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A SUFFICIENT CONDITION FOR SOLVABILITY 
IN GROUPS ADMITTING ELEMENTARY ABELIAN 

OPERATOR GROUPS 

MARTIN R. P E T T E T 

1. I n t r o d u c t i o n . Generalizing a celebrated theorem of Thompson , R. P. 
Mart ineau has established [4 ; 5] tha t a finite group which admits an 
elementary abelian group of automorphisms with trivial fixed-point subgroup 
is necessarily solvable. A critical observation in his approach to this problem is 
the fact tha t , corresponding to each prime divisor of its order, such a group 
contains a unique Sylow subgroup invar iant (as a set) under the action. Hence, 
the theorem we shall derive here represents a modest extension of Mar t ineau ' s 
result. 

T H E O R E M . Let G be a finite group admitting an elementary abelian group of 
automorphisms A with (\G\, \A \ ) = 1 such that J or each prime p dividing its order, 
G has a unique A-invariant Sylow p-subgroup. If the fixed-point subgroup CG(A) 
has odd order, then G is solvable. 

As with the Thompson-Mar t ineau theorem, the a rgument splits into three 
cases according to whether the rank of A is one, two, or a t least three. For
tunately, the first case is quickly resolved by a fusion result of Glauberman 
(which may be regarded as a far-reaching generalization of the normal p-
complement theorem used in Thompson ' s original a rgument ) while the last is 
a direct consequence of some more recent work of Mar t ineau [6]. I t is the case 
t ha t A has rank two which occupies the bulk of this paper. The approach here, 
as in Mar t ineau ' s proof, depends heavily on the "maximal subgroups" tech
nique pioneered by Bender, al though in the end it is Glauberman ' s fusion 
theorem which is used to settle this case also. However, it should be pointed out 
t ha t the price of greater generality is high, for in addit ion to requiring this 
sophisticated fusion result, our conclusion (unlike Mar t ineau ' s ) rests ulti
mately on the Fei t -Thompson theorem on groups of odd order. 

In the final section, we indicate how by imposing a slightly more technical 
hypothesis, the theorem may be extended to encompass an earlier generaliza
tion of Mar t ineau ' s theorem due to J. N. Ward [10]. 

2. Pre l iminar i e s . All groups considered here are finite. Any notat ion not 
explicitly defined conforms to tha t of Gorenstein 's book [3] and we shall 
assume familiarity with basic results on coprime operators, as found in Sec
tions 5.3 and 6.2 of t h a t reference. 
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The first lemma is crucial. I t is an easy corollary of a well-known result of 

Baer and a strong fusion theorem of Glauberman. 

LEMMA 2.1. A group G is 2-closed if and only if NG(Z(J(P))) is 2-closed for 
every odd order Sylow subgroup P of G. 

Proof. See the lemma in [7]. 

For the remaining results in this section, we will assume H is a group 
admit t ing a group of operators A satisfying all the hypotheses of the theorem 
(though, as is usually clear from the proofs, most of the lemmas are valid in a 
more general context) . 

LEMMA 2.2. Suppose A is non-cyclic and H is a p-group for some prime p. 
Then 

(a) H = (CH(a) : a G A*), and 

(b) if a, G A*, [H,a0] Q (CH(a) : a G A\(a0)). 

Proof. For (a), see [3, Theorem 6.2.2]. The second s ta tement follows by 
applying (a) to the group K = [H, a0] and observing that , since K = [K, a 0] , 
ao is fixed-point-free on K/$(K) so CK(ao) Ç $(K). 

LEMMA 2.3. Suppose H is a p-group for some prime p and K Ç H such that 
CH(K) C K. If a G A acts trivially on K, it acts trivially on all of H. 

Proof. Since i f is a p-group, we may assume K < H. Then [H, K] Ç K Ç 
CH(a), so [H, K, a] = [K, a, H] = 1. By the "3-subgroups" lemma, [H, a] Ç 
CH(K) QKQ CH(a) so [H, a] = 1. 

LEMMA 2.4. (Glauberman) If H is solvable, P is a Sylow p-subgroup of H, and 
Op>{H) = 1, then H = NH(J(P))CH(Z(P)). 

Proof. This is a consequence of [1, Corollary 1]. 

LEMMA 2.5. Suppose H is solvable, -K is a set of primes, and a0 G A. If K is an 
A-invariant ir' -subgroup of H such that K is normalized by a Hall TT-sub group of 
CH{a,),then[K,a,} QO^(H). 

Proof. Let H be a counterexample with \H\ + \A\ minimal. Considering 
H/0T'(H), we conclude tha t Or'(H) = 1 so F(H) is a 7r-group. In fact, the 
minimali ty assumption implies tha t H = F(H)K, t ha t K is a ^-group for 
some prime p, and tha t F(H) is a faithful irreducible module for [K]A over the 
field of q elements for some prime q ^ p. By the hypothesis, CF(H) (a0) norma
lizes K and hence, it centralizes K, so the irreducibility of F(H) yields 
CF(H)(OLO) = 1. If A is cyclic, then we are done either by Thompson 's theorem 
[3, Theorem 10.2.1] if p = 2 (since \CH{A)\ is odd) , or by a result of Shult 
[9, Corollary 3.2] if p is odd. If A is non-cyclic, we use Lemma 2.2 and the 
minimali ty assumption to conclude tha t K — CK{ai) for some a\ G ^4\(a0). 
Then, if A0 is a maximal subgroup of A containing ao bu t not a\, we have 
CH(A0) = CH{A) and the required result follows since \H\ + |^40| < \H\ + \A\. 
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The next lemma strengthens a special case of Lemma 2.5. Here (for the first 

t ime) we will need the uniqueness hypothesis on the A - invariant Sylow 

subgroups. 

LEMMA 2.6. Suppose H is a {p, q}-group for distinct primes p and q, with P and 
Q the corresponding A-invariant Sylow subgroups. If A is generated by elements a 
satisfying CQ(a) C NH(P), then [P, A] < H. 

Proof. Assume H is a counterexample with \H\ + \A\ minimal. By the 
preceding lemma, [P, A] C 0Q>(H) = Op(H)} so minimali ty implies 
H = Op(H)Q and P = Op(H). 

Suppose A is cyclic. Since Q is the unique A - invariant Sylow g-subgroup of H, 

CG(A) Ç NH(Q) so from Lemma 2.5 (applied to Q), we conclude tha t 
[<2, A] C Op>(H) C CH(P). On the other hand, P < H so CG(A) normalizes 
[P, A]. Since [P, A] < P and Q = [Q, A]CQ(A), we are done in this case. 

Now assume A is non-cyclic. Lemma 2.2 and the minimali ty of our alleged 
counterexample then forces Q = CQ(ai) for some a\ Ç A#, whence [P, ai] = 
[H, ai] < H. Since a\ centralizes H = H/[P, a i ] , Â = A/{ax) acts natural ly on 
H. From \H\ + \A\ < \H\ + \A\, we conclude tha t [P,A]<B, where 
P = P/[P, ai], so [P, A] < H as required. 

3. T h e rank of A. From now on, assume G is a minimal counterexample 
to the theorem and tha t A has minimal rank among groups of automorphisms 
of G which satisfy the hypotheses. Since the hypotheses are inherited by A-
invar iant subgroups and quotients , it follows tha t if i f is a non-trivial proper 
A - invariant subgroup of G, then NG(H) is solvable. This fact will be used 
implicitly throughout the argument . 

LEMMA 3.1. A has rank two. 

Proof. The uniqueness of the A - invariant Sylow 2-subgroup of G implies t ha t 
it is normalized by CG{A). Hence, in the case t ha t A is cyclic, the fact tha t 
CG{A) has odd order may be used together with Lemma 2.5 to conclude t ha t 
every proper A - invariant subgroup of G is 2-closed. Then by Lemma 2.1, G is 
2-closed and hence, by Fei t -Thompson, is solvable. 

On the other hand, assuming the theorem also to be valid when A has rank 
two, a contradiction is reached in the higher rank cases by the a rgument 
presented in [6] (since Lemma 2.4 applies to the A - invariant proper subgroups 
of G). 

4. y l - invar iant {p, g } - subgroups . In this section, we fix two dist inct 
primes p and q, with P and Q the corresponding A - invariant Sylow subgroups 
of G. T h e aim is to investigate the consequences of assuming t h a t (as mus t be 
the case for some choice of p and q) G has no A - invariant Hall {p, q) -subgroups 
or equivalently, t ha t PQ ^ QP. 

https://doi.org/10.4153/CJM-1977-087-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-087-x


SOLVABILITY IN GROUPS 851 

Following the notation of [6], let X be the (unique) largest A - invariant p-
subgroup of G with XQ = QX, and F be the largest A - invariant g-subgroup 
such tha t PY = YP. Then XQ and PY are the unique maximal A - invariant 
{p, q}-subgroups of G containing Q and P respectively. 

Observe tha t since CG{A) normalizes P and Q, it must also normalize F and 
X. Also, C P ( i ) C I and CQ(A) C F. 

The assumption tha t A has rank two (Lemma 3.1) will be implicit in the 
remainder of the argument. 

Let M* = M*(^4; p, q) be the set of maximal ^4-invariant {p, #}-subgroups 
of G. 

LEMMA 4.1. Suppose H £ M* and K is an A-invariant subgroup of F(H) with 
0P(K) 9e 1 7* 0q(K). Then H is the unique member of M* containing K. 

Proof. See Lemma 4 of [5]. 

LEMMA 4.2. If H £ \A*\{XQ, PY}, then 0P(H) ^ 1 ^ 0Q(H) and 

x nop(H) = i = Ynoq(H). 
Proof. Since the Glauberman factorization theorem, Lemma 2.4, applies to 

A - invariant proper subgroups of G, the proofs of Lemmas 2.3 and 2.5 of [6] may 
be used. 

Actually, our at tent ion will be focused not on all of M*, but on the subset 
Mo* = {H e W : CP(A)CQ(A) Ç H}. 

As we have already noted, {XQ, PY) Ç |/|0*. The next lemma states tha t 
only in a very special case may Mo* contain any other groups. However, in 
contrast to [4], the exceptional situation does not appear to lead to an im
mediate contradiction. 

LEMMA 4.3. If Mo* ^ {XQ, PY], then A is generated by two elements a\ and a2 

such that Q Ç CG{OL\) and P Ç CG(a2). 

Proof. Suppose H £ Mo*\{XÇ, PY} and set U = 0V{H) and V = 0q(H). 
If a G ,4# , then CG(A) Ç iVG(Q) H CG(a) Q NG(CQ(a)), so by Lemma 2.5, 
[CQ(a), A] Ç Ofl(CG(oO). Similarly, [CP(a), 4 ] Ç O p (C G (a)) . But by Lemma 
4.2, L7 ?* 1 and CVG4) Ç X H f/ = 1, so Cv(a) = [Cu(a), A] C [C P ( a ) , 4 ] . 
[CQ(OJ), ^4] then centralizes Cv(a), whence it follows from Lemma 4.1 (with 
K = Z{F{H))) tha t either Cv(a) = 1 or [CQ(a)yA] Ç H. But since CQ(A) QH 
by the definition of Mo*, the latter case implies CQ(a) = [CQ(a), A]CQ(A) Ç1H. 
In summary then, for every a Ç A#, either Cv(a) = 1 or CQ(a) Ç H. Since 
Q Ç= H, we conclude from Lemma 2.2 tha t Cu(ao) = 1 for some a0 € ^4#. 

Suppose now tha t Cv(a) ^ 1 for every a £ / l \ ( a 0 ) , so [Q, a0] ^ ^ by 
Lemma 2.2. Since C^ao) = 1, Lemma 2.5 (applied to [Q, a0] U) implies [Q, a0] 
centralizes U, whence (U, Q) C NG([Q, a0]). If [Q, aQ] ^ 1, this yields t / Ç I , 
so U = X C\ U = 1, a contradiction. Therefore, in this case () C CG(ao), so 
we may take a i = a0. 
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On the other hand, suppose there exists some element of A outside (a0) which 
is fixed-point-free on U. Then [H P Q, A] centralizes U by Lemma 2.5, so for 
every a G A*, we have (17, H P Q) Ç N0([H P Q, a]). Let L = NQ(Hr\Q), 
so L 9* H P Q since Q£HAi[HC\ Q, a] ^ 1, Lemma 4.1 (with P = F(H)) 
implies tha t CL(a) Q NQ([H P Ç, a]) C i ? H Q, so from Lemma 2.2 we con
clude tha t HHQQ CG(ai) for some ttl G ,4# . Now Q > ( # H f f l Ç C Q ( F ) Q 
NQ(V) = H C\ Q (by the maximali ty of H), so it follows from Lemma 2.3 t ha t 
Q Q C c ( a i ) . 

Repeat ing the above a rgument with ?̂ and q interchanged yields the required 
result. (Of course, «i and a2 generate A since otherwise, PQ = QP.) 

For the remainder of this section, let M = NP(X) and N = NQ(Y). Note 
tha t if P Q F^ QP, then Af and N are strictly larger than X and F respectively. 

LEMMA 4.4. Suppose PQ j* QP and a £ 4# . If CM(a) g X , Jftew X ç CG(a) 
awrf similarly, if CN(a) $£ F, /feew F Ç CG(a). 

Proof. The lemma is obviously symmetr ic in p and g, so we will prove (by 
contradict ion) only the second s ta tement . Assume tha t both CN(a) $£ F and 
[Y,a] ^ 1. 

By Lemma 4.3, we may assume Mo* = \XQ, PY} (since CQ(A) Ç F ) . Let 
P = X P 0 , ( ? F ) and P = X G ( P ) Pi 0 , ( P F ) , so P < L. Since P F Ç XY P 
0 , ( ? F ) Ç J Ç n C^(PF) = R, Y normalizes P and hence, L. Therefore, F 
acts natural ly on the quot ient L = L / P and the semi-direct product [L] Y 
admits A. 

Now since CN(a) ÇL F a n d Mo* = {XQ, P F } , we conclude t ha t CP(a) Q X, 
so CL(a) Ç P . Therefore, a is fixed-point-free on L and it follows from Lemma 
2.5 t ha t [ F, a] centralizes L. In other words, [L, [ F, a;]] Ç P . On the other hand, 
CN(a) Q NQ([Y,a]) so the hypothesis also implies NQ([Y, a]) $£ F. Since 
C0(A) QNG([Y,a]) yé G (using [F , a] ^ 1), we obtain NP([Y, a]) Ç X and, 
in particular, CL([Y,a\) Ç P . Applying the usual factorization for coprime 
action, we find tha t L = [L, [F , a]]CL([Y, a]) Ç P , so since L = NG(R) P 
O p ( P F ) , it mus t be t ha t Ov(PY) = R Ç X. 

However, I s * F ^ X Q ( F ) Ç NG(J(Y)) P 7VG(Z(F)) so, since CG(A) C 
X G ( F ) , we must have NP(J(Y)) Ç X and X P ( Z ( F ) ) Ç X . By L e m m a 2.4, 
P = O p ( P F ) X p ( / ( F ) ) C P ( Z ( F ) ) , so the preceding paragraph implies P = X , 
contradict ing the hypothesis t ha t PQ 7^ QP. 

At this point, it is convenient to part i t ion the set ir(G) of prime divisors of |G| 
into three subsets as follows: If r £ ir(G) with P the A - invariant Sylow r-
subgroup of G, let r £ Wi (where i = 0, 1, or 2) if the subgroup of A generated 
by all elements a £ A satisfying CR(a) = CR{A) has rank i. 

LEMMA 4.5. If PQ 9^ QP, then one of the following holds: 
(a) Interchanging p and q if necessary, p £ -m and, if CP(a) = CP(A), then 

Q Q CG(a) (so q £ TT2). 

(b) {p, q) Q 7T2. 
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Proof. Since X ^ NP(X) = M and Y ?é NQ(Y) = N, Lemma 2.2 implies 

tha t for some «i, a2 G A*, CN(a\) <2 Y and CM(oc2) Çt X, whence by the 

preceding lemma, Y C CG(a\) and X C CG{a2). Also, by Lemma 4.3, we may 

assume |/lo* = { ^ Q , ^ T } (else (b) certainly holds) so CP(ai) C X , CQ(a2) ^ T, 

and 4 = (#1,0:2). Therefore, CP{ai) = CP(^4) and CQ(OJ2) = CQ(i4), so 
{£, 3} £ TTl ^ 7T2. 

Now if (b) is false, we may assume without loss of generality tha t p G 7ri, SO 
Cp(a) 9^ CP(A) for every a G -4\(a i ) . The argument of the preceding para
graph then implies CN(a) Ç Y for every a G ^4\(ai), so by Lemma 2.2, 
[N, a j C F Ç CG(ai) . I t follows tha t N C CG(«i) and hence, by Lemma 2.3, 
Q Q CG(ai), so (a) holds. 

I t is perhaps worth pointing out tha t Case (a) of Lemma 4.5 is the direct 
analogue of Lemma 10 of [4]. In the situation discussed there, Case (b) is 
eliminated using a consequence of the Thompson normal ^-complement 
theorem (Lemma 3). Actually (and this provides a slightly different way of 
finishing Mar t ineau ' s proof), Case (a) also cannot occur when A is fixed-point-
free, for it is an elementary property of coprime action tha t any two elements of 
CG(a) which are conjugate in Gare, in fact, conjugate in CG{a). But if CG(A) = 1, 
CG(a) is nilpotent by Thompson 's theorem, so if Q C CG(a) then Q controls 
fusion within itself and G has a normal ^-complement (even if q = 2). Un
fortunately, in the situation under consideration here, there appears to be no 
such quick means of dispatching either of the possibilities defined by Lemma 

4.5, and we must derive some simple "global" consequences of the result before 
we can apply a fusion theorem. 

5. T h e c o n t r a d i c t i o n . In this section, p, q, and r will denote arbi t rary 
primes and P, Q, and R will s tand for the corresponding A - invariant Sylow 
subgroups of G. The sets 7r0, TI, and 7r2 are as defined immediately preceding 
Lemma 4.5. 

LEMMA 5.1. 7r0 = 0. 

Proof. If p G 7T0 and q G 7r2, then PQ = QP by Lemma 4.5, so from Lemma 
2.6, Q Q NG([P, A]). On the other hand, Lemma 4.5 implies (by Hall 's 
characterization of solvability) tha t G contains a solvable A - invariant Hall 
(TTO U TTI)-subgroup H. I t follows tha t G = NG(\P, A])H, so [P, A]G = 
[P, A]H C H T6- G. Since G contains no proper non-trivial A - invariant normal 
subgroups, we get P C CG(A), contradicting p G 7r0. 

LEMMA 5.2. 7n = 0. 

Proof. Suppose p G TI and a0 G A* with CP(aQ) = CP(A), and let X = 
{q G TT(G) : PQ = QP}. We claim tha t if {q, r) C X, then QR = RQ. 

If \q,r) C TTI, then QR = RQ by Lemma 4.5. If {q, r} C TT2, then Lemma 2.6 
yields (Q, R) C JVG([P, ^4]) and, since p G 7ri certainly implies [P, ^4] ^ 1, we 
have QR = RQ in this case also. Thus , by Lemma 5.1, we may assume q G ir2 
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a n d r Ç Ti\{p}- L e t a i G ^1 # such tha t CR(ai) = C^(,4) and suppose QR ^ RQ. 
By Lemma 4.5, Q C C 0 (a i ) so [P, ai] = [ÇP, ai] < QP. Bu t Lemma 2.5 
applied to P P yields [P , « J C 0„(Pi?) and [P, a0] C O r ( P P ) . Therefore, 
( [P, a 0 ] , 0 ) £ iVG([P, a i ] ) . Now [P, ai] ^ 1 since p 6 vn, SO if X Ç is the 
maximal A - invariant {q, r} -subgroup of G containing Q (with X an A - invariant 
r-group), it follows tha t [P, a0] C X . Since X ^ P , X ^ X ^ ( X ) = M so, 
since Af = [M, ao]CM(a0) , we have CM(«o) $£ X . Lemma 4.4 implies [P, a0] ^ 
X Ç CG(ao), so P C CG(ao), contradict ing r £ 7Ti. This proves the claim. 

The upshot of the preceding paragraph is t ha t G contains an A - invariant 
solvable Hall X-subgroup L. But if q g X, then Q C CG(a0) by Lemma 4.5. 
Thus , G = CG(ao)L, so [G, ao] = [L, a0] Q L ^ G. Again, since [G, a0] is a 
non-trivial ^4-invariant normal subgroup of G, we have a contradiction. 

Proof of theorem. To obtain the final contradiction, we now argue as in the 
case tha t A is cyclic. Namely, since as a result of the previous two lemmas, 
7r(G) = 7T2, Lemma 2.5 and the fact t ha t CG(A) has odd order imply tha t every 
proper A - invariant subgroup of G is 2-closed, so by Lemma 2.1, G is 2-closed. 

6. S o m e r e m a r k s . The conclusion of the theorem may, in fact, be valid 
wi thout the hypothesis of uniqueness on the A - invariant Sylow subgroups, 
although this would appear to require some fresh ideas. Certainly, by the recent 
signalizer functor theorem of Glauberman [2], it is only the rank one and two 
cases t ha t need to be settled. There is perhaps somewhat more hope for a 
resolution of this question under the hypothesis tha t CG(A) is a {2, 3}'-group 
since enough is now known about 2-fusion to t rea t the cyclic case [8]. (Note also 
tha t in the cyclic case of the present theorem, we needed to assume only tha t 
the A - invariant Sylow 2-subgroup was unique.) 

Assuming uniqueness of ^ - i n v a r i a n t Sylow subgroups, the hypothesis tha t 
CG(A) has odd order can easily be replaced by a somewhat weaker hypothesis. 
Suppose, for example, we assume tha t the Sylow 2-subgroup of CG(A) is 
contained in 0^(0G(B)) for every maximal subgroup B of A. (This is actually 
equivalent to assuming CG(B) is 2-closed for every such B.) If p is an odd 
prime and if S and P are, respectively, the A - invariant Sylow 2 and ^-subgroups 
of G, then since CG(A) normalizes P , we have [Cs(A), CP(B)] = 1 for every 
maximal B. I t is an easy extension of Lemma 2.2 t ha t P is generated by the 
Cp(B)'s, so P centralizes CS(A) for every odd p, whence G = CG(Cs(A ))S. Then 
Cs(A)G = CS(A)SQS, so Cs(A) C G2(G). By the theorem just proved, G/02(G) 
is solvable, so G is solvable. The result s tated with this slightly weaker hypothesis 
extends [10, Theorem 1]. Of course, it does not seem unreasonable to ask 
whether any hypothesis beyond the uniqueness of the A - invariant Sylow 
subgroups is really necessary. 
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