= 0}.

At the level of MSL
Dol the same holds up to quotient by the stabiliser C∗ of points in ΣSL.

3.2.2. Cone of elements in ΩG. Let v = (V ,Φ) be an element of ΩG. Then

(V ,Φ) = (L,φ)⊕ (L,φ)

and the bundle End(V ) is holomorphically trivial. One has that H0(End(V ))∼= g and a

generic element of this space can be thought of as a matrix(
a b

c d

)

with a,b,c,d ∈ H0(O). We shall compute the ExtiHs and the quadratic cone defined by

the graded commutator. Notice that the second line of the long exact sequence (2) is the
Serre dual of the first one. Now, T 0 is given by the elements in g that commute with the

Higgs field, which is diagonal, and then

Ext0H(V ,V )∼= Ext2H(V ,V )∼= g;

that is, the first map and the last map of the sequence are isomorphisms.
To compute Ext1H(V ,V ), consider the central part of the sequence (2), which in this

case is

0 H0(End(V )⊗KC) T 1 H1(End(V )) 0.

Note that H0(End(V )⊗KC)∼=H0(O⊕dimg⊗KC)∼=H0(KC)⊗g. It follows from Serre

duality that H1(End(V ))∼=H1(O)⊗g, so Ext1H(V ,V ) has dimension 4dimg and

Ext1H(V ,V )∼= (H0(KC)⊕H1(O))⊗g∼= Ext1H(L,L)⊗g.

Consider now the composition of the Yoneda product on Ext1H(L,L) with the isomorphism
Ext2H(V ,V )0 ∼= Ext2H(L,L)∼= C given by integration:

ω : Ext1H(L,L)×Ext1H(L,L)→ Ext2H(L,L)0 ∼= C. (5)
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This defines a skew-symmetric bilinear form ω that is nondegenerate by Serre duality.
Set Λ1 := Ext1H(L,L) and

Homω(sl(2),Λ1) := {f : sl(2)→ Λ1 | f∗ω = 0}.

There is a natural action of the automorphism group G of (V ,Φ) on this space given by the

composition with the adjoint representation on sl(2). Note that this action is meaningful

also when G=GL(2,C): indeed, because the action of GL(2,C) factors through PGL(2,C),
the action on sl(2) by adjoint representation is well defined.

Remark 3.2. Observe that Homω(sl(2),Λ1) is precisely the set of those f ∈
Hom(sl(2),Λ1) whose image is an isotropic subspace of Λ1 with respect to the symplectic
form ω.

Proposition 3.7. Let v = (V ,Φ) ∈ ΩG. Then the normal cone to its orbit in RG
Dol is

Υ−1(0) and there exist a G-equivariant isomorphism

(CΩR
RG

Dol)v
∼=Homω(sl(2),Λ1).

At the level of MG
Dol, the same holds up to quotient by the stabiliser G of points in Ω.

Proof. Again, the proof is similar to that of [34, Proposition 1.5.1]. We restate the idea
in terms of Higgs extensions. As noticed in the previous paragraph, there are natural

isomorphisms

Ext1H(V ,V ) = Λ1⊗g, Ext2H(V ,V )0 ∼= sl(2)

and the Yoneda product on Ext1 is the composition of the form ω on Λ1 with the bracket

of g. Hence, the Yoneda square Υ : Λ1⊗g→ sl(2) reads as

Υ(
∑
i

λi⊗mi) =
∑
i,j

ω(λi,λj)[mi,mj ].

Now if g= gl(2), then

Λ1⊗gl(2)∼= (Λ1⊗sl(2))⊕ (Λ1⊗CIdV ).

Let Υ := Υ|Λ1⊗CIdV
. Thanks to the self-duality of sl(2) as an algebra and to the

identifications

sl(2)⊗Λ1 ∼=Hom(sl(2),Λ1), sl(2)∼=
2∧
sl(2),

there is a well-defined map

Υ : Hom(sl(2),Λ1) →
∧2

sl(2)

f �→ 2f∗ω

and Υ
−1

(0) =Homω(sl(2),Λ1).

As before, the isomorphism CvRG
Dol

∼= Υ−1(0) is a general fact of deformation theory.

The equality at the level of fibres is a consequence of Luna’s slice theorem: let U be the
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normal slice to RGL
Dol in v and W := U ∩GLΩGL. Then

(CΩRGL
Dol)v

∼= (CWU)v.

Because TvW ∼= Ext1H(L,L) (cf. [34, Claim 1.5.14]) and CvU is the cone over TvW with

fibre (CWU)v, (CWU)v ∼=Υ
−1

(0).

If g∼= sl(2), then Υ =Υ and CvRSL
Dol

∼= (CΩRSL
Dol)v.

Remark 3.3. Even though for simplicity we consider just the case of genus 2, all of the

results in this section hold for arbitrary genus g ≥ 2, provided that we change dimensions

of Ext groups according to the genus.

4. Construction of the desingularisation and proof of semismallness

We now briefly recall the construction of the desingularisation following O’Grady’s

strategy. This heavily relies on the results of Lehn and Sorger [28]. The same description

has been used by Bellamy and Schleder in [3] to construct desingularisations of the
character varieties of SL(2,C) and GL(2,C).

4.1. Local model for the desingularisation

Let (Λ,ω) be a symplectic 4-dimensional vector space and let sp(Λ) be the symplectic Lie

algebra of (Λ,ω); that is, the Lie algebra of the Lie group of automorphisms of Λ that

preserve the symplectic form ω. Let

Z :=
{
A ∈ sp(Λ) |A2 = 0

}
be the subvariety of square zero matrices in Z. Observe that this implies that any A ∈ Z

has rank ≤ 2.

By [28, Théorém 4.5], if v ∈ ΩSL, there exists an Euclidean neighbourhood of v in
MSL

Dol biholomorphic to a neighbourhood of the origin in Z. The same argument shows

that there exists a local analytic isomorphism between MGL
Dol and Z×C4. Hence, the local

geometry of a desingularisation M̃G
Dol is encoded in the local geometry of a symplectic

desingularisation of Z.

Let Σ be the singular locus of Z and Ω be the singular locus of Σ. Observe that

dimZ = 6, and dimΣ = 4 and dimΩ = 0. In fact,

Σ = {A ∈ Z | rankA≤ 1}, Ω= {0}.

Let G ⊂Gr(2,Λ) be the Lagrangian Grassmannian of 2-dimensional ω-isotropic subspaces

of Λ. Notice that G is a smooth irreducible 3-dimensional quadric and set

Z̃ := {(A,U) ∈ Z×G |A(U) = 0} .

The restriction πG of the second projection of Z ×G to Z̃ makes it the total space of

a 3-dimensional vector bundle, the cotangent bundle of G. In particular, Z̃ is a smooth
symplectic variety and the restriction of the first projection of Z×G,

f : Z̃ → Z,
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is an isomorphism on the locus of rank 2 matrices of Z ; thus, it is a resolution of
singularities.

The fibre of the desingularisation over a point A ∈ Σ is a P1 corresponding to the 2-

dimensional Lagrangian subspaces U contained in the 3-dimensional kernel of A, and the
central fibre over 0 = Ω is the whole G. Because Z has a A1 singularity along Σ\Ω and

G has dimension 3, it follows that f : Z̃ → Z is a symplectic resolution.

The following theorem, due to Lehn and Sorger ([28]; see also [3, Theorem 8.11]), gives

an intrinsic reformulation of the symplectic desingularisation f : Z̃ → Z.

Theorem 4.1. Let v = (V ,Φ) ∈ ΩG be a point in the singular locus of MG
Dol. Then

(1) ([28, Theorem 4.5]) There exist local analytic isomorphisms

(Z,0)∼= (MSL
Dol,v) (Z×C4,0)∼= (MGL

Dol,v).

(2) ([28, Theorem 3.1]) The resolution f : Z̃ → Z defined above coincides with the blow

up of Z along the singular locus Σ.

Given a point v ∈ΩG, the local isomorphism is given by taking Λ = Λ1 and ω to be the
symplectic form in (5).

4.2. Global description of the desingularisation and proof of semismallness

Observe that because the blowup is a local construction, by blowing up MG
Dol along ΣG

one obtains a symplectic desingularisation π̃G : M̃G
Dol →MG

Dol of MG
Dol.

Proposition 4.2. Let π̃G : M̃G
Dol →MG

Dol be the symplectic desingularisation obtained
by blowing up MG

Dol along ΣG. The fibres of the desingularisation are as follows:

(1) Over smooth locus of stable Higgs bundles, MG,s
Dol, π̃

G is an isomorphism.

(2) Let v = (L,φ)⊕ (M,ψ) ∈ ΣG \ΩG. Then

(π̃G)−1(v)∼= P1 ∼= P
({

(b,c) ∈ Ext1(M,L)⊕Ext1(L,M) | b∪ c= 0
}
//C∗) .

(3) Let v = (L,φ)⊕ (L,φ) ∈ ΩG. Then (π̃G)−1(v) ∼= G, where G is the Lagrangian

Grassmannian of isotropic 2-dimensional subspaces in the symplectic vector space

(Ext1H(L,L),ω).

By [23, Proposition 1.2], any symplectic resolution of singularities is semismall.

However, one can also check semismallness by direct computation.

Proposition 4.3. Consider π̃G : M̃G
Dol →MDol. Then π̃G is semismall.

Proof. Recall that a proper map f :X → Y of algebraic varieties is semismall if and only

if

k ≤ 1

2
(dimX−dimYk) for any k such that Yk �= ∅, (6)

where Yk = {y ∈ Y | dimf−1(y) = k}. First of all, notice that π̃G is a proper birational

map and set

MG
Dol,k :=

{
v ∈MG

Dol | dim(π̃G)−1(v) = k
}
.
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We stratify MG
Dol as

MG
Dol =MG,s

Dol�ΣG \ΩG�ΩG

and show that MG,s
Dol = MG

Dol,0, Σ
G = MG

Dol,1 and ΩG = MG
Dol,3. We distinguish two

cases, depending on the group G.

• If G= SL(2,C), MSL
Dol is a quasi-projective variety of dimension 6. By definition,

ΣSL \ΩSL = {(V ,Φ) | (V ,Φ) = (L,φ)⊕ (L−1,−φ), with (L,φ) �∼= (L−1,−φ)}

is isomorphic to
[
(Jac(C)×H0(KC))\ (16 points)

]
/Z2. Jac(C) is a 2-dimensional

torus and H0(KC)∼=C2; therefore, ΣSL \ΩGL has dimension 4. The singular locus

ΩSL = {(V ,Φ) | (V ,Φ) = (L,0)⊕ (L,0) with L∼= L−1}

parametrising the fixed points of the involution (L,φ) �→ (L−1,−φ) consists of just

16 points, corresponding to the roots of the trivial bundle on C. On MSL,s
Dol , π̃

SL

is an isomorphism and every point has just one pre-image; thus, MSL,s
Dol =MSL

Dol,0.

Thus, it satisfies (6). Let now v ∈ ΣSL \ΩSL. By Proposition (4.2), the fibre is P1.
Then ΣSL corresponds to the stratum MSL

Dol,1 and satisfies (6).

The fibre G over each one of the 16 points of ΩSL is 3-dimensional, so ΩSL =
MSL

Dol,3 and (6) is satisfied as well.

• If G = GL(2,C), MGL
Dol is a quasi-projective variety of dimension 10. Note that

ΣGL \ΩGL = {(V ,Φ) | (V ,Φ) = (L,φ)⊕ (M,ψ), with (L,φ) �∼= (M,ψ)}

is parametrised by
[
(Jac(C)×H0(KC))

(2) \ (Jac(C)×H0(KC))
]
/Z2. The sym-

metric product Sym2(Jac(C)×H0(KC)) has dimension 8. The singular locus

ΩGL = {(V ,Φ) | (V ,Φ) = (L,φ)⊕ (L,φ) with L ∈ Jac(C),φ ∈H0(KC)}

is isomorphic to Jac(C)×H0(KC) so it has dimension 4. Proceeding as before,

one shows that MGL,s
Dol =MGL

Dol,0, Σ
GL \ΩGL =MGL

Dol,1 and ΩGL =MGL
Dol,3.

Remark 4.1. Observe that in both cases all of the strata satisfy the equality

k =
1

2
(dimM̃G

Dol−MG
Dol,k);

that is, they are relevant strata in the decomposition theorem for π̃G.

4.3. Decomposition theorem for π̃G

We have constructed a semismall desingularisation M̃G
Dol

π̃G

−−→MG
Dol. As seen in the proof

of Proposition (4.3), all of the strata of the map π̃G : M̃G
Dol → MG

Dol are relevant. In

particular,

MG,s
Dol =MG

Dol,0, ΣG =MG
Dol,1, ΩG =MG

Dol,3.
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Stratify M̃G
Dol as follows:

M̃G
Dol = (π̃G)−1(MG,s

Dol)� (Σ̃G \ Ω̃G)� Ω̃G,

where Σ̃G := (π̃G)−1(Σ) and Ω̃G := (π̃G)−1(ΩG).

By the decomposition theorem, one obtains the splitting

ICM̃G
Dol

= ICMG
Dol

(LMG
Dol

)⊕ ICΣG(LΣG)⊕ ICΩG(LΩG). (7)

Notice that, up to dimensional shifts, the stalks of the local systems LΣG and LΩG

in a generic point of the corresponding stratum are isomorphic to the top cohomology

groups of the fibres, which are, respectively, H2(P1) and H6(G). Moreover, because the
fibres of π̃G over ΣG and ΩG are irreducible, the monodromy of LΣG and LΩG is trivial.

Finally, because ΩG is nonsingular and ΣG has finite quotient singularities, intersection

cohomology and cohomology coincide. One has

ICMDol
(LMDol

)|Ms
Dol

=Q[dimMG
Dol], ICΣ(LΣ)∼=Q[dimΣG](−1),

ICΩ(LΩ)∼=Q[dimΩG](−3),

where the Tate shifts (−1) and (−3) correspond to the Hodge structures Q(−1) of H2(P1)
and Q(−3) of H6(G).
Taking hypercohomology on both sides of (7), one has

H∗(M̃G
Dol) = IH∗(MG

Dol)⊕H∗−2(ΣG)(−1)⊕H∗−6(ΩG)(−3). (8)

5. Purity of the Hodge structure

The aim of this section is to show that, although M̃G
Dol is noncompact, the Hodge

structure on its cohomology is pure; that is, Hk(M̃G
Dol) has weight k for any k =

0. . . 2dimM̃G
Dol.

Recall that there exists the natural C∗ action on MG
Dol by scalar multiplication on the

Higgs field Φ. The Hitchin map

χ :MG
Dol → A=H0(KC)⊕H0(K2

C)

is equivariant with respect to this action if we let C∗ act on H0(C,Ki
C) with weight i.

The following localisation result appears in several variants (e.g., [12, Lemma 6.5] or

[9, Lemma 4.2]).

Lemma 5.1. Let ρ : C∗ ×An → An be a linear action on an affine space such that all
of the weights of the action are positive. Denote by s0 : SpecC→ An the inclusion of the

origin in An and by p :An → SpecC the projection. Then for any C∗-equivariant complex

K of sheaves on An one has

Rp∗K = s∗0K and Rp!K = s!0K.

As a corollary, one has the following result.

Proposition 5.2. Let X be a smooth variety with an action of C∗. Assume that f :X →
An is a proper map, equivariant with respect to a linear action of C∗ on the affine space
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An, such that all of the weights of this action are positive. Let X0 := f−1(0) be the fibre

of f over 0 = SpecC⊂ An. Then there is an isomorphism of mixed Hodge structures

H∗(X,Q)∼=H∗(X0,Q).

Proof. Because f is C∗-equivariant, we can apply Lemma 5.1 to K =Rf∗Q and by base
change theorem for proper maps we get

H∗(X,Q)∼=H∗(An,Rf∗Q)∼=H∗(SpecC,s∗0Rf∗Q)∼=H∗(X0,Q).

For smooth moduli spaces MDol(d,n) of Higgs bundles of coprime rank and degree, the

variety X0 := χ−1(0) is the nilpotent cone of χ and the previous proposition yields the

purity of the Hodge structure on cohomology groups of those moduli spaces. In fact, on the
one hand, MDol(d,n) is smooth, so by the weight restrictions in Remark 2.2 the weights

of Hk(MDol(d,n)) are ≥ k. On the other hand, Proposition 5.2 gives an isomorphism of

mixed Hodge structures between the cohomology of MDol(d,n) and that of the nilpotent

cone, which is compact; thus, the weights of Hk(MDol(d,n)) are ≤ k. Combining these
two conditions, one has that Hk(MDol(d,n)) has weight k.

Let χ̃ : M̃G
Dol → A be the composition of χ with π̃G. Suppose that one can extend the

C∗ action on MG
Dol to M̃G

Dol in a way such that χ̃ is equivariant. Because χ̃ is a proper
map, the variety χ̃−1(0) is compact. As a result, the above weight trick applies to M̃G

Dol

as well proving the following result.

Theorem 5.3. Let M̃G
Dol be the semismall desingularisation of MG

Dol constructed in
Section 4. Then the Hodge structure on H∗(M̃G

Dol) is pure.

Moreover, as a consequence of the decomposition theorem, the Hodge structure on

IH∗(MG
Dol) is a sub-Hodge structure of that on H∗(M̃G

Dol), so the former is pure
whenever the latter is.

Corollary 5.4. The Hodge structure on IH∗(MG
Dol) is pure.

The above considerations reduce the proof of Theorem 5.3 to showing the following

lemma.

Lemma 5.5. There exists a C∗ action on M̃G
Dol extending the natural C∗ action on

MG
Dol with respect to which the map χ̃ is equivariant.

Proof. Because π̃G : M̃G
Dol →MG

Dol is an isomorphism on the smooth locus, to prove the
lemma one needs to extend the C∗ action to the fibres of π̃G over the singular loci.

Given a point v = (V ,Φ) ∈MG
Dol, TvMG

Dol
∼= T 1//Stab(v), where T 1 = Ext1H(V ,V ). By

construction, the fibre of π̃G over ΣG(respectively ΩG) is the fibre of the normal cone
CΣMG

Dol to ΣG(respectively ΩG) in MG
Dol. Recall that by Proposition 3.5,

(CΣMG
Dol)v

∼=Υ
−1

(0)//Stab(v)
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for all v ∈ΣG(respectively ΩG) and that Υ
−1

(0)⊂ T 1. As a consequence, to describe the

action on the fibres one first needs to describe it over T 1. Consider the diagram

0 T 0 H0(End(V )) H0(End(V )⊗KC)

T 1 H1(End(V )) H1(End(V )⊗KC) T 2 0.

[Φ,−]

α
β [Φ,−]

An element λ ∈C∗ acts on the diagram by scalar multiplication on the Higgs field in the
commutator. Because T 1 ∼= Imα⊕ cokerβ, λ ∈ C∗ acts on T 1 as scalar multiplication on

Imα and as the identity on cokerβ. Because both ΣG and ΩG are C∗-invariant, one can

easily show that Υ
−1

(0) is invariant under the C∗ action on T 1. Moreover, such action

commutes with that of the stabiliser, so one has a well-defined action on the fibres of π̃G.

Observe that by construction the map χ̃ is C∗-equivariant.

Purity of the Hodge structure on cohomology groups yields, by Poincaré duality, purity
of Hodge structure on cohomology groups with compact supports. The following lemma

implies that intersection Betti numbers of MG
Dol and Betti numbers of M̃G

Dol can be

computed just by knowing E -polynomials.

Lemma 5.6. Let X be a complex algebraic variety, possibly singular, and let

IE(X) =
∑
p,q

αp,qupvq

denote its intersection E-polynomial. If IH∗(X) admits a pure Hodge structure, then

ibk(X) := dimIHk(X) =
∑

p+q=2dimX−k

αp,q

for any k = 0. . . 2dimX.

Remark 5.1. When X is nonsingular, IH∗(X) =H∗(X), so the formula in Lemma 5.6

holds for E -polynomial and usual Betti numbers.

Proof of Lemma 5.6. If IH∗(X) admits a pure Hodge structure then, IHk(X) has

weight k for any k = 0. . . 2dimX. Recall that intersection cohomology groups satisfy

Poincaré-Verdier duality

IHk(X)∼= IH2dimX−k
c (X)

and that this isomorphism maps classes of type (p,q) in classes of type (dimX−p, dimX−
q). This concludes the proof.

5.1. Computation of the intersection E -polynomial

The aim of the next two sections is to compute the intersection E -polynomial IE(MG
Dol)

for G = SL(2,C) and G = GL(2,C); as a consequence of Lemma 5.6, they will give the

intersection Betti numbers of the corresponding moduli spaces of Higgs bundles. Before

proceeding with computations, we shall describe the general strategy.
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Computing hypercohomology with compact support on both sides of (7), the splitting

in the decomposition theorem becomes

H∗
c (M̃G

Dol) = IH∗
c (MG

Dol)⊕H∗−2
c (ΣG)(−1)⊕H∗−6

c (ΩG)(−3).

This equality holds also at the level of E -polynomials:

E(M̃G
Dol) = IE(MG

Dol)+Etop(Σ̃G)+Etop(Ω̃G), (9)

where Etop(Σ̃G) = E(ΣG×H2(P1)) and Etop(Ω̃G) = E(ΩG×H6(G)).
By additivity of E -polynomials, E(M̃G

Dol) is given by

E(M̃G
Dol) = E(MG,s

Dol)+E(Σ̃G \ Ω̃G)+E(Ω̃G). (10)

In order to obtain IE(MG
Dol), by (9) it is sufficient to subtract from E(M̃G

Dol) the

contributions Etop coming from the top cohomology of the fibres over the singular loci.

6. Intersection cohomology of MSL
Dol

Consider the semismall desingularisation M̃SL
Dol

π̃SL

−−→ MSL
Dol of the moduli space MSL

Dol

of Higgs bundles of rank 2, degree 0 and trivial determinant over C. The aim of this

subsection is to prove the following theorem.

Theorem 6.1. (Intersection cohomology ofMSL
Dol). The intersection Poincaré poly-

nomial of MSL
Dol is

IPt(MSL
Dol) = 1+ t2+17t4+17t6.

Moreover, the Hodge diamond is

H0 (0,0)

H2 (1,1)

H4 17(2,2)

H6 17(3,3)

The proof of the theorem consists of computing the intersection E -polynomial

IE(MSL
Dol) and applying Lemma 5.6 to get intersection Betti numbers. By (9) one needs

first to compute E(M̃SL
Dol) using the stratification in (10).

6.1. Cohomology of MSL,s
Dol

Consider the smooth part MSL,s
Dol of the moduli space MSL

Dol, which parametrises stable
pairs (V ,Φ).

Proposition 6.2. Let MSL,s
Dol ⊂ MSL

Dol be the locus of stable Higgs pairs. Then the E-

polynomial of MSL,s
Dol is

E(MSL,s
Dol ) = u6v6+u5v5+16u4v4+13u3v3−u2v4−u4v2−17u2v2.
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It is well known that MSL,s
Dol contains the cotangent bundle of the locus S of stable

vector bundles with trivial determinant as an open dense subset, but there are several

stable Higgs bundles whose underlying vector bundle is not stable. This is due to the fact
that not all vector subbundles of V are Higgs subbundles: for example, one may consider

the bundle

V =K−1
C ⊕KC,

where KC denotes the canonical bundle on X. This vector bundle is not stable because

the subbundle KC has slope greater than the slope of V ; however, KC is not a Higgs

subbundle because, in order for it to be Φ invariant, Hom(KC,K
−1
C )∼=K−2

C should have

global sections, which is not the case because it has negative degree.
To determine the E -polynomial of MSL,s

Dol , one constructs a suitable stratification,

computes E -polynomials of all strata and sums them. In particular, because it is of

its own interest, we also compute Betti numbers of the strata by systematic employment
of the following well-known result.

Proposition 6.3. (Addivity property of compact support cohomology). Let Y be

a quasi-projective variety. Let Z be a closed subset of Y and call U its complement. Then,

given the inclusions U
� � j �� Y Z�

�i�� , there is a long exact sequence in cohomology

· · · Hi
c(U) Hi

c(X) Hi
c(Z) · · ·

j! i!

We stratify the locus of stable Higgs pairs with respect to the stability of the underlying
vector bundle:

• pairs (V ,Φ) with V stable vector bundle;
• pairs (V ,Φ) with V strictly semistable vector bundle;
• pairs (V ,Φ) with V unstable vector bundle.

6.2. The stable case

We shall parametrise all stable Higgs bundles (V ,Φ) where V is a stable vector bundle.

Proposition 6.4. Let S be the locus of stable vector bundles with trivial determinant. The

locus of stable Higgs pairs (V ,Φ) with V ∈ S is isomorphic to T ∗S and its E- polynomial
is

E(T ∗S)(u,v) = u6v6−u3v5−u5v3−3u4v4.

Proof. Clearly, if V is a stable vector bundle, then (V ,Φ) is a stable Higgs pair. As

a consequence, the locus of stable Higgs pairs with stable underlying vector bundle is
isomorphic to T ∗S. Narasimhan and Ramanan [32] proved that the moduli space of

semistable vector bundles with trivial determinant on a nonsingular projective curve C

of genus 2 is isomorphic to P3. A semistable vector bundle V is nonstable if and only if
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it is of the form

V = L⊕L−1, L ∈ Jac(C);

therefore, strictly semistable vector bundles are parametrised by K := Jac(C)/Z2, where
Z2 acts as the involution L �→ L−1. The variety K is a compact Kummer surface with 16

singularities, corresponding to the fixed points of the involution, whose desingularisation

is a K3 surface obtained by blowing up K in the singular points. As a result, the locus S
of stable bundles is the complement of K inside P3.

Observe that the cohomology of K is the Z2-invariant part of the cohomology of Jac(C).

The cohomology of the Jacobian is generated by H1(Jac(C)) and the Betti numbers are

b0 = 1 b1 = 4 b2 = 6 b3 = 4 b4 = 1.

The action of Z2 on the cohomology sends every generator γ of H1 in −γ; thus, the even
cohomology groups are all Z2-invariant, whereas the odd ones are never. As a result, the

Betti numbers of K are

b0 = 1 b1 = 0 b2 = 6 b3 = 0 b4 = 1.

Alternatively, one can notice that the cohomology of K differs from that of its

desingularisation just in the H2 part, which has in addition the contribution of the 16
exceptional divisors isomorphic to P1, and the Betti numbers of a K3 surface are

b0 = 1 b1 = 0 b2 = 22 b3 = 0 b4 = 1.

Observe that because the Hodge structure on the cohomology of Jac(C) is pure, so

is the cohomology of K. In particular, H0(K) has weight 0, H2(K) has weight 2 and

types 4(1,1)+ (2,0)+ (0,2) and H4(K) have weight 4 of type (2,2). Consider now the

inclusions S �
� j �� P3 J� �i�� . Because both P3 and K are compact, we have the long

exact sequence:

· · · Hk
c (S) Hk(P3) Hk(K) · · ·

j! i!

which splits in the following sequences:

0 H0
c (S) C C H1

c (S) 0;
j! i! (11)

0 H2
c (S) C C6 H3

c (S) 0;
j! i! (12)

0; H4
c (S) C C H5

c (S) 0
j! i! (13)

0 H6
c (S) C 0. (14)
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First consider (11): the map i! = i∗ is a restriction to a hyperplane sections; therefore,
it is an isomorphism by Lefschetz hyperplane theorem and H0

c (S) =H1
c (S) = 0.

For (12), i! is the restriction of the fundamental class of P1 inside P2, which remains

nonzero when intersecting it generically with K, so i! is an injection. One has H2
c (S) = 0

and H3
c (S) = C5. A similar argument shows that, in (13), i! is an isomorphism and that

H4
c (S) =H5

c (S) = 0.

Clearly, (14) shows that H6
c (S)∼= C. By Poincaré duality, the Betti numbers are

b0 = 1 b1 = 0 b2 = 0 b3 = 5 b4 = 0 b5 = 0 b6 = 0.

Because T ∗S is a vector bundle over S, it inherits the cohomology of its base space, so

the compact support cohomology groups of T ∗S are

H9
c (T

∗S) = 5 of types (3,5)+(5,3)+3(4,4)

H12
c (T ∗S) = 1 of type (6,6)

Hi
c(T

∗S) = 0 otherwise.

As a result, the E -polynomial of Higgs bundles with stable underlying vector bundle is

E(T ∗S)(u,v) = u6v6−u3v5−u5v3−3u4v4.

6.3. Strictly semistable case

Suppose that V is a strictly semistable vector bundle. We would like to investigate when V

occurs in a stable Higgs pair (V ,Φ). Again, one has to distinguish different cases:

(i) V = L⊕L−1 where L ∈ Jac(C) and L �∼= L−1.

(ii) V is a nontrivial extension 0 �� L �� V �� L−1 �� 0 with L �∼= L−1.

(iii) V = L⊕L where L ∈ Jac(C) and L∼= L−1.

(iv) V is a nontrivial extension 0 �� L �� V �� L �� 0 with L∼= L−1.

6.3.1. Type (i). We shall determine stable Higgs pairs having underlying vector bundle

of V = L⊕L−1 with L ∈ Jac(C) such that L �∼= L−1. Vector bundles of this form are
parametrised by K= Jac(C)/Z2. We denote by K0 locus in K fixed by the involution and

by K0 :=K−K0 its complement. Then the locus of stable Higgs bundles with underlying

vector bundle of type (i) is a fibre bundle over K0.

Proposition 6.5. Let S1 be the locus of stable Higgs bundles with underlying vector

bundle of type (i). Then S1 is a (C2×C∗)-bundle over K0 and its E-polynomial is

E(S1)(u,v) = u5v5+u3v5+u5v3+3u4v4−19u3v3−u2v4−u4v2+15u2v2.

Proof. Consider V = L⊕L−1 with L ∈ Jac(C) such that L �∼= L−1. We have that

H0(End0(V )⊗KC) =H0(KC)⊕H0(L2KC)⊕H0(L−2KC);
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thus, a Higgs field Φ ∈H0(End0(V )⊗KC) will be of the form

Φ =

(
a b

c −a

)

with a ∈H0(KC), b ∈H0(L2KC), c ∈H0(L−2KC). A pair (V ,Φ) is stable if and only if
both L and L−1 are not preserved by Φ; that is, b,c �= 0. Then one needs to understand

when two different Higgs fields give rise to isomorphic Higgs bundles: because the

automorphism group of V is C∗, two Higgs pairs (V ,Φ1) and (V ,Φ2) with Φi = (ai,bi,ci)
are isomorphic if and only if

Φ1 =

(
t 0

0 t−1

)
Φ2

(
t−1 0

0 t

)
;

that is, a1 = a2, b1 = t2b2, c1 = t−2c2. Therefore, stable Higgs pairs (V ,Φ) with fixed

underline vector bundle V are parametrised by

H0(KC)×
(H0(L2K)−{0})× (H0(L−2KC)−{0})

C∗
∼= C2×C∗.

This is an actual quotient because all of the points are semistable with respect to the
action of C∗.
Letting V vary, one obtains a (C2×C∗)-bundle S1 over K0. Considering S1 as a sphere

bundle over K0, the cohomology of the total space is computed by Gysin sequence.

Consider the inclusions K0 �
� j �� K K0

� �i�� and the long exact sequence in cohomology

· · · Hk
c (K0) Hk(K) Hk(K0) · · ·

j! i!

which splits in

0 H0
c (K

0) C C
16 H1(K0) 0, Hk

c (K
0) ∼= Hk

c (K) ∀k ≥ 2
i!

Because K0 is not compact, H0
c (K0) = 0, so H1

c (K0)∼= C15. By Poincaré duality,

H0(K0)∼= C H1(K0) = 0 H2(K0) = C6 H3(K0) = C15 H4(K0) = 0

with the same weights as the cohomology of K.

The Gysin sequence

· · · Hk(S1) Hk−1(K0) Hk+1(K0) · · ·

splits in the following subsequences:

H0(S1)∼= C H3(S1)∼= C21 H4(S1)∼= C15; (15)

0 H1(S1) C C6 H2(S1) 0; (16)

Hi(S1) = 0 ∀i≥ 5. (17)
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In (16) the map C→ C6 is the product by the Euler class of a nontrivial bundle, which

is nonzero; therefore, H1(S1) = 0 and H2(S1) = C5. Recall that in this case both the
cup product with the Euler class and the pushforward increase weights of (1,1). As a

consequence of Poincaré duality, the compact support cohomology groups of S1 are

Hi
c(S1) = 0 ∀i= 0, . . . 5 and i= 9

H6
c (S1) = C15 of type (2,2)

H7
c (S1) = C21 of types 19(3,3)+(2,4)+(4,2)

H8
c (S1) = C5 of types 3(4,4)+(3,5)+(5,3)

H10
c (S1) = C of type (5,5),

and the E -polynomial of S1 is

E(S1)(u,v) = u5v5+u3v5+u5v3+3u4v4−19u3v3−u2v4−u4v2+15u2v2.

6.3.2. Type (ii). Now we want to compute the cohomology of the locus of stable pairs

(V ,Φ) where V is a nontrivial extension of L by L−1 with L �∼= L−1.

Proposition 6.6. Let V be a semistable vector bundle of type (ii). Then there is no Higgs
field Φ such that the pair (V ,Φ) is stable.

Proof. Consider the universal line bundle L → K0×C and let p : K0×C → K0 be the

projection onto the first factor. It is well known that nontrivial extensions of L by L−1

are parametrised by P(R1p∗L2): because R1p∗L2 is a local system on K0 of rank 1, there
exists a unique nontrivial extension up to isomorphism. Consider the universal extension

bundle V: it fits in the short exact sequence

0→L→V →L−1 → 0 (18)

and parametrises all of the vector bundles V on C of type (ii). In order for (V,Φ) to

be a stable Higgs bundle, the Higgs field must not preserve the subbundle L. By an

abuse of notation, we denote by KC the pullback of the canonical bundle on C under the

projection K0×C → C. Tensoring the sequence (18) by KC and applying the covariant
functor Hom(V,−) restricted to traceless endomorphisms gives

0→Hom(V,L⊗KC)→ End0(V)⊗KC →Hom(V,L−1⊗KC)→ 0.

Pushing forward to K0 gives a long exact sequence

0 p∗Hom(V,LKC) p∗End0(V)⊗KC p∗L−2KC

R1p∗Hom(V,LKC) R1p∗Hom(V,LKC) R1p∗L−2KC 0.

ρ

ext

(19)
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A Higgs pair (V,Φ) is stable if and only if the Higgs field Φ lies in the complement of

the kernel of the restriction map ρ : p∗End0(V)⊗KC → p∗L−2KC . In order to prove the

proposition, we show that ρ= 0.
Applying the contravariant functor p∗Hom(−,LKC) to (18) gives a long exact sequence

0 p∗LKC p∗Hom(V,LKC) p∗KC

R1p∗LKC) R1p∗Hom(V,LKC) R1p∗KC 0.

ext (20)

Consider the fibre of (20) on a point L ∈ K0. One has

H1(L2KC) H1(V ∗LKC) H1(KC) 0.

Because H1(L2KC) = 0, H1(V ∗LKC)∼=H1(KC)∼=C; thus, R1p∗Hom(V,LKC) is a local
system of rank 1 on K0×C. Now consider (19) in the fibre over L ∈ K0:

0 H0(V ∗LKC) H0(End0(V )⊗KC) H0(L−2KC)

H1(V ∗LKC) H1(End0(V )⊗KC) H1(L−2KC) 0.

ext

As seen before, H1(V ∗LKC) ∼=H1(KC) ∼= C and H0(L−2KC) ∼= C, so the map ext in

(19) is either 0 or an isomorphism. However, because V is a nontrivial extension, such a
map has to be nonzero; thus, it is an isomorphism. As a result, ρ is zero.

6.3.3. Type (iii). We consider stable Higgs bundles with underlying vector bundle

V = L⊕L with L∼= L−1 ∈ K0.

Proposition 6.7. Let S3 be the locus of stable Higgs bundles with underlying vector
bundle V =O⊕O. Then the locus S3 of stable Higgs pairs of type (iii) is the union of 16

copies of S3 and its E-polynomial is

E(S3)(u,v) = 16u3v3−16u2v2.

Proof. Up to tensor by L ∈K0 one may restrict to the case, L=O, so that V is just the

trivial bundle O⊕O. In this case H0(End0(V )⊗KC)∼=H0(KC)⊗sl(2)∼=C2⊗sl(2) and

the Higgs field is of the form

Φ =

(
a b

c −a

)
with a,b,c ∈H0(KC).

The bundle is not stable if and only if Φ is conjugate to an upper triangular matrix of

elements of H0(KC). Because the action of SL(2,C) on H0(KC)⊗ sl(2) is trivial on the

first factor, one can consider Φ∈H0(KC)⊗sl(2) as a pair of matrices (A,B)∈ sl(2)⊕sl(2)
on which SL(2,C) acts by simultaneous conjugation. Then Φ is conjugate to an upper

triangular matrix of elements of H0(KC) if and only if A and B are simultaneously

triangulable; that is, if they have a common eigenspace. By a result of Shemesh [38], this

https://doi.org/10.1017/S1474748021000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000347


Intersection cohomology of the moduli space of Higgs bundles 1065

happens if and only if ker[A,B] �= 0; that is, det([A,B]) = 0. Writing

A=

(
x1 x2

x3 −x1

)
B =

(
y1 y2
y3 −y1

)
(21)

then

[A,B] =

(
x2y3−y2x3 2(x1y2−x2y1)

2(x3y1−x1y3) −(x2y3−y2x3)

)
.

One can interpret the locus of simultaneously triangulable matrices (A,B) ∈ sl(2)⊕sl(2)

as a quartic hypersurface in C6 with coordinates (x1,x2,x3,y1,y2,y3) with the equation

Q : (x2y3−y2x3)
2+4(x1y2−x2y1)(x3y1−x1y3) = 0,

given by annihilation of det[A,B].

Lemma 6.8. A Higgs bundle (V ,Φ) with V =O⊕O is stable if and only if Φ lies in

S3 := (C6−Q)//SL(2,C),

where SL(2,C) acts as the simultaneous conjugation on the matrices A and B as in (21).

Corollary 6.9. The locus of stable Higgs bundles of type (iii) is isomorphic to 16 copies
of S3, one for each point of K0.

Consider the quartic hypersurface Q in C6. Setting

α= x2y3−y2x3

β = x1y2−x2y1
γ = x3y1−x1y3,

then for every (x1,x2,x3,y1,y2,y3) ∈Q, (α,β,γ) satisfy the equation

α2+4βγ = 0.

This defines a map f :Q→C := {(α,β,γ) ∈ C3 | α2+4βγ = 0},

f(x1,x2,x3,y1,y2,y3) = (x2y3−y2x3,x1y2−x2y1,x3y1−x1y3).

Our strategy to compute the cohomology of (C6−Q) is the following:

1) We decompose Q as a disjoint union of the close set Q0 = f−1(0) and its open

complement Q−Q0 = f−1(C −{0}).
2) We compute the cohomology with compact support of both Q0 and Q−Q0 and use

the additivity property to compute the cohomology with compact support of Q.

3) Again, because C6 = Q� (C6 −Q), by the additivity property of the cohomology

with compact support one can compute the cohomology of C6−Q.

Observe that α,β,γ are the minors of order 2 of the matrix⎛
⎝ x1 y1

x2 y2
x3 y3

⎞
⎠ . (22)
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Also, fixing (x1,x2,x3,y1,y2,y3) and the corresponding point (α,β,γ) ∈ C, one notices

that both (x1,x2,x3) and (y1,y2,y3) are orthogonal to (α, γ2 ,
β
2 ); that is, they satisfy the

equations

2αx1+γx2+βx3 = 0 2αy1+γy2+βy3 = 0.

If (α,β,γ) �= (0,0,0), say, β �= 0, then

x3 =
−2αx1−γx2

β
, y3 =

−2αy1−γy2
β

.

Substituting these values in (22) and annihilating the minors of order 2 give three
equations all identical to

x1y2−x2y1 =
β

2
.

Therefore, the fibre of the map f in a point of C−{0} is a quadric in C4, isomorphic to
SL(2,C). Also, C−{0} is homotopy equivalent to RP3; thus, it has fundamental group Z2

and the monodromy outside the origin is trivial because it the same as the one described

in [16, Section 3.1]. As a result, we can compute the cohomology with compact support
of Q−Q0 = f−1(C −0) via Künneth’s formula. We have

H4
c (Q−Q0) = C H7

c (Q−Q0) = C2 H10
c (Q−Q0) = C Hi

c(Q−Q0) = 0 otherwise.

Now, we need to compute the cohomology ofQ0: first observe that the condition α,β,γ=
0 implies that the matrix (22) has rank ≤ 1; that is, (y1,y2,y3) is a multiple of (x1,x2,x3).

Thus, points in Q0 are parametrised by (C3−{0})×C�{0}×C3. We observe that Q0 has

dimension 4 and the former is an open set in it, whereas the latter is closed. Therefore,
by Proposition 6.3 one has

H3
c ((C

3−{0})×C)∼= C H8
c ((C

3−{0})×C)∼= C Hi
c((C

3−{0})×C) = 0 otherwise

H6
c ({0}×C3)∼= C Hi

c({0}×C3) = 0 otherwise.
,

Hence,

H3
c (Q0)∼=H6

c (Q0)∼=H8
c (Q0)∼= C, Hi

c(Q0) = 0 otherwise.

Again, by Proposition 6.3 there is a long exact sequence

· · · Hi
c(Q−Q0) Hi

c(Q) Hi
c(Q0) · · ·

Now, Hi
c(Q) = 0 for any i≥ 5 because Q is affine and from the long exact sequence one

can conclude that H7
c (Q)∼=H8

c (Q)∼=H10
c (Q)∼= C and Hi

c(Q) = 0 otherwise.
Finally, from Proposition 6.3 one gets the cohomology with compact support of C6 \Q:

H8
c (C

6−Q)∼=H9
c (C

6−Q)∼=H11
c (C6−Q)∼=H12

c (C6−Q)∼= C, Hi
c(C

6−Q) = 0.

Observe that SL(2,C) acts on C6−Q with a stabiliser that is at worst Z2; therefore,

one can compute its cohomology by considering it as a fibre bundle with fibre SL(2,C)

on S3.
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Because SL(2,C) has the same homotopy type as S3, the Gysin sequence

· · · Hi(C6−Q) Hi−3(S3) Hi+1(S3) · · ·

gives

H0(S3)∼=H1(S3)∼= C H2(S3) = 0 (23)

0 H3(S3) C C H4(S3) C C H5(S3) 0 (24)

H6(S3) = 0, H4(S3)∼=H8(S3)∼=H12(S3) (25)

H3(S3)∼=H7(S3)∼=H11(S3) H5(S3)∼=H9(S3) H6(S3)∼=H10(S3) = 0. (26)

Because S3 is nonsingular connected but not compact, H12(S3) ∼= H0
c (S3) = 0; thus,

H4(S3) ∼= H8(S3) = 0. Therefore, from (24) we deduce that H3(S3) ∼= H5(S3) = 0,

H7(S3)∼=H11(S3) = 0 and H9(S3) = 0 and the E -polynomial of S3 is

E(S3)(u,v) = u3v3−u2v2.

6.3.4. Type (iv). We now consider stable Higgs bundles of type (iv) and we prove the
following result.

Proposition 6.10. Let S4 be the locus of stable Higgs bundles whose underlying vector

is a nontrivial extension of O by itself. Then the locus S4 of stable Higgs bundles of type

(iv) is the union of 16 copies of S4 and its E-polynomial is

E(S4) = 16u4v4−16u2v2.

Proof. As in type (iii), it is not restrictive to assume L ∼= O. Let V be a nontrivial

extension of O by itself: the isomorphism classes of such bundles are parametrised by

P(Ext1(O,O))∼= P1. (27)

Thus, there exists a universal extension bundle on P1×C,

0→O →V →O → 0.

Let p : P1×C → P1 be the projection: as in the type (ii) case, one can tensor the short
exact sequence above by KC , apply the covariant functor Hom(V,−) and push forward

to P1 and end up with the long exact sequence

0 p∗Hom(V,KC) p∗(End0(V)⊗KC) p∗Hom(V,KC)

R1p∗Hom(V,KC) R1p∗(End0(V)⊗KC) R1p∗Hom(V,KC) 0.

ext

(28)
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Stable Higgs bundles are those with Higgs field in the complement of the kernel of the
map

p∗(End0(V)⊗KC)→ p∗Hom(V,KC)

or, equivalently, the complement of the image of p∗Hom(V,KC) in p∗(End0(V)⊗KC).

First notice that p∗Hom(V,KC)∼= p∗KC , which is a vector bundle of rank 2, and similarly

that R1p∗Hom(V,KC) ∼= R1p∗KC . Because the extension is nontrivial, the map ext is
nonzero and its kernel has rank 1. Starting from (27), tensoring with KC , applying the

functor Hom(−,O) restricted to traceless endomorphisms and pushing forward to P1, one

obtains another long exact sequence

0 p∗KC p∗Hom(V,KC) p∗KC R1p∗KC · · ·ext

(29)
Notice that because R1p∗KC has rank 1 and the map ext is nonzero, the last map is

surjective. Hence, the cokernel of p∗Hom(V,KC)→ p∗KC has rank 1 and, consequently,

p∗Hom(V,KC) has rank 3. Returning to (28), we conclude that p∗End0(V )⊗KC is a

vector bundle of rank 4; thus, the locus of stable pairs is fibrewise the complement of a
hyperplane.

Finally, automorphisms have to be taken into account: the group of automorphisms of a

nontrivial extension of O by itself is the additive group (C,+)⊂ SL(2,C), and an element
t ∈ (C,+) acts on the Higgs field Φ as

t.Φ=

(
1 t
0 1

)(
a b
c −a

)(
1 −t
0 1

)
=

(
1a+ tc b−2ta− t2c

c −a− tc

)
.

Lemma 6.11. S4 is a C2- bundle over a C∗- bundle over P1. All bundles are Zariski

locally trivial.

Proof. Let A be the kernel of the extension map in (28), minus the zero section: thus, A

is a C∗-bundle over P1. One can think of p∗(End0(V)⊗KC)−p∗Hom(V,KC) as a vector
bundle of rank 3 over A. Similarly, the kernel of the extension map of (29) gives rise to a

vector bundle A over A of rank 1 and the map

p∗Hom(V)→ p∗End0(V)⊗KC)

lifts to a (C,+)-equivariant map

[p∗(End0(V)⊗KC)−p∗Hom(V,KC)]→U

of vector bundles over A whose kernel has rank 2. The automorphism action of (C,+) on
A is linear and given by a �→ a+ tc; hence, the quotient A/C is A itself. Because the map

above is equivariant, one has that

[p∗(End0(V)⊗KC)−p∗Hom(V,KC)]/C→A/C∼=A

is a vector bundle of rank 2 over A.

Corollary 6.12. The locus of stable Higgs bundles of type (iv) is isomorphic to 16 copies

of S4, one for each point of K0.

https://doi.org/10.1017/S1474748021000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000347


Intersection cohomology of the moduli space of Higgs bundles 1069

Lemma (6.11) allows computation of the Betti numbers of S4: because S4 is homotopy

equivalent to a C∗-bundle on P1, the Gysin sequence reads as

H0(S4)∼=H0(P1)∼= C; (30)

0 H1(S4) C C H2(S4) 0; (31)

H3(S4)∼=H2(P1)∼= C; (32)

Hi(S4) = 0 for all i= 4. . . 8. (33)

Because the central map of (31) is the cup product with the Euler class of the bundle A,
which is nontrivial, it is nonzero and we have H1(S4) =H2(S4) = 0. By Poincaré duality,

the E -polynomial of S4 is

E(S4) = u4v4−u2v2.

By Corollary 6.12, this completes the proof of Proposition 6.10.

6.4. Unstable case

Consider the locus U of stable Higgs bundles (V ,Φ) where V is an unstable vector bundle
with trivial determinant. Then there exists a line bundle L of degree d > 0 that fits an

exact sequence

0 �� L �� V �� L−1 �� 0.

If d > 1, then the bundle L−2KC has no nonzero global section because it has negative

degree; hence, L is Φ-invariant for any Higgs field Φ ∈H0(End0(V )⊗KC). The only case

we have to check is deg(L) = 1. Because the line bundle L−2KC has degree 0, it has global
sections if and only if it is trivial; that is, if L=K

1
2 is one of the 16 roots of the canonical

bundle KC . As a consequence, if there exists an unstable vector bundle V that is stable

as a Higgs bundle, then it must be an extension of those bundles by their duals.

Proposition 6.13. The locus U of stable Higgs bundles (V ,Φ) with V unstable is

isomorphic to 16 copies of C3, one for any root of the canonical bundle KC . As a

consequence, its cohomology with compact support is given by

H6
c (U) = C16 Hi

c(U) = 0 otherwise

and the E-polynomial of U is E(U) = 16u3v3.

Proof. Trivial case If V =K
1
2 ⊕K− 1

2 , then

H0(End0(V )⊗KC)∼=H0(KC)⊕H0(K2
C)⊕H0(O)∼= C2⊕C3⊕C.
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Thus, the generic Higgs field will be of the form

Φ =

(
a b

c −a

)
with a ∈H0(KC),b ∈H0(K2

C),c ∈H0(O).

Two Higgs fields define isomorphic Higgs bundles if and only if they are conjugate by an

automorphism of the bundle, which will lie in C∗×(H0(KC),+)⊂ SL(2,C). The action of
C∗ on the Higgs field is precisely the one seen in the type (i) case. Therefore, isomorphism

classes of stable Higgs bundles are parametrised by the disjoint union of 16 copies of

H0(KC)×
(H0(O)−{0})×H0(K2

C)

C∗
∼=H0(KC)×H0(K2

C)
∼= C5.

Consider the action of the automorphism group (C2,+): any element ζ ∈H0(KC) = C2

acts on Φ as(
1 ζ
0 1

)(
a b
c −a

)(
1 −ζ
0 1

)
=

(
a− ζc b+2ζa− ζ2c

c −a+ ζc

)
.

Such an action is linear and free on a ∈H0(KC) and whenever we fix a−ζc, the value of

b+2ζa− ζ2c is fixed as well. Therefore, the quotient of H0(KC)×H0(K2
C) by (C2,+) is

C3.

Nontrivial case

Nontrivial extensions of K
1
2 by K− 1

2 are parametrised by P(H1(K−1)) = P2 and fit in

the exact sequence

0→K
1
2 → V →K− 1

2 → 0.

Tensor by KC and apply the functor Hom(V ,−) restricted to traceless endomorphisms.

Taking global sections one obtains

0 H0(Hom(V ,K
1

2 KC)) H0(End0(V )⊗KC) H0(Hom(K
1

2

C,K
1

2

C))

H1(Hom(V ,K
1

2 KC)) H1(End0(V )⊗KC) H1(Hom(K
1

2

C,K
1

2

C)) 0.

ρ

ext

Again, a Higgs bundle with V as underlying vector bundle is stable if and only if its
Higgs field lies in the complement of the kernel of ρ. We shall prove that there are no

stable bundles of this type; that is, that ρ= 0.

Because H0(Hom(K
1
2

C,K
1
2

C ))
∼= C, this is equivalent to asking that the map ext be

nonzero, which is the case because we are considering nontrivial extensions. As a result,

there are no nontrivial extensions of K
1
2

C by its dual that give rise to a stable Higgs

bundle.

Having E -polynomials of all strata in MSL,s
Dol , one can sum them to obtain the E -

polynomial of MSL,s
Dol . The following table summarises the Betti numbers of strata in the

table locus of MSL
Dol.
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H0
c H1

c H2
c H3

c H4
c H5

c H6
c H7

c H8
c H9

c H10
c H11

c H12
c

T*S 0 0 0 0 0 0 0 0 0 5 0 0 1
S1 0 0 0 0 0 0 15 21 5 0 1 0 0
S3 0 0 0 0 0 16 16 0 0 0 0 0 0
S4 0 0 0 0 0 16 0 0 16 0 0 0 0
U 0 0 0 0 0 0 16 0 0 0 0 0 0

Proof of Proposition 6.2. Observe that

MSL,s
Dol = T ∗S �S1�S3�S4�U .

Summing E -polynomials of all strata, we get

E(MSL,s
Dol ) = u6v6+u5v5+16u4v4+13u3v3−u2v4−u4v2−17u2v2.

6.5. Cohomology of Σ̃SL \ Ω̃SL and Ω̃SL

6.5.1. Cohomology of Ω̃SL.

Lemma 6.14.

E(Ω̃)(u,v) = 16u3v3+16u2v2+16uv+16.

Proof. Recall that Ω̃ consists of 16 copies of a nonsingular hypersurface G in P4.

Therefore, its cohomology is given by

H0(Ω̃) =H2(Ω̃) =H4(Ω̃) =H6(Ω̃) = C16.

H1(Ω̃) =H3(Ω̃) =H5(Ω̃) = 0.

The E -polynomial of Ω̃ is

E(Ω̃)(u,v) = 16u3v3+16u2v2+16uv+16.

6.5.2. Cohomology of Σ̃SL \ Ω̃SL.

Lemma 6.15.

E(Σ̃SL \ Ω̃SL)(u,v) = u5v5+5u4v4+u5v3+u3v5+5u3v3+u2v4+u4v2+u2v2−16uv−16.

Proof. Observe that Σ̃SL \ Ω̃SL is a P1-bundle over ΣSL \ΩSL. Now

ΣSL \ΩSL ∼=
(
Jac(C)×H0(KC)/Z2

)
\{16 points}.

First we notice that ΣSL = (Jac(C)×H0(KC)/Z2 has the same cohomology as K, so
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H4
c (Σ

SL)∼= C of type (2,2)
H2

c (Σ
SL)∼= C6 of types 4(3,3)+(2,4)+(4,2)

H8
c (Σ

SL)∼= C of type (4,4)

Hi
c(Σ

SL) = 0 otherwise.

By Proposition 6.3, ΣSL\ΩSL has the same cohomology groups as ΣSL except forH1
c (Σ

SL\
ΩSL)∼= C16 of weight 0. One has

E(Σ̃SL \ Ω̃SL)(u,v) = E(P1)E(ΣSL \ΩSL)(u,v)

= (uv+1)(u4v4+u2v4+u4v2+4u3v3+u2v2−16)

= u5v5+5u4v4+u5v3+u3v5+5u3v3+u2v4+u4v2+u2v2−16uv−16.

6.6. Cohomology of M̃SL
Dol and intersection cohomology MSL

Dol

Summing the contributions in equation (10), one has the following result.

Theorem 6.16. Let M̃SL
Dol be the semismall desingularisation of MSL

Dol. The E-

polynomial of M̃SL
Dol is

E(M̃SL
Dol) = u6v6+2u5v5+21u4v4+u5v3+u3v5+34u3v3.

Moreover, by Lemma 5.6 we deduce

Pt(M̃SL
Dol) = 1+2t2+23t4+34t6.

We are now ready to prove the main theorem of the section.

Proof of Theorem 6.1. By (9), subtracting from E(M̃SL
Dol) the contributions Etop

coming from top cohomology of the fibres gives the intersection E -polynomial of MDol:

IE(MSL
Dol) = u6v6+u5v5+17u4v4+17u3v3.

The intersection Betti numbers are obtained again by applying Lemma 5.6.

7. Intersection cohomology of MGL
Dol

The methods in Section 6 can be applied to compute the intersection Betti numbers of

the moduli space MGL
Dol of Higgs bundles of rank 2, degree 0 over a curve of genus 2.

Again, the proof of Proposition (4.3) shows that all of the strata of the map ˜πGL :

M̃GL
Dol →MGL

Dol are relevant and that

MGL,s
Dol =MGL

Dol,0 ΣGL =MGL
Dol,1 ΩGL =MGL

Dol,3

with the same fibres over the strata as in the SL(2,C). We stratify M̃GL
Dol as follows:

M̃GL
Dol = (π̃GL)−1(MGL,s

Dol )� (Σ̃GL \ Ω̃GL)� Ω̃GL.

Observe that because the fibres of π̃ over both ΩGL and ΣGL \ΩGL are irreducible, the

monodromy of the local system is trivial. Moreover, because ΩGL is nonsingular and ΣGL
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have finite quotient singularities, we have

ICMGL
Dol

(LMGL
Dol

)|MGL,s
Dol

=Q[10] ICΣ(LΣ)|Σ0 ∼=Q[8](−1) ICΩ(LΩ)|pt ∼=Q[4](−3),

where the shifts (−1) and (−3) correspond to the Hodge structures Q(−1) of respectively

H2(P1) and H6(G).
Taking hypercohomology with compact support in (7), we obtain the intersection

cohomology groups and the splitting in the decomposition theorem becomes

H∗
c (M̃GL

Dol) = IH∗
c (MDol)⊕H∗−2

c (ΣGL,ICΣ(LΣ))⊕H∗−6
c (ΩGL,ICΩ(LΩ)).

We compute the intersection E -polynomial and use Lemma 5.6 to obtain intersection

Betti numbers.

Theorem 7.1. (Intersection cohomology ofMGL
Dol). The intersection Poincaré poly-

nomial of MGL
Dol is

IPt(MGL
Dol) = 1+4t+7t2+8t3+9t4+12t5+15t6+16t7+14t8+8t9+2t10.

Moreover, the Hodge diamond is

0 (0,0)

1 2(1,0) 2(0,1)
2 (2,0) 5(1,1) (0,2)

3 4(2,1) 4(1,2)

4 (1,3) 7(2,2) (3,1)
5 6(3,2) 6(2,3)

6 2(4,2) 11(3,3) 2(2,4)

7 8(4,3) 8(3,4)
8 2(5,3) 10(2,2) 2(3,5)

9 4(5,4) 4(4,5)

10 2(5,5) .

Observe that

E(M̃GL
Dol) = E(MGL,s

Dol )+E(Σ̃GL \ Ω̃GL)+E(Ω̃GL) (34)

and that by (9) and (10),

IE(MGL
Dol) = E(M̃GL

Dol)−E(ΣGL×H2(P1))−E(ΩGL×H6(G)).

The rest of the section is devoted to computing each term of the equations above.

7.1. Cohomology of MGL,s
Dol

In this section we shall compute the E -polynomial of the locus MGL,s
Dol of stable pairs

(V ,Φ).

Proposition 7.2. Let MGL,s
Dol be the locus of stable Higgs pairs on C. The E-polynomial

of MGL,s
Dol is
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E(MGL,s
Dol ) =−2u4v4+4u5v4−3u6v4+2u7v4−u8v4+4u4v5

−10u5v5+10u6v5−6u7v5+2u8v5+

−3u4v6+10u5v6−11u6v6+4u7v6+2u4v7

−6u5v7+4u6v7+3u7v7−4u8v7+u9v7+

−u4v8+2u5v8−4u7v8+6u8v8−4u9v8

+u10v8+u7v9−4u8v9+5u9v9

−2u10v9+u8v10+

−2u9v10+u10v10.

As for SL(2,C), we divide stable Higgs pairs into the following three strata:

• pairs (V ,Φ) with V stable vector bundle;
• pairs (V ,Φ) with V strictly semistable vector bundle;
• pairs (V ,Φ) with V unstable vector bundle.

7.2. The stable case

We shall parametrise all stable Higgs pairs (V ,Φ) where V is a stable vector bundle.

Proposition 7.3. Let N s be the locus of stable vector bundles on C. The locus of stable

Higgs pairs (V ,Φ) with V ∈ N s is isomorphic to the cotangent bundle T ∗N s and its
E-polynomial is

E(T ∗N s) =−u7v5+2u8v5−u9v5−3u6v6+8u7v6−7u8v6+2u9v6−u5v7+8u6v7

−14u7v7+8u8v7−u9v7+2u5v8−7u6v8+8u7v8−2u8v8−2u9v8+u10v8

−u5v9+2u6v9−u7v9−2u8v9+4u9v9−2u10v9+u8v10−2u9v10+u10v10.

Proof. Suppose that V ∈N s. Because the stability of V ensures the stability of the Higgs
pair (V ,Φ) for all Φ, the locus of stable Higgs pairs with stable underlying vector bundle

is isomorphic to the cotangent bundle T ∗N s.

The moduli space N of semistable vector bundles on C is isomorphic to a P3- bundle
over Jac(C). Namely, the fibre over a point ζ ∈ Jac(C) is a copy of the moduli space of

semistable vector bundles of degree 0 and rank 2 with determinant ζ. From now on we

denote Jac(C) by J .

A semistable vector bundle V is nonstable if and only if it is of the form

V = L⊕M, L,M ∈ J

and therefore strictly semistable vector bundles are parametrised by the symmetric

product J (2). As a consequence, N s is the complement of J (2) in N .

We compute E -polynomials of both N and J (2); then E(N s) = E(N )−E(J (2)). The
cohomology of N has been computed by Kirwan in [26] and the E -polynomial is

E(N ) = 1−2u+u2−2v+5uv−4u2v+u3v+v2−4uv2

+6u2v2−4u3v2+u4v2+uv3−4u2v3+

+6u3v3−4u4v3+u5v3+u2v4−4u3v4+5u4v4−2u5v4+u3v5−2u4v5+u5v5.
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The cohomology of J (2) is the Z2-invariant part of the cohomology of J ×J . Alterna-
tively, one can use Macdonald’s formula [30] for symmetric product of surfaces. One has

E(J (2)) = 1−2u+2u2−2u3+u4−2v+8uv−12u2v

+8u3v−2u4v+2v2−12uv2+20u2v2+

−12u3v2+2u4v2−2v3+8uv3−12u2v3+8u3v3−2u4v3

+v4−2uv4+2u2v4−2u3v4+u4v4.
As a consequence,

E(N s) =−u2+2u3−u4−3uv+8u2v−7u3v+2u4v−v2

+8uv2−14u2v2+8u3v2−u4v2+2v3+

−7uv3+8u2v3−2u3v3−2u4v3+u5v3−v4+2uv4−u2v4

−2u3v4+4u4v4−2u5v4+u3v5+

−2u4v5+u5v5.

Because T ∗N s inherits the cohomology of N s, we have

E(T ∗N s) =−u7v5+2u8v5−u9v5−3u6v6+8u7v6−7u8v6

+2u9v6−u5v7+8u6v7−14u7v7+8u8v7+

−u9v7+2u5v8−7u6v8+8u7v8−2u8v8−2u9v8

+u10v8−u5v9+2u6v9−u7v9−2u8v9+

+4u9v9−2u10v9+u8v10−2u9v10+u10v10.

7.3. Strictly semistable case

We consider pairs (V ,Φ) with V strictly semistable and investigate under which conditions

they are stable Higgs pairs. Again, we have to distinguish different cases:

(i) V = L⊕M where L,M ∈ J and L �∼=M ;

(ii) V is a nontrivial extension 0 �� L �� V �� M �� 0 with L �∼=M ;

(iii) V = L⊕L where L ∈ J ;

(iv) V is a nontrivial extension 0 �� L �� V �� L �� 0 .

7.3.1. Type (i). We shall determine stable Higgs bundles (V ,Φ) with underlying vector

bundle of type (i). Strictly semistable vector bundles are parametrised by J (2). Let J0 be

the diagonal in J (2) fixed by the involution and let J 0 := J (2)−J0 be its complement.
The locus of stable Higgs bundles with underlying vector bundle of type (i) is a fibre

bundle on J 0.

Proposition 7.4. Let N1 be the locus of stable Higgs bundles with underlying vector

bundle of type (i). Then N1 is a (C4×C∗)-bundle over J 0 and its E-polynomial is

E(N1) =−u6v4+2u7v4−u8v4−4u5v5+10u6v5−7u7v5

+u9v5−u4v6+10u5v6−15u6v6+2u7v6+
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+6u8v6−2u9v6+2u4v7−7u5v7+2u6v7+11u7v7

−10u8v7+2u9v7−u4v8+6u6v8−10u7v8+

+7u8v8−2u9v8+u5v9−2u6v9+2u7v9−2u8v9+u9v9.

Proof. To compute the fibre we consider V = L⊕M with L,M ∈ J .

H0(End(V )⊗KC) =H0(KC)⊕H0(L−1MKC)⊕H0(M−1LKC)⊕H0(KC);

thus, a Higgs field Φ ∈H0(End(V )⊗KC) takes the form

Φ =

(
a b

c d

)

with a,d ∈H0(KC), b ∈H0(M−1LKC), c ∈H0(L−1MKC). A pair (V ,Φ) is stable if and
only if both L and M are not preserved by Φ; that is, b,c �= 0. Because the automorphisms

group of V is C∗ ×C∗, two Higgs pairs (V ,Φ1) and (V ,Φ2) for Φi = (ai,bi,ci,di) are

isomorphic if and only if

Φ1 =

(
t 0

0 s

)
Φ2

(
t−1 0

0 s−1

)

that is a1 = a2, b1 = t−1sb2, c1 = s−1tc2, d1 = d2. Therefore, the stable Higgs pairs (V ,Φ)

with fixed underline vector bundle V are parametrised by

H0(KC)
2× (H0(L−1MKC)−{0})× (H0(M−1LKC)−{0})

C∗×C∗
∼= C4×C∗

(note that C∗×C∗ acts with stabiliser C∗). Letting V vary, one obtains a (C4×C∗)-bundle
S1 over J 0. The E -polynomial is the product E(J 0)E(C4)E(C∗). Because

E(J 0) = E(J (2))−E(J0) = u2−2u3+u4+4uv−10u2v

+8u3v−2u4v+v2−10uv2+19u2v2+

−12u3v2+2u4v2−2v3+8uv3−12u2v3+8u3v3

−2u4v3+v4−2uv4+2u2v4−2u3v4+u4v4,

the E -polynomial of N1 is

E(N1) =−u6v4+2u7v4−u8v4−4u5v5+10u6v5−7u7v5

+u9v5−u4v6+10u5v6−15u6v6+2u7v6+

+6u8v6−2u9v6+2u4v7−7u5v7+2u6v7+11u7v7

−10u8v7+2u9v7−u4v8+6u6v8−10u7v8+

+7u8v8−2u9v8+u5v9−2u6v9+2u7v9−2u8v9+u9v9.

7.3.2. Type (ii). Assume now that V is a nontrivial extension of L by M with L �∼=M :

we compute the cohomology of the locus of stable pairs (V ,Φ).
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Proposition 7.5. Let V be a semistable vector bundle of type (ii). Then there is no Higgs

field Φ such that the pair (V ,Φ) is stable.

Proof. Consider the universal bundle (L,M)→J 0×C and let p : J 0×C →J 0 be the
projection onto the first factor. Nontrivial extensions of L by M are parametrised by

P(R1p∗M−1L): because R1p∗M−1L is a local system on J 0 of rank 1, there exists a

unique nontrivial extension V up to isomorphism. This bundle fits in the short exact
sequence

0→L→V →M→ 0 (35)

and parametrises all of the vector bundles V on C of type (ii).

A Higgs pair (V,Φ) is stable if and only if the Higgs field Φ lies in the complement of the

kernel of the restriction map ρ : p∗End(V)⊗KC → p∗Hom(L,MKC); that is, Φ does not
preserve L.
Tensoring the sequence (35) by KC and applying the covariant functor Hom(V,−)

restricted to traceless endomorphisms, one obtains

0→Hom(V,L⊗KC)→ End(V)⊗KC →Hom(V,M⊗KC)→ 0.

Pushing forward to J 0, one gets a long exact sequence

0 p∗Hom(V,LKC) p∗End(V)⊗KC p∗Hom(V,MKC)

R1p∗Hom(M,LKC) R1p∗End(V)⊗KC R1p∗Hom(V,MKC) 0.

ext

(36)
Applying the functor p∗Hom(−,MKC) to (35) yields a long exact sequence

0 p∗Hom(M,MKC) p∗Hom(V,MKC) p∗Hom(L,MKC)

R1p∗Hom(M,MKC) R1p∗Hom(V,MKC) R1p∗Hom(L,MKC) 0.

ext

(37)

The map ρ is the composition

p∗End(V)⊗KC → p∗Hom(V,MKC)→ p∗Hom(L,MKC).

We prove that the second map is 0; that is, there are no stable Higgs bundles of type (ii).

Consider the fibre of (37) on a point (L,M) ∈ J 0: one has

H1(KC)→H1(Hom(V ,MKC))→H1(M−1LKC)→ 0.

Because the extension map is nonzero and H1(M−1LKC) = 0, we have that

H0(L−1MKC)∼=H1(KC)∼=C; thus, H1(Hom(V ,MKC) is 0 and H0(Hom(V ,MKC))∼=
H0(KC)∼= C2.
In particular, the map p∗Hom(V,MKC)→ p∗Hom(L,MKC) is zero.

7.3.3. Type (iii). We now consider a stable Higgs bundle with underlying vector bundle

V = L⊕L with L ∈ J .
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Proposition 7.6. Let N3 be the locus of stable Higgs bundles with underlying vector
bundle L⊕L with L ∈ J . Then the locus N3 of stable Higgs pairs of type (iii) is a Zariski

locally trivial N3-bundle over J and its E-polynomial is

E(N3)(u,v) =−u4v4+2u5v4−u6v4+2u4v5−3u5v5+u7v5

−u4v6+3u6v6−2u7v6+u5v7−2u6v7+u7v7.

Proof. Consider V = L⊕L. In this case, H0(End(V )⊗KC) ∼= H0(KC)⊗ gl(2) ∼= C2⊗
gl(2) and the Higgs field is of the form

Φ =

(
a b

c d

)
,

with a,b,c,d ∈H0(KC). The bundle is not stable if and only if Φ is conjugate to an upper

triangular matrix of elements of H0(KC). The action of PGL(2,C) on H0(KC)⊗ gl(2)
is trivial on the first factor, so one can proceed as in the case of SL(2,C) looking for

the couples of matrices (A,B) ∈ gl(2)⊕gl(2) that are not simultaneously triangulable. As

before, A and B are simultaneously triangulable if det([A,B]) = 0. Writing

A=

(
x1 x2

x3 x4

)
B =

(
y1 y2
y3 y4

)
(38)

one has

[A,B] =

(
x2y3−y2x3 x1y2−x4y2+x2y4−x2y1

x3y1−x2y4+x4y3−x1y3 −(x2y3−y2x3)

)

=

(
x2y3−y2x3 sy2−x2t

x3t−sy3 −(x2y3−y2x3)

)

where s= (x1−x4) and t= y1−y4.

Thanks to this substitution, one can interpret the locus of simultaneously triangulable

matrices (A,B) ∈ gl(2)⊕gl(2) as a fibration over

Q : (x2y3−y2x3)
2+(sy2−x2t)(x3t−sy3) = 0⊂ C6

in the coordinates (s,x2,x3,t,y2,y3) ∈C6. The fibre over a point in Q is the 2-dimensional

vector space {
x1−x4 = s

y1−y4 = t

in the coordinates (x1,x4,y1,y4).
Let H be the total space of this bundle over Q. One can summarise the above

considerations in the following lemma.

Lemma 7.7. A Higgs bundle (V ,Φ) of type (iii) is stable if and only if Φ lies in

N3 := (C8−H)//PGL(2,C)

where the action of PGL(2,C) is the simultaneous conjugation on the matrices A and B

as in (38).
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Because H is a C2-bundle over Q,

E(H) = E(C2)E(Q) = u5v5(u2v2+uv−1).

E(N3)(u,v) =
E(C8)−E(H)

E(PGL(2,C))
= u5v5−u4v4.

To obtain E(N3), one needs to multiply E(N3) by E(J ).

7.3.4. Type (iv). We now consider stable Higgs bundles of type (iv) and we prove the

following result.

Proposition 7.8. Fix L ∈ J and let N4 be the locus of stable Higgs bundles whose

underlying vector bundle is a nontrivial extension of L by itself. Then the locus N4 of
stable Higgs bundles of type (iv) is a Zariski locally trivial N4-bundle over J and its

E-polynomial is

E(N4) =−u4v4+2u5v4−u6v4+2u4v5−4u5v5+2u6v5

−u4v6+2u5v6−2u7v6+u8v6−2u6v7+

+4u7v7−2u8v7+u6v8−2u7v8+u8v8.

Proof. Let L ∈ J and let V be a nontrivial extension of L by itself: the isomorphism

classes of such bundles are parametrised by

P(Ext1(L,L))∼= P1. (39)

Thus, there exists a universal extension bundle on P1×C,

0→L→V →L→ 0.

Let p : P1×C → P1 be the projection map: as in the type (ii) case, one can tensor the
above short exact sequence by KC , apply the covariant functor Hom(V,−) and push

forward to P1, getting the long exact sequence

0 p∗Hom(V,LKC) p∗(End(V)⊗KC) p∗Hom(V,LKC)

R1p∗Hom(V,LKC) R1p∗(End(V)⊗KC) R1p∗Hom(V,LKC) 0.

ext

(40)

Starting again from (39), tensoring with KC , applying the contravariant functor
Hom(−,L) and pushing forward to P1, one obtains another long exact sequence

0 p∗KC p∗Hom(V,LKC) p∗KC R1p∗KC .
ext

(41)

As before, stable Higgs bundles are those whose Higgs field is in the complement of the

kernel of the map

p∗End(V)⊗KC p∗Hom(V,LKC) p∗KC .
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Consider the sequence (41): p∗KC has rank 2. Because R1p∗KC has rank 1, being

nonzero, the map ext is surjective. Hence, the cokernel of p∗Hom(V,KC) → p∗KC has

rank 1 and consequently p∗Hom(V,KC) has rank 3. Looking at (40), one concludes that

p∗End(V )⊗KC is a vector bundle of rank 5. The group of automorphisms of a nontrivial
extension of L by itself is the additive group (C,+)⊂GL(2,C), and an element t ∈C acts

on the Higgs field Φ by conjugation:

t.Φ=

(
1 t
0 1

)(
a b
c −a

)(
1 −t
0 1

)
=

(
1a+ tc b−2ta− t2c

c −a− tc

)
.

Lemma 7.9. N4 is a C2-bundle over a C2-bundle over a C∗-bundle over P1.

Proof. Let A be the kernel of the extension map in (40) minus the zero section: A is

a (C2−{0})-bundle over P1. We can think of p∗(End0(V)⊗KC)− p∗Hom(V,KC) as a
vector bundle of rank 3 over A. Similarly, the kernel of the extension map in (41) gives

rise to a vector bundle A over A of rank 1 and the map

p∗Hom(V)→ p∗(End(V)⊗KC)

lifts to a (C,+)-equivariant map

[p∗(End(V)⊗KC)−p∗Hom(V,KC)]→A

of vector bundles over A whose kernel is of rank 2. Observe that A is invariant under the

automorphism action, whereas A and p∗(End(V)⊗KC)−p∗Hom(V,KC)] are not. In this

way, we have that p∗(End(V)⊗KC)−p∗Hom(V,KC)]/C is a C2-bundle on A, which is
a C2-bundle over A/C∗, which is a C∗-bundle over P1.

Because all bundles are Zariski locally trivial, one has

E(N4) =−u4v4+2u5v4−u6v4+2u4v5−4u5v5+2u6v5

−u4v6+2u5v6−2u7v6+u8v6−2u6v7+

+4u7v7−2u8v7+u6v8−2u7v8+u8v8.

7.4. Unstable case

Consider the locus NU of stable Higgs bundles (V ,Φ) where V is an unstable vector

bundle. Then there exists a line bundle L of degree d > 0 that fits an exact sequence

0 �� L �� V �� M �� 0

with M ∈ Picd(C). If d > 1, the bundle L−1MKC has no nonzero global section because

it has negative degree; hence, L is Φ-invariant for any Higgs field Φ ∈H0(End(V )⊗KC).

The only case to check is deg(L) = 1. The line bundle L−1MKC has degree 0: it has
global sections if and only if it is trivial; that is, M = LK−1

C with L ∈ Pic1(C). As a

consequence, if there exists an unstable vector bundle V that is stable as a Higgs bundle,

then it must be an extension of the above form.
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Proposition 7.10. The locus NU of stable Higgs bundles (V ,Φ) with V unstable is

isomorphic to a Zariski locally trivial C5-bundle on Pic1(C). As a consequence, its E-

polynomial is

E(NU) = u5v5E(Pic1(C)) = u5v5−2u6v5+u7v5−2u5v6

+4u6v6−2u7v6+u5v7−2u6v7+u7v7.

Proof. Trivial case Consider V = L⊕M with L ∈ Pic1(C) and M = LK−1
C . Then

H0(End(V )⊗KC)∼=H0(KC)⊕H0(K2
C)⊕H0(O)⊕H0(KC)∼= C2⊕C3⊕C⊕C2.

Thus, the generic Higgs field will be of the form

Φ =

(
a b
c d

)

with a,d ∈H0(KC), b ∈H0(L2KC), c ∈H0(L−2KC). Two Higgs fields define isomorphic

Higgs bundles if and only if they are conjugate by an automorphism of the bundle, which
lies in C∗×C∗× (H0(KC),+)⊂GL(2,C). The action of C∗×C∗ on the Higgs field is the

one seen in the type (i) case and it has stabiliser C∗. Therefore, isomorphism classes of

stable Higgs bundles are parametrised by

H0(KC)
2× H0(K2

C)× (H0(O)\{0})
C∗

∼=H0(KC)
2×H0(K2

C)
∼= C7.

Thanks to the action of C∗×C∗, we can suppose that c = 1. Then we have to consider

the action of ζ ∈ (H0(KC),+):(
1 ζ
0 1

)(
a b
1 d

)(
1 −ζ
0 1

)
=

(
a+ ζ b+ ζ(d−a)− ζ2

1 d− ζ

)
.

Such an action is linear and free on a ∈H0(KC) and we can fix a+ ζ = 0. Therefore, the

quotient of H0(KC)
2×H0(K2

C) by (H0(KC),+) is H0(KC)
2×H0(K2

C)
∼= C5.

Nontrivial case

Nontrivial extensions of L by M are parametrised by P(H1(L−1M)) = P2 and fit the
exact sequence

0→ L→ V →M → 0.

Tensoring by KC , applying the functor Hom(V ,−) and taking global sections gives

0 H0(Hom(V ,LKC)) H0(End(V )⊗KC) H0(Hom(V ,MKC))

H1(Hom(V ,LKC)) H1(End(V )⊗KC) H1(Hom(V ,MKC)) 0.

ext

On the other hand, applying the functor Hom(−,MKC) and taking global sections,

one has
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0 H0(KC) H0(Hom(V ,MKC)) H0(L−1MKC)

H1(KC) H1(Hom(V ,MKC)) H1(L−1MKC) 0.

ext

Again, a Higgs bundle that has V as an underlying vector bundle is stable if and only

if its Higgs field lies in the complement of the kernel of

H0(End(V )⊗KC) H0(Hom(V ,MKC)) H0(L−1MKC)).

Observe that H0(L−1MKC) ∼= H0(O) ∼= C and H1(KC) ∼= C. Because the extension

map is nonzero, it is an isomorphism. As a result, the map H0(Hom(V ,MKC)) →
H0(L−1MKC)) is 0; thus, no nontrivial extensions give a stable Higgs bundle.

Proof of proposition 7.2. As in the SL(2,C) case,

MGL,s
Dol = T ∗N s�N1�N3�N4�NU .

Summing E -polynomials of all strata, we get the E -polynomial of MGL,s
Dol :

E(MGL,s
Dol ) =−2u4v4+4u5v4−3u6v4+2u7v4−u8v4+4u4v5

−10u5v5+10u6v5−6u7v5+2u8v5+

−3u4v6+10u5v6−11u6v6+4u7v6+2u4v7

−6u5v7+4u6v7+3u7v7−4u8v7+u9v7+

−u4v8+2u5v8−4u7v8+6u8v8−4u9v8+u10v8

+u7v9−4u8v9+5u9v9−2u10v9+u8v10+

−2u9v10+u10v10.

7.5. Cohomology of Σ̃GL \ Ω̃GL and Ω̃GL

7.5.1. Cohomology of Ω̃GL.

Lemma 7.11.

E(Ω̃GL) = u7v7−2u7v6+u7v5−2u6v7+5u6v6−4u6v5

+u6v4+u5v7−4u5v6+6u5v5−4u5v4+

+u5v3+u4v6−4u4v5+6u4v4−4u4v3+u4v2

+u3v5−4u3v4+5u3v3−2u3v2+u2v4+

−2u2v3+u2v2.

Proof. Recall that Ω̃GL is a G-bundle on T ∗J ; thus, the E -polynomial of Ω̃GL is

E(Ω̃GL) = (1+uv+u2v2+u3v3)E(J )E(C2).
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7.5.2. Cohomology of Σ̃GL \ Ω̃GL.

Lemma 7.12.

E(Σ̃GL \ Ω̃GL) =−u2v2+2u3v2−u4v2+2u2v3−5u3v3

+4u4v3−u5v3−u2v4+4u3v4−4u4v4+

+2u6v4−2u7v4+u8v4−u3v5+8u5v5−14u6v5

+10u7v5−4u8v5+u9v5+2u4v6+

−14u5v6+28u6v6−24u7v6+10u8v6−2u9v6

−2u4v7+10u5v7−24u6v7+28u7v7+

−14u8v7+2u9v7+u4v8−4u5v8+10u6v8

−14u7v8+9u8v8−2u9v8+u5v9−2u6v9+

+2u7v9−2u8v9+u9v9.

Proof. Observe that Σ̃GL \ Ω̃GL is a P1-bundle over ΣGL \ΩGL and that ΣGL \ΩGL is

isomorphic to
(
J ×H0(KC)

)(2)
minus the diagonal J ×H0(KC). Then

E(Σ̃GL) =
(
E(J (2))u4v4−E(J )u2v2

)
E(P1).

7.6. Cohomology of M̃GL
Dol and intersection cohomology of MGL

Dol

The E -polynomial of M̃GL
Dol is the sum of the E -polynomials of each term in (10). We

have proved the following.

Theorem 7.13. Let M̃GL
Dol be the semismall desingularisation of MGL

Dol constructed in

Section 4. The E-polynomial of M̃GL
Dol is

E(M̃GL
Dol) = 4u5v5−8u6v5−8u5v6+5u7v5+22u6v6

+5u5v7−2u8v5−22u7v6−22u6v7−2u5v8+

+u9v5+10u8v6+32u7v7+10u6v8+u5v9−2u9v6−18u8v7

−18u7v8−2u6v9+3u9v7+

+15u8v8+3u7v9−6u9v8−6u8v9+u10v8+6u9v9

+u8v10−2u10v9−2u9v10+u10v10.

Moreover, by Lemma 5.6, the Poincaré polynomial of M̃GL
Dol is

Pt(M̃GL
Dol) = 1+4t+8t2+12t3+21t4+40t5+54t6+48t7+32t8+16t9+4t10.

Finally, one can prove Theorem 7.1 by computing the intersection Betti numbers of

MGL
Dol.

Proof of theorem 7.1. By equation (34), we have to subtract from E(M̃GL
Dol) the

contributions Etop coming from the top cohomology of the fibres. The intersection
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E -polynomial of MGL
Dol is

IE(MGL
Dol) = 2u5v5−4u6v5−4u5v6+2u7v5+10u6v6

+2u5v7−8u7v6−8u6v7+2u8v6+11u7v7+

+2u6v8−6u8v7−6u7v8+u9v7+7u8v8+u7v9−4u9v8

−4u8v9+u10v8+5u9v9+

+u8v10−2u10v9−2u9v10+u10v10.

By Lemma 5.6, we get the Poincaré polynomial and the Hodge diamond.
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