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Abstract

The paper deals with nonlinear Poisson neuron network models with bounded memory
dynamics, which can include both Hebbian learning mechanisms and refractory periods.
The state of the network is described by the times elapsed since its neurons fired
within the post-synaptic transfer kernel memory span, and the current strengths of
synaptic connections, the state spaces of our models being hierarchies of finite-
dimensional components. We prove the ergodicity of the stochastic processes describing
the behaviour of the networks, establish the existence of continuously differentiable
stationary distribution densities (with respect to the Lebesgue measures of corresponding
dimensionality) on the components of the state space, and find upper bounds for them.
For the density components, we derive a system of differential equations that can be
solved in a few simplest cases only. Approaches to approximate computation of the
stationary density are discussed. One approach is to reduce the dimensionality of the
problem by modifying the network so that each neuron cannot fire if the number of
spikes it emitted within the post-synaptic transfer kernel memory span reaches a given
threshold. We show that the stationary distribution of this ‘truncated’ network converges
to that of the unrestricted network as the threshold increases, and that the convergence
is at a superexponential rate. A complementary approach uses discrete Markov chain
approximations to the network process.
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1. Introduction

Neurons are electrically excitable cells whose main function is to process and transmit
information. They connect to each other to form neural networks that constitute core com-
ponents of the nervous system, and so building and studying mathematical models of such
networks is of key interest. To justify the modelling approach used in this paper (as described
in detail in Section 2), we will briefly describe the mechanism enabling neurons to communicate
with each other.
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The anatomy of a neuron involves three distinct parts with different electrical activity
functions: dendrites that form a tree and contain post-synaptic receptors (inputs), the cell
body (soma) that integrates the input currents coming from the dendrites, and a long-limbed
axon that terminates with pre-synaptic buttons (outputs). A typical feature of the neuronal
electrical activity is the propagation of membrane depolarisation. The membrane of a resting
neuron is polarised. Brief high-amplitude depolarisations that propagate from the soma along
the axon are called action potentials (or spikes) and have a characteristic shape. When a spike
reaches an axonal termination that ‘connects’ to a post-synaptic neuron, neurotransmitters are
released into the extra cellular space and excite receptors on the post-synaptic neuron (usually
on dendrites). This generates a local variation of the membrane potential in that neuron, which
propagates towards the soma. The soma can be seen as a spatiotemporal integrator of these
post-synaptic potentials (PSPs) to generate an output spike. The soma potential often remains
close to the resting value for a few milliseconds after firing an action potential, which is referred
to as the refractory period (during which the neuron cannot fire again). These basic elements of
the neuronal information processing actually depend upon many different mechanisms at the
molecular level, such as ionic concentrations, density of ion channels, axonal myelination, and
types of neurotransmitters (for a review, we refer the reader to [1]).

There exists extensive literature on mathematical modelling of both individual neurons and
neural networks. We refer the reader interested in neurophysiological principles of neuron
and brain operations to [1] and [27], and to the more advanced expositions in [31] and [32]
of the circuitry of the brain. A detailed (but accessible and rather nontechnical) discussion of
brain networks, covering structural, functional, and effective connectivity and their respective
dynamics, is presented in [33] (the book also contains an extensive bibliography of the relevant
research work in the complex network theory). A detailed overview of the computational
modelling of nervous systems from the molecular and cellular level, including mathematical
modelling of adaptation and learning, is given in [14]. Monograph [22] is a systematic study
of the relationship of electrophysiology, nonlinear dynamics, and computational properties of
neurons. One can also mention here [15] and [25], and refer the reader to [16] for a recent
review of the literature in the area.

As the duration of an action potential is relatively short (usually less than 1 ms for sodium-
based action potentials), for modelling purposes, spikes are often considered to be instantaneous.
Hence, a neuron can be modelled using a point process whose intensity depends on the past
activity of the neuron, its incoming synaptic stimulation, or other mechanisms. The use of
point processes, such as Hawkes processes, for modelling the spiking activity of neurons dates
back to the papers [10], [11], and [13], and made it possible to study analytically the neuronal
response to various input stimulations (for a review, see [15]). Applications of particular neural
nonlinear point process models to real data can be found in [28], [29], [30], [34], and [35].

In Section 2 we present the description of the network model we deal with in this paper. The
network is ‘assembled’of nonlinear Poisson neurons, which can be viewed as extended versions
of self-exciting Hawkes point processes. To model Hebbian learning, we allow the strengths
of synaptic connections in the model to change depending on the order in which the connected
neurons are firing. Instead of using the formalism of point processes (as in, e.g. [7] and [9]),
we choose an alternative description in terms of multivariate Markov processes whose states
represent the networks’ spiking histories, with the state space being the product of a hierarchy
of simplices and finite sets representing synapses’ strengths. This approach proves to be rather
convenient and allows one to demonstrate ergodicity of the network processes under rather
general conditions (Section 3), and, moreover, to study the stationary distributions thereof. We

https://doi.org/10.1239/jap/1409932677 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932677


On stationary distributions of stochastic neural networks 839

show that the stationary joint distribution of the neurons’ spiking histories has a smooth density
with respect to a natural measure on the respective factor of the state space, and give upper
bounds for the components of that density on different components of the state space of the
process.

In Section 4 we discuss a way to reduce the dimensionality of the model and approximate
its stationary distribution with more tractable objects. The approach is based on ‘truncating’
the original process by ‘forbidding’ neurons to fire once they have fired a given number n of
spikes recently (within the ‘memory window’of the neuron). This modified process will still be
Markovian and ergodic, its stationary distribution confined to a space of lower dimensionality
and approximating that of the original process at a superexponential rate in n. In fact, such
dynamics do make physical sense when the existence of the refractory period is taken into
account, but one can further simplify the model by choosing an even lower threshold n.

In Section 5 we deal with the problem of computing the stationary distributions of our
networks. We derive systems of differential equations for the stationary distributions (unfortu-
nately, they seem to be tractable in the simplest cases only, which are discussed as examples
and accompanied by numerical illustrations). We also briefly discuss the approximation of the
stationary distribution of our network process by those of discrete Markov chains constructed
as discretised (in both time and space) versions of the process. Computing the stationary
distributions for the chains is more feasible, as it requires only solving systems of linear algebraic
equations.

2. Network dynamics and their description by Markov processes

2.1. Model description

Our neural network model consists of N neurons and M external sources. Both external
sources and neurons can fire spikes, which are assumed to be generated by a random mechanism.
External sources are assumed to fire according to independent Poisson processes with constant
rates ρ̂k, k ∈ {1, 2, . . . ,M} (all the quantities related to external sources will be labelled
with hats, and all the processes in the paper will be assumed to be right-continuous), whereas
a neuron’s instantaneous firing rate is determined by the value of the activation function of
the so-called synaptic influx. For neuron i, the latter is the sum of all PSPs generated by
spikes arriving to the ith neuron’s synapses from external sources and other neurons, and also
background activity.

More precisely, let {T̂k,n}n∈Z be the times at which external source k ∈ {1, . . . ,M} fired, and
let {Tj,n}n∈Z be the times at which neuron j ∈ {1, . . . , N} fired. Let ε̂ik(t) and εij (t) denote the
post-synaptic response kernel functions describing the effects on the neuron i potential from
accepting spikes through synapses connecting source k to neuron i and neuron j to neuron i,
respectively. Then the total time t synaptic influx for neuron i is given by

Ji(t) := vi +
∑
k,m

Ŵik(T̂k,m)ε̂ik(t − T̂k,m)+
∑
j,n

Wij (Tj,n)εij (t − Tj,n),

where vi is a constant representing the background activity for neuron i, the synaptic weights
Ŵik(t) and Wij (t) can be positive (excitatory synapse) or negative (inhibitory synapse), and,
to reflect brain plasticity (e.g. to model Hebbian learning), they can depend on time as well.
If, at time t , there is no synaptic connection of external source k to neuron i, we simply have
Ŵik(t) = 0, and likewise for network’s neuron connections.
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The kernels ε̂ik(t) ≥ 0 and εij (t) ≥ 0 are assumed to vanish outside a compact interval: for
any k ≤ M and i, j ≤ N ,

ε̂ik(t) = εij (t) = 0 for t �∈ [0,�], � = constant > 0,

which ensures causality and also means that the direct effect of any given spike on a neuron
completely disappears within a finite time � (for real-life neurons, the order of magnitude of
� is 102 ms).

The previous papers [17] and [19] by one of the authors dealt with the case where the shapes
of all kernels were identical to some function ε, but could incorporate individual synaptic delays
d̂ik and dij :

ε̂ik(t) = ε(t − d̂ik) and εij (t) = ε(t − dij ).

The delays account for both the axonal propagation of action potential up to the synaptic site,
and for the diffusion time of the neurotransmitters in the synaptic cleft. In the present paper we
allow each synapse to have individual properties.

The effect of the synaptic influx on the behaviour of neuron i is expressed via an activation
function ςi(·), which is assumed to be continuous nondecreasing (and usually ‘S-shaped’), with

0 < ς
i
≤ ςi(x) ≤ ςi ≤ ς := max

j
ςj < ∞, x ∈ R, i ≤ N.

Namely, denoting by Ti(t) the time of the last spike fired by neuron i prior to time t and by Ft the
σ -algebra generated by the evolution of our system up to time t , and setting�(t) := (t, t +�)
for � > 0, we have, as � → 0,

P(neuron i fires during �(t) | Ft ) = ςi(Ji(t))r(t − Ti(t))�+ o(�), (1)

where we used a left-continuous function r(·) ∈ [0, 1] to model the existence of the so-called
absolute refractory period, i.e. the time period during which a just fired neuron is unable to fire
again. One can take, e.g.

r(s) := 1(s �∈ (0, δAR]), δAR = constant > 0, (2)

the indicator function of the complement of the interval (0, δAR] (for real-life neurons, δAR is
about 1 ms). Whatever the shape of r , we always assume that r(s) = 1 for s ≥ �.

In addition to (1), we assume that

P(more than one neuron fires during �(t) | Ft ) = o(�) as � → 0,

which basically means that, given the past history Ft , the instantaneous firing of different
neurons is driven by independent random mechanisms.

Note that the widely studied classical Hawkes process (see [6], [8], [9], [21], and [24])
corresponds to the identity activation function ςi in (1), and that the positivity of ςi means
that neurons can fire spikes in the absence of any external stimulation. The use of nonlinear
bounded functions ςi is motivated by the experimentally observed saturation of the neuronal
firing rate when its excitation increases. Observe also that the temporal spread of the synaptic
responses (modelled by εij ) induces specific temporal correlations between the neuronal spike
trains, which can be evaluated for the case of linear activation functions ςi [18], [19], [21].

Furthermore, our model assumes a Hebbian learning mechanism in the form of spike-timing-
dependent plasticity (STDP): if, within a short enough time interval, there are spikes at both pre-
synaptic and post-synaptic sides of a connection, this can change the weight of the connection.
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The weight increases if the post-synaptic spike follows the pre-synaptic spike (reinforcement
of the synapse), and decreases otherwise (depression of the synapse).

For simplicity, we assume that, for each of the connections, the synaptic weight can assume
only finitely many values: for a common finite L,

Ŵik(t) ∈ Ĝik := {ĝik(1) ≤ ĝik(2) ≤ · · · ≤ ĝik(L)},
Wij (t) ∈ Gij := {gij (1) ≤ gij (2) ≤ · · · ≤ gij (L)},

and the following discrete approximation of the STDP mechanisms discussed in, e.g. [12]. For
any i, j ∈ {1, . . . , N} and m ∈ {1, . . . , L}, we have the collection of points

−∞ < uij (m,m+ 1) < uij (m,m+ 2) < · · · < uij (m,L+ 1) = 0

= uij (m, 1) < uij (m, 2) < · · · < uij (m,m) < ∞.

In real-life situations, the length δLW := max{uij (m,m), |uij (m,m + 1)|} of the ‘learning
window’ is about 102 ms. We assume that δLW < �.

Now suppose that, for a given time t , we have Wij (t−) = gij (m) and either t = Ti(t) or
t = Tj (t) (i.e. one of the neurons i, j fired at time t). Then we put

Wij (t) := gij (d) if

{
t = Ti(t) and Tj (t)− t ∈ (uij (m, d), uij (m, d + 1)],
t = Tj (t) and t − Ti(t) ∈ (uij (m, d), uij (m, d + 1)],

for d ∈ {1, . . . , L}, whereas otherwise the value of the weight remains unchanged. The
dynamics of the weights Ŵik have the same nature.

Note that the above mechanism allows one to model the emergence of new synaptic connec-
tions as well. Altogether, our network model provides a certain degree of biological realism
together with a mathematical framework that allows a tractable analysis.

2.2. A Markovian representation for the network model

Note that, at time t , the knowledge of all the current synaptic weights and the times of all
the spikes fired in the network within the time interval (t − �, t] is all the information from
the past and present that one needs to uniquely specify the probability distribution of the future
evolution of the system. Therefore, to obtain a Markovian description of the network, we denote
by ν̂k(t) the number of spikes fired by external source k in the time window (t −�, t], k ≤ M .
If ν̂k(t) = 0 then we say that source k was at the state

X̂k(t) ≡ (X̂k,1(t), X̂k,2(t), X̂k,3(t), . . .) = (0, 0, 0, . . .) ∈ R
N+

at time t . If ν̂k(t) ≥ 1, we set X̂k,1(t) := T̂k(t)− t +� ∈ (0,�], which is the time till the last
spike fired by k prior to the ‘present’ time t disappears from the moving window (s − �, s],
s ≥ t . Furthermore, we denote by X̂k,2(t) := T̂k(T̂k(t)−)− t +� ∈ (0,�] the time till the
second to last spike fired by k prior to time t disappears from the moving window (s −�, s],
and so on. This way, we obtain the vector

X̂k(t) = (X̂k,1(t), X̂k,2(t), . . . , X̂k,ν̂k(t)(t), 0, 0, . . .), k = 1, . . . ,M,

with ν̂k(t) < ∞ and X̂k,1(t) > X̂k,2(t) > · · · > X̂k,ν̂k(t)(t) > 0 almost surely (the activation
functions are bounded and having two spikes at exactly the same time is a zero probability
event).
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Likewise, the state of neuron i is described by the vector

Xi(t) = (Xi,1(t), Xi,2(t), . . . , Xi,νi (t)(t), 0, 0, . . .), i = 1, . . . , N,

with Xi,1(t) > Xi,2(t) > · · · > Xi,νi (t)(t) > 0 almost surely, where νi(t) is the number of
spikes fired by i during (t −�, t]. Now the complete history of spikes within the time window
(t −�, t] is described by the vector

Z(t) := (X̂(t);X(t)) := (X̂1(t), X̂2(t), . . . , X̂M(t);X1(t), X2(t), . . . , XN(t)).

We also need to specify the state of the synaptic connections. This can be done by using the
matrices

Ŵ (t) = (Ŵik(t))i≤N,k≤N, W(t) = (Wij (t))i,j≤N,

in which nonexistent connections will be represented by zero entries. Now the value

U(t) := (Z(t); Ŵ (t);W(t))
will completely specify the time t state of the network. The state space for the process U will
be taken to be

H := S ×
( ∏
i≤N,k≤M

Ĝik

)
×

( ∏
i,j≤N

Gij

)
with S := EM+N , where E := ⋃

n≥0 E
(n) is the union of the simplices

E(n) := {(x1, x2, . . .) ∈ R
N+ : � ≥ x1 > x2 > · · · > xn > 0; xn+m = 0, m > 0}

for n = 0, 1, 2, . . . . Note that the n-dimensional simplex E(n) is a face of the (n + 1)-
dimensional simplex E(n+1), n ≥ 0. We will endow H with the product σ -algebra

H := S ⊗
( ⊗
i≤N,k≤M

2Ĝik
)

⊗
( ⊗
i,j≤N

2Gij
)
,

where S := C⊗(M+N) and C is the trace of the cylindric σ -algebra on the space R
N on E.

2.3. The model dynamics

The process U is a piecewise deterministic (linear in its component Z) Markov process
which evolves as follows.

(i) Inside jump-free time intervals, we have, for any k ≤ M , i ≤ N , and n ≥ 1,

dX̂k,n(t)

dt
= −1(X̂k,n(t) > 0),

dXi,n(t)

dt
= −1(Xi,n(t) > 0),

whereas Ŵ (t) and W(t) remain unchanged. Thus, in the absence of jumps, all the nonzero
components of the process decay at the unit rate, and when the ‘first visible in the window’spike
of, say, neuron i that occurred at time Ti,n ‘disappears’ from the moving time window (t−�, t]
at time t ′ = Ti,n+�, the number of positive components ofXi drops by 1: νt (t ′) = νt (t

′−)−1.
(ii) Given that the current state of the process is u = (x̂; x; ŵ; w) ∈ H , where x̂ =

(x̂1, . . . , x̂M) has components x̂k = (x̂k,1, . . . , x̂k,mk , 0, 0, . . .) ∈ E(mk) with mk ≥ 0, k ≤ M ,
and likewise x = (x1, . . . , xN) has xi = (xi,1, . . . , xi,ni , 0, 0, . . .) ∈ E(ni), i ≤ N , ŵ = (ŵik)
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and w = (wij ) take values in the respective finite product set, the instantaneous firing rate for
source k is ρ̂k , and, for neuron i, it is given by

Ri(u) := ςi

(
vi +

∑
k≤M

ŵik
∑
m≥1

ε̂ik(�− x̂k,m)+
∑
j≤N

wij
∑
n≥1

εij (�− xj,n)

)
r(�− xi,1). (3)

(iii) When source k fires (say, at time t ′ = T̂k,m), the only change in the state of Z is in the
component X̂k:

ν̂k(t
′) = ν̂k(t

′−)+ 1

almost surely (as it is impossible to simultaneously ‘lose’a spike in the time window and acquire
a new spike). The new values of the components are

X̂k,1(t
′) = �,

X̂k,2(t
′) = X̂k,1(t

′−),
X̂k,3(t

′) = X̂k,2(t
′−),

...

X̂k,νk(t ′)(t
′) = X̂k,νk(t ′)−1(t

′−).
Likewise, a spike fired by neuron i will mean similar changes in the component Xi .

The synaptic weight Ŵik can change when the spike was fired either by source k or by
neuron i. As δLW < �, the state of U just prior to the spike completely specifies to what value
the synaptic weight should change, according to the learning rules listed in the description of
the model. Similarly for the weights Wij that can change when the spike is fired by either of
the neurons i and j .

It is quite straightforward to write down the generator of the process U , following the
above description. The vector field specifying the dynamics of the process Z between jumps
is piecewise linear, and it changes its direction when, for one of the components X̂k ∈ E or
Xi ∈ E, the respective integral curve running inside E(n), n > 1, hits the face E(n−1) of that
simplex and then continues inside that lower-dimensional simplex. The domain of the generator
will consist of all bounded functions U �→ R that are path continuous and differentiable in z
for that vector field (cf. [23]).

3. Ergodicity and the properties of stationary distributions

In this section we establish strong ergodicity of the Markov process U . In the case of
constant synaptic weights, the ergodicity of the network immediately follows from Theorem 5
of [7] on the stability of multivariate point processes with bounded memory dynamics (see also
Theorem 6 of [7] for the stability of a nonlinear multivariate Hawkes process with PSP transfer
kernels having unbounded supports, and [26]). However, even in that special case, our Markov
process framework allows us to come up with a much shorter and simpler proof of stability.

Theorem 1. Under the stated assumptions, the process U is strongly ergodic: it has a unique
stationary distribution π on (H,H) such that

sup
u∈H

sup
B∈H

|P(U(t) ∈ B | U(0) = u)− π(B)| → 0 as t → ∞.

Moreover, the convergence is exponentially fast.
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It would be most interesting to know the properties of π . One basic fact that we can easily
establish is that the stationary distribution πS of the component Z(t) = (X̂(t);X(t)) on (S,S)
has a density with respect to some naturally chosen measure. Moreover, we can obtain upper
bounds for the density.

More precisely, the natural measure on (S,S) is taken to be the product measure μM+N ,
where

μ(B) =
∑
n≥0

μn(Bn) for B =
⋃
n≥0

(Bn × {0}), 0 = (0, 0, . . .) ∈ R
N+,

with μn the n-dimensional Lebesgue measure and Bn the Borel subsets of the respective n-
dimensional simplices

E
(n)
0 := {(x1, . . . , xn) ∈ R

n+ : � ≥ x1 > x2 > · · · > xn > 0} (4)

that can be identified with E(n) = E
(n)
0 × {0}. We use the convention that μ0 is just the unit

mass at 0.
For (m; n) := (m1, . . . , mM ; n1, . . . , nN) ∈ Z

M+N+ , set

E(m;n) :=
∏
k≤M

E(mk) ×
∏
i≤N

E(ni).

Similarly, E(m;n)
0 is the product of the respective E0 sets.

To simplify the formulation of the next theorem, we will slightly abuse notation by identifying
the sets E(m;n) with E(m;n)

0 , and so considering the latter as the components of the space S (so
that the components of μ are actually given on finite-dimensional spaces).

Theorem 2. Under the stated assumptions, if all the functions ε̂ik , εij , ςi , and r are continuously
differentiable, then, for any (m; n) ∈ Z

M+N+ , the restriction of πS toE(m;n)
0 has a density ψm,n

with respect to μ admitting the upper bound( ∏
k≤M

ρ̂
mk
k

)(∏
i≤N

ς
ni
i

)
exp{−��ρ̂} ≤ �m+�n exp{−��ρ̂},

where �ρ̂ := ∑
k ρ̂k ,  := max{maxk ρ̂k,maxi ς i}, �m := ∑

k≤M mk , and �n := ∑
i≤N ni .

The density function ψm,n is continuously differentiable in the interior of E(m,n)0 and has finite
limits on its boundary.

Remark 1. It is easy to see from the proof of Theorem 2 that, if we assume that the function r
has form (2) (and so is not continuously differentiable), then the assertion of the theorem will
remain true with the only amendment that the density components ψm,n will be continuously
differentiable inside their supports in the spaces of the respective dimensionalities.

Proof of Theorem 1. It is obvious that U is aperiodic and stochastically continuous. There-
fore, to establish the ergodicity of U , it suffices to show that the Markov ‘skeleton’ chain
Y = {Yn := U(�n), n = 0, 1, 2, . . .} has a recurrent state whose first hitting time distribution
tail decays exponentially fast uniformly in the chain’s initial stateU(0) (see, e.g. Theorem 18.1
of [2]).

First we will use the standard argument to show that the tail of τ := inf{n > 0 : Z(�n) =
(0; 0)} (i.e. the first value n such that there were no spikes from either the external sources or
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the network neurons in the time interval (�(n−1),�n]) admits such a bound. Indeed, setting,
for convenience, Pu(·) := P(· | U(0) = u), we have, for any u ∈ H and t > 0,

Pu(no spikes in (0, t]) = exp

{
−

∫ t

0

(∑
k

ρ̂k +
∑
i

Ri(·)
)

ds

}
≥ exp{−(�ρ̂ +�ς)t}
=: e−γ t , (5)

where�ς := ∑
i ς i , and (·) represents the values of the argument of Ri along the trajectory of

U on [0, t] that started at u and experienced no jumps.
Now setting An := {no spikes in (�(n − 1),�n]} we find, recursively using the Markov

property and bound (5), that, for n ≥ 0,

Pu(τ > n) = Pu

( n⋂
m=1

Ac
m

)

= EPu

( n⋂
m=1

Ac
m | Yn−1

)

= EPu

(n−1⋂
m=1

Ac
m | Yn−1

)
PYn−1(A

c
n)

≤ (1 − e−γ�)EPu

(n−1⋂
m=1

Ac
m | Yn−1

)

= (1 − e−γ�)Pu

(n−1⋂
m=1

Ac
m

)
≤ · · ·
≤ (1 − e−γ�)n.

Next we observe that (Ŵ (�n);W(�n)) is clearly an indecomposable aperiodic finite
Markov chain, and hence it is ergodic. Take any fixed state (ŵ′; w′) of this chain; as is well
known, for any initial condition, the first hitting time of that state has an exponentially fast
decaying distribution tail. Hence, it is obvious that the state (0; 0; ŵ′; w′) ∈ H will be positive
recurrent for the chain Y , and that the tail of the first hitting time of that state by Y will admit
a geometrically fast vanishing upper bound uniform in the initial condition of the state. This
completes the proof.

Proof of Theorem 2. First we will establish existence of the density for transition probabil-
ities, and then infer the desired result from that fact.

Suppose that our process started at point U(0) = u0 and that, at time �, was at a point
u1 = (x̂; x; ŵ; w) ∈ H with x̂k ∈ E(mk), k ≤ M , xi ∈ E(ni), i ≤ N . It is clear that the states
u0 and z = (x̂; x) ∈ S completely specify the trajectory of U(t) on the time interval [0,�].
Denote that trajectory by u(t), t ∈ [0,�] (so that u(0) = u0 and u(�) = u1). Then, observing
that xi,1, . . . , xi,ni are the firing times for neuron i in the time interval [0,�], we use the standard
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argument to show that

Pu0(Z(�) ∈ dx̂1 × · · · × dx̂M × dx1 × · · · × dxN)

=
( ∏
k≤M

ρ̂
mk
k e−ρ̂k�

)
μm1(dx̂1) · · ·μmM (dx̂M)

×
[∏
i≤N

( ∏
li≤ni

Ri(u(xi,li−))
)

exp

{
−

∫ �

0
Ri(u(t)) dt

}]
× μn1(dx1) · · ·μnN (dxN)

=: p(u0, z)μm1(dx̂1) · · ·μmM (dx̂M)μn1(dx1) · · ·μnN (dxN)

= p(u0, z)μ(dz). (6)

Clearly, the function p(u0, z) is continuously differentiable in z in the interior of E(m,n), has
finite limits on its boundary, and admits an upper bound of the form

p(u0, z) ≤
( ∏
k≤M

ρ̂
mk
k

)(∏
i≤N

ς
ni
i

)
exp{−��ρ̂}. (7)

Next, in view of (6), for any B ∈ S, we can use Fubini’s theorem to write

πS(B) =
∫
H

π(du0)

∫
B

p(u0, z)μ(dz)

=
∫
B

[∫
H

π(du0)p(u0, z)

]
μ(dz)

=:
∫
B

ψ(z)μ(dz). (8)

This means that πS does have density ψ with respect to μ, and (7) implies that ψ admits the
desired upper bound.

That ψ is continuously differentiable in the relative interiors of the components of its
supporting space follows from (6), the last relation in (8), and the assumption that ςi and
the kernel functions εij are all continuously differentiable; the ε vanish outside [0,�]. This
completes the proof.

4. Approximating π by finite-dimensional distributions

In this section we will assume constant synaptic weights in our model, so that the time t state
of the network will now be completely specified by the value Z(t) only. Even in this simple
case, the state space is an infinite hierarchy of multidimensional simplices, so working with
nontrivial distributions on it is not easy. The natural question in such a situation is whether
one can find an appropriate approximation to the distribution in question, together with an
approximation error bound.

For our model, a tempting approach to finding such approximations is to consider ‘truncated’
processesZ〈n〉 in which none of the neurons is ‘allowed’to fire more than the fixed numbern ≥ 1
times within any given time interval of length �. In fact, if the model assumes the existence
of absolute refractory periods of positive length by stipulating, say, that (2) holds, then that
condition will automatically be satisfied (note, however, that one can still apply truncation with
n < �/δAR to reduce dimensionality).
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The only difference in the dynamics of the process Z〈n〉 compared to those of Z is that the
neurons’ firing intensities will now be given by

R
〈n〉
i (z) := Ri(z)1(xi,n = 0), i = 1, . . . , N

(cf. (3)). It is obvious that Z〈n〉 will also be an ergodic Markov process. Denote its stationary
distribution on (S,S) byπ 〈n〉, while, for the stationary distribution ofZ (on the same measurable
space), we will reuse the notation π .

Theorem 3. Under the assumption of constant synaptic weights, we have

sup
B∈S

|π(B)− π 〈n〉(B)| ≤ Cn−(n+1)/2eαn,

where C := 2N exp{�(�ρ̂ +�ς)}/√π and α := (1 + ln(�ς))/2.

Proof. We will use a coupling argument. Assume that� is a Poisson random field of unit in-
tensity on R+×R, given on some probability space, and construct a process {(Z(t), Z〈n〉(t))}t≥0
with the state space S×S, whose components will follow the original and ‘truncated’dynamics,
respectively, start at a common state Z(0) = Z〈n〉(0) ∈ S, and will be driven by the field� via
the following simple mechanism.

Introduce the intervals

Îk :=
(

−
k∑

m=1

ρ̂m,−
k−1∑
m=1

ρ̂m

]
, k = 1, . . . ,M,

Ii := (ϑi−1, ϑi], i = 1, . . . , N, ϑi :=
i∑

j=1

ςj ,

and stipulate that, in both processes Z and Z〈n〉, external source k fires at time t if and only if
�({t}× Îk) > 0 (note that {�([0, t]× Îk)}t≥0 are independent Poisson processes with constant
intensities ρ̂k, k = 1, . . . ,M).

Likewise, in the process Z neuron i fires at time t if

�({t} × (ϑi−1, ϑi−1 + Ri(Z(t−))]) > 0,

and that happens in the process Z〈n〉 at time t if

�({t} × (ϑi−1, ϑi−1 + R
〈n〉
i (Z〈n〉(t−))]) > 0.

Clearly, (Z,Z〈n〉) is a well-defined Markov process, and its components follow the desired
dynamics. Note also that the process will be ergodic, like each of its components (this is
obvious from, e.g. Theorem 1).

Now denote by (Z(∞), Z〈n〉(∞)) a random element of S × S whose distribution coincides
with the stationary distribution of (Z,Z〈n〉). Using the standard argument, it is easily seen that

|π(B)− π 〈n〉(B)| ≤ P(Z(∞) �= Z〈n〉(∞)) =: Pn, B ∈ S.

To bound Pn, denote by |TK |, K ∈ N, the total length of the set

TK := {t ∈ [0,�K] : Z(t) �= Z〈n〉(t)}
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and observe that, from the ergodicity of (Z,Z〈n〉), we have

Pn = lim
K→∞

|TK |
�K

.

As we are interested in the stationary distribution, we can assume without loss of generality
that the common starting point of Z and Z〈n〉 has no components xi in E(m), m ≥ n. Then the
trajectories Z(t) and Z〈n〉(t), having originated at the same point, will coincide with each other
till the time T ′ when one of the values Xi(t), i = 1, . . . , N , enters E(n). Then the respective
neuron i will stay silent in Z〈n〉 at least till the time when the number of spikes produced by i
and ‘visible’ in the time window (t−�, t] drops below n, while inZ the respective neuron will
still be able to fire. Thus, past the time point T ′, the trajectories Z(t) and Z〈n〉(t) can diverge.
They will have to meet again, though, and the latest that will occur is at the end of the next
‘silent interval’ of length �, which, in its turn, occurs no later than the time

inf{t > T ′ : �((t −�, t] × (−�ρ̂,�ς ] = 0)}.
To make use of the above argument to obtain an upper bound for Pn, introduce two random

sequences, {�m}m≥0 and {γm}m≥0, as follows. Letting, for brevity, θj := �j , set

Vi,j− := �
((
θj−1, θj−1 + 1

2�
] × Ii

)
, Vi,j+ := �

((
θj−1 + 1

2�, θj
] × Ii

)
,

and then put �0 := γ0 := 0, and, for m ≥ 1,

�m+1 := inf
{
j > γm : max

i≤N max{Vi,j−, Vi,j+} ≥ 1
2n

}
,

γm+1 := inf{j > �m+1 : �((θj−1, θj ] × (−�ρ̂,�ς ]) = 0}.
Clearly, both {�m} and {γm} are well-defined, almost surely infinite increasing sequences of
proper random variables.

Now if Z(θj−1) = Z〈n〉(θj−1) but, for some t ∈ (θj−1, θj ], we have Z(t) �= Z〈n〉(t), then,
for some i ≤ N , at least one of the following two relations must hold:

max{Vi,(j−1)−, Vi,(j−1)+} ≥ n

2
, max{Vi,j−, Vi,j+} ≥ n

2

(if none of the two holds then, in any time interval of length � within (θj−2, θj ], neuron i
will have fewer than n spikes). Thus, the values �m ‘mark’ time intervals where Z and Z〈n〉
may split, whereas the γm ‘mark’ those intervals following �m where Z and Z〈n〉 must merge
(provided that they have indeed split).

Set
τK := inf{m ≥ 1 : �m > K} − 1.

Clearly, for t > 0 and an arbitrarily fixed ε > 0,

P(|TK | > t) ≤ P(|TK | > t, τK ≤ εK)+ P(τK > εK). (9)

First we will bound the last term. Observe that

τK ≤
K∑
j=1

χj , where χj := 1
(

max
i≤N max{Vi,j−, Vi,j+} ≥ 1

2n
)
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are independent and identically distributed (i.i.d.) Bernoulli random variables with success
probability

P(χj = 1) = P

(
max
i≤N max{Vi,j−, Vi,j+} ≥ n

2

)
≤ 2

∑
i≤N

P

(
Vi,j− ≥ n

2

)
.

Since Vi,j− has the Poisson distribution with parameter λi := �ςi/2, we can use Taylor’s
formula for the exponential series (with remainder in Lagrange form) and then Stirling’s formula
to write

P

(
Vi,j− ≥ n

2

)
≤ λ

n/2
i

(n/2)!

≤ 1√
2π

(
n

2

)−(n+1)/2

exp

{
n

2
(1 + ln λi)

}
≤ 1√

π
n−(n+1)/2eαn.

Therefore,

P(χj = 1) ≤ 2N√
π
n−(n+1)/2eαn =: pn.

Assuming that pn < 1 (otherwise, the bound in the theorem will become trivial), and that
δ := ε − pn ≡ ε − Eχj > 0, we obtain

P(τK > εK) = P(τK −KEχ1 > δK)

≤ P

(∑
j≤K

(χj − Eχj ) > δK

)
≤ e−2δ2K (10)

by virtue of Theorem 5.5.1 of [3].
Now we will turn to the first term on the right-hand side of (9). From the definitions of our

random variables, it is obvious that |TK | ≤ �
∑
m≤τK (γm − �m), and so

P(|TK | > t, τK ≤ εK) ≤ P

( ∑
m≤εK

(γm − �m) >
t

�

)
=: Q.

From the strong Markov property, it follows that ηm := γm − �m are i.i.d. geometric random
variables, with P(η1 = k) = q(1 − q)k−1, k = 1, 2, . . ., where

q := P(�((t −�, t] × (−�ρ̂,�ς ]) = 0) = exp{−�(�ρ̂ +�ς)}.
Clearly, Eη1 = 1/q and ϕ(a) := Eeaη1 < ∞ for a < − ln(1 − q), and

ϕ(a) = 1 + a

q
+ o(1) as a → 0. (11)

Therefore, assuming without loss of generality that εK is an integer, we have, by the exponential
Chebyshev’s inequality,

Q ≤ (ϕ(a))εKe−at/� = exp

{
−εK

(
at

�εK
− ln ϕ(a)

)}
.
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We can see from (11) that, choosing t = tK := �εK(1 + h)/q for an arbitrarily fixed h > 0,
we will have, for small enough a, the bound

Q ≤ e−εcK for some c = c(a, h).

From here, (9), and (10), we obtain the bound

P(|TK | > tK) ≤ e−εcK + e−2δ2K.

Clearly,
∑
K P(|TK | > tK) < ∞, and so, by the Borel–Cantelli lemma, with probability 1, we

have |TK | ≤ tK for all large enough K . Therefore,

Pn ≤ lim sup
K→∞

tK

K�
= ε(1 + h)

q
.

As this holds for any ε > pn and h > 0, we conclude that Pn ≤ pn/q, which completes the
proof of the theorem.

5. Computing the stationary distribution

In the case of constant synaptic weights, it is not difficult to derive differential equations
(and boundary conditions for them) for the components ψm,n of the stationary density of Z.
They can be derived from the general relation

EAf (Z(∞)) = 0, (12)

where A is the infinitesimal generator of the process, f is a function from a suitable subset of
the domain of A, and, as before, Z(∞) ∼ π . It may be easier, however, to obtain them via a
direct argument, making use of our Theorem 2 (of which the conditions will be assumed to be
satisfied in this section unless we explicitly state otherwise).

To show how to do this, we will first consider the simple case of a network with one
external source and one neuron (with feedback). Suppose that the neuron has an absolute
refractory period (so that the state space is actually finite dimensional). For simplicity, we
assume throughout this section that � = 1 (which clearly does not restrict generality).

In this case, the state space of the process is just E × E, so that each state (x̂; x) =
(x̂1, x̂2, . . . , x̂m, 0, 0, . . . ; x1, x2, . . . , xn, 0, 0, . . .) (note that here we suppress the unnecessary
first subscript indicating the number of the external sources or neurons; likewise, ρ̂ will denote
here ρ̂1, etc.) belongs to one of the components E(m) × E(n), m, n ≥ 0. We will denote the
respective density components by ψm,n.

The first density component, ψ0,0, is just the stationary probability of the silent state, for
which we have, as δ ↘ 0,

ψ0,0 = P(Z(δ) = (0, 0))

= P(Z(δ) = (0, 0) | Z(0) = (0, 0))P(Z(0) = (0, 0))

+
∫ δ

0
P(Z(δ) = (0, 0) | Z(0) = (y, 0))ψ1,0(y) dy

+
∫ δ

0
P(Z(δ) = (0, 0) | Z(0) = (0, y))ψ0,1(y) dy +O(δ2)

= e−(ρ̂+ς(v))δψ0,0 +
∫ δ

0
(1 + o(1))ψ1,0(y) dy +

∫ δ

0
(1 + o(1))ψ0,1(y) dy + o(δ),

https://doi.org/10.1239/jap/1409932677 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932677


On stationary distributions of stochastic neural networks 851

where theO(δ2) term corresponds to the possibility that Z(0) ∈ E(m) ×E(n) withm+ n > 1.
From the above representation we obtain

(ρ̂ + ς(v))ψ0,0 = ψ1,0(0)+ ψ0,1(0), (13)

where, using Theorem 2, we put ψ1,0(0) := ψ1,0(0+) and ψ0,1(0) := ψ0,1(0+).
In the case where mn > 0, we fix a point z = (x̂; x) in the interior of E(m)0 ×E

(n)
0 (see (4))

and set Iz(δ) := Ix̂(δ)× Ix(δ), where

Ix̂(δ) := (x̂1, x̂1 + δ)× · · · × (x̂m, x̂m + δ),

Ix(δ) := (x1, x1 + δ)× · · · × (xn, xn + δ),

and δ > 0 is small enough so that Iz(δ) ⊂ E
(m)
0 × E

(n)
0 . Using the notation z + θ for shifting

all the components of the vector z by the same amount θ ∈ R, and, as before, slightly abusing
notation by identifying E(m) × E(n) with E(m)0 × E

(n)
0 , we have

P(Z(δ) ∈ Iz(δ)) = P(Z(δ) ∈ Iz(δ) | Z(0) ∈ Iz(δ)+ δ)P(Z(0) ∈ Iz(δ)+ δ)

+ P(Z(δ) ∈ Iz(δ), Z(0) ∈ [(Ix̂(δ)+ δ)× (0, δ)] × (Ix(δ)+ δ))

+ P(Z(δ) ∈ Iz(δ), Z(0) ∈ (Ix̂(δ)+ δ)× [(Ix(δ)+ δ)× (0, δ)])
+O(δm+n+2) as δ ↘ 0,

where the last term corresponds to the possibility of Z(0) being in a space of dimensionality
higher than n+m+ 1. Expressing the probabilities above as integrals of the respective density
components and using Theorem 2, we obtain the relation∫

Iz(δ)

ψm,n(y)(μm ⊗ μn)(dy)

=
∫
Iz(δ)

[1 − δ(ρ̂ + R(y + δ))]ψm,n(y + δ)(μm ⊗ μn)(dy)

+ (1 + o(1))δm+n+1[ψm+1,n((ŷ, 0; y))+ ψm,n+1((ŷ; y, 0))] +O(δm+n+2).

Subtracting from both sides the integral of ψm,n(y + δ) over Iz we can then easily verify
that the relation implies that the following differential equation must be satisfied: for θ ∈
(0, 1 − max{x̂1, x1}),

∂

∂θ
ψm,n(z + θ) = (ρ̂ + R(z + θ))ψm,n(z + θ)− ψm+1,n((x̂ + θ, 0; x + θ))

− ψm,n+1((x̂ + θ; x + θ, 0)). (14)

Of course, the equation will hold along the whole interval formed by the intersection ofE(m)0 ×
E
(n)
0 with the straight line passing through the point z and having the directional vector em+n :=

(1, . . . , 1) ∈ R
m+n, the boundary condition at its right point being specified by the rates of

transition to E(m)0 × E
(n)
0 from the state space components of lower dimensionalities. For

example, if x̂1 < x1 then the right endpoint for the interval of validity of (14) corresponds to
the point where the ray x+θen, θ > 0, hits the ‘right’ face ofE(n)0 (the point x̂+θem still being
in the interior of E(m)0 ). At that location, the system can only enter the component E(m)0 × E

(n)
0

by a jump from

(x̂ + 1 − x1; x∗ + 1 − x1) ∈ E(m)0 × E
(n−1)
0 , where x∗ := (x2, x3, . . . , xn),
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caused by a new spike fired by the neuron. Using a probabilistic argument similar to that above,
it is easy to see that the following must hold:

ψm,n(z + 1 − x1) = R(x̂ + 1 − x1; x∗ + 1 − x1)ψm,n−1(x̂ + 1 − x1; x∗ + 1 − x1). (15)

A similar equation will hold in the case where x̂1 > x1, but then the coefficient of ψm−1,n on
the right-hand side of the respective relation will simply be ρ̂. The case where only one ofm, n
is 0 is treated similarly.

Solving equations of the form (14) with boundary conditions (15), complemented by (13)
and the condition that

∑
m,n

∫
ψm,n d(μm ⊗ μn) = 1, is hardly possible except for the simplest

cases. One such case is considered in the following example.

Example 1. Consider the case of a single neuron with feedback and no external sources.
Moreover, assume that the firing rate function has the property

R(x) = 0 for all x ∈ E(n), n ≥ 2, (16)

so that there cannot be more than two spikes in any given time interval of length� = 1 (say, due
to the length of the absolutely refractory period exceeding 1

2 ). Thus, the state space of the system
is just E(0) × E(1) × E(2) (which we again can and will identify with E(0)0 × E

(1)
0 × E

(2)
0 ); the

density components being ψn, n = 0, 1, 2 (for n > 2, all ψn ≡ 0).
Using an obvious notational convention, we see that an analog of (13) in this case has the

form
R(0)ψ0 = ψ1(0), (17)

while an analog of (14) is, in the case n = 1,

dψ1(θ)

dθ
= R(θ)ψ1(θ)− ψ2(θ, 0), θ ∈ (0, 1), (18)

with the boundary condition (an analog of (15))

ψ1(1) = R(0)ψ0. (19)

When n = 2, an analog of (14) has the form

∂ψ2(y + θ, θ)

∂θ
= R(y + θ, θ)ψ2(y + θ, θ)− ψ3(y + θ, θ, 0) ≡ 0, θ ∈ (0, 1 − y),

for any y ∈ (0, 1), the right-hand side of the equation being zero owing to (16), with the
boundary condition (again an analog of (15))

ψ2(1, 1 − y) = R(1 − y)ψ1(1 − y). (20)

The last two relations immediately imply that, for any y ∈ (0, 1),

ψ2(y + θ, θ) = R(1 − y)ψ1(1 − y), θ ∈ (0, 1 − y).

Therefore, ψ2(θ, 0) = R(1 − θ)ψ1(1 − θ), so that (18) becomes

dψ1(θ)

dθ
= R(θ)ψ1(θ)− R(1 − θ)ψ1(1 − θ), θ ∈ (0, 1).
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Figure 1: Numerical illustration to Example 1. The top row displays the stationary densities ψ1(x1),

x1 ∈ (0, 1) (left), and ψ2(x1, x2), 1 ≥ x1 > x2 > 0 (right), together with their histogram estimates
from a simulation. The bottom pane depicts a simulation of the neuron’s activity during a time interval

of length 15 (comprising 300 discrete time steps of length 0.05).

This means that the functionψ1 is symmetric about the point θ = 1
2 , so thatψ1(θ) = ψ1(1−θ),

θ ∈ (0, 1) (hence, conditions (17) and (19) are consistent), and the last differential equation
can be rewritten as

dψ1(θ)

dθ
= (R(θ)− R(1 − θ))ψ1(θ), θ ∈ (0, 1). (21)

Setting ϕ(θ) := exp{∫ θ0 (R(y)− R(1 − y)) dy}, we derive from (17) and (21) that

ψ1(θ) = R(0)ψ0ϕ(θ), θ ∈ (0, 1).

Together with (20) this completely specifies the density function ψ (computing ψ0 is trivial).
To numerically illustrate this example, take the PSP kernel of the form

ε(x) = xα−1(1 − x)β−1

B(α, β)
, x ∈ (0, 1),

with α = 1.5 and β = 3, B being the beta function, so that the direct effect of a spike vanishes
after � = 1 time units, and the activation function ς(x) = 6/(1 + exp(1 − x)), x > 0. With
parameter values v0 = 0.3 and W = 1, the instantaneous firing rate of the neuron now has the
form

R(x) = ς(0.3 + ε(1 − x))r(1 − x), x ∈ (0, 1),

where r(·) is defined in (2) with δAR = 1
2 , which is consistent with the restriction that the neuron

can fire at most twice during a unit time interval. Figure 1 depicts the density components ψ1
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and ψ2 together with their histogram estimators from a simulated run of the network, and a
typical simulated realisation of the neuron’s activity. For simulation purposes, we discretised
time using a step size of 0.05 (the bottom pane in Figure 1 shows the first 300 time steps).
The neuron’s activity was simulated for 2 × 105 time steps, and the histograms were derived
from the 104 disjoint ‘time windows’ (20 time steps each) into which the total time interval
was partitioned. The histograms are in very good agreement with the theoretical stationary
densities. The estimated stationary probability to be in the ‘silent state’ is ψ̂0 = 0.136, whereas
the true probability thereof is ψ0 = 0.149.

Example 2. One can also obtain a closed-form solution in the case of a single neuron with
feedback and no absolutely refractory period, but under the special assumption that the neuron’s
PSP kernel is exponential: ε(t) = e−αt1(t ≥ 0) for some α > 0. Of course, this violates the
basic assumption that ε has a finite support and is smooth, but such a simplified mathematical
model could still provide a useful approximation to more realistic models.

It is not hard to see that in this case the dynamics of the system can be described by a
univariate Markov process Y (t) := ∑

n ε(t − Tn) > 0. Assuming without loss of generality
that α = 1, we can see that the process Y is driven by the Ornstein–Uhlenbeck-type equation

dY (t) = −Y (t) dt + dJ (t), t > 0,

J (t) being a pure jump process with unit jumps and instantaneous jump rate γ (Y (t)), where
γ (y) := ς(v+Wy) andW is the weight of the ‘self-connection’of our neuron. The infinitesimal
generator A of the process Y is clearly

Af (x) = −xf ′(x)+ γ (x)(f (x + 1)− f (x)), x > 0; (22)

its domain’s description can be found in, e.g. Proposition 4 of [20]. It is not hard to see that Y
is ergodic (see, e.g. [4]) and so has a unique stationary distribution that we will again denote
by π . Substituting (22) into (12) (with Z(∞) replaced by Y (∞)) yields∫ ∞

0
yf ′(y)π(dy) =

∫ ∞

0
γ (x)

(∫ x+1

x

f ′(y) dy

)
π(dx).

A routine calculation now leads to∫ ∞

0
yf ′(y)π(dy) =

∫ ∞

0
f ′(y)b(y) dy, b(y) :=

∫ y

(y−1)+
γ (x)π(dx),

where we have used the notation x+ := max{x, 0} for the positive part of x. As this equation
holds for a large enough class of functions f (see, e.g. [20]), and b is continuous and locally
bounded, we conclude that π has a locally bounded and continuous density ψ on (0,∞),
satisfying

yψ(y) =
∫ y

(y−1)+
γ (x)ψ(x) dx, y > 0.

This equation can be solved recursively, on intervals In := (n, n+ 1), n � 0. Straightforward
calculations show that the stationary density is given by

ψ(y) := ϕn(y), y ∈ In, n = 0, 1, 2, . . . ,
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Figure 2: Numerical illustration to Example 2. The top row displays the stationary densities ψ in the
cases v = 2 (left) and v = 0.1 (right), together with their histogram estimates from simulations. The

bottom pane depicts typical simulated trajectories of the process Y in the respective cases.

where the ϕn are found recursively as

ϕ0(y) = ψ(1) exp

(∫ y

1

γ (x)− 1

x
dx

)
, y ∈ I0,

ϕn(y) = �n[ϕn−1](y), y ∈ In, n ≥ 1,

where, for f defined on In−1 with a finite f (n−), we denote by�n[f ](y), y ∈ In, the solution
φ of the problem

φ′(y) = γ (y)− 1

y
φ(y)− γ (y − 1)

y
f (y), y ∈ In, φ(n) = f (n−).

The only unknown constant ψ(1) is just the normalizing factor that is to be determined from∫ ∞
0 ψ(y) dy = 1. At the integer points the density ψ can be defined by continuity.

To numerically illustrate Example 2, we chose ς(y) = 2/(1 + exp{1 − y}) andW = 1, and
considered two different values for v: 2 and 0.1. The top panes in Figure 2 depict the plots of
the stationary densities of Y (t) in these two cases, together with their histogram estimators. The
histograms were constructed using the values of 104 simulations of the discrete-time versions
of the processes after 5×103 discrete time steps of length 0.02. The bottom panes show typical
realisations of the simulated processes. Note that, in the case of low background activity
v = 0.1, the stationary density ‘explodes’ at 0 (as ς(0.1) ≈ 0.58 < 1; cf. the expression for
ϕ0), reflecting the fact that the process can stay relatively long in a ‘quiet state’ in that case.
When v = 2, we have ς(2) ≈ 1.46 > 1, implying that the stationary density of the process
Y (t) does not often visit the vicinity of 0.

In the general case, we can only hope to compute approximations to the stationary distribution
of the network. One way to do that is to discretise the state space and approximate the differential
equations for the density components ψm,n discussed at the beginning of this section with
respective difference equations, and then to solve the latter. However, although the existence of a
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solution to the original system of differential equations follows from Theorem 2, establishing its
uniqueness and also the convergence of the solutions to the systems of approximating difference
equations presents a challenge.

An alternative approach is to first approximate the original stochastic process with a sequence
of finite ergodic Markov chains in discrete time, and then to prove convergence of their stationary
distributions to the desired stationary distribution of U . For a detailed description of the
approximating Markov chains, the systems of equations their stationary distributions satisfy,
and the proof of (weak) convergence of those distributions to the stationary distribution of U ,
the interested reader is referred to Section 5 of [5].
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