Degree Kirchhoff Index of Bicyclic Graphs

Zikai Tang and Hanyuan Deng

Abstract. Let G be a connected graph with vertex set $V(G)$. The degree Kirchhoff index of G is defined as $S^{\prime}(G)=\sum_{\{u, v\} \subseteq V(G)} d(u) d(v) R(u, v)$, where $d(u)$ is the degree of vertex u, and $R(u, v)$ denotes the resistance distance between vertices u and v. In this paper, we characterize the graphs having maximum and minimum degree Kirchhoff index among all n-vertex bicyclic graphs with exactly two cycles.

1 Introduction

Let $G=(V(G), E(G))$ be a simple undirected graph with n vertices and m edges. In this paper, all graphs considered are assumed to be connected. The distance $d(v, u)$ between the vertices v and u of the graph G is defined as the length of a shortest path between v and u. The Wiener index is defined as the sum of distances between all unordered pairs of vertices

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v) .
$$

It is one of the most used topological indices, well correlated with many physical and chemical properties of a variety of classes of chemical compounds.

A multiplicative weighted version of the Wiener index is the Schultz index of the second kind $S(G)$ defined as

$$
S(G)=\sum_{\{u, v\} \subseteq V(G)} d(u) d(v) d(u, v) .
$$

It was introduced by Gutman in [6], where it is also pointed out that the relation

$$
S(G)=4 W(G)-(2 n-1)(n-1)
$$

holds for trees.
The Kirchhoff index (or resistance index) is defined, in analogy to the Wiener index [1], by

$$
K f(G)=\sum_{\{u, v\} \subseteq V(G)} R(u, v)=\frac{1}{2} \sum_{v \in V(G)} R(v) .
$$

where $R(u, v)$ denotes the resistance distance (see [5]) between vertices u and v and $R(v)$ stands for the sum of resistance distances between the vertex v and all other

[^0]vertices of G :
$$
R(v)=R(v \mid G)=\sum_{u \in V(G)} R(u, v) .
$$

Recently, a new index called the degree Kirchhoff index was introduced in [2] and further studied in [3, 4, 7]. It is defined as

$$
S^{\prime}(G)=\sum_{\{u, v\} \subseteq V(G)} d(u) d(v) R(u, v)=\frac{1}{2} \sum_{v \in V(G)} d(v) S^{\prime}(v),
$$

where

$$
\begin{equation*}
S^{\prime}(v)=S^{\prime}(v \mid G)=\sum_{u \in V(G)} d(u) R(u, v) \tag{1.1}
\end{equation*}
$$

By the definitions of $S(G), S^{\prime}(G)$, and $R(u, v) \leq d(u, v)$, we have $S^{\prime}(G) \leq S(G)$.
For a tree, $R(u, v)=d(u, v)$, we have $K f(G)=W(G)$ and $S^{\prime}(G)=S(G)$. In [3], the authors determined the first two maximum and the first two minimum degree Kirchhoff indices of unicyclic graphs. Reference [4] found the fully loaded unicyclic graphs with maximum and minimum degree Kirchhoff index and the extremal cacti with minimum degree Kirchhoff index. Specifically, they gave the minimum degree Kirchhoff index of bicyclic graphs with two edge disjoint cycles. In this paper, we further characterize the graphs having maximum and minimum degree Kirchhoff index among all n-vertex bicyclic graphs with exactly two cycles.

2 Preliminary

Lemma 2.1 ([5]) Let x be a cut vertex of a graph G, and let a and b be vertices occurring in different components that arise upon deletion of x. Then $R(a, b)=R(a, x)+$ $R(x, b)$.

Lemma 2.2 ([3]) Let G_{1} and G_{2} be connected graphs with disjoint vertex sets and with m_{1} and m_{2} edges, respectively. Let $u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)$. Construct the graph G by identifying the vertices u_{1} and u_{2}, and denote the so-obtained vertex by u. Then

$$
\begin{equation*}
S^{\prime}(G)=S^{\prime}\left(G_{1}\right)+S^{\prime}\left(G_{2}\right)+2 m_{1} S^{\prime}\left(u_{2} \mid G_{2}\right)+2 m_{2} S^{\prime}\left(u_{1} \mid G_{1}\right) . \tag{2.1}
\end{equation*}
$$

Denote by $H_{n, 3}$ the graph obtained by adding $n-3$ pendant vertices to a vertex of C_{3} and by U_{3}^{n} the graph obtained by adding a path with $n-3$ vertices to a vertex of C_{3}.

Lemma 2.3 ([3]) Let G be an unicyclic graph with n vertices. Then $S^{\prime}\left(U_{3}^{n}\right) \geq S^{\prime}(G) \geq$ $S^{\prime}\left(H_{n, 3}\right)$.

Lemma 2.4 Let G_{0} be a connected graph with m_{0} edges and $u, w \in V\left(G_{0}\right)$ such that $S^{\prime}\left(u \mid G_{0}\right) \leq S^{\prime}\left(v \mid G_{0}\right) \leq S^{\prime}\left(w \mid G_{0}\right)$ for all $v \in V\left(G_{0}\right)$. If F, G, H are graphs obtained from G_{0} by attaching a pendant vertex v_{1} at u, v, w, respectively. Then $S^{\prime}(u \mid F) \leq$ $S^{\prime}(x \mid G) \leq S^{\prime}\left(v_{1} \mid H\right)$ for all $x \in V(G)$.

By equation (1.1), we have

$$
\begin{aligned}
S^{\prime}\left(v_{1} \mid G\right) & =\sum_{t \in V(G)} d_{G}(t) R\left(t, v_{1}\right)=\sum_{t \in V(G)} d_{G}(t)(R(t, v)+1) \\
& =\sum_{t \in V\left(G_{0}\right)-\{v\}} d_{G_{0}}(t)(R(t, v)+1)+d_{G_{0}}(v)+1 \\
& =\sum_{t \in V\left(G_{0}\right)} d_{G_{0}}(t) R(t, v)+\sum_{t \in V\left(G_{0}\right)} d_{G_{0}}(t)+1 \\
& =S^{\prime}\left(v \mid G_{0}\right)+2 m_{0}+1,
\end{aligned}
$$

and for $x \in V\left(G_{0}\right)$, we have

$$
\begin{aligned}
S^{\prime}(x \mid G) & =\sum_{t \in V(G)} d_{G}(t) R(t, x) \\
& =\sum_{t \in V\left(G_{0}\right)-\{v\}} d_{G_{0}}(t) R(t, x)+\left(d_{G_{0}}(v)+1\right) R(v, x)+R\left(v_{1}, x\right) \\
& =\sum_{t \in V\left(G_{0}\right)} d_{G_{0}}(t) R(t, x)+2 R(v, x)+1=S^{\prime}\left(x \mid G_{0}\right)+2 R(v, x)+1 .
\end{aligned}
$$

Note that $0 \leq R(v, x) \leq m_{0}$ for $x \in V\left(G_{0}\right)$, we and have

$$
S^{\prime}\left(x \mid G_{0}\right)+1 \leq S^{\prime}(x \mid G) \leq S^{\prime}\left(x \mid G_{0}\right)+2 m_{0}+1 .
$$

On the other hand,

$$
\begin{aligned}
S^{\prime}(u \mid F) & =\sum_{t \in V(F)} d_{F}(t) R(t, u) \\
& =\sum_{t \in V\left(G_{0}\right)-\{u\}} d_{G_{0}}(t) R(t, u)+\left(d_{G_{0}}(u)+1\right) R(u, u)+R\left(v_{1}, u\right) \\
& =\sum_{t \in V\left(G_{0}\right)} d_{G_{0}}(t) R(t, u)+R\left(v_{1}, u\right)=S^{\prime}\left(u \mid G_{0}\right)+1, \\
S^{\prime}\left(v_{1} \mid H\right) & =\sum_{t \in V(H)} d_{H}(t) R\left(t, v_{1}\right) \\
& =\sum_{t \in V\left(G_{0}\right)-\{w\}} d_{G_{0}}(t)(R(t, w)+1)+\left(d_{G_{0}}(w)+1\right) R\left(w, v_{1}\right) \\
& =\sum_{t \in V\left(G_{0}\right)} d_{G_{0}}(t) R(t, w)+\sum_{t \in V\left(G_{0}\right)} d_{G_{0}}(t)+1=S^{\prime}\left(w \mid G_{0}\right)+2 m_{0}+1 .
\end{aligned}
$$

Since $S^{\prime}\left(u \mid G_{0}\right) \leq S^{\prime}\left(v \mid G_{0}\right) \leq S^{\prime}\left(w \mid G_{0}\right)$ for all $v \in V\left(G_{0}\right)$, we have

$$
S^{\prime}(u \mid F) \leq S^{\prime}(x \mid G) \leq S^{\prime}\left(v_{1} \mid H\right) \quad \forall x \in V(G) .
$$

Theorem 2.5 Let G_{0} be a connected graph with n vertices and let m_{0} edges and $\mathcal{G}_{n, k}=\mathcal{G}_{n, k}\left(G_{0}\right)$ be the set of all connected graphs of order $n+k$ that have G_{0} as an induced subgraph such that the components of $G-E\left(G_{0}\right)$ are trees $T_{1}, T_{2}, \ldots, T_{n}$, and each T_{i} intersects G_{0} at a single point. Choose vertices u and w such that $S^{\prime}\left(u \mid G_{0}\right) \leq$ $S^{\prime}\left(v \mid G_{0}\right) \leq S^{\prime}\left(w \mid G_{0}\right)$ for all $v \in V\left(G_{0}\right)$, and construct a graph $G_{k}=G_{0}+w v_{1}+P_{k}$ from G_{0} by attaching a path $P_{k}=v_{1} v_{2} \cdots v_{k}$ at w, and a graph $G_{k}^{\prime}=G_{0}+\left\{u v_{1}, u v_{2}, \ldots, u v_{k}\right\}$ from G_{0} by attaching k pendant vertices v_{1}, \ldots, v_{k} at u. Then
(i) $\quad G_{k}$ has the maximal degree Kirchhoff index and G_{k}^{\prime} has the minimum degree Kirchhoff index among $\mathcal{G}_{n, k}$;
(ii) $S^{\prime}\left(u \mid G_{k}^{\prime}\right) \leq S^{\prime}(x \mid H) \leq S^{\prime}\left(v_{k} \mid G_{k}\right)$ for all $H \in \mathcal{G}_{n, k}$ and $x \in V(H)$.

Proof We will prove the theorem by induction on k.
If $k=1$, let $G \in \mathcal{G}_{n, 1}$, then G can be obtained by attaching a pendant vertex v_{1} at a vertex v of G_{0}. By Lemma 2.2, we have

$$
S^{\prime}(G)=S^{\prime}\left(G_{0}\right)+2 S^{\prime}\left(v \mid G_{0}\right)+2 m_{0}+1
$$

So $S^{\prime}\left(G_{0}\right)+2 S^{\prime}\left(u \mid G_{0}\right)+2 m_{0}+1 \leq S^{\prime}(G) \leq S^{\prime}\left(G_{0}\right)+2 S^{\prime}\left(w \mid G_{0}\right)+2 m_{0}+$ 1, i.e., $S^{\prime}\left(G_{1}^{\prime}\right) \leq S^{\prime}(G) \leq S^{\prime}\left(G_{1}\right)$. And $S^{\prime}\left(u \mid G_{1}^{\prime}\right) \leq S^{\prime}(x \mid H) \leq S^{\prime}\left(v_{1} \mid G_{1}\right)$ for all $H \in \mathcal{G}_{n, 1}$ and $x \in V(H)$ from Lemma 2.4. Results (i) and (ii) hold for $k=1$.

Suppose results (i) and (ii) hold for $k=t$. If $H \in \mathcal{G}_{n, t+1}$, then H can be obtained from a graph $H^{\prime} \in \mathcal{G}_{n, t}$ by attaching a pendant vertex v_{t+1} at a vertex $v \in V\left(H^{\prime}\right)$. By Lemma 2.2, we have

$$
S^{\prime}(H)=S^{\prime}\left(H^{\prime}\right)+2 S^{\prime}\left(v \mid H^{\prime}\right)+2 m_{t}+1
$$

where $m_{t}=\left|E\left(H^{\prime}\right)\right|=m_{0}+t$. And $S^{\prime}\left(G_{t}^{\prime}\right) \leq S^{\prime}\left(H^{\prime}\right) \leq S^{\prime}\left(G_{t}\right)$ and $S^{\prime}\left(u \mid G_{t}^{\prime}\right) \leq$ $S^{\prime}\left(v \mid H^{\prime}\right) \leq S^{\prime}\left(v_{t} \mid G_{t}\right)$ from the induction hypothesis.

So, $S^{\prime}\left(G_{t}^{\prime}\right)+2 S^{\prime}\left(u \mid G_{t}^{\prime}\right)+2 m_{t}+1 \leq S^{\prime}(H) \leq S^{\prime}\left(G_{t}\right)+2 S^{\prime}\left(v_{t} \mid G_{t}\right)+2 m_{t}+1$, i.e., $S^{\prime}\left(G_{t+1}^{\prime}\right) \leq S^{\prime}(H) \leq S^{\prime}\left(G_{t+1}\right)$.

On the other hand, as in the proof of Lemma 2.4, we have

$$
S^{\prime}(x \mid H)=S^{\prime}\left(x \mid H^{\prime}\right)+2 R(v, x)+1 \quad \text { and } \quad 0 \leq R(v, x) \leq m_{t}
$$

for $x \in V\left(H^{\prime}\right)$, and

$$
\begin{aligned}
S^{\prime}\left(v_{t+1} \mid H\right) & =S^{\prime}\left(v \mid H^{\prime}\right)+2 m_{t}+1 \\
S^{\prime}\left(u \mid G_{t+1}^{\prime}\right) & =S^{\prime}\left(u \mid G_{t}^{\prime}\right)+1 \\
S^{\prime}\left(v_{t+1} \mid G_{t+1}\right) & =S^{\prime}\left(v_{t} \mid G_{t}\right)+2 m_{t}+1
\end{aligned}
$$

By the induction hypothesis, $S^{\prime}\left(u \mid G_{t}^{\prime}\right) \leq S^{\prime}\left(v \mid H^{\prime}\right) \leq S^{\prime}\left(v_{t} \mid G_{t}\right)$, and so we have $S^{\prime}\left(u \mid G_{t+1}^{\prime}\right) \leq S^{\prime}(x \mid H) \leq S^{\prime}\left(v_{t+1} \mid G_{t+1}\right)$ for all $x \in V(H)$.

Therefore, results (i) and (ii) hold for $k=t+1$.

3 The Main Results

Let G be a bicyclic graph of order n, with exactly two cycles $C_{k_{1}}, C_{k_{2}}$, with skeleton graph either $B_{1}\left(k_{1}, k_{2}\right)$ or $B_{2}\left(k_{1}, k_{2}\right)$ (see Figure 1).

Denote by $\mathcal{B}_{1}\left(k_{1}, k_{2}\right)$ the set of bicyclic graphs of order n with the skeleton graph $B_{1}\left(k_{1}, k_{2}\right)$, and by \mathcal{B}_{1} the set of bicyclic graphs of order n with the skeleton graph $B_{1}\left(k_{1}, k_{2}\right)$ for all $k_{1} \geq 3$ and $k_{2} \geq 3$.

For $x \in V\left(B_{1}\left(k_{1}, k_{2}\right)\right), B_{1}^{x}\left(k_{1}, k_{2}, S\right)$ is the graph obtained by identifying x of $B_{1}\left(k_{1}, k_{2}\right)$ with the center v of the star S_{t+1}, and denote the so obtained vertex by x; i.e., $B_{1}^{x}\left(k_{1}, k_{2}, S\right)$ is the graph obtained $B_{1}\left(k_{1}, k_{2}\right)$ by attaching t pendant vertices at x, where $t=n-k_{1}-k_{2}+1 ; B_{1}^{x}\left(k_{1}, k_{2}, P\right)$ is the graph obtained by identifying x of $B_{1}\left(k_{1}, k_{2}\right)$ with an end vertex v of the path P_{t+1}, and denote the so obtained vertex by $x ; B_{1}^{x}\left(k_{1}, k_{2}, P\right)$ is the graph obtained from $B_{1}\left(k_{1}, k_{2}\right)$ by attaching a path P_{t} at x.

$B_{1}\left(k_{1}, k_{2}\right)$

$B_{2}\left(k_{1}, k_{2}\right)$

Figure 1: The skeleton graphs of bicyclic graphs ($k_{1} \geq k_{2}$).

Let u be the unique common vertex of $C_{k_{1}}$ and $C_{k_{2}}$, and w is a vertex of $C_{k_{1}}$ such that $d(u, w) \geq d(v, u)$ for all $v \in V\left(C_{k_{1}}\right)$. By computing, we have

$$
\begin{aligned}
S^{\prime}\left(B_{1}\left(k_{1}, k_{2}\right)\right) & =\frac{1}{3}\left(k_{1}^{3}+k_{2}^{3}+2 k_{2} k_{1}^{2}+2 k_{1} k_{2}^{2}-3 k_{1}-3 k_{2}\right) ; \\
S^{\prime}\left(u \mid B_{1}\left(k_{1}, k_{2}\right)\right) & =\frac{1}{3}\left(k_{1}^{2}+k_{2}^{2}-2\right), \\
S^{\prime}\left(w \mid B_{1}\left(k_{1}, k_{2}\right)\right) & = \begin{cases}\frac{1}{3}\left(k_{1}^{2}+k_{2}^{2}-2\right)+\frac{1}{2} k_{1} k_{2}, & \text { if } k_{1} \text { is even, } \\
\frac{1}{3}\left(k_{1}^{2}+k_{2}^{2}-2\right)+\frac{1}{2 k_{1}} k_{2}\left(k_{1}^{2}-1\right), & \text { if } k_{1} \text { is odd, }, \\
S^{\prime}\left(S_{t}\right) & =2 t^{2}-5 t+3, \quad S^{\prime}\left(v \mid S_{t}\right)=t-1, \\
S^{\prime}\left(P_{t}\right) & =\frac{1}{3}(t-1)\left(2 t^{2}-4 t+3\right), \quad S^{\prime}\left(v \mid P_{t}\right)=(t-1)^{2} .\end{cases}
\end{aligned}
$$

Theorem 3.1 If $G \in \mathcal{B}_{1}\left(k_{1}, k_{2}\right)$, then

$$
S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right) \leq S^{\prime}(G) \leq S^{\prime}\left(B_{1}^{w}\left(k_{1}, k_{2}, P\right)\right) .
$$

Proof For all $x \in V\left(B_{1}\left(k_{1}, k_{2}\right)\right)$, it is computed out that

$$
S^{\prime}\left(u \mid B_{1}\left(k_{1}, k_{2}\right)\right) \leq S^{\prime}\left(x \mid B_{1}\left(k_{1}, k_{2}\right)\right) \leq S^{\prime}\left(w \mid B_{1}\left(k_{1}, k_{2}\right)\right) .
$$

By taking $G_{0}=B_{1}\left(k_{1}, k_{2}\right)$ in Theorem 2.5, we have $S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right) \leq S^{\prime}(G) \leq$ $S^{\prime}\left(B_{1}^{w}\left(k_{1}, k_{2}, P\right)\right)$.

The result shows that $S^{\prime}\left(B_{1}^{w}\left(k_{1}, k_{2}, P\right)\right)$ has the maximal degree Kirchhoff index, and $S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right)$ has the minimum degree Kirchhoff index among $\mathcal{B}_{1}\left(k_{1}, k_{2}\right)$.

Lemma 3.2 If $k_{1}>3$, then $S^{\prime}\left(B_{1}^{u}\left(k_{1}-1, k_{2}, S\right)\right)<S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right)$.
Proof By Lemma 2.2, we have

$$
\begin{aligned}
& S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right)= \\
& \quad S^{\prime}\left(B_{1}\left(k_{1}, k_{2}\right)\right)+S^{\prime}\left(S_{t}\right)+2(t-1) S^{\prime}\left(u \mid B_{1}\left(k_{1}, k_{2}\right)\right)+2\left(k_{1}+k_{2}\right) S^{\prime}\left(v \mid S_{t}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right)-S^{\prime}\left(B_{1}^{u}\left(k_{1}-1, k_{2}, S\right)\right) \\
& \quad=\frac{1}{3}\left(k_{1}^{2}+4 k_{1} k_{2}-9 k_{1}-8 k_{2}+11\right)+\frac{2}{3} t\left(2 k_{1}-4\right) \\
& \quad \geq \frac{1}{3}\left[\left(k_{1}^{2}-5 k_{1}+11\right]+\frac{2}{3} t\left(2 k_{1}-4\right)\right. \\
& \quad=\frac{1}{3}\left[\left(k_{1}-\frac{5}{2}\right)^{2}+\frac{19}{4}\right]+\frac{2}{3} t\left(2 k_{1}-4\right)>0 .
\end{aligned}
$$

So $S^{\prime}\left(B_{1}^{u}\left(k_{1}-1, k_{2}, S\right)\right)<S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right)$.
Theorem 3.3 If $G \in \mathcal{B}_{1}$, then $S^{\prime}(G) \geq S^{\prime}\left(B_{1}^{u}(3,3, S)\right)$.
Proof For $G \in \mathcal{B}_{1}$, there are $k_{1} \geq k_{2} \geq 3$ such that $G \in \mathcal{B}_{1}\left(k_{1}, k_{2}\right)$. By Theorem 3.1, we have

$$
S^{\prime}(G) \geq S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right)
$$

Using Lemma 3.2 repeatedly, we have $S^{\prime}(G) \geq S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right) \geq S^{\prime}\left(B_{1}^{u}(3,3, S)\right)$.

Theorem 3.4 If $G \in \mathcal{B}_{1}$, then $S^{\prime}(G) \leq S^{\prime}\left(B_{1}^{w}(3,3, P)\right)$.
Proof For $G \in \mathcal{B}_{1}$, there are $k_{1} \geq k_{2} \geq 3$ such that $G \in \mathcal{B}_{1}\left(k_{1}, k_{2}\right)$. By Theorem 3.1, we have

$$
S^{\prime}(G) \leq S^{\prime}\left(B_{1}^{w}\left(k_{1}, k_{2}, P\right)\right) .
$$

Let $U_{k_{1}}^{n_{1}}$ be the induced subgraph of $B_{1}^{w}\left(k_{1}, k_{2}, P\right)$ by the cycle $C_{k_{1}}$ and the path P_{t}, i.e., $U_{k_{1}}^{n_{1}}$ is an unicyclic graph of order n_{1} obtained from C_{k-1} by attaching a path P_{t} at w, where $n_{1}=k_{1}+t$. By Lemma 2.2, we have

$$
S^{\prime}\left(B_{1}^{w}\left(k_{1}, k_{2}, P\right)\right)=S^{\prime}\left(U_{k_{1}}^{n_{1}}\right)+S^{\prime}\left(C_{k_{2}}\right)+2 k_{2} S^{\prime}\left(u \mid U_{k_{1}}^{n_{1}}\right)+2 n_{1} S^{\prime}\left(u \mid C_{k_{2}}\right)
$$

and

$$
\begin{aligned}
& S^{\prime}\left(B_{1}^{w}\left(3, k_{2}, P\right)\right)-S^{\prime}\left(B_{1}^{w}\left(k_{1}, k_{2}, P\right)\right) \\
& \quad=S^{\prime}\left(U_{3}^{n_{1}}\right)-S^{\prime}\left(U_{k_{1}}^{n_{1}}\right)+2 k_{2}\left(S^{\prime}\left(w \mid U_{3}^{n_{1}}\right)-S^{\prime}\left(w \mid U_{k_{1}}^{n_{1}}\right)\right) \\
& \quad \geq 0
\end{aligned}
$$

So we have

$$
\begin{equation*}
S^{\prime}\left(B_{1}^{w}\left(3, k_{2}, P\right)\right) \geq S^{\prime}\left(B_{1}^{w}\left(k_{1}, k_{2}, P\right)\right) \tag{3.1}
\end{equation*}
$$

Now, let w^{\prime} be a vertex of $C_{k_{2}}$ such that $d\left(u, w^{\prime}\right) \geq d(x, u)$ for all $x \in V\left(C_{k_{2}}\right)$. Then

$$
S^{\prime}\left(x \mid B_{1}\left(3, k_{2}\right)\right) \leq S^{\prime}\left(w^{\prime} \mid B_{1}\left(3, k_{2}\right)\right)
$$

for all $x \in V\left(B_{1}\left(3, k_{2}\right)\right)$. By Lemma 2.2, we have

$$
S^{\prime}\left(B_{1}^{w}\left(3, k_{2}, P\right)\right) \leq S^{\prime}\left(B_{1}^{w^{\prime}}\left(3, k_{2}, P\right)\right)
$$

By equation (3.1), we have

$$
S^{\prime}\left(B_{1}^{w^{\prime}}\left(k_{2}, 3, P\right)\right) \leq S^{\prime}\left(B_{1}^{w^{\prime}}(3,3, P)\right)
$$

So $S^{\prime}(G) \leq S^{\prime}\left(B_{1}^{w}\left(k_{1}, k_{2}, P\right)\right) \leq S^{\prime}\left(B_{1}^{w}(3,3, P)\right)$.

For the skeleton graph $G=B_{2}\left(k_{1}, k_{2}\right)$ (see Figure 1), we have

$$
\begin{aligned}
& x \in V\left(C_{k_{1}}-v_{1}\right), S^{\prime}(x \mid G)= \\
& \quad \frac{1}{3}\left(k_{1}^{2}+k_{2}^{2}-2\right)+(t-1)^{2}+2 R\left(x, u_{1}\right)\left(k_{2}+t-1\right)+2 k_{2}(t-1), \\
& x \in V\left(C_{k_{2}}-v_{t}\right), S^{\prime}(x \mid G)= \\
& \quad \frac{1}{3}\left(k_{1}^{2}+k_{2}^{2}-2\right)+(t-1)^{2}+2 R\left(x, u_{t}\right)\left(k_{1}+t-1\right)+2 k_{1}(t-1), \\
& v_{l} \in V\left(P_{t}\right), S^{\prime}\left(v_{l} \mid G\right)= \\
& \quad \frac{1}{3}\left(k_{1}^{2}+k_{2}^{2}-2\right)+(l-1)^{2}+(t-l-1)^{2}+2 k_{1}(l-1)+2 k_{2}(t-l-1) .
\end{aligned}
$$

From above, we can get the following results by direct computation.
(i) If w is a vertex of $B_{2}\left(k_{1}, k_{2}\right)$ such that $S^{\prime}\left(w \mid B_{2}\left(k_{1}, k_{2}\right)\right) \geq S^{\prime}\left(x \mid B_{2}\left(k_{1}, k_{2}\right)\right)$ for all $x \in V\left(B_{2}\left(k_{1}, k_{2}\right)\right)$, then either w is a vertex of $C_{k_{1}}$ such that $d\left(w, v_{1}\right) \geq d\left(x, v_{1}\right)$ for all $x \in V\left(C_{k_{1}}\right)$, or w is a vertex of $C_{k_{2}}$ such that $d\left(w, v_{t}\right) \geq d\left(x, v_{t}\right)$ for all $x \in V\left(C_{k_{2}}\right)$.
(ii) If v is a vertex of $B_{2}\left(k_{1}, k_{2}\right)$ such that $S^{\prime}\left(v \mid B_{2}\left(k_{1}, k_{2}\right)\right) \leq S^{\prime}\left(x \mid B_{2}\left(k_{1}, k_{2}\right)\right)$ for all $x \in V\left(B_{2}\left(k_{1}, k_{2}\right)\right)$, then $v=v_{l} \in P_{t}$, where $l=\left\lfloor\frac{t+1}{2}\right\rfloor$.

Denote by $\mathcal{B}_{2}\left(k_{1}, k_{2}\right)$ the set of bicyclic graphs of order n whose skeleton graph is $B_{2}\left(k_{1}, k_{2}\right)$, and by \mathcal{B}_{2} the set of bicyclic graphs of order n whose skeleton graph is $B_{2}\left(k_{1}, k_{2}\right)$ for all $k_{1} \geq 3$ and $k_{2} \geq 3$.

For $x \in V\left(B_{2}\left(k_{1}, k_{2}\right)\right), B_{2}^{x}\left(k_{1}, k_{2}, S\right)$ is the bicyclic graph obtained from $B_{2}\left(k_{1}, k_{2}\right)$ by attaching k pendant vertices at $x ; B_{2}^{x}\left(k_{1}, k_{2}, P\right)$ is the bicyclic graph obtained from $B_{2}\left(k_{1}, k_{2}\right)$ by attaching a path P_{k} at x, where $k=n-k_{1}-k_{2}-t+2$.

Using Theorem 2.5, we can get the following result.
Lemma 3.5 If $G \in \mathcal{B}_{2}\left(k_{1}, k_{2}\right)$, then

$$
S^{\prime}\left(B_{2}^{v_{l}}\left(k_{1}, k_{2}, S\right)\right) \leq S^{\prime}(G) \leq S^{\prime}\left(B_{2}^{w}\left(k_{1}, k_{2}, P\right)\right),
$$

where w is a vertex of $B_{2}\left(k_{1}, k_{2}\right)$ such that $S^{\prime}\left(w \mid B_{2}\left(k_{1}, k_{2}\right)\right) \geq S^{\prime}\left(x \mid B_{2}\left(k_{1}, k_{2}\right)\right)$ and v is a vertex of $B_{2}\left(k_{1}, k_{2}\right)$ such that $S^{\prime}\left(v \mid B_{2}\left(k_{1}, k_{2}\right)\right) \leq S^{\prime}\left(x \mid B_{2}\left(k_{1}, k_{2}\right)\right)$ for all $x \in$ $V\left(B_{2}\left(k_{1}, k_{2}\right)\right)$.

Theorem 3.6 If $G \in \mathcal{B}_{2}$, then $S^{\prime}(G) \leq S^{\prime}\left(B_{2}(3,3)\right)$.
Proof For $G \in \mathcal{B}_{2}$, there are $k_{1} \geq k_{2} \geq 3$ such that $G \in \mathcal{B}_{2}\left(k_{1}, k_{2}\right)$. By Lemma 3.5, we have $S^{\prime}(G) \leq S^{\prime}\left(B_{1}^{w}\left(k_{1}, k_{2}, P\right)\right)$.

Now, using equation (2.1) and Theorem 2.5, we have

$$
S^{\prime}\left(B_{2}^{w}\left(k_{1}, k_{2}, P\right)\right) \leq S^{\prime}\left(B_{2}\left(k_{1}, k_{2}\right)\right) .
$$

Let $U_{k_{1}}^{n_{1}}$ be the induced subgraph of $B_{2}\left(k_{1}, k_{2}\right)$ by its cycle $C_{k_{1}}$ and path P_{t}, where $n=k_{1}+k_{2}+t-2$ and $n_{1}=k_{1}+t-1$. Then $U_{k_{1}}^{n_{1}}$ is an unicyclic graph of order n_{1}, and $u=v_{t}$ is the vertex of degree 1 in $U_{k_{1}}^{n_{1}}$. By Lemma 2.2, we have

$$
\begin{aligned}
S^{\prime}\left(B_{2}\left(k_{1}, k_{2}\right)\right) & =S^{\prime}\left(U_{k_{1}}^{n_{1}}\right)+S^{\prime}\left(C_{k_{2}}\right)+2 k_{2} S^{\prime}\left(u_{t} \mid U_{k_{1}}^{n_{1}}\right)+2 n_{1} S^{\prime}\left(u \mid C_{k_{2}}\right) \\
S^{\prime}\left(B_{2}\left(3, k_{2}\right)\right) & =S^{\prime}\left(U_{3}^{n_{1}}\right)+S^{\prime}\left(C_{k_{2}}\right)+2 k_{2} S^{\prime}\left(u_{t} \mid U_{3}^{n_{1}}\right)+2 n_{1} S^{\prime}\left(u \mid C_{k_{2}}\right)
\end{aligned}
$$

Since $S^{\prime}\left(U_{k_{1}}^{n_{1}}\right) \leq S^{\prime}\left(U_{3}^{n_{1}}\right)$ from Lemma 2.3 and $S^{\prime}\left(u_{t} \mid U_{k_{1}}^{n_{1}}\right) \leq S^{\prime}\left(u_{t} \mid U_{3}^{n_{1}}\right)$, we have

$$
S^{\prime}\left(B_{2}\left(k_{1}, k_{2}\right)\right) \leq S^{\prime}\left(B_{2}\left(3, k_{2}\right)\right)
$$

Similarly,

$$
S^{\prime}\left(B_{2}\left(3, k_{2}\right)\right) \leq S^{\prime}\left(B_{2}(3,3)\right) .
$$

So $S^{\prime}(G) \leq S^{\prime}\left(B_{2}(3,3)\right)$.
Theorem 3.7 If $G \in \mathcal{B}_{2}$, then $S^{\prime}(G) \geq S^{\prime}\left(B_{1}^{u}(3,3, S)\right)$.
Proof For $G \in \mathcal{B}_{2}$, there are $k_{1} \geq k_{2} \geq 3$ such that $G \in \mathcal{B}_{2}\left(k_{1}, k_{2}\right)$. By Lemma 3.5, we have $S^{\prime}(G) \geq S^{\prime}\left(B_{2}^{v_{l}}\left(k_{1}, k_{2}, S\right)\right)$.

Let U be the unicyclic subgraph from $B_{2}^{v_{l}}\left(k_{1}, k_{2}, S\right)$ by deleting all vertices in $C_{k_{2}}-\left\{v_{t}\right\}$. Also $H_{n_{1}, k_{1}}$ is the unicyclic graph obtained by attaching $n-k_{1}-k_{2}+1$ pendant vertices to a vertex of $C_{k_{1}}$, where $n_{1}=n-k_{2}+1$.

By Lemma 2.2, we have

$$
\begin{aligned}
S^{\prime}\left(B_{2}^{v_{l}}\left(k_{1}, k_{2}, S\right)\right) & =S^{\prime}(U)+S^{\prime}\left(C_{k_{2}}\right)+2 k_{2} S^{\prime}\left(v_{t} \mid U\right)+2 n_{1} S^{\prime}\left(v_{t} \mid C_{k_{2}}\right) \\
S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right) & =S^{\prime}\left(H_{n_{1}, k_{1}}\right)+S^{\prime}\left(C_{k_{2}}\right)+2 k_{2} S^{\prime}\left(u \mid H_{n_{1}, k_{1}}\right)+2 n_{1} S^{\prime}\left(u \mid C_{k_{2}}\right)
\end{aligned}
$$

Since $S^{\prime}(U) \geq S^{\prime}\left(H_{n_{1}, k_{1}}\right)$ from Lemma 2.3, and $S^{\prime}\left(v_{t} \mid U\right) \geq S^{\prime}\left(u \mid H_{n_{1}, k_{1}}\right)$, where $u=v_{1}$, we have

$$
S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right) \leq S^{\prime}\left(B_{2}^{v_{l}}\left(k_{1}, k_{2}, S\right)\right) .
$$

By Theorem 3.3, we have $S^{\prime}(G) \geq S^{\prime}\left(B_{1}^{u}\left(k_{1}, k_{2}, S\right)\right) \geq S^{\prime}\left(B_{1}^{u}(3,3, S)\right)$.
Theorem 3.8 If G is a bicyclic graph of order n with exactly two cycles, then

$$
S^{\prime}\left(B_{1}^{u}(3,3, S)\right) \leq S^{\prime}(G) \leq S^{\prime}\left(B_{2}(3,3)\right)
$$

Proof By Theorems 3.3, 3.4, 3.6, and 3.7, we only need to prove that $S^{\prime}\left(B_{1}^{w}(3,3, P)\right) \leq$ $S^{\prime}\left(B_{2}(3,3)\right)$.

Let U_{3}^{n-2} be the unicyclic graph of order $n-2$ obtained by attaching a path P_{n-4} to a vertex of C_{3}. Then

$$
S^{\prime}\left(u \mid U_{3}^{n-2}\right) \leq S^{\prime}\left(v \mid U_{3}^{n-2}\right)
$$

where u is a vertex of C_{3} with degree 2 in U_{3}^{n-2}, and v is the vertex with degree 1 in U_{3}^{n-2}. By Lemma 2.2, we have

$$
\begin{aligned}
S^{\prime}\left(B_{1}^{u}(3,3, P)\right) & =S^{\prime}\left(C_{3}\right)+S^{\prime}\left(U_{3}^{n-2}\right)+6 S^{\prime}\left(u \mid U_{3}^{n-2}\right)+2(n-2) S^{\prime}\left(u \mid C_{3}\right) \\
S^{\prime}\left(B_{2}^{u}(3,3)\right) & =S^{\prime}\left(C_{3}\right)+S^{\prime}\left(U_{3}^{n-2}\right)+6 S^{\prime}\left(v \mid U_{3}^{n-2}\right)+2(n-2) S^{\prime}\left(v \mid C_{3}\right)
\end{aligned}
$$

So $S^{\prime}\left(B_{1}^{u}(3,3, P)\right) \leq S^{\prime}\left(B_{2}(3,3)\right)$.

Note that the minimum degree Kirchhoff index of bicyclic graphs with exactly two cycles is also obtained in [4] by using other method.

Acknowledgments The authors are thankful to the anonymous referees for their useful comments.

References

[1] D. Bonchev, A. T. Balaban, X. Liu, and D. J. Klein, Molecular cyclicity and centricity of polycyclic graphs: I. Cyclicity based on resistance distances or reciprocal distances. Int. J. Quantum Chem. 50(1994), 1-20.
[2] H. Chen and F. Zhang, Resistance distance and the normalized Laplacian spectrum. Discrete Appl. Math. 155(2007), no. 5, 654-661. http://dx.doi.org/10.1016/j.dam.2006.09.008
[3] L. H. Feng, I. Gutman, and G. H. Yu, Degree Kirchhoff index of unicyclic graphs. MATCH Commun. Math. Comput. Chem. 63(2013), no. 3, 629-648.
[4] L. H. Feng, W. J. Liu, G. H. Yu, and S. D. Li, The degree Kirchhoff index of fully loaded unicyclic graphs and cacti. Utilitas Mathematica, to appear.
[5] D. J. Klein and M. Randic, Resistance distance. J. Math. Chem. 12(1993), 81-95. http://dx.doi.org/10.1007/BF01164627
[6] I. Gutman, Selected properties of the Schultz molecular topological index. J. Chem. Inf. Comput. Sci. 34(1994), 1087-1089. http://dx.doi.org/10.1021/ci00021a009
[7] J. L. Palacios and J. M. Renom, Another look at the degree Kirchhoff index. Int. J. Quantum Chem. 111(2011), 3453-3455. http://dx.doi.org/10.1002/qua. 22725

College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China
e-mail: zikaitang@163.com hydeng@hunnu.edu.cn

[^0]: Received by the editors April 23, 2014; revised March 22, 2016.
 Published electronically October 11, 2016.
 This paper is supported by the program for excellent talents in Hunan Normal University (ET13101) and by the Hunan Provincial Natural Science Foundation of China (12JJ6005).

 AMS subject classification: 05C12, 05C35.
 Keywords: degree Kirchhoff index, resistance distance, bicyclic graph, extremal graph.

