THE BEST SOBOLEV TRACE CONSTANT IN PERIODIC MEDIA FOR CRITICAL AND SUBCRITICAL EXPONENTS

JULIÁN FERNÁNDEZ BONDER
Departamento de Matemática, FCEyN, Universidad de Buenos Aires,
Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina
e-mail: jfbonder@dm.uba.ar, web page: http://mate.dm.uba.ar/~jfbonder

RAFAEL ORIVE
Departamento de Matemáticas, Universidad Autonoma de Madrid,
Crta. Colmenar Viejo km. 15, 28049 Madrid, Spain
e-mail: rafael.orive@uam.es, web page: http://www.uam.es/rafael.orive

and JULIO D. ROSSI
Departamento de Matemática, FCEyN, Universidad de Buenos Aires,
Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina
e-mail: jrossi@dm.uba.ar, web page: http://mate.dm.uba.ar/~jrossi

(Received 17 December 2007; accepted 5 February 2009)

Abstract. In this paper we study homogenisation problems for Sobolev trace embedding $H^1(\Omega) \hookrightarrow L^q(\partial\Omega)$ in a bounded smooth domain. When $q = 2$ this leads to a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace embedding in rapidly oscillating periodic media, and we consider H^1 and L^q spaces with weights that are periodic in space. We find that extremals for these embeddings converge to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant. Our results are in fact more general; we can also consider general operators of the form $a^\varepsilon(x, \nabla u)$ with non-linear Neumann boundary conditions. In particular, we can deal with the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$.

2000 Mathematics Subject Classification. 35B27, 35J65, 46E35.

1. Introduction. Sobolev inequalities have been studied by many authors and are by now a classical subject. They at least go back to [3] (for more references see [10]). Relevant for the study of boundary value problems for differential operators is the Sobolev trace inequality that has been intensively studied (see for example [11, 12, 14–16]. Given a bounded smooth domain $\Omega \subset \mathbb{R}^N$, we deal with the best constant of the Sobolev trace embedding $H^1(\Omega) \hookrightarrow L^q(\partial\Omega)$. When $q = 2$ this leads to an eigenvalue problem of the Steklov type.

Our main goal here is to consider the Sobolev trace inequality for H^1 and L^q spaces with weights that oscillate periodically. We find that extremals for these embeddings converge as the oscillations go to infinity to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant.
Let us consider the following coefficients:

\[
\begin{align*}
\begin{cases}
 a_{ij} \in L^\infty(\mathbb{T}), & \text{where } \mathbb{T} = [0, 1]^N, \text{ i.e. each } a_{ij} \text{ is a } \mathbb{T}\text{-periodic bounded measurable function defined on } \mathbb{R}^N, \\
 \exists \alpha, \beta > 0 \text{ such that } \alpha |\eta|^2 \leq a_{ij}(x)\eta_i \eta_j \leq \beta |\eta|^2 \forall \eta \in \mathbb{R}^N, & \text{a.e. } x \in \mathbb{T}, \\
 a_{ij} = a_{ji} & \forall i, j = 1, \ldots, N,
\end{cases}
\end{align*}
\]

(1.1)

\[
\begin{align*}
\begin{cases}
 a_0 \in L^\infty(\mathbb{T}), & \text{i.e. } a_0 \text{ is } \mathbb{T}\text{-periodic, and} \\
 \exists a_-, a_+ \in \mathbb{R}_+ & \text{such that } 0 < a_- \leq a_0(x) \leq a_+, \text{ a.e. } x \in \mathbb{T}
\end{cases}
\end{align*}
\]

(1.2)

\[
\begin{align*}
\begin{cases}
 b \in L^\infty(\mathbb{T}), & \text{i.e. } b \text{ is } \mathbb{T}\text{-periodic, and} \\
 \exists b_-, b_+ \in \mathbb{R}_+ & \text{such that } 0 < b_- \leq b(x) \leq b_+, \text{ a.e. } x \in \mathbb{T}
\end{cases}
\end{align*}
\]

(1.3)

Associated with these coefficients and a parameter \(\varepsilon > 0 \), we consider for every critical or subcritical exponent, \(1 \leq q \leq 2_* := 2(N - 1)/(N - 2) \), the Sobolev trace inequality

\[
S(\varepsilon) \int_{\partial \Omega} b^\varepsilon |v|^q dS \leq \int_{\Omega} \left(a^\varepsilon_{ij} \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} + a^\varepsilon_0 v^2 \right) dx,
\]

valid for all \(v \in H^1(\Omega) \). Here \(a^\varepsilon_{ij}(x) := a_{ij}(x/\varepsilon) \), \(a^\varepsilon_0(x) := a_0(x/\varepsilon) \) and \(b^\varepsilon(x) := b(x/\varepsilon) \).

The best Sobolev trace constant is the largest \(S(\varepsilon) \) such that the above inequality holds, that is

\[
S(\varepsilon) := \inf_{v \in H^1(\Omega), H^0_0(\Omega)} \frac{\int_{\Omega} \left(a^\varepsilon_{ij} \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} + a^\varepsilon_0 v^2 \right) dx}{\left(\int_{\partial \Omega} b^\varepsilon |v|^q dS \right)^{2/q}}.
\]

(1.4)

For subcritical exponents, \(1 \leq q < 2_* \), the embedding \(H^1(\Omega) \hookrightarrow L^q(\partial \Omega) \) is compact; so we have existence of extremals, i.e. functions in which the infimum is attained. These extremals are strictly positive in \(\Omega \) (see [14]) and smooth up to the boundary (see [6]). When one normalise the extremals with

\[
\int_{\partial \Omega} b^\varepsilon |u_\varepsilon|^q dS = 1,
\]

it follows that they are weak solutions of the following problem:

\[
\begin{align*}
\begin{cases}
 \frac{\partial}{\partial x_i} \left(a^\varepsilon_{ij} \frac{\partial u_\varepsilon}{\partial x_j} \right) = a^\varepsilon_0 u_\varepsilon & \text{in } \Omega, \\
 \frac{\partial u_\varepsilon}{\partial v^\varepsilon} := a^\varepsilon_{ij} \frac{\partial u_\varepsilon}{\partial x_j} v_i = S(\varepsilon) b^\varepsilon |u_\varepsilon|^{q-2} u_\varepsilon & \text{on } \partial \Omega,
\end{cases}
\end{align*}
\]

(1.6)
where \(\nu \) is the unit outward normal vector. Of special importance is the case \(q = 2 \). In this case, (1.6) is an eigenvalue problem of Steklov type (see [20]). In the rest of the paper we will assume that the extremals are normalised according to (1.5).

Our first result is the following.

Theorem 1. Let \(1 \leq q < 2_* \). Assume that \(\Omega \) is a generic domain; that is assume that the boundary of \(\Omega \), \(\partial \Omega \), does not contain flat pieces or that it contains finitely many flat pieces with conormal and not proportional to any \(m \in \mathbb{Z}^N \). Then, the function \(S(\varepsilon) \) converges as \(\varepsilon \to 0 \) to \(S^* \), the best Sobolev trace constant of the homogenised problem that is defined by

\[
S^* = \inf_{v \in H^1(\Omega), H^2_0(\Omega)} \frac{\int_{\Omega} \left(a^*_{ij} \frac{\partial v}{\partial x_j} \frac{\partial v}{\partial x_i} + a^*_0 v^2 \right) \, dx}{\left(\int_{\partial \Omega} b^* |v|^q \, dS \right)^2},
\]

where the homogenised coefficients are defined by \(a^*_0 \) and \(b^* \), which are the mean value of \(a_0 \) and \(b \) respectively, i.e.

\[
a^*_0 := \int_{\mathbb{T}} a_0(y) \, dy, \quad b^* := \int_{\mathbb{T}} b(y) \, dy.
\]

The coefficients \(a^*_y \) are given by

\[
a^*_y := \int_{\mathbb{T}} \left(a_y - \frac{\partial a_{y\ell}}{\partial y\ell} \chi_j \right) \, dy,
\]

where for any \(k = 1, \ldots, d \), \(\chi_k \) is the unique solution of the cell problem

\[
\begin{cases}
-\frac{\partial}{\partial y_i} \left(a^*_y \frac{\partial \chi_k}{\partial y_j} \right) = \frac{\partial a_{y\ell}}{\partial y\ell} \chi_j & \text{in } \mathbb{T}, \\
\chi_k \in H^1_0(\mathbb{T}), \quad m(\chi_k) = 0.
\end{cases}
\]

Moreover, as \(\varepsilon \to 0 \) the sequence of extremals \(\{u_{\varepsilon}^*\} \) of (1.4) converges (along subsequences) weakly in \(H^1(\Omega) \) to a limit \(u^* \) that is an extremal of the homogenised problem (1.7), and so, it verifies

\[
\begin{cases}
\frac{\partial}{\partial x_i} \left(a^*_y \frac{\partial u^*}{\partial x_j} \right) = a^*_0 u^* & \text{in } \Omega, \\
\frac{\partial u^*}{\partial \nu^*} := a^*_y \frac{\partial v^*}{\partial x_j} \nu_j = S^* b^* |u^*|^{q-2} u^* & \text{on } \partial \Omega.
\end{cases}
\]

Remark 1.1. The homogenised coefficients are related to the original coefficients by the usual homogenisation rules (see [5]). Concerning boundary terms, in [17], it is proved that for generic domains there exists a limit. However for non-generic domains there exist different limits for different sequences of \(\varepsilon \to 0 \). In Theorem 1 we consider the generic case; that is we impose that the boundary of \(\Omega \) does not contain flat pieces or that it contains finitely many flat pieces with conormal and not proportional to any \(m \in \mathbb{Z}^N \).
Remark 1.2. This result can be generalised using H-convergence. If we have a
sequence of coefficients (a_{ij}^ε) that converges to (a_{ij}^*) in the sense of H-convergence (see [18]), then the corresponding extremals u_ε converge weakly in $H^1(\Omega)$ to an extremal of
the limit problem. To see this fact we only have to observe that using H-convergence,
we can pass to the limit in the weak form of equation (1.6).

This result can also be seen from the Γ-convergence of functionals’ point of view.
The functionals describe the stored energy of the portion of the ε-periodic composite
material occupying a region Ω_1 of \mathbb{R}^N. The Γ-convergence provides the behaviour of the
extremals and the shape of the limit of the functionals (see [9] for an extensive study
of this method).

Our second result deals with the critical exponent, $q = 2^*$. In this case, under a
geometric assumption on the domain, we have a similar result.

Theorem 2. Assume that Ω is a generic domain (see Theorem 1) and that

$$\alpha (N - 2)|B(0, 1)|^{1/(N - 1)} > \frac{|\Omega| a_+}{|\partial \Omega| b_-},$$

(1.12)

where the constants α, a_+ and b_- are given in (1.1)–(1.3).

Then, the function $S(\varepsilon)$ converges as $\varepsilon \to 0$ to S^*, the best Sobolev trace constant
of the homogenised problem that is defined by (1.7) Moreover, as $\varepsilon \to 0$ the sequence of extremals $\{u_\varepsilon\}$ of (1.4) converges (along subsequences) weakly in $H^1(\Omega)$ to a limit u^* that is an extremal of the homogenised problem (1.7) (and, so, a solution of (1.11)).

Remark 1.3. In the proof of Theorem 2, what is actually used is that there exists
$\delta > 0$ (independent of ε) such that $S(\varepsilon)$ satisfies

$$\frac{\alpha (N - 2)|B(0, 1)|^{1/(N - 1)}}{2(b_+)^{2/2^*}} - \delta > S(\varepsilon).$$

(1.13)

This condition is implied by (1.12), taking $u \equiv 1$ as a test function in (1.4).

Arguing as in [15], one can check that hypothesis (1.13) implies the existence of an
extremal u_ε for (1.4).

Our results are in fact more general. For the sake of clarity we choose to present
first the linear case with periodic coefficients in full detail. However, using ideas from
[4], we can deal with more general (non-linear) operators.

Let $a^\varepsilon(x, \xi)$ and $b^\varepsilon(x, u)$, with $x \in \Omega$, $\xi \in \mathbb{R}^N$ and $u \in \mathbb{R}$, be general non-linear
functions verifying convenient hypotheses (see Section 5). We consider

$$\lambda_1 = \inf_{v \in H^{1, \gamma}(\Omega) \setminus H^1_0(\Omega)} \frac{\int_{\Omega} a(x, \nabla v) \cdot \nabla v + b(x, v) v \, dx}{\int_{\partial \Omega} |v|^q \, dS}.$$ (1.14)

Theorem 3. Assume that a^ε and b^ε satisfy hypotheses (A1)–(A4), (B1)–(B3) in
Section 5 and that there exist two limit functions $a_{\text{hom}} : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ and $b_{\text{hom}} : \Omega \times \mathbb{R} \to \mathbb{R}$ that satisfy the same hypotheses.
Also assume that the operators A^ε G-converge to the operator A_{hom} associated with these functions. Let λ_1^ε and λ_1^{hom} be as in (1.14) with a, b replaced by a^ε, b^ε and a_{hom}, b_{hom} respectively.

1. If $1 \leq q < p_* := p(N - 1)/(N - p)$, then, $\lambda_1^\varepsilon \to \lambda_1^{\text{hom}}$ as $\varepsilon \to 0$.

Moreover, the extremals $\{u_\varepsilon\}$ converge (along subsequences) weakly in $W^{1,p}(\Omega)$ to a limit u^* that is an extremal of the homogenised problem.

2. For the critical case, $q = p_*$, assume that Ω verifies

$$\frac{|\Omega|}{|\partial \Omega|^{p_*/p}} < \frac{c}{K(N, p)},$$

(1.15)

where $K(N, p)$ is the best Sobolev trace constant in a half-space,

$$K(N, p) = \inf_{v \in L^p(\mathbb{R}^N_+), w \in L^p(\partial \mathbb{R}^N_+)} \left(\int_{\mathbb{R}^N_+} |\nabla v|^p dx \right)^{p/p^*} \left(\int_{\partial \mathbb{R}^N_+} |v|^{p^*} dS \right)^{p/p^*},$$

and c depend on the family of coefficients. Then, the conclusions of the previous item hold true.

To end this introduction, let us mention that homogenisation results for the Sobolev trace constant in domains with holes for critical and subcritical exponents have been recently considered in [13] in the spirit of [8].

The rest of the paper is organised as follows: in Section 2 we recall some preliminary results that are needed in the proof of the main theorems; in Section 3 we deal with the subcritical case (Theorem 1) and in Section 4 with the critical case (Theorem 2); and, finally, in Section 5 we prove the extension for the non-linear case (Theorem 3).

2. Preliminaries. In this subsection we present some results and techniques in homogenisation of periodic media. We briefly recall the notion of two-scale convergence (see [2], [19]).

PROPOSITION 2.1. Let $\Omega \subseteq \mathbb{R}^N$ and w_ε be a bounded sequence in $L^2(\Omega)$. There exist a subsequence, still denoted by ε, and a limit $w(x, y) \in L^2(\Omega; L^2_\mu(\mathbb{T}))$ such that w_ε two-scale converges to w in the sense that

$$\lim_{\varepsilon \to 0} \int_{\Omega} w_\varepsilon(x) \phi(x, x/\varepsilon) dx = \int_{\Omega} \int_{\mathbb{T}} w(x, y) \phi(x, y) dxdy$$

for every function $\phi(x, y) \in L^2(\Omega; C_0(\mathbb{T}))$. The two-scale convergence is denoted by $w_\varepsilon \two-scale w$ in $2s$. Furthermore, if $\{w_\varepsilon\}$ is a bounded sequence that converges weakly to a limit w in $H^1(\Omega)$, then, w_ε two-scale converges to w, and there exists a function $w_1(x, y) \in L^2(\Omega; H^1_\mu(\mathbb{T}))$ such that up to a subsequence, we have the following two-scale convergence:

$$\nabla w_\varepsilon(x) \two-scale \nabla x w(x) + \nabla_y w_1(x, y) \text{ in two-scale.}$$

This two-scale convergence result is a powerful tool to deal with our problem, the study of the limit as $\varepsilon \to 0$ in (1.4).
Another important tool is the weak star convergence in $L^\infty(\Omega)$. In general, if $g_\varepsilon, g \in L^\infty(\Omega)$, we say that g_ε converges to g weak star in $L^\infty(\Omega)$, denoted by $g_\varepsilon \overset{\ast}{\rightharpoonup} g$ in $L^\infty(\Omega)$, if
\[
\int_\Omega g_\varepsilon \phi \, dx \to \int_\Omega g \phi \, dx, \quad \forall \phi \in L^1(\Omega).
\]
We note immediately (see [8]) that an ε/\mathbb{H}^1-periodic function converges weak-\ast in L^∞ to its mean value. Thus
\[
a_0^\varepsilon \overset{\ast}{\rightharpoonup} a_0^\ast \quad \text{in } L^\infty(\Omega).\]
Moreover, if Ω is a generic domain, i.e. $\partial \Omega$ does not contain flat pieces or that it contains finitely many flat pieces with conormal and not proportional to any $m \in \mathbb{Z}^N$, we have that
\[
b_\varepsilon \overset{\ast}{\rightharpoonup} b^\ast \quad \text{in } L^\infty(\partial \Omega),
\]
(2.1)
where b^\ast is given by (1.8) (see Remark 1.1).

3. Subcritical case. In this section we assume that q is subcritical, that is $1 \leq q < 2^\ast$; so the immersion $H^1(\Omega) \hookrightarrow L^q(\partial \Omega)$ is compact.

Proof of Theorem 1. First, let us prove that the best constants $S(\varepsilon)$ and the extremals u_ε are bounded in H^1 independent of ε. Indeed, by the definition of $S(\varepsilon)$ in (1.4) and our assumptions on coefficients (1.1) and (1.2), there exist two constants $0 < c < C$ such that
\[
c \lambda_0 \leq S(\varepsilon) \leq C \lambda_0,
\]
(3.1)
with λ_0 defined by
\[
\lambda_0 = \inf_{v \in H^1(\Omega), H^1_0(\Omega)} \frac{\int_{\Omega} |\nabla v|^2 + v^2 \, dx}{\left(\int_{\partial \Omega} |v|^q \, dS \right)^{2/q}}.
\]
(3.2)
Now, we show that the extremals u_ε, the weak solutions of (1.6), are bounded in H^1-norm independent of ε. To prove this fact recall that we have normalised the extremals by (1.5). By our assumptions on coefficients (1.1) and (1.2), we have
\[
S(\varepsilon) = \int_\Omega \left(a_\varepsilon \frac{\partial u_\varepsilon}{\partial x_i} \frac{\partial u_\varepsilon}{\partial x_i} + a_0^0 |u_\varepsilon|^2 \right) \, dx \geq \int_\Omega \left(\alpha |\nabla u_\varepsilon|^2 + a_- |u_\varepsilon|^2 \right) \, dx.
\]
By (3.1), we obtain that u_ε is bounded in H^1 independent of ε. Hence there exists a subsequence (which we still call u_ε) and a function $u_0 \in H^1(\Omega)$ such that $u_\varepsilon \rightharpoonup u_0$ weakly in $H^1(\Omega)$ and $u_\varepsilon \to u_0$ strongly in $L^q(\partial \Omega)$ for $1 \leq q < 2^\ast$. By the above-mentioned convergence and (2.1) we have that
\[
\int_{\partial \Omega} b^\ast |u_0|^q \, dS = 1.
\]
Moreover, using Proposition 2.1, we obtain that \(u_\varepsilon \to u_0 \) in two-scale, and there exists \(u_1 \) such that

\[
\nabla u_\varepsilon \to \nabla_x u_0(x) + \nabla_y u_1(x, y), \quad \text{in two-scale.}
\]

We use \(\phi(x) + \varepsilon \phi_1(x, x/\varepsilon) \) with \(\phi \in H^1(\Omega) \) and \(\phi_1 \in H^1(\Omega; C_0(\mathbb{T})) \) as a test function in the weak form of (1.6). As \(S(\varepsilon) \) is bounded, we can assume that \(S(\varepsilon) \to S_0 \), for an appropriate subsequence. Then we pass to the limit the weak formulation, and by the two-scale convergence, we get

\[
\int_\Omega \int_\mathbb{T} a_\varepsilon(y) \left(\frac{\partial u_0}{\partial x_j}(x) + \frac{\partial u_1}{\partial y_j}(x, y) \right) \left(\frac{\partial \phi}{\partial x_i}(x) + \frac{\partial \phi_1}{\partial y_i}(x, y) \right) dy \, dx
\]

\[
+ \int_\Omega \int_\mathbb{T} a_0(y) u_0(x) \phi(x) dx \, dy = S_0 \int_\partial \Omega \int_\mathbb{T} b(y) |u_0|^q - 2 u_0 \phi(x) dS \, dy.
\]

Integrating by parts we obtain that \((u_0, u_1)\) is the weak solution of the system

\[
\frac{\partial}{\partial x_i} \left(\int_\mathbb{T} a_\varepsilon(y) \left(\frac{\partial u_0}{\partial x_j}(x) + \frac{\partial u_1}{\partial y_j}(x, y) \right) dy \right) = a_\varepsilon^* u_0(x) \quad \text{in } \Omega, \tag{3.3}
\]

\[
v_i \frac{\partial}{\partial x_i} \left(\int_\mathbb{T} a_\varepsilon(y) \left(\frac{\partial u^*}{\partial x_j}(x) + \frac{\partial u_1}{\partial y_j}(x, y) \right) dy \right) = S_0 b^* |u_0|^q - 2 u_0(x) \quad \text{on } \partial \Omega, \tag{3.4}
\]

\[
\frac{\partial}{\partial y_i} \left(a_\varepsilon(y) \left(\frac{\partial u_0}{\partial x_j}(x) + \frac{\partial u_1}{\partial y_j}(x, y) \right) \right) = 0 \quad \text{in } \Omega \times \mathbb{T}, \tag{3.5}
\]

with \(a_\varepsilon^* \) and \(b^* \) defined in (1.8). Considering

\[
u_1(x, y) = \sum_{i=1}^N \frac{\partial u_0}{\partial x_i}(x) \chi_i(y).
\]

we note that \(u_1 \) satisfies (3.5) for any \(u_0 \), since \(\chi_1 \) is the solution of (1.10). Moreover, with this function \(u_1 \) in (3.3) and (3.4), we obtain that \(u_0 \) is a solution of

\[
\begin{cases}
\frac{\partial}{\partial x_j} \left(a_\varepsilon^* \frac{\partial u_0}{\partial x_j} \right) = a_\varepsilon^* u_0 & \text{in } \Omega, \\
\frac{\partial u_0}{\partial v^*} = S_0 b^* |u_0|^q - 2 u_0 & \text{on } \partial \Omega,
\end{cases} \tag{3.6}
\]

where the coefficients \(a_\varepsilon^* \) are given by (1.9) and the derivative normal \(\partial/\partial v^* \) is defined in (1.11). Now, since \(S_0 \) satisfies (3.6), we get \(S_0 \geq S^* \) with \(S^* \) defined in (1.7). To conclude the proof of Theorem 1 we need to show that \(S_0 = S^* \). In fact, let \(u^* \) be an extremal of (1.7) and consider

\[
v_\varepsilon = u^* + \varepsilon \chi_k^\varepsilon \frac{\partial u^*}{\partial x_k}
\]

as a test function in (1.4), where \(\chi_k^\varepsilon(x) = \chi_k(x/\varepsilon) \). From the maximum principle and Hopf’s lemma we get that \(u^* \) is strictly positive in \(\overline{\Omega} \). Therefore the regularity results of [6] are applicable, and we obtain that \(u^* \in C^\infty(\overline{\Omega}) \). Thus, since the functions \(\chi_k \in W^{1,\infty} \) (this is a consequence of the hypotheses on the coefficients), we have immediately
\(v_\varepsilon \to u^* \) weakly in \(H^1(\Omega) \) and \(v_\varepsilon \to u^* \) strongly in \(L^q(\partial \Omega) \) for \(1 \leq q < 2^* \). Now, we obtain

\[
\int_\Omega \left(a_{ij}^\varepsilon \frac{\partial v_\varepsilon}{\partial x_j} \frac{\partial v_\varepsilon}{\partial x_i} + a_0^\varepsilon v_\varepsilon^2 \right) \, dx = \int_\Omega \left(a_{ij}^\varepsilon \frac{\partial \chi_k^\varepsilon}{\partial y_j} \frac{\partial u^*}{\partial x_i} + a_{ik}^\varepsilon \frac{\partial \chi_k^\varepsilon}{\partial y_i} \right) \frac{\partial u^*}{\partial x_k} \, dx \\
+ \int_\Omega \left(a_{ij}^\varepsilon \frac{\partial \chi_k^\varepsilon}{\partial y_j} + a_{ik}^\varepsilon \frac{\partial \chi_k^\varepsilon}{\partial y_i} \right) \frac{\partial u^*}{\partial x_k} \, dx \\
+ \int_\Omega a_0^\varepsilon (u^*)^2 \, dx + O(\varepsilon).
\]

Passing to the limit, using that \(\chi_k \) is a solution of (1.10) and by the weak-\(* \) convergence in \(L^\infty \), we get

\[
\lim_{\varepsilon \to 0} \int_\Omega \left(a_{ij}^\varepsilon \frac{\partial v_\varepsilon}{\partial x_j} \frac{\partial v_\varepsilon}{\partial x_i} + a_0^\varepsilon v_\varepsilon^2 \right) \, dx = \int_\Omega \left(a_{ij}^* \frac{\partial u^*}{\partial x_j} \frac{\partial u^*}{\partial x_i} + a_0^* (u^*)^2 \right) \, dx,
\]

where \(a_0^\varepsilon \) and \(a_0^* \) are defined by (1.8) and (1.9), respectively. Moreover, again by the weak-\(* \) convergence in \(L^\infty \), we have

\[
\int_{\partial \Omega} b^\varepsilon |v_\varepsilon|^q \to \int_{\partial \Omega} b^* |u^*|^q.
\]

Therefore, passing to the limit in (1.4) with test function \(v_\varepsilon \), we prove \(S_0 \leq S^* \), and we conclude the proof of Theorem 1. \(\square \)

Remark 3.1. Results on correctors of the extremals are easily obtained with the two-scale convergence method. Considering the solutions of the cell problem (1.10), the corrector term is defined by

\[
u_\varepsilon^i(x) = \chi_k(x/\varepsilon) \frac{\partial u^*}{\partial x_k}(x),
\]

where \(u^* \) is an extremal of the homogenised problem (1.11). Hence, by Proposition 2.1 and following the same lines as [2], \((u_\varepsilon - u^* - \varepsilon u_\varepsilon^i) \) converges strongly to zero in \(H^1(\Omega) \).

4. Critical case. In this section we deal with the critical exponent \(q = 2_* = 2(N - 1)/(N - 2) \).

Proof of Theorem 2. Recall that as observed in Remark 1.3, hypothesis (1.12) implies the existence of an extremal \(u_\varepsilon \) for (1.4).

As before, by the definition of \(S(\varepsilon) \) in (1.4) and our assumptions on coefficients (1.1) and (1.2), we have (3.1). Hence, the extremals \(u_\varepsilon \) are bounded in \(H^1(\Omega) \) and we have, for a subsequence,

\[
u_\varepsilon \to u_0 \quad \text{weakly in } H^1(\Omega),
\]

\[
u_\varepsilon \to u_0 \quad \text{strongly in } L^q(\partial \Omega), \quad 1 \leq q < 2_*.
\]
Arguing exactly as in the previous section we obtain that $u_\varepsilon \rightharpoonup u_0$ in $2s$ and, moreover, that u_0 is a weak solution to

$$\begin{cases}
\frac{\partial}{\partial x_i} \left(a^*_{ij} \frac{\partial u_0}{\partial x_j} \right) = a^*_0 u_0 & \text{in } \Omega, \\
\frac{\partial u_0}{\partial \nu^*} = Sb^* |u_0|^{q-2} u_0 & \text{on } \partial \Omega,
\end{cases}$$ \tag{4.1}$$

where S is the limit of a subsequence of $S(\varepsilon)$; the coefficients a^*_{ij} are given by (1.9); and the derivative normal $\partial / \partial \nu^*$ is defined in (1.11).

Let us prove that $u_0 \neq 0$. To this end we use the following Theorem due to [16].

Theorem 4. There exists a constant $B > 0$ such that

$$\left(\int_{\partial \Omega} v^2 \, dS \right)^{2/\alpha} \leq A \int_{\Omega} |\nabla v|^2 \, dx + B \int_{\Omega} v^2 \, dx$$

for every $v \in H^1(\Omega)$, where

$$A = \frac{2}{(N-2)|B(0,1)|^{1/(N-1)}}. \tag{4.2}$$

Remark 4.1. The constant A in Theorem 4 is sharp.

Now, as $u_\varepsilon \geq 0$, it follows that $u_0 \geq 0$ and, by classical regularity theory, u_0 is smooth up to the boundary. By the strong maximum principle and Hopf’s lemma, it follows that either $u_0 > 0$ or $u_0 \equiv 0$. In order to prove of the result, we have to exclude this last possibility. To this end, we use the argument given in [15] to show that $\|u_0\|_{L^2(\Omega)} \neq 0$. In fact, by Theorem 4, we have that there exists a constant B such that

$$\left(\int_{\partial \Omega} v^2 \, d\sigma \right)^{2/\alpha} \leq A \int_{\Omega} |\nabla v|^2 \, dx + B \int_{\Omega} v^2 \, dx$$

for every $v \in H^1(\Omega)$. Recall that u_ε are normalised such that (1.5) is satisfied; so, by (1.3),

$$1 = \left(\int_{\partial \Omega} b^* u_\varepsilon^2 \, d\sigma \right)^{2/\alpha} \leq (b_+)^{2/\alpha} \left(A \int_{\Omega} |\nabla u_\varepsilon|^2 \, dx + B \int_{\Omega} u_\varepsilon^2 \, dx \right).$$

Hence, for some suitable \tilde{B} we get

$$\frac{1}{(b_+)^{2/\alpha}} \leq \frac{A}{\alpha} \left(\int_{\Omega} a^*_{ij} \frac{\partial u_\varepsilon}{\partial x_j} \frac{\partial u_\varepsilon}{\partial x_i} \, dx + \int_{\Omega} a^*_0 |u_\varepsilon|^2 \, dx \right) + \tilde{B} \left(\int_{\Omega} u_\varepsilon^2 \, dx \right).$$

Therefore,

$$\frac{1}{(b_+)^{2/\alpha}} \leq \frac{A}{\alpha} S(\varepsilon) + \tilde{B} \int_{\Omega} |u_\varepsilon|^2 \, dx. \tag{4.2}$$

Passing to the limit $\varepsilon \to 0$ in (4.2) we arrive to

$$\frac{1}{(b_+)^{2/\alpha}} \leq \frac{A}{\alpha} S + \tilde{B} \int_{\Omega} |u_0|^2 \, dx;$$
therefore, as we have assumed (1.13), which implies
\[
\frac{\alpha}{A(b_+)^{2/2}} > S,
\]
we conclude \(u_0 \neq 0\).

Now, multiplying (4.1) by \(u_0\) and integrating by parts, we obtain
\[
\int_{\Omega} a_{ij}^0 \frac{\partial u_0}{\partial x_j} \frac{\partial u_0}{\partial x_i} + a_0^2 u_0^2 \, dx = S \int_{\partial \Omega} u_0^2 \, dS.
\]

As \(u_0 \neq 0\) it follows that \(S \neq 0\) and \(\|u_0\|_{L^2(\partial \Omega)} \neq 0\). Therefore, we conclude that
\[
S_0 \leq \frac{\int_{\Omega} a_{ij}^0 \frac{\partial u_0}{\partial x_j} \frac{\partial u_0}{\partial x_i} + a_0^2 u_0^2 \, dx}{\left(\int_{\partial \Omega} u_0^2 \, dS \right)^{2/2}} = S \left(\int_{\partial \Omega} u_0^2 \, dS \right)^{1/(N-1)} \leq S.
\]

Now, arguing exactly as in the end of Section 3, we conclude the desired result. \(\Box\)

5. The non-linear case. Finally, in this section we consider the extension of our previous results to a more general class of non-linear operators, including the \(p\)-Laplacian with oscillating coefficients. The main ideas for these extensions are similar to the ones used before in combination with those of [4].

We consider non-linear monotone operators \(A : W^{1,p}(\Omega) \to (W^{1,p}(\Omega))^*\) of the form
\[
Au = -\text{div}(a(x, \nabla u)) + b(x, u),
\]
whose coefficients \(a : \Omega \times \mathbb{R}^N \to \mathbb{R}^N\) belong to the class of functions satisfying the following hypotheses:

(A1) \(a(\cdot, \cdot)\) is of Carathéodory type.
(A2) Monotonicity: \(0 \leq (a(x, \xi_1) - a(x, \xi_2)) \cdot (\xi_1 - \xi_2), \forall \xi_1, \xi_2, \text{a.e. } x\).
(A3) Uniform ellipticity: \(\alpha |\xi|^p \leq a(x, \xi) \cdot \xi, \forall \xi, \text{ a.e. } x\).
(A4) Growth: \(|a(x, \xi)| \leq \beta |\xi|^{p-1}, \forall \xi, \text{ a.e. } x\).

And the function \(b : \Omega \times \mathbb{R} \to \mathbb{R}\) satisfies the following hypotheses:

(B1) \(b(\cdot, \cdot)\) is of Carathéodory type.
(B2) Uniform \(\alpha |u|^p \leq b(x, u)u, \forall u, \text{ a.e. } x\).
(B3) Growth: \(|b(x, u)| \leq \beta |u|^{p-1}, \forall u, \text{ a.e. } x\).

For \(a\) and \(b\) satisfying the above hypotheses, we consider the eigenvalue problem

\[
\begin{aligned}
\text{div}(a(x, \nabla u)) &= b(x, u) \quad \text{in } \Omega, \\
a(x, \nabla u) \cdot \nu &= \lambda |u|^{q-2}u \quad \text{on } \partial \Omega.
\end{aligned}
\]
(5.1)

If there exist \(\lambda\) and \(u\) solutions of (5.1), taking \(u\) as a test function in the eigenvalue problem, we note that

\[
\lambda = \frac{\int_{\Omega} a(x, \nabla u) \cdot \nabla u + b(x, u)u \, dx}{\int_{\partial \Omega} |u|^q \, dS}.
\]
(5.2)
Moreover, the infimum in (1.14) is attained and is called the first eigenvalue λ_1 for the problem (5.1). This fact is indeed by the lower semi-continuity property of the functional associated with A for the minimising sequence.

Let $\varepsilon > 0$ be a small parameter which represents the scale of heterogeneity. We consider a family of functions $a^\varepsilon, b^\varepsilon$ satisfying the previous hypotheses, for example, $a^\varepsilon(x, \xi) = a(x/\varepsilon, \xi)$ and $b^\varepsilon(x, u) = b(x/\varepsilon, u)$ which are, in addition, periodic in x. Thus, we deal with the minimisation problem

$$\lambda_1^\varepsilon = \inf_{v \in W^{1,p}(\Omega) \setminus W^{1,p}_0(\Omega)} \frac{\int_{\Omega} a^\varepsilon(x, \nabla v) \cdot \nabla v + b^\varepsilon(x, v)v \, dx}{\int_{\partial\Omega} |v|^q \, dS}. \quad (5.3)$$

First, assume that q is subcritical. Then, since the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$ is compact there exist extremals for (5.3). We normalise the extremals with the condition

$$\int_{\partial\Omega} |u_\varepsilon|^q \, dS = 1. \quad (5.4)$$

The normalised extremals are weak solutions of the problem

$$\text{div}(a^\varepsilon(x, \nabla u_\varepsilon)) = b^\varepsilon(x, u_\varepsilon)u_\varepsilon \quad \text{in } \Omega, \quad (5.5)$$

$$a(x, \nabla u_\varepsilon) \cdot \nu = \lambda_1^\varepsilon |u_\varepsilon|^{q-2}u_\varepsilon \quad \text{on } \partial\Omega.$$

Since in the statement of Theorem 3 we have assumed the G-convergence of the operators the conclusions concerning the convergence of the first eigenvalue and its associated extremals follow.

Note that this assumption is not restrictive, since if a^ε and b^ε are measurable coefficients which satisfy (A1)–(A3) and (B1)–(B3), then the operators A^ε G-converge (up to a subsequence) to a maximal monotone operator A_{hom} whose coefficients, a_{hom} and b_{hom}, are measurable and which satisfies (A1)–(A3) and (B1)–(B3). We refer to Theorem 4.1 of [7] for this well-known compactness result for the G-convergence on the class of multi-valued functions of the type a.

For the critical case $p^* = p(N - 1)/(N - 2)$ we can argue exactly as before in Section 4, noting that condition (1.15) on the domain and the coefficients involved imply that there are minimisers of (5.3), since some compactness is recovered.

ACKNOWLEDGEMENTS. The first and third authors are supported by CONICET, ANPCyT PICT 05009 and UBA X066. The second author was partially supported by grants S-0505/ESP/0158 of the CAM (Spain) and MTM2005-00715 and MTM2005-05980 of the MEC (Spain).

REFERENCES

