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Abstract
We disentangle the effects of biodiesel incentives and shale oil expansion on the long-run
equilibrium price relationships among biodiesel feedstocks and crude oil in the United States
(US) and European Union (EU). We find that the 2005 Energy Policy Act in the US sub-
stantially increased the responsiveness of soy oil, canola oil, and corn oil prices to crude oil
price movements. However, in recent years, expansion in the global supply of crude oil from
shale oil extraction has offset the effects of US biodiesel incentives and blending mandates. In
the EU, the Indirect Land Use Change Directive of 2015 substantially reduced the respon-
siveness of biodiesel feedstock prices to crude oil price movements.
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Introduction

World biofuel production has risen dramatically in the last 25 years. Opponents of first-
generation biofuels claim that the technology diverts agricultural land away from food produc-
tion for use as a fuel source. Critics point to rising staple food prices during the 2007–2008
world food crisis as evidence of the unintended costs of biofuel expansion (Mitchel, 2008). The
global expansion of crude oil production – driven by fracking technology and the rise of shale
oil – has subsequently quelled some of these concerns and led to the United States (US) becom-
ing virtually self-sufficient in crude oil. However, the “food versus fuel” debate remains: To
what extent do biofuels really make food prices more susceptible to changes in crude oil mar-
kets and prices? In this paper, we seek to disentangle the effects of biodiesel incentives and
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shale oil expansion on the long-run equilibrium price relationship between crude oil and bio-
diesel feedstocks.

The literature is somewhat contradictory regarding the relationship between crude oil and
edible vegetable oil prices. Yu, Bessler, and Fuller (2006) study the long-run equilibrium rela-
tionships between oilseed prices (soybean, sunflower, canola, and palm) and world crude oil
prices between January 1999 and March 2006. The authors find that crude oil prices do not
significantly impact oilseed prices over the period of analysis. Later work by Zhang et al. (2010)
and Filip et al. (2019) give results that are consistent with Yu, Bessler, and Fuller (2006).

Abdel and Arshad (2008) also investigated the long-term relationship between the pri-
ces of petroleum and vegetable oil prices represented by palm, soybean, sunflower, and
canola oil prices, using data from January 1983 through March 2008. In contrast to
Yu, Bessler, and Fuller (2006), Abdel and Arshad (2008) find strong evidence of a
long-run equilibrium relationship between oilseed and petroleum prices. Consistent with
Abdel and Arshad (2008), Ghaith and Awad (2011) and (Esmaeili and Shokoohi (2011)
find evidence of long-term relationships between crude oil and a broader set of food com-
modity prices, using longer time series ending in the mid-2000s. Hassouneh et al. (2012)
use data from November 2006 to October 2010 to show the existence of a long run, equi-
librium relationship between biodiesel, sunflower, and crude oil prices.

An important limitation of this research is that it fails to account for changes in equi-
librium dynamics among biodiesel feedstock and crude oil prices in light of the expansion
of biofuel production and growth in the crude oil supply due to shale oil extraction. These
factors fundamentally alter market relationships Drabik, De Gorter and Timilsina (2014).
For example, Schaefer et al. (2021) find that – partially as a result of biodiesel policy – price
premiums for canola oil and sunflower oil have increased by 28% and 4%, respectively,
relative to soy oil over the past two decades.

We estimate a series of bivariate models to measure the cointegrating relationship
between prices for primary biodiesel feedstocks and crude oil in the US and European
Union (EU). Our specifications allow us to test for and distinguish the impacts of two types
of structural breaks in these equilibria – (1) smooth shifts driven by the expansion of the
global crude oil supply and (2) sharp breaks resulting from the promulgation of the major
biofuels legislation (Enders and Holt, 2012).

Our results are connected to the theoretical literature on the impacts of biodiesel pro-
duction incentives on oilseed and crude oil price relationships. Drabik, De Gorter and
Timilsina (2014) construct a theoretical model to analyze the effects of biodiesel mandates
and exogenous diesel price shocks on world soybean and canola markets. The authors find
that the jointness in crushing oil and meal from the oilseed reduces the size of the link
between diesel and oilseed prices. An increase in the diesel price leads to higher canola
prices, but the effect on soybean prices is ambiguous and depends on relative elasticities
of meal demand and canola supply because canola produces more oil than soybeans.

We find that the promulgation of the 2005 Energy Policy Act in the US substantially
increased the responsiveness of biodiesel feedstocks prices to crude oil price shocks.
However, in recent years, expansion in the global supply of crude oil has overshadowed
the effects of US biodiesel incentives and blending mandates. In the EU, the Indirect Land
Use Change (ILUC) Directive of 2015 substantially reduced the responsiveness of biodiesel
feedstock prices to crude oil price shocks.

Background

Production and use of biodiesel have risen dramatically over the last 25 years (Figure 1).
The two largest producers of biodiesel are the US and the EU. In the EU, growth in
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biodiesel was initially incentivized through the Biofuels Directive of 2001 (Directives 2001/
77/EC) in October 2001, which required 5.75% of all transport fuels to be replaced by bio-
fuels by the end of 2010. The 2009 Renewable Energy Directive, enacted in April 2009,
provided additional support by raising binding targets to 20% renewables for total energy
use and 10% for transportation fuel by 2020. In 2015, the European Parliament passed the
ILUC Directive (Directive 2015/1513) in September 2015, which requires GHG emissions
caused from land use change. In effect, this policy greatly reduces the share of agricultural
land in the EU that can be devoted to biofuels feedstocks. Canola oil is the primary feed-
stock used in EU biodiesel production (47% production share), followed by palm oil (15%
production share) and soy oil (7% production share) (Kim, Hanifzadeh and Kumar, 2018).

Figure 1. Global crude oil and biodiesel production. Global crude oil production and US biodiesel pro-
duction data in panel (c) are obtained from the US Energy Information Administration (EIA). US biodiesel
production is converted from barrels to metric tonnes using a conversion factor of 0.1364. EU biodiesel
production data in panel (c) are obtained from the EU Biofuels Annals (various years) GAIN Reports pro-
vided by the USDA Foreign Agricultural Service. Production shares for US and EU biodiesel feedstocks are
obtained from Kim, Hanifzadeh and Kumar, 2018.
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In the US, the watershed legislation was the Energy Policy Act of 2005 (Public Law 109-
58) enacted in August 2005. This legislation required the blending of ethanol and biodiesel
into transportation fuels under the Renewable Fuel Standard (RFS). This legislation pro-
vided a huge boost to biofuel demand. Usage grew by more than 300% from 2004 (55000
metric tons of biodiesel per month) to 2005 (180 000 metric tons of biodiesel per month)
and increased by almost 1000% from 2004 to 2006 (497 000 metric tons of biodiesel per
month). In December 2007, the Energy Independence and Security Act of 2007 (Public
Law 110-140) further expanded and extended the RFS to require the use of 29.25 million
tonnes of biofuel in 2008, increasing to 117 million tonnes by 2022. Soy oil is the primary
biodiesel feedstock in the US (55% production share), followed by corn oil (12% produc-
tion share) and canola oil (10% production share) (Kim, Hanifzadeh and Kumar, 2018).

Alongside the growth in biofuels, global crude oil production has expanded from
approximately 3.7 billion tonnes in 2000 to almost 4.6 billion tonnes in 2019. The increase
in crude oil supply is primarily the result of shale oil. After a dormancy period of more
than 20 years, shale oil extraction in the US restarted in 2003. The Energy Policy Act of
2005 formally allowed a commercial leasing program, which promoted the extraction of
shale oil and oil sands. This expansion has led the US becoming virtually self-sufficient in
crude oil.

Conceptual framework

Figure 2 provides a conceptual framework to illustrate the effects of biodiesel incentives
and shale oil expansion on the long-run equilibrium price relationship between crude oil
and biodiesel feedstocks.1 For simplicity, we assume that soy oil is produced via fixed

Figure 2. Market for soy oil.

1Note that—for simplicity—the framework focuses on the market for soy oil, but the results hold for the
broader set of feedstock prices.
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proportions technology using two inputs: (1) crude oil (as a transportation fuel) and (2) a
composite input denoted “other”, which represents all other inputs into soy oil production.
Thus, the marginal cost of soy oil production isMCSOY � PWTI � POTHER. In Figure 2, we
assume farmers can obtain crude oil for use in soy oil production at a constant marginal
cost PWTI

0 . The input supply of the “other” input (denoted SOTHER in Figure 2) is upward
sloping for soy oil producers. The supply of soy oil (denoted SSOY0 ) is the vertical sum of the
supply schedules for these two inputs. Prior to the introduction of biodiesel production
incentives and blending mandates, demand for soy oil is described by the schedule D0

in Figure 2. Under these assumptions, soy oil market equilibrium occurs at a price PSOY
0 .

Now suppose an exogenous shock to the crude oil industry shifts the price of crude oil
from PWTI

0 to PWTI
1 . This also shifts the supply of soy oil from SSOY0 to SSOY1 , leading to a new

equilibrium in the soy oil market at price PSOY
1 . Thus, prior to the introduction of biodiesel

production incentives and the expansion of shale oil production, the long-run equilibrium
relationship between crude oil and soy prices is described by the elasticity:

ηSOYWTI �
ΔPSOY

ΔPWTI ×
PWTI

PSOY � PSOY
1 � PSOY

0

PWTI
1 � PWTI

0
×

PWTI
0

PSOY
0

Effects of biodiesel production incentives and blending mandates
We use equivalent comparative statics to deduce the impacts of biodiesel production incen-
tives and blending mandates. Initial equilibrium (in which crude oil prices are PWTI

0 ) occur at
the same point as before. However, an exogenous shock to the crude oil price from PWTI

0 to
PWTI
1 now has two effects. As before, the shock shifts the soy oil supply curve from SSOY0 to

SSOY1 . Additionally, because crude oil and soy oil are now complements on the output market,
the shock also shifts the demand for soy oil outward from schedule D0 to D1. The resulting
market equilibrium occurs at a price PSOY

2 > PSOY
1 . Relative to outcomes prior to the imple-

mentation of biodiesel production incentives and blending mandates, the larger impact on
soy oil prices arising from an equivalent shock to crude oil prices suggests that soy oil and
crude oil prices are now more connected in long-run equilibrium.

Effects of shale oil expansion
It is straightforward to derive the impacts of shale oil expansion on the long-run equilib-
rium relationship between crude oil and soy oil prices. By design, the equilibrium price for
soy oil is PSOY � PWTI � POTHER. Thus, the long-run equilibrium crude oil–soy oil price
elasticity is increasing as the crude oil price rises (i.e., @η

@PWTI � POTHER

PWTI�POTHER� �2 > 0). Because

the expansion of shale oil production has driven crude oil prices down, this phenomenon
has resulted in a reduction in the long-run equilibrium relationship between crude oil pri-
ces and soy oil prices.

The conceptual framework in Figure 2 suggests that structural change brought on by
the rise of biodiesel production incentives and expanded shale oil production will have a
net effect on the long-run equilibrium relationship between crude oil and oilseed prices,
but the magnitude and direction of the effect will depend on which source of structural
change is dominant. If biodiesel production incentives are more important, we can expect
the long-run elasticity between crude oil and oilseed prices will increase significantly (oil-
seed prices become more sensitive to crude oil price changes), while if shale oil extraction is
more important, we can expect the long-run elasticity between crude oil and oilseed prices
to increase little or even decline.
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Methodology

In this section, we explain our empirical approach to estimate the effects of biodiesel incen-
tives and shale oil expansion on the long-run equilibrium price relationship among crude
oil and biodiesel feedstocks. We estimate a series of bivariate models to measure the coin-
tegrating relationship between prices for primary biodiesel feedstocks and crude oil in the
US and EU. Our specifications allow us to test for and distinguish the impacts of two types
of structural breaks in these equilibria – (1) smooth shifts driven by the expansion of the
global crude oil supply and (2) sharp breaks resulting from promulgation of the major
biofuels legislation (Enders and Holt, 2012). The first of these breaks assesses the impacts
of shale oil expansion on equilibrium price relationships. The second type of break gauges
the impacts of biodiesel promotion on these relationships. The Data section describes the
data used in the analysis and the Econometric Model section provides details of the econo-
metric modeling.

Data
Our analysis uses monthly prices for the predominant biodiesel feedstocks used in the US
(soy oil, canola oil, and corn oil) and the EU (soy oil, canola oil, and palm oil). For the US
analysis, we match biodiesel feedstock price data with monthly spot prices for West Texas
Intermediate (WTI) crude oil. The source for US soy oil and corn oil price data is the
USDA, Foreign Agriculture Service, “Oilseeds: World Markets & Trade” report. US soy
oil prices for Decatur (average wholesale tank price), and corn oil prices are FOB,
Chicago. US canola oil prices are a Midwest-average price obtained from the USDA
ERS “Oil Crops Yearbook”. WTI crude prices are FOB Cushing, Oklahoma spot prices
obtained from the US Energy Information Administration (EIA).

For the EU analysis, biodiesel feedstock price data are matched with Brent crude oil
prices. EU soy oil and canola oil prices (FOB Rotterdam) are obtained from the USDA
FAS. Palm oil prices used in the EU analysis are FOB Malaysia (also obtained from
USDA FAS). Brent crude oil prices are FOB spot prices obtained from Thomson
Reuters. All prices (shown in Figure 3) are monthly and run from January 2000 through
December 2020. The sample purposefully ends prior to the onset of the COVID-19 pan-
demic, which dramatically affected international commodity prices.

Table 1 provides the results for the augmented Dickey–Fuller and Philips–Perron tests
for nonstationarity in the biodiesel feedstock and crude oil price data, estimated in natural
logarithmic form and using a two-period lag specification. As shown in the Table, we fail to
reject a unit root for all price levels. We account for this in our econometric specifica-
tion below.

Econometric model
The long-run equilibrium relationship – if one exists – between the price for a given bio-
diesel feedstock and the price for crude oil, can be expressed as

Pf
t � µf � θf Pcrude

t (1)

where variable Pf
t describes the price at a given time t for the specific biodiesel feedstock f .

For our purposes, we consider f 2 {soy oil, canola oil, corn oil} for the US models and f 2
{soy oil, canola oil, palm oil} for the EU models. We define the contemporaneous price of
crude oil, variable Pcrude

t on the right-hand side, alternatively as the WTI price for the US
price relationships and the Brent price for the EU relationships.
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Our purpose is to assess the impacts of major biofuels legislation and global crude oil
supply expansion on these cointegrating relationships. To do so, we estimate the following
models:

Figure 3. Biodiesel feedstock and crude oil prices. US soy oil and corn oil price data (panel a) are obtained
from the USDA, Foreign Agriculture Service, “Oilseeds: World Markets & Trade” report. US soy oil prices for
Decatur (average wholesale tank price), and corn oil prices are FOB, Chicago. US canola oil prices (panel a)
are a Midwest-average price obtained from the USDA ERS “Oil Crops Yearbook”. WTI crude prices (panel a)
are FOB Cushing, Oklahoma spot prices obtained from the US Department of Energy, Energy Information
Administration (EIA). EU soy oil and canola oil prices (FOB Rotterdam) in panel (b) are obtained from the
USDA FAS. Palm oil prices (panel b) used in the EU analysis are FOB Malaysia (also obtained from USDA
FAS). Brent crude oil prices (panel b) are FOB spot prices obtained from Thomson Reuters. Vertical dashed
lines in the figure represent the dates of major biofuels legislation.

Table 1. Tests for nonstationarity

ADF Test Philips-Perron Test

Price Series Test Stat p-value Z(ρ) Z(t) p-value

US Prices

Ln WTI −2.271 0.181 −7.757 −2.154 0.223

Ln Soy Oil −2.038 0.270 −6.445 −2.044 0.268

Ln Canola Oil −2.562 0.101 −8.048 −2.085 0.251

Ln Corn Oil −2.466 0.124 −7.130 −2.256 0.187

EU Prices

Ln Brent −2.013 0.281 −6.423 −1.998 0.288

Ln Soy Oil −1.961 0.304 −5.027 −1.902 0.331

Ln Canola Oil −2.225 0.197 −5.673 −2.135 0.231

Ln Palm Oil −1.769 0.396 −5.941 −1.869 0.349

Note: Table presents results for tests for nonstationarity in the biodiesel feedstock and crude oil price data, estimated in
natural logarithmic form. ADF tests use a two-period lag specification.
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Pf
t � α

f
0 � β

f
0P

crude
t �

X
N
n�1

α
f
nPolicynt � β

f
nPolicynt P

crude
t

� �

� α
f
GG

crude
t � β

f
GG

crude
t Pcrude

t

� �
� ε

f
t (2)

Parameters αf0 and β
f
0 describe the baseline cointegrating relationship. We allow this

baseline cointegrating relationship to evolve in two ways:
Policy-induced regime change: First, we allow the promulgation of major biofuels leg-

islation in the US and EU to induce change in the intercept and slope terms characterizing
the long-run equilibrium relationship. This structural change process is described by the
second set of terms in equation (2). Variables Policynt are dummy variables that describe a
set of policies n 2 {1, : : : , N}. The dummy variables take value one in time periods on and
after the introduction of a given policy n and are equal to zero beforehand. The post-policy
cointegrating relationship is described by the sum of the baseline parameters and the pol-
icy shift parameters.

As described above in the Background section, the two major biofuels policy changes in
the US include the enactment of the Energy Policy Act in August 2005 and the Energy
Independence and Security Act in December 2007. Thus, in the US models, we include
dummies Policy1 (equal to one for periods on and after August 2005) and Policy2 (equal
to one for periods on and after December 2007) to represent these policy changes. The EU
has three major pieces of biofuels legislation. The first – and most meaningful piece of
legislation – was the Biofuels Directive of 2001, which was enacted in October 2001.
Subsequently, the EU adopted the Renewable Energy Directive in April 2009. Finally,
in October 2015, the EU adopted the Indirect Land Use Change Directive, which reduced
the share of land that could be devoted to biofuels feedstocks. Because our sample runs
from year 2000, we have a limited number of observations prior to the enactment of
the Biofuels Directive of 2001. Accordingly, for the EU models, we set the sample start
date as October 2001, where the “baseline” parameters are interpreted as in light of the
Directive. As in the US specification, we include two policy dummies Policy1 (equal to
one for periods on and after April 2009) and Policy2 (equal to one for periods on and after
October 2015) to represent the subsequent policy changes.

Oil expansion shifters: Second, we allow the cointegrating relationship between bio-
diesel feedstock and crude oil prices to shift gradually over time due to expansions (or
contractions) in the global oil supply. We model these smooth shifts using the third set
of terms in equation (2). Variable Gcrude

t represents annual global crude oil production
values. This variable enters the model independently as an intercept shifter and via the
interaction with the crude oil price as slope shifter. Annual observations of Gcrude

t are
matched with our monthly price dataset by calendar year. The annual time step reflects
the fact that these shifts in the cointegration process occur gradually over time, rather than
based on contemporaneous monthly production values.

Residual-based tests for cointegration: To assess cointegration across regimes, we
report results for augmented Dickey-Fuller (ADF) and Phillips–Perron for stationarity
of the residual term from equation (2) (Dickey and Fuller, 1979; Phillips and Perron,
1988). After estimation, we also conduct Wald tests to assess the statistical significance
of the postchange long-run equilibrium parameters.

Results

Figures 4 and 5 report – for the US and EU, respectively – the estimated cointegrating rela-
tionship between biodiesel feedstock and crude oil prices obtained from equation (2). The fig-
ures further show the impacts of major biofuels legislation and global crude oil supply
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expansion on these cointegrating relationships.2 Panels (a), (b), and (c) of the figures plot the

change in the cointegration coefficient attributable to each policy regime (Regime 1 = β̂
f
0,

Regime 2 = β̂
f
0 � β̂

f
1, and Regime 3 = β̂

f
0 � β̂

f
1 � β̂

f
2). Panels (d), (e), and (f) of the figures

plot the shift in the cointegration coefficient attributable to global oil expansion
�
β̂
f
G × Gcrude

�
over the relevant range of global oil production. Panels (g), (h), and (i) plot the evolution in the

cointegration coefficient (β̂f0 � β̂
f
1 × Policy1t � β̂

f
2 × Policy2t � β̂

f
G × Gcrude) for each cointe-

grating relationship over time.3

U.S. Soy Oil Policy Regimes U.S. Canola Oil Policy Regimes U.S. Corn Oil Policy Regimes

Global Oil Expansion Shifter (U.S. Soy Oil) Global Oil Expansion Shifter (U.S. Canola Oil) Global Oil Expansion Shifter (U.S. Corn Oil)

U.S. Soy Oil-Crude Oil Price Elasticity U.S. Canola Oil-Crude Oil Price Elasticity U.S. Corn Oil-Crude Oil Price Elasticity

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. US crude oil-to-biodiesel-feedstock cointegration relationships. Panels (a), (b), and (c) of the
figure plot the change in the cointegration coefficient attributable to each policy regime (Regime 1 =

β̂
f
0, Regime 2 = β̂

f
0 � β̂

f
1, and Regime 3 = β̂

f
0 � β̂

f
1 � β̂

f
2) for US soy oil, canola oil, and corn oil models,

respectively. Panels (d), (e), and (f) of the figures plot the shift in the cointegration coefficient attributable

to global oil expansion
�
β̂
f
G × Gcrude

�
over the relevant range of global oil production. Panels (g), (h), and

(i) plot the evolution in the cointegration coefficient (β̂f
0 � β̂

f
1 × Policy1t � β̂

f
2 × Policy2t � β̂

f
G × Gcrude) for

each cointegrating relationship over time. Confidence intervals in panel (c) are constructed using the

Bayesian Bootstrap method with 1,000 draws from the posterior distributions of parameters β̂
f
0, β̂

f
n,

and β̂
f
G from equation (2).

2Note that the regression results underlying these figures are reported in Appendix Tables A1 and A2.
3Confidence intervals in panel (c) are constructed using the Bayesian Bootstrap method with 1,000 draws

from the posterior distributions of parameters β̂f0, β̂
f
n, and β̂

f
G from equation 2.
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Referring first to panels (a), (b), and (c) of Figure 4, we examine the impacts of US
regulatory change, independent from changes in global crude oil production levels. As
shown in the figure, even prior to the enactment of the US Energy Policy Act in
August, biodiesel feedstock prices responded positively to long-run shocks to WTI crude
oil prices. Each of these responses was statistically significant at the 1% level. These results
are plotted as “Regime 1” in panel (c) of the figure. Comparing among US biodiesel feed-
stocks in Regime 1, our partial elasticity estimates suggest that – before accounting for
changes in oil production levels – corn oil prices were most responsive to crude oil price
shocks: a 1% increase in the price of crude oil corresponded to a 12.6% increase in the price
of corn oil. The comparable long-run partial elasticity for soy oil (panel a) and canola oil
(panel b), respectively, were 8.3 and 6.97, respectively.

The promulgation of the 2005 Energy policy Act (shown as “Regime 2” in panels (a),
(b), and (c) of Figure 4 increased the responsiveness of prices for each of the biodiesel

EU Soy Oil Policy Regimes EU Canola Oil Policy Regimes       EU Palm Oil Policy Regimes

Global Oil Expansion Shifter (EU Soy Oil) Global Oil Expansion Shifter (EU Canola Oil) Global Oil Expansion Shifter (EU Palm Oil)

EU Soy Oil-Crude Oil Price Elasticity EU Canola Oil-Crude Oil Price Elasticity EU Palm Oil-Crude Oil Price Elasticity

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. EU crude oil-to-biodiesel-feedstock cointegration relationships. Panels (a), (b), and (c) of
the Figure plot the change in the cointegration coefficient attributable to each policy regime (Regime
1= β̂

f
0, Regime 2= β̂

f
0 � β̂

f
1, and Regime 3= β̂

f
0 � β̂

f
1 � β̂

f
2) for EU soy oil, canola oil, and palm oil models,

respectively. Panels (d), (e), and (f) of the Figures plot the shift in the cointegration coefficient attributable
to global oil expansion

�
β̂
f
G × Gcrude

�
over the relevant range of global oil production. Panels (g), (h), and

(i) plot the evolution in the cointegration coefficient (β̂f
0 � β̂

f
1 × Policy1t � β̂

f
2 × Policy2t � β̂

f
G × Gcrude) for

each cointegrating relationship over time. Confidence intervals in panel (c) are constructed using the
Bayesian Bootstrap method with 1,000 draws from the posterior distributions of parameters β̂

f
0, β̂

f
n,

and β̂
f
G from equation (2).
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feedstocks (statistically significant at the 1% level). The corn oil price partial elasticity
response in panel (c) increased from 12.6 to 15.0. Soy oil in panel (a) and canola oil in
panel (c) increased from 8.3 to 9.7 and from 6.97 to 8.1. This increase in biodiesel feedstock
prices to crude oil price shocks is as expected (see Figure 2). However, Regime 3, under the
Energy Independence & Security Act, which increased US biodiesel production with RFS2,
does not appear to have generated a meaningful response beyond that from Regime 2 (the
Energy Policy Act). This suggests that the effects of biodiesel incentives were already
“baked into” the market by this time, and additional expansion of the industry did not
substantially alter market equilibrium.

Turning to Panels (d), (e), and (f) of Figure 4, expansion of the global crude oil supply
leads to a reduction in the biodiesel feedstock price response. This result is statistically
significant at the 1% level for all feedstocks, and – as with the baseline responses – the
corn oil price response is most sensitive to changes in global crude oil production levels.
According to this partial elasticity, a 1% increase in annual crude oil production reduces
the corn oil price responses by an estimated 0.3% (panel f) and 0.2% for soy oil (panel d)
and canola oil (panel e) prices.

Turning to panels (g), (h), and (i) of Figure 4, we see that these two factors have
changed substantially over time the total response in biodiesel feedstock prices resulting
from a shock to crude oil prices. After accounting for subsequent policy regime changes
and global oil production levels, we see that – on average in the early 2000s – a 1% increase
in the crude oil price corresponded to a 0.29% total increase in the soy oil price (panel g), a
0.25% increase in the canola oil price (panel h), and a 0.5% increase in the corn oil price
(panel i). All of these responses were statistically significant at the 1% level. After the enact-
ment of the 2005 Energy Policy Act, average total elasticity responses increased to 0.96%
for soy oil (panel g), 0.87% for canola oil (panel h), and 1.38% for corn oil (panel i). All of
these total elasticities are statistically significant at the 1% level. By January 2015, we esti-
mate that the responsiveness fell to 0.18% for soy oil (panel g), 0.16% for canola oil (panel
h), and −0.10% (statistically indistinguishable from zero) for corn oil (panel i). This sug-
gests that – in the modern biodiesel era – the expansion in the global supply of crude oil,
due predominantly to shale oil technology, has overshadowed the effects of US biodiesel
incentives and blending mandates instituted under the Energy Policy Act and the Energy
Independence and Security Act.

These findings also reconcile the disconnect in the previous literature. In the early peri-
ods, we find a low degree of cointegration between biodiesel feedstock and crude oil prices
consistent with Yu, Bessler, and Fuller (2006) and Zhang et al. (2010). In the periods sur-
rounding the food price spike, we see a high degree of cointegration between biodiesel
feedstock and crude oil prices, consistent with Abdel and Arshad (2008), Ghaith and
Awad (2011), and Esmaeili and Shokoohi (2011).

Comparing the relative responsiveness of the various biodiesel feedstocks, the fact that
the largest crude oil price response during the food price spike period observed for corn oil
is consistent with the fact that corn production is linked with both ethanol and biodiesel
production. The fact that soy oil prices are slightly more responsive to crude oil prices is
also consistent with the findings from Schaefer et al. (2021) with respect to the price pre-
miums for canola oil relative to soy oil over the past two decades.

EU cointegration coefficients, shown in Figure 5, differ in important ways from those
for the US. Referring to panels (a), (b), and (c), in contrast to the US prices, Regime 1
biodiesel feedstock prices were highly responsive to crude oil price shocks. This is consis-
tent with policy differences across the two nations. Recall that the US did not adopt mean-
ingful biofuels legislation until 2005, whereas the EU adopted the Biofuels Directive in
2001. Also in contrast to the US, in the EU, canola prices are most responsive to crude
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oil price shocks at baseline. The canola price elasticity is 1.91 (panel b), compared to 0.80
and 0.38 for soy oil (panel a) and palm oil (panel c). The subsequent Renewable Fuels
Directive (Regime 2) did not generate meaningful changes to biodiesel feedstock–crude
oil price relationships. This is consistent with subsequent US legislation, and suggests that
biodiesel incentives were priced into the market by that time.

The ILUCDirective, which reduced the land area devoted to biodiesel feedstocks in the EU,
generated a substantial reduction in the feedstock price responsiveness. The palm oil price
response fell by 0.58 (panel c), the soy oil price (panel a) response fell by 0.47, and the canola
oil price (panel b) response fell by 0.35 (each statistically significant at the 1% level). As shown
in panels (d), (e), and (f) of Figure 5, we do not observe a statistically significant change in
biodiesel feedstock price responsiveness as a result of changes to the global crude oil supply.

In panels (g), (h), and (i) of Figure 5, we see that – on net – EU feedstock prices were
more responsive to crude oil prices than those in the US (shown in Figure 4) prior to 2005.
A 1% increase in the crude oil price resulted in a 0.70% increase in EU canola oil prices
(compared to 0.25% for US canola oil prices) and a 0.67% increase in EU soy oil prices
(compared to 0.29% for US soy oil prices). In the wake of the ILUC Directive, these EU
price responses fell to an average of 0.14% for canola oil, 0.07% for soy oil, and −0.02%
(statistically indistinguishable from zero) for palm oil.

After deriving the total elasticity estimates, we formally test for cointegration using ADF
and Phillips–Perron residual-based tests.4 These results are reported in Table 2. As shown in
Table 2, according to both tests, we reject at the 5% level the null hypothesis that the residuals
follow unit root processes for all models. Accordingly, we can conclude the biodiesel feedstock
prices are cointegrated with crude oil prices over the sample period.

Model robustness

An implicit assumption in the construction of equation (2) is that the impact of major biofuels
legislation on biodiesel feedstock–crude oil equilibrium price relationships is contemporaneous
with their promulgation and implementation. However, it is not clear a priori when these pol-
icy treatments occur. For example, it is logical that some of the impacts of major legislative

Table 2. Residual-based cointegration tests

ADF Test Philips–Perron Test

Price Series Test Stat p-value Z(ρ) Z(t) p-value

US Prices

Ln Soy Oil −4.35 0.00 −37.79 −4.49 0.00

Ln Canola Oil −4.40 0.00 −34.72 −4.36 0.00

Ln Corn Oil −3.58 0.01 −32.27 −4.10 0.00

EU Prices

Ln Soy Oil −2.99 0.04 −19.24 −3.16 0.02

Ln Canola Oil −3.69 0.00 −28.12 −3.82 0.00

Ln Palm Oil −3.24 0.02 −25.35 −3.68 0.00

4The residuals from estimating the models described in equation 2, i.e., ε̂ft , are plotted in Appendix
Figure A1.
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actions were anticipated prior to implementation and therefore may have at least some impact
prior to enactment. It is also possible that some adjustment to legislative changes may be
delayed due to adjustment costs and rigidities. We assess the sensitivity of the results in
the Results section by reestimating the models described in equation (2), randomly drawing
a possible “effective” start date for each policy regime change variable (Policynt ) from the win-
dow of time beginning 6 months before the enactment of the relevant legislation and ending 6
months after enactment.5 As in equation (2), these dummy variables are then defined to take
value one in time periods on or after the “effective” start date of the given policy and equal to
zero beforehand. For each biodiesel feedstock, we repeat this re-estimation process 100 times to
get a distribution of point estimates for our coefficients.

Figure 6 reports the results of this sensitivity analysis. In each panel of the figure, the left
and right sides of each box represent the lower and upper quartiles for the coefficients
obtained from re-estimating equation (2) with 100 draws of the policy regime change var-
iables. The horizontal line that splits each box is the median coefficient estimate. The
whiskers depict the range from the lower quartile to the upper quartile. The red scatter
dots and red vertical lines depict the corresponding point estimate and 95% confidence
interval for the main model described in the Results section.

As shown in Figure 6, the results of the sensitivity analysis are broadly consistent with
the point estimates from our baseline model. Specifically, in both the EU and US models,
the coefficient estimates for βf0 and β

f
G appear insensitive to our assumptions regarding the

timing of policy impacts. Impact estimates for the Energy Independence and Security Act
appear most sensitive to our timing assumptions. Because these effects are statistically
indistinguishable from zero in our baseline model, we do not find this concerning.

Conclusion

In this paper, we seek to disentangle the effects of biodiesel incentives and shale oil expan-
sion on the long-run equilibrium price relationship among biodiesel feedstocks and crude
oil in the US and EU. We find that the promulgation of the 2005 Energy Policy Act in the
US substantially increased the responsiveness of soy oil, canola oil, and corn oil prices to
crude oil price shocks. However, in recent years, expansion in the global supply of crude oil
has overshadowed the effects of US biodiesel incentives and blending mandates. In the EU,
the Indirect Land Use Change (ILUC) Directive of 2015 substantially reduced the respon-
siveness of biodiesel feedstock prices to crude oil price shocks.

Of course, as with any research, our paper is not without qualifications. We note that
the equilibrium relationships measured correspond to prices at specific geographic loca-
tions. While these geographic locations are well-chosen to represent a primary production
source for the products of the study, prices for the same products in different locales may
yield different empirical results. Moreover, it is possible that oil prices may matter more in
determining biodiesel feedstock prices in periods of high price volatility than in low price
volatility. While there is a literature on the relationship between oil price volatility affects
agricultural prices (Arnade and Hoffman, 2015; McPhail et al., 2012; Wang and McPhail,
2014), our results do not directly speak to this issue.

Finally, recent months have seen major disruptions to commodity markets resulting
from restrictions on local and international movements to slow the COVID-19 pandemic
and negative shocks to the economy caused by the pandemic. These disruptions may cause a
breakdown in the equilibrium price relationships among biodiesel feedstock and crude oil

5These draws are made based on a uniform density function, meaning that each month in the 12-month
period is equally likely to be the “effective” start date.
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Baseline WTI Price Response (U.S. Models) Crude Oil Expansion Shifter (U.S. Models)

Energy Ind. & Security Act Shifter (U.S. Models)

Baseline Brent Price Response (EU Models) Crude Oil Expansion Shifter (EU Models)

Renewable Energy Directive Shifter (EU Models) ILUC Directive Shifter (EU Models)

Energy Policy Act Shifter (U.S. Models)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Coefficient estimates from alternative policy regime change timing. In each panel, the left and
right sides of each box represent the lower and upper quartiles for the coefficients obtained from
re-estimating equation (2) with 100 draws of the policy regime change variables. The horizontal line that
splits each box is the median coefficient estimate. The whiskers depict the range from the lower quartile
to the upper quartile. The red scatter dots and red vertical lines depict the corresponding point estimate
and 95% confidence interval for the main model described in the Results section.
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prices, particularly considering the slowdown in biofuels production and use. The extent to
which these COVID-19 shocks are transitory or more permanent remains to be seen.
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Appendix

Table A1. US crude oil–biodiesel feedstock cointegration relationships

(1) (2) (3)

Variables Soy Oil Price Canola Oil Price Corn Oil Price

Crude Oil Price

Baseline 8.34*** 6.97*** 12.63***

(0.90) (0.86) (0.89)

Oil Expansion Shifter −0.002*** −0.002*** −0.003***

(0.000) (0.000) (0.000)

Energy Policy Act 1.32*** 1.15*** 2.34***

(0.26) (0.28) (0.33)

Energy Ind. & Security Act 0.11 0.08 −0.08

(0.24) (0.26) (0.30)

Intercept

Baseline −27.44*** −21.79*** −44.86***

(3.91) (3.75) (3.82)

Oil Expansion Shifter 0.01*** 0.01*** 0.01***

(0.00) (0.00) (0.00)

Energy Policy Act −5.37*** −4.59*** −9.44***

(1.06) (1.16) (1.35)

Energy Ind. & Security Act −0.16 −0.13 0.68

(1.00) (1.11) (1.25)

Observations 240 240 240

R-squared 0.85 0.81 0.80

Robust standard errors in parentheses.
***p< 0.01, **p< 0.05, *p< 0.1.
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Table A2. EU crude oil–biodiesel feedstock cointegration relationships

(1) (2) (3)

Variables Soy Oil Price Canola Oil Price Palm Oil Price

Crude Oil Price

Baseline 0.80 1.91*** 0.38

(0.80) (0.64) (0.90)

Oil Expansion Shifter −0.0000 −0.0003* 0.0001

(0.0002) (0.0002) (0.0002)

Renewable Energy Directive −0.11 0.03 −0.24*

(0.12) (0.10) (0.14)

ILUC Directive −0.47*** −0.35*** −0.58***

(0.09) (0.07) (0.13)

Intercept

Baseline 4.83 0.30 7.08*

(3.33) (2.62) (3.66)

Oil Expansion Shifter −0.0002 0.0010 −0.0009

(0.0009) (0.0007) (0.0010)

Renewable Energy Directive 0.61 −0.12 1.27**

(0.52) (0.41) (0.58)

ILUC Directive 2.04*** 1.59*** 1.27***

(0.37) (0.28) (0.54)

Observations 219 219 219

R-squared 0.79 0.84 0.75

Standard errors in parentheses are bootstrapped according to Mooney and Duval (1993), with 50 replications.
***p< 0.01, **p< 0.05, *p< 0.1.
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Figure A1. Crude oil-to-biodiesel feedstock cointegration model residuals. Figure plots residuals obtained
from estimating equation (2). Vertical dashed lines in the figure represent the dates of major biofuels
legislation.

Cite this article: Schaefer, K.A., R. J. Myers, S. R. Johnson, M. D. Helmar, and T. Radich (2022). “Biodiesel
feedstock and crude oil price relationships – The effects of policy and shale oil expansion.” Agricultural and
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