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The Runge–Kutta method in geometric multiplicative calculus

Mustafa Riza and Hatice Aktöre

Abstract

This paper illuminates the derivation, applicability, and efficiency of the multiplicative Runge–
Kutta method, derived in the framework of geometric multiplicative calculus. The removal of the
restrictions of geometric multiplicative calculus on positive-valued functions of real variables and
the fact that the multiplicative derivative does not exist at the roots of the function are presented
explicitly to ensure that the proposed method is universally applicable. The error and stability
analyses are also carried out explicitly in the framework of geometric multiplicative calculus.
The method presented is applied to various problems and the results are compared to those
obtained from the ordinary Runge–Kutta method. Moreover, for one example, a comparison of
the computation time against relative error is worked out to illustrate the general advantage of
the proposed method.

1. Introduction

The invention of multiplicative calculus can be dated back to 1972, when Michael Grossman
and Robert Katz finished their book on non-Newtonian calculus [14], in which they
proposed nine different non-Newtonian calculi. Later Michael Grossman elaborated the
bigeometric multiplicative calculus in [13]. Bigeometric multiplicative calculus was also
proposed independently by Córdova-Lepe [9] under the name proportional calculus. Although
Volterra and Hostinsky proposed a kind of multiplicative calculus in [28], we cannot date the
invention of multiplicative calculus back to 1938. After 25 years of silence in this field Bashirov
et al. presented a mathematically precise description of the geometric multiplicative calculus
in [5]. This work initiated numerous studies in the field of multiplicative calculus. Several
multiplicative numerical approximation methods have been proposed and discussed; see, for
example, [19–22, 24, 25]. Moreover, multiplicative calculus has found its way into biomedical
image analysis [12] and modelling with differential equations [6]. Furthermore, the Runge–
Kutta method was developed in the framework of bigeometric calculus for applications in
dynamic systems by Aniszewska et al. in [1]. A more exact bigeometric Runge–Kutta method
was proposed by Riza and Eminaga [24], based on the bigeometric Taylor theorem derived
in [24].

One drawback of multiplicative calculus generally put forward is that it can only be
applied to positive-valued functions of real variables. This restriction can be circumvented
by using complex multiplicative calculus. The first attempt was presented by Uzer in [27]. A
mathematically precise description of the complex geometric multiplicative calculus was given
by Bashirov and Riza in [4, 7]. The fact that the derivative is a local property suggests the
extension to the complex domain. So, a simple change to complex-valued functions of real
variables removes the restriction to purely positive functions and allows us to treat the real
and imaginary part independently as the multiplicative Cauchy–Riemann conditions become
trivial in this case.

In § 2 the second-order multiplicative Runge–Kutta method, or correspondingly the
multiplicative Heun method, the third-order multiplicative Runge–Kutta method and the
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fourth-order multiplicative Runge–Kutta method for positive-valued functions of real variables
will be elaborated, and the extension to complex-valued functions of real variables will be
presented. Another well-known drawback of multiplicative calculus is the breakdown of the
multiplicative derivative at the roots of the functions. Section 2.4 covers the solution to that
problem. The error analysis for the geometric multiplicative Runge–Kutta method presented
in § 3, carried out in analogy to the ordinary Runge–Kutta method as for example in [26],
shows that the error becomes considerably smaller for the same step size compared to the
ordinary Runge–Kutta method. Furthermore, the stability analysis is presented explicitly in
analogy to [19]. In § 4 the geometric multiplicative Runge–Kutta method will be applied to
a multiplicative initial-value problem, not involving the exponential or logarithmic functions,
with a known closed-form solution. The results of the application of the multiplicative Runge–
Kutta method are compared to the results of the ordinary Runge–Kutta method for a fixed
step width h. Furthermore, the comparison of the computation time against the relative error
with varying step width for this example is presented to show the superiority of the proposed
method. Based on the Baranyi model for the growth of bacteria [2, 3] using differential
equations, the multiplicative Runge–Kutta method was applied to the growth of bacteria in
food modelled by Huang [15–17], and compared to the results from the ordinary Runge–Kutta
method. As an example of a coupled system of multiplicative initial-value problems, a second-
order differential equation, with well-known closed form solution also used in [25], is used
to compare the multiplicative Runge–Kutta method with the multiplicative finite-difference
method. All examples show the superiority of the multiplicative Runge–Kutta method, with
respect to error as well as performance. Finally, all findings are summarized in § 5.

In order to ease the reading of this paper, we will use the terms ‘multiplicative calculus’ and
‘geometric multiplicative calculus’ interchangeably.

2. Multiplicative Runge–Kutta method for real-valued functions of real variables

In this section the multiplicative Runge–Kutta method is explicitly derived for the second-order
case. Only the starting equations and the results of the fourth-order multiplicative Runge–
Kutta method will be presented.

The methods derived in the following will be used to find suitable approximations to the
solution of multiplicative initial-value problems of the form

y∗(x) = f(x, y), (2.1)

with the initial condition

y(x0) = y0. (2.2)

2.1. Second-order multiplicative Runge–Kutta method

The simplest approach to find an approximation to the solution of the differential equation
(2.1) with the initial value (2.2) is the second-order Runge–Kutta method, also known as
Heun’s method. In analogy to the ordinary Heun method, we will derive in the following
the second-order multiplicative Runge–Kutta method or the multiplicative Heun method by
making the ansatz

y(x+ h) = y(x) · fah0 · f bh1 , (2.3)

where

f0 = f(x, y), (2.4)

f1 = f(x+ ph, y · fqh0 ). (2.5)
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The multiplicative Taylor expansion of y(x+ h) up to order 2 is given by

y(x+ h) = y(x) · y∗(x)h · y∗∗(x)h
2/2 . . . . (2.6)

Remembering that

y∗(x) = f(x, y) and y∗∗(x) = f∗x(x, y) · f∗y (x, y)y ln f(x,y), (2.7)

the multiplicative Taylor expansion of y(x+ h) becomes

y(x+ h) = y(x) · f(x, y)h · f∗x(x, y)h
2/2 · f∗y (x, y)y ln f(x,y)h

2/2, (2.8)

where f∗x(x, y) denotes the multiplicative partial derivative with respect to x and f∗y (x, y) with
respect to y, respectively.

In order to compare (2.8) with (2.3) we need to expand f1 using the multiplicative Taylor
theorem up to order 1 as the power of the ansatz (2.3) also includes one h. Recalling that y is
a function of x, the Taylor expansion for f1 becomes, by the application of the multiplicative
chain rule,

f1 = f(x, y) · f∗x(x, y)ph · f∗y (x, y)yqh ln f0 .

With f0 = f(x, y), the Taylor expansion of f1 up to order 1 in h becomes

f1 = f(x, y) · f∗x(x, y)ph · f∗y (x, y)yqh ln f(x,y). (2.9)

Then, by substituting (2.9) and (2.4) in (2.3), we get the multiplicative Runge–Kutta expansion
for the comparison with the multiplicative Taylor expansion of (2.8) as

y(x+ h) = y(x) · f(x, y)(a+b)h · fx(x, y)bph
2

· fy(x, y)y ln f(x,y)bqh
2

. (2.10)

Comparison of the powers of f(x, y) and its partial derivatives in (2.10) with (2.8) up to
order 2 in h gives:

a+ b = 1, (2.11)

bp = 1
2 , (2.12)

bq = 1
2 . (2.13)

Obviously, we have infinitely many solutions of equations (2.11)–(2.13), as the number of
unknowns is greater than the number of equations. Furthermore, we can see that p = q and
a+ b = 1, which can be easily represented in analogy to the regular Butcher tableau [8] as the
multiplicative Butcher tableau.

One possible choice of the parameters a, b, p, and q is as follows:

a = 1
2 , b = 1

2 , p = 1 and q = 1.

Here, we can see that we evaluate the function at the endpoints of the interval, and give equal
weights to the contributions of f0 and f1, resulting in the multiplicative Heun method formulae

y(x+ h) = y(x) · fh/20 · fh/21 ,

f0 = f(x, y),

f1 = f(x+ h, y · fh0 ).

Of course, depending on the problem, the parameters can be also chosen differently to
optimize the solutions, satisfying the equations (2.11)–(2.13).
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2.2. Third-order multiplicative Runge–Kutta method

For the derivation of the third-order multiplicative Runge–Kutta method we make the ansatz

y(x+ h) = y(x) · fah0 · f bh1 · f ch2 , (2.14)

f0 = f(x, y), (2.15)

f1 = f(x+ ph, y · fqh0 ), (2.16)

f2 = f(x+ p1h, y · fq1h0 · fq2h1 ). (2.17)

Analogously to the derivation of the multiplicative Heun method, presented above, the third-
order multiplicative Runge–Kutta method is derived on the basis of equations (2.14)–(2.17),
leading to

p = q, (2.18)

p1 = q1 + q2 (2.19)

and

a+ b+ c = 1, (2.20)

bp+ cp1 = 1
2 , (2.21)

bp2 + cp21 = 1
3 . (2.22)

As p and p1 are determined by the choices of q, q1 and q2, we have to solve the set of
equations (2.20)–(2.22) with respect to a, b, c as functions of p and p1. We obtain

a = −−6pp1 + 3p+ 3p1 − 2

6pp1
, (2.23)

b = − 3p1 − 2

6p(p− p1)
, (2.24)

c = − 2− 3p

6p1(p− p1)
. (2.25)

This results in the multiplicative Butcher tableau

0
p q
p1 q1 q2

a b c

As before, the number of solutions is infinite, as the number of unknowns is larger than the
number of independent equations. One approach of choosing the constants is to evaluate the
functions at the beginning of the interval (for f0), in the middle of the interval (for f1), and at
the end of the interval (for f2). Furthermore, we give equal weight to the function evaluated
at the left and right endpoint of the interval of length h, and double the weight for the value
in the middle of the interval. This results in the constants a = 1

6 , b = 2
3 , c = 1

6 , p = 1
2 ,

p1 = 1, q = 1
2 , q1 = −1 and q2 = 2, and we get for the third-order multiplicative Runge–Kutta

method:

y(x+ h) = y(x) · fh/60 · f2h/31 · fh/62 ,

f0 = f(x, y),

f1 = f

(
x+

h

2
, y · fh/20

)
,

f2 = f(x+ h, y · f−h0 · f2h1 ).
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2.3. Fourth-order multiplicative Runge–Kutta method

In practice, the fourth-order Runge–Kutta method is mainly used. In analogy to the second-
order multiplicative Runge–Kutta method described above, we will now employ the fourth-
order multiplicative Runge–Kutta method. Consequently, we make the ansatz

y(x+ h) = y(x) · fah0 · f bh1 · f ch2 · fdh3 , (2.26)

f0 = f(x, y), (2.27)

f1 = f(x+ ph, y · fqh0 ), (2.28)

f2 = f(x+ p1h, y · fq1h0 · fq2h1 ), (2.29)

f3 = f(x+ p2h, y · fq3h0 · fq4h1 · fq5h2 ). (2.30)

Again we need to find the Taylor expansions of f0, f1, f2 and f3 in order to substitute them
into the fourth-order multiplicative Runge–Kutta formula and compare it with the Taylor
expansion of y(x + h) up to order 4. After a lengthy calculation, we get by comparison the
following set of equations:

p = q, (2.31)

p1 = q1 + q2, (2.32)

p2 = q3 + q4 + q5, (2.33)

and

a+ b+ c+ d = 1, (2.34)

bp+ cp1 + dp2 = 1
2 , (2.35)

bp2 + cp21 + dp22 = 1
3 . (2.36)

This results in the multiplicative Butcher tableau

0
p q
p1 q1 q2
p2 q3 q4 q5

a b c d

We can easily see that if the function f(x, y) is independent of y, the result is independent
of the selection of q1, . . . , q5, and therefore any selection will give the same result.

2.4. Extension to complex-valued functions of real variable

One of the drawbacks of multiplicative calculus generally put forward is its restriction to
positive-valued functions of real variables. In order to overcome this restriction the theory of
multiplicative calculus was extended to the complex domain. It is well known from complex
analysis that the differentiation rules are a slightly more complicated for complex-valued
functions of complex variables as the Cauchy–Riemann conditions have to be satisfied. But here
we are only interested in complex-valued functions of real variables, which simplifies the issue
drastically, as the multiplicative counterparts of the Cauchy–Riemann conditions need not be
taken into account and the differentiation can be carried out independently for the real and the
imaginary part. As illustrated in [7], the multiplicative derivative can be calculated everywhere
except at the point 0 + 0i in the complex plain. So the fourth-order multiplicative Runge–
Kutta method can be extended to negative-valued functions as the phase factor is responsible
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Figure 1. Bypass the roots where the multiplicative derivative becomes undefined. The dashed line
denotes the region where the ordinary Runge–Kutta method is applied to prevent the multiplicative
derivative becoming infinite. The multiplicative Runge–Kutta method is applied in the region of the
solid line.

for the change of sign. The only problem that could not be solved by extending multiplicative
calculus to the complex domain is that the multiplicative derivative is not defined at the roots
of the function. So, a switch to Newtonian calculus becomes inevitable at these points. In
every step of the multiplicative Runge–Kutta method, we get the value of the function at this
point and its multiplicative derivative at this point and use the ordinary Runge–Kutta method
for a couple of steps until the multiplicative derivative again becomes reasonably large and
these values are then used as input to the multiplicative Runge–Kutta method. The results are
reasonably good, and often even better than using the ordinary Runge–Kutta method alone.

If we assume that f(xi−1) > 0 and f(xi+1) < 0 and that the function is decreasing, then
accordingly there must be a point ξ ∈ [xi−1, xi+1] where f(ξ) = 0 (see Figure 1). In this case
the multiplicative derivative of f(x) is not defined at ξ. Therefore, the multiplicative Runge–
Kutta method will be applied on the intervals [x0, xi−1], and [xi+1, xn]. On [xi−1, xi+1] we
apply the ordinary Runge–Kutta method, using the values f(xi−1) and f∗(xi−1) calculated
by the multiplicative Runge–Kutta method as input for the ordinary Runge–Kutta method,
and vice versa for the point xi+1.

The handover has been tested on several examples, working properly.

3. Error and stability analysis

3.1. Convergence of one-step methods

In this section we examine the convergence behaviour of our one-step method as h→ 0 of an
approximate solution η(x;h). We assume that f is once ∗-differentiable on the interval (a, b),
and y(x) denotes the exact solution of the initial-value problem

y∗ = f(x, y), y(x0) = y0.

Let Φ(x, y;h) define a one-step method,

η0 := y0,
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for i = 0, 1, . . . , written

ηi+1 := ηiΦ(xi, ηi;h)h,

xi+1 := xi + h,

which for x ∈ Rh := {x0 + ih | i = 0, 1, 2, . . .} produces the approximate solution η(x;h):

η(x;h) := ηi if x = x0 + ih.

Let x and y be arbitrary, but fixed, and let z(t) be the exact solution of the initial-value
problem

z∗(t) = f(t, z(t)), z(x) = y, (3.1)

with initial values x, y. Then the function

∆(x, y;h) :=


(
z(x+ h)

y

)h
if h 6= 0,

f(x, y) if h = 0,

represents the multiplicative ratio function of the exact solution z(t) of (3.1) for step size h,
while Φ(x, y;h) is the multiplicative ratio function for step size h of the approximate solution
of (3.1) produced by Φ. The multiplicative ratio function is the multiplicative counterpart to
the difference quotient in Newtonian calculus.

The magnitude of the ratio

τ(x, y;h) :=
∆(x, y;h)

Φ(x, y;h)

indicates how well the value z(x+ h) at x+ h obeys the equation of the one-step method.
One calls τ(x, y;h) the multiplicative local discretization error at the point (x, y). For a

reasonable one-step method one will require that

lim
h→0

τ(x, y;h) = 1.

We are interested in the behaviour of the multiplicative global discretization error

e(x;h) :=
η(x;h)

y(x)

for fixed x and h→ 0, h ∈ Hx := {(x− x0)/n | n = 1, 2, . . .}. Since e(x;h), like η(x;h), is only
defined for h ∈ Hx, we have to study the convergence of

e(x;hn), hn :=
x− x0
n

as n→∞.

We say that the one-step method is convergent if

lim
n→∞

e(x;hn) = 1

for all x ∈ [a, b] and all functions f that are once ∗-differentiable on the interval (a, b).
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If f is p-times ∗-differentiable on (a, b), methods of order p > 0 are convergent and satisfy

e(x;hn) = O(eh
p
n).

The order of the multiplicative global discretization error is thus equal to the order of the
multiplicative local discretization error.

Lemma 1. If the numbers ξi satisfy estimates of the form

|ξi+1| 6 |ξi|(1+δ)B, δ > 0, B > 0, i = 0, 1, 2, . . . ,

then

|ξn| 6 |ξ0|e
nδ

B(enδ−1)/δ.

Proof. From the assumptions we immediately obtain

|ξ1| 6 |ξ0|(1+δ)B,
|ξ2| 6 |ξ0|(1+δ)

2

B1+(1+δ),

...

|ξn| 6 |ξ0|(1+δ)
n

B[1+(1+δ)+(1+δ)2+...+(1+δ)n−1]

= |ξ0|(1+δ)
n

B((1+δ)n−1)/δ

6 |ξ0|e
nδ

B(enδ−1)/δ,

since 0 < 1 + δ 6 eδ for δ > −1.

Theorem 1. Consider, for x0 ∈ [a, b], y0 ∈ R, the initial-value problem

y∗ = f(x, y), y(x0) = y0,

having the exact solution y(x). Let the function Φ be continuous on

G :=

{
(x, y, h) | a 6 x 6 b,

∣∣∣∣ y

y(x)

∣∣∣∣ 6 γ, 0 6 |h| 6 h0

}
, h0 > 0, γ > 1,

and let there exist positive constants M and N such that∣∣∣∣Φ(x, y1;h)

Φ(x, y2;h)

∣∣∣∣ 6 ∣∣∣∣y1y2
∣∣∣∣M

for all (x, yi, h) ∈ G, i = 1, 2, and

|τ(x, y(x);h)| =
∣∣∣∣∆(x, y(x);h)

Φ(x, y(x);h)

∣∣∣∣ 6 eN |h|
p

, p > 0,

for all x ∈ [a, b], |h| 6 h0. Then there exists an h, 0 < h 6 h0, such that for the multiplicative
global discretization error e(x;h) = η(x;h)/y(x),

|e(x;hn)| 6 e|hn|
pN(eM|x−x0|−1)/M

for all x ∈ [a, b] and all hn = (x− x0)/n, n = 1, 2, . . . , with |hn| 6 h. If γ =∞, then h = h0.
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Proof. The function

Φ̃(x, y;h) =


Φ(x, y;h) if (x, y;h) ∈ G,
Φ(x, y(x)γ;h) if x ∈ [a, b], |h| 6 h0, y > y(x)γ,

Φ(x,
y(x)

γ
;h) if x ∈ [a, b], |h| 6 h0, y 6

y(x)

γ
,

is evidently continuous on G̃ := {(x, y, h) | x ∈ [a, b], y ∈ R, |h| > h0} and satisfies the
condition ∣∣∣∣ Φ̃(x, y1;h)

Φ̃(x, y2;h)

∣∣∣∣ 6 ∣∣∣∣y1y2
∣∣∣∣M (3.2)

for all (x, yi, h) ∈ G̃, i = 1, 2, and because of Φ̃(x, y(x);h) = Φ(x, y(x);h), the condition∣∣∣∣∆(x, y(x);h)

Φ̃(x, y(x);h)

∣∣∣∣ 6 eN |h|
p

for x ∈ [a, b], |h| 6 h0. (3.3)

is also satisfied. Let the one-step method generated by Φ̃ furnish the approximate values
η̃i := η̃(xi;h) for yi := y(xi), xi := x0 + ih:

η̃i+1 = η̃i · Φ̃(xi, η̃i;h)h.

In view of
yi+1 = yi ·∆(xi, yi;h)h,

one obtains, for the error ẽi := η̃i/yi, the recurrence formula

ẽi+1 = ẽi ·
[

Φ̃(xi, η̃i;h)

Φ̃(xi, yi;h)

]h
·
[

Φ̃(xi, yi;h)

∆(xi, yi;h)

]h
. (3.4)

Now from (3.2) and (3.3) it follows that∣∣∣∣ Φ̃(xi, η̃i;h)

Φ̃(xi, yi;h)

∣∣∣∣ 6 ∣∣∣∣ η̃iyi
∣∣∣∣M = |ẽi|M ,∣∣∣∣ Φ̃(xi, yi;h)

∆(xi, yi;h)

∣∣∣∣ 6 eN |h|
p

,

and hence from (3.4) we get the recursive estimate

|ẽi+1| 6 |ẽi|(1+|h|M)eN |h|
p+1

.

As we are dealing with an initial-value problem, the initial values have to be considered
exact, and therefore ẽ0 = η̃0/y0 = 1, resulting in

|ẽk| 6 eN |h|
p(ek|h|M−1)/M . (3.5)

Now let x ∈ [a, b], x 6= x0, be fixed and h := hn = (x− x0)/n, n > 0 an integer. Then
xn = x0 + nh = x and from (3.5) with k = n, since ẽ(x;hn) = ẽn, it follows at once that

|ẽ(x;hn)| 6 eN |hn|
p(eM|x−x0|−1)/M

for all x ∈ [a, b] and hn with |hn| 6 h0. Since |x − x0| 6 |b − a| and γ > 0, there exists an
h, 0 < h 6 h0, such that |ẽ(x, ;hn)| 6 γ for all x ∈ [a, b], |hn| 6 h, that is, for the one-step
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method generated by Φ,

η0 = y0,

ηi+1 = ηiΦ(xi, ηi;h),

we have for |h| 6 h, according to the definition of Φ̃,

η̃i = ηi, ẽi = ei and Φ̃(xi, η̃i;h) = Φ(xi, ηi;h).

The assertion of the theorem,

|ẽ(x;hn)| 6 eN |hn|
p(eM|x−x0|−1)/M ,

thus follows for all x ∈ [a, b] and all hn = (x− x0)/n, n = 1, 2, . . . , with |hn| 6 h.

3.2. Stability analysis

In this section we study the stability analysis of the multiplicative Runge–Kutta methods.
Because of the presence of the Butcher tableau, the stability analysis could be carried out for
the nth-order multiplicative Runge–Kutta method, but we do so exemplarily for the fourth-
order multiplicative Runge–Kutta method to be able to show its behaviour explicitly. In
Newtonian calculus, the stability properties of the Runge–Kutta methods are analysed by
the basic test equation

y′(x) = λy(x), y(x0) = y0, (3.6)

where λ ∈ C. The behaviour of (3.6) was studied extensively by [10, 11, 18, 23]. The stability
analysis of the multiplicative Runge–Kutta methods can also be done based on this test
equation. For this purpose, we rewrite the test equation in terms of the multiplicative calculus.
We will consider the fourth-order multiplicative Runge–Kutta method as denoted in (2.26)–
(2.30).

By (2.26) we obtain

yn+1 = yn[fa0 · f b1 · f c2 · fd3 ]h, (3.7)

where

a+ b+ c+ d = 1. (3.8)

In analogy to [19] the multiplicative form of the basic test equation is given by

y∗(x) = eλ, y(x0) = y0, (3.9)

which has the analytic solution

y(x) = eλ(x−x0)y0. (3.10)

As x→∞ and Re(λ) < 0, the solution of the system approaches zero. If the method also has
the same behaviour, then we can say that the method is A-stable [10].

Since y∗(x) is a constant function, equations (2.27)–(2.30) simplify to f0 = f1 = f2 = f3 =
eλ. Then, by (3.9) and (3.7), we obtain

yn+1

yn
= ez = R(z), (3.11)

where z = λh. R(z) is the stability function of the proposed method. Then the domain of
stability is

S∗ = {z ∈ C : |R(z)| < 1}. (3.12)
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Consequently, by (3.12) we obtain
0 < e−|λ|h < 1, (3.13)

which leads to
0 < h <∞. (3.14)

Thus, the result shows that the proposed method is unconditionally stable. By (3.12), it can
be seen that Re(z) < 0, where |ez| = eRe(z). When Re(z) < 0 the left half plane will be the
region of absolute stability, thus the method is A-stable. In Newtonian calculus, the explicit
multistep methods cannot be A-stable and the implicit multistep methods can be A-stable
if the order is at most 2. In contrast, in multiplicative calculus both explicit and implicit
methods are A-stable. One can say that a method is L-stable if it is A-stable and R(z) → 0
when |z| → ∞ [11]. Since we have shown that the multiplicative Runge–Kutta methods are
A-stable and ez → 0 when |z| → ∞, we can say that the proposed methods are L-stable
by [11].

4. Examples of the multiplicative Runge–Kutta method

4.1. Solution of first-order multiplicative differential equations

4.1.1. Square-root example. As our first example we want to discuss the following
multiplicative initial-value problem, where no exponential function or logarithm is involved:

y∗(x) = e1/2y
2

, y(0) = 1. (4.1)

Here the corresponding Newtonian initial-value problem becomes

y′(x) =
1

2y
, y(0) = 1. (4.2)

The general solution of these two initial-value problems (4.1) and (4.2) is

y(x) =
√
x+ 1. (4.3)

Application of the fourth-order multiplicative Runge–Kutta method and the fourth-order
ordinary Runge–Kutta method gives the results summarized in Table 1.

Table 1 shows that the relative error is 4 orders of magnitude greater for the fourth-order
ordinary Runge–Kutta method than for the fourth-order multiplicative Runge–Kutta method.
This is in good agreement with the error analysis presented in § 3. On the other hand, we
know that the basic operations used in multiplicative calculus are multiplication, division,

Table 1. Comparison of the multiplicative Runge–Kutta method and ordinary
Runge–Kutta method.

x yexact yMRK Relative yNewt Relative
errMRK in % errNewt in %

0 1 1 0 1 0
0.6 1.2649111 1.2649153 3.38 × 10−6 1.2382302 0.021093074
1.2 1.4832397 1.483244 2.88 × 10−6 1.4409643 0.028502049
1.8 1.6733201 1.673324 2.36 × 10−6 1.6205072 0.031561693
2.4 1.8439089 1.8439125 1.97 × 10−6 1.783364 0.032835088
3 2 2.0000034 1.69 × 10−6 1.9334697 0.033265139
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Figure 2. Comparison of the computation time and the relative error for the multiplicative initial-
value problem (4.1) and the initial-value problem (4.2) for the same initial values x0 = 0 and y0 = 1
and fixed final values xn = 3, yn = 2 by varying h.

calculation of the exponential function and calculation of the logarithm function, whereas in
the Newtonian case we only have to consider multiplication, summation and subtraction.

Let all numbers be of size n bits. The computational complexity for addition and subtraction
is O(n), for multiplication and division is O(n2) and for taking exponentials and logarithms
is O(n5/2). Evidently, then, the number of operations must be significantly smaller for the
multiplicative Runge–Kutta method than for the ordinary Runge–Kutta method. In order
to consider the multiplicative method as a serious alternative to the ordinary method, the
performance of the former has to be at least comparable. Performance means higher accuracy,
that is, smaller errors, for the same computation time. Therefore, the relative error as a function
of the computation time has been measured by keeping the starting and end point fixed and
varying the step size h. The results for both methods are compared in Figure 2.

The comparison of the relative errors as function of the computation time shows that the
multiplicative Runge–Kutta method works more efficiently than the ordinary method, with a
significant difference between the results. This comparison has also been carried out for other
sample problems with known closed-form solutions. The results show again that the fourth-
order multiplicative Runge–Kutta method is more efficient than the fourth-order ordinary
Runge–Kutta method.

4.1.2. Logarithmic example. We next consider a function which has logarithmic solution
and compare the results of the fourth-order multiplicative and ordinary Runge–Kutta methods.
The multiplicative initial-value problem is

y∗(x) = e(x−1)/xy, y(1) = 1. (4.4)

The corresponding ordinary initial-value problem is given by

y′(x) = 1− 1

x
, y(1) = 1. (4.5)

The analytic solution of this initial-value problem can be easily obtained as

y(x) = x− lnx. (4.6)

The comparison of the results of the multiplicative and ordinary methods is given in Table 2.
In this example the advantage of the multiplicative method over the ordinary method can be
seen quite easily.
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Table 2. Comparison of the multiplicative Runge–Kutta method and the ordinary
Runge–Kutta method.

x yexact yMRK Relative yNewt Relative
errMRK in % errNewt in %

1 1 1 0 1 0
1.5 1.0945 1.0945 3.128 × 10−3 1.2123 10.76
2 1.3069 1.3068 2.955 × 10−3 1.4892 13.95
2.5 1.5837 1.5837 2.681 × 10−3 1.8068 14.09
3 1.9014 1.9013 2.339 × 10−3 2.1527 13.22

3020100
5

10

15

20

RK and MRK with 300 points
MRK with 30 points
RK with 30 points

Figure 3. Solution for bacteria growth model, λ = 3.21, µmax = 0.644, α = 4, ymax = 18.

4.1.3. Biological example. In order to show that the proposed method can also be used
to obtain better results for mathematical models in biology, we discuss the growth of bacteria
in food modelled by Huang [15–17].

The Baranyi model [2, 3] for the growth of bacteria in food is described by the differential
equation

y′(t) = µmax
1− ey−ymax

1 + e−α(t−λ)
. (4.7)

The multiplicative counterpart of equation (4.7) is

y∗(t) = exp

{
µmax

y

1− ey−ymax

1 + e−α(t−λ)

}
, (4.8)

with the initial value y0 = y(0) = 7. As there is no closed-form solution available for
these initial-value problems, we solved both initial-value problems using the fourth-order
multiplicative and ordinary Runge–Kutta methods for small h, where both solutions coincide.
Then we increased the step size h and checked which method deviates first from the solutions
for small h. As depicted in Figure 3, the ordinary method deviates first from the accurate
solution. We then compared the greatest h, where the multiplicative still coincides with the
solutions for small h, and the ordinary method for this h. Also in this case, the multiplicative
method gives better performance results than the ordinary methods.

The numerical solutions of the differential equations (4.7) and (4.8) using the corresponding
Runge–Kutta methods are not distinguishable for h = 0.1. But, as depicted in Figure 3, the
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fourth-order multiplicative Runge–Kutta method for h = 1 still coincides with the solution for
h = 0.1, whereas the fourth-order Runge–Kutta method is significantly different (dotted line).

4.2. Solution of a second-order multiplicative differential equation

As an example of higher-order multiplicative initial-value problems we consider the following
second-order initial-value problem:

y∗∗(x) = f(x, y, y∗), y(x0) = y0 and y∗(x0) = y1. (4.9)

This initial-value problem can be solved by solving the coupled system of first-order
multiplicative differential equations

y∗0(x) = y1(x), (4.10)

y∗1(x) = f(x, y0, y1). (4.11)

We want to solve the initial-value problem for the second-order multiplicative differential
equation

y∗∗(x) = e. (4.12)

The corresponding second-order ordinary differential equation is

y′′(x) =
y′(x)2

y(x)
+ y(x). (4.13)

The general solution of the differential equations (4.12) and (4.13) is

y(x) = α exp

{
x2

2
+ βx

}
. (4.14)

This initial-value problem was solved also as an example of a multiplicative boundary-value
problem in [25]. In order to be able to compare the results with the multiplicative finite-
difference methods solution, discussed in [25], we select α = 1, β = 1, x0 = 1, and h = 0.25,
resulting in the initial conditions

y0 = e3/2 and y1 = e2, (4.15)

and compare the results in Table 3.
Table 3 shows the numerical approximation using the fourth-order multiplicative Runge–

Kutta method for (4.12) with the initial conditions (4.15) and the corresponding results for the
multiplicative finite-difference method from [25]. In this case we can see that the multiplicative
Runge–Kutta method is slightly better than the multiplicative finite-difference method by an
order of magnitude in the relative error.

Table 3. Comparison of the multiplicative Runge–Kutta method and multiplicative finite-difference
method.

x yexact yMRK Relative yMFD Relative
errMRK in % errMFD in %

1 4.48168907 4.481689070 0 4.48168907 0
1.25 7.62360992 7.62360992 9.3 × 10−15 7.62360991 3.5 × 10−13

1.5 13.80457419 13.80457419 1.3 × 10−14 13.80457418 5.3 × 10−13

1.75 26.60901319 26.60901319 1.7 × 10−14 26.60913187 1.8 × 10−13
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On the other hand, if we solve the corresponding ordinary differential equation (4.13) with
the corresponding initial values

y0 = e3/2 and y1 = 2e3/2, (4.16)

we get the results as shown in Table 4. Obviously, the ordinary Runge–Kutta method fails
drastically in this case, as the relative error differs by 13 orders in magnitude compared
to its multiplicative counterpart. Both the multiplicative Runge–Kutta method and the
multiplicative finite-difference method succeed in producing proper results. Also in this case
the performance of the multiplicative Runge–Kutta method method is significantly better than
the ordinary Runge–Kutta method.

Table 4. Comparison of the multiplicative and ordinary Runge–Kutta methods.

x yexact yMRK Relative yNewt Relative
errMRK in % errNewt in %

1 4.48168907 4.481689070 0 4.48168907 0
1.25 7.62360992 7.62360992 9.3 × 10−15 7.61823131 7.1 × 10−2

1.5 13.80457419 13.80457419 1.3 × 10−14 13.77941017 1.8 × 10−1

1.75 26.60901319 26.60901319 1.7 × 10−14 26.51619718 3.5 × 10−1

5. Conclusion

Having given a short motivation for the problem in the introduction, we described the
multiplicative Runge–Kutta method for the solution of multiplicative initial-value problems of
the form

y∗(x) = f(x, y) with y(x0) = y0,

where x0 is the starting point and y0 the initial value. The derivation of the second-order
multiplicative Runge–Kutta method was carried out explicitly in detail. For the higher-
order methods the ansätze, solutions, and corresponding Butcher tableaux are presented. The
methods most successful at overcoming the restrictions of multiplicative calculus are presented
in § 2.4. These methods ensure that the multiplicative Runge–Kutta method is a universally
applicable tool. The error analysis and the convergence of multiplicative one-step methods were
discussed in detail in § 3. The stability analysis closed the theoretical part of this study. Finally,
the multiplicative Runge–Kutta method was applied to several problems, and the results were
compared with the results from the ordinary Runge–Kutta method and the multiplicative
finite-difference method. We saw that in these examples the multiplicative Runge–Kutta
method produces significantly better results for the same step width than the ordinary Runge–
Kutta method. Furthermore, the performance of both methods was compared explicitly for one
example. We observed that the multiplicative Runge–Kutta method produced smaller errors
for the same computation time than the ordinary Runge–Kutta method, demonstrating the
universal applicability of the proposed method. The multiplicative Runge–Kutta method was
also applied to the solution of a bacterial growth model proposed by Baranyi and compared
to the ordinary Runge–Kutta method, with similar results.
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6. A. E. Bashirov, E. Mısırlı, Y. Tandoğdu and A. Özyapıcı, ‘On modeling with multiplicative differential

equations’, Appl. Math. J. Chinese Univ. 26 (2011) no. 4, 425–438.
7. A. E. Bashirov and M. Riza, ‘On complex multiplicative differentiation’, TWMS J. Appl. Eng. Math. 1

(2011) no. 1, 51–61.
8. J. C. Butcher, ‘A stability property of implicit Runge–Kutta methods’, BIT 15 (1975) no. 4, 358–361.
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