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Time-resolved particle image velocimetry
measurements of the turbulent
Richtmyer–Meshkov instability
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Experiments are presented on the Richtmyer–Meshkov instability (RMI) with a
three-dimensional, multi-mode initial perturbation. The experiments use a vertical shock
tube, where a stably stratified interface is formed between air and sulphur hexafluoride
(SF6) via counterflow. A perturbation is imposed at the interface by vertical oscillation of
the gas column, forming Faraday waves. The interface is accelerated by a Mach 1.17 (in air)
shock wave, and the development of the mixing region between the gases is investigated
using particle image velocimetry. Following shock acceleration, a reflected shock wave
from the bottom of the shock tube interacts with the mixing layer a second time (reshock).
The experiment is initialized with both high and low amplitude perturbations to examine
the effect of the perturbation amplitude on measured quantities. The instability growth
exponent (θ ) is determined from the kinetic energy field using the width of the mixing
layer and the decay of kinetic energy, which are found to be in agreement when the flow
is most strongly excited. A growth exponent of θ ≈ 0.5 is found for all cases except
the high-amplitude reshocked regime (where θ ≈ 0.33). High-amplitude experiments
exhibit the transitional outer Reynolds number (Re ≡ hḣ/ν > 104) required for mixing
transition following the incident shock, and both experiments are elevated well above this
threshold following reshock. However, neither set of experiments meet the more stringent
requirements proposed by Zhou et al. (Phys. Rev. E, vol. 67, issue 5, 2003) which include
the time dependent aspect of the RMI, an observation which is also made when examining
the spectra.

Key words: Buoyancy-driven instability, shock waves, turbulent mixing

† Email address for correspondence: everestsewell@email.arizona.edu

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 917 A41-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:everestsewell@email.arizona.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.258&domain=pdf
https://doi.org/10.1017/jfm.2021.258


E.G. Sewell, K.J. Ferguson, V.V. Krivets and J.W. Jacobs

1. Introduction

The mixing of fluids with differing densities in response to acceleration belongs to a family
of instabilities known as the Rayleigh–Taylor (RTI) and Richtmyer–Meshkov instabilities
(RMI). These instabilities result from the deposition of baroclinic vorticity along an
interface where the density gradient caused by the differing properties of the two fluids
is mis-aligned with the pressure gradient caused by the acceleration of the fluids. The RTI
(the case resulting from a finite, sustained acceleration) was first described by Rayleigh
(1882) and later extended by Taylor (1950). The RMI (the case resulting from an impulsive
acceleration, such as that caused by the passage of a shock wave) derives its name from
the early analytical work of Richtmyer (1960) and the later experimental verification by
Meshkov (1972). The RMI is of importance in natural astrophysical phenomena, where it
results in the mixing of accelerated stellar gases in planetary nebulae (Arnett et al. 1989),
as well as in furthering our understanding of fundamental flow physics. It has found limited
technological application, but has been found relevant to the enhancement of the mixing
of fuel and air in supersonic combustion ramjet engines (Yang, Kubota & Zukoski 1993).
The RMI is also a major hindrance to the efforts of the ignition campaign at the National
Ignition Facility, where many instabilities including the RMI result in the mixing of shell
material into the hot core of the imploding capsule, which quenches the fusion through
radiative cooling in a phenomenon known as the ‘mix cliff’ (Zhou 2017a,b).

Many shock tube experiments (such as the early work by Meshkov) relied on thin
membranes to separate the experimental gases. The use of membranes provides excellent
control over the shape of the initial perturbation, while also ensuring excellent repeatability
and a sharp interface between the experimental gases (Vetter & Sturtevant 1995). The
membrane is obliterated by the passage of the shock wave. However, the remaining
fragments have a damping effect on the ensuing RMI due their high inertia. The fragments
also inhibit the free mixing of the experimental gases. In order to circumvent this
deleterious behaviour, most modern shock tube experiments have moved towards the
formation of a membraneless interface, either using a counterflow configuration (Jones
& Jacobs 1997; Collins & Jacobs 2002; Weber et al. 2012; Reese et al. 2014; Mohaghar
et al. 2019) or using some form of gas curtain (Jacobs et al. 1995; Balakumar et al. 2008).
Membraneless experiments also allow the use of modern laser based diagnostic techniques
such as particle image velocimetry (PIV) and plane laser induced fluorescence (PLIF)
which further enhances the analysis capabilities of experimental studies. Early experiments
using membranes relied only on schlieren or shadowgraph imaging, which limited the
capacity of these experiments to accurately measure the mixing layer width. Much of
the early experimental work on membraneless experiments, such as the work of Jones,
focused on creating a two-dimensional sinusoidal perturbation with one dominant mode.
These excitations, achieved by horizontal oscillation of the tube, allowed for very precise
and repeatable initial conditions, enabling time series to be assembled from a single image
per experiment (a limitation of the visualization systems of the time).

More modern experiments focus on the creation of a broadband initial perturbation to
better explore the late-time turbulent evolution of the RMI. One of the most important
parameters in these types of experiments is the characterization of the scaling of the
interface width, and the growth behaviour in the late-time self-similar regime. While
the late-time growth behaviour for RMI driven flows is less well established than that
corresponding to the RTI, there is a general consensus that a power law h(t) ∝ tθ (where h
is the interface thickness and t is time) appears to describe the growth of the mixing layer
width for the case of the turbulent, self-similar instability. A wide variety of θ values
have been reported and predicted in various simulations and models (Zhou 2017a,b),
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yet there is relative paucity of experimental data which are suitable for extracting θ

values. Of the experiments which have been carried out, a range of θ values have been
found. The early experiments of Dimonte, Frerking & Schneider (1995) report θ ≈ 0.6,
while later experiments (Dimonte & Schneider 1997, 2000) find much lower values
around θ ≈ 0.25–0.43. The early experiments were performed on solid density materials
using the Nova laser facility, and rely on the diagnostically challenging radiography
method to produce their measurements, with the most recent experiments utilizing backlit
photography and laser induced fluorescence. The experiments of Prasad et al. (2000)
report θ in the range 0.26–0.33 from experiments performed in a large shock tube,
however, these experiments are hampered by the combined use of schlieren imaging with
a membrane to produce the initial perturbation, and the data are comprised of relatively
few measurements, which increases the difficulty of fitting a power law to the data. The
recent experiments of Weber et al. (2012, 2014) measured θ in the range 0.43–0.58 using
the fluorescent signal from an acetone tracer on a shocked broadband interface generated
by a turbulent cross-flow forcing technique. Finally, the experiments of Jacobs et al. (2013)
measure θ in a shock tube most similar to the present experiment using Mie scattering and
report θ in the range 0.3–0.4.

In order for experiments to accurately capture the turbulent growth behaviour of the
late-time self-similar RMI, a broad spectrum of modes must be imposed on the initial
interface, with as little low mode content as possible. If the interface between the two gases
is well defined (capable of being described by a single valued function), the initial growth
of the mixing layer width can be described as a linear superposition of the modal content
of the perturbation with each mode following ḣ = AV0ηk, where A is the Atwood number,
V0 is the post-shock velocity, η is the amplitude of the particular mode having wavenumber
k. High frequency modes grow quickly and become saturated rapidly, retarding the growth
of the mixing region. The presence of long wavelength, low wavenumber modes then
dominates the growth of the interface for the duration of any practical experiment. The
modal content of the initial perturbation has a strong impact on the growth of RMI, and
can help to explain the large variation in the experimentally reported values of θ . The
simulations of Thornber et al. (2010) and Tritschler et al. (2014) exemplify the effect of the
initial condition bandwidth on the growth of the RMI. The two simulations were initialized
in a very similar manner but with different modal content. The narrow band, short
wavelength perturbations of Thornber’s simulations produce a smaller θ value than the
broader band, longer wavelength perturbations of Tritschler’s simulations. The simulations
of the θ -Group (Thornber et al. 2017) use a narrowband initial perturbation similar to that
of Thornber et al. (2010) with similar result. On the other hand, Gowardhan, Ristorcelli
& Grinstein (2011) employ initial perturbation spectra ranging from something similar to
Thornber et al. (2010) to those with more broadband characteristics and find two different
behaviours: one exhibiting near linear growth when initiated with a low-amplitude initial
perturbation and another exhibiting power-law growth with θ ≈ 0.5 when simulations
were initiated with a much higher-amplitude perturbation. In general, simulations
initialized with narrowband perturbations tend to produce much smaller θ values than
those reported in experiments, a fact which can likely be attributed to the short wavelength
small bandwidth perturbations which are most often used when simulating the RMI.

Generating interfaces experimentally relies on non-repeatable and stochastic processes,
such as the Faraday forcing in the experiments of Jacobs et al. (2013), and the experiments
which utilize cross-flow jets such as Mohaghar et al. (2017), Weber et al. (2012, 2014)
and Reese et al. (2014). These types of perturbations present additional experimental
challenges due to the uniqueness of each initialization or initial condition. This class of
experiments benefits greatly from time resolved measurements, as the small differences
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in the initial forcing conditions can alter the development of the RMI, making ensembles
of experiments less useful. Accurate estimation of θ requires estimation of the curvature
of the width of the growing perturbation, and the additional data points obtained in
experiments with high time fidelity produces much more reliable results when obtaining
θ values from individual experiments. One observation in the experiments of Jacobs et al.
(2013) which was detected with the aid of high time fidelity was the observation of a
bifurcation in the growth exponent. This difference in θ was conjectured to have been
caused by the inversion of the perturbation during Faraday forcing resulting in experiments
having large differences in initial amplitude. During these experiments the timing of the
shock arrival was not controlled, resulting in shock interaction with the interface at a
random phase of the forcing cycle and a consequent variation in the initial amplitudes.

There exist very few experimental studies performed with initial conditions suitable for
comparison with simulations of the self-similar growth of RMI such as that by Thornber.
In addition, there are even fewer that lack the deleterious effects of membranes used
to form the initial perturbation. Thus, this work is meant to provide measurements that
could be used for comparison with existing or future numerical studies. The experiments
presented here seek to provide robust measurements of θ , and to characterize the results
of the late-time growth through the observation of turbulent quantities such as the
anisotropy of the mixing layer turbulence, the growth of turbulent length scales and
the spectra of the turbulent kinetic energy. Another goal of this work is to investigate
the effect of amplitude of the Faraday wave generated initial perturbation on the growth
of the RMI. The sinusoidal forcing of the gas–gas interface results in the formation of
waves which invert at half the forcing frequency, caused by the Rayleigh–Taylor unstable
baroclinic torque deposited during the unstable acceleration during interface excitation. To
investigate the effect of initial amplitude on the growth of the instability, the experiments
are separated into two groups: high-amplitude experiments where the shock wave arrives
near the maximum excursion of the perturbation, and low-amplitude experiments where
the shock arrives near the inflection point. The experiments are quantified using planar
PIV, which provides a quantitative two-dimensional velocity field at the centre plane of the
shock tube. This diagnostic enables the measurement of the growth parameter θ , as well
as investigation of turbulent phenomena such as anisotropy and the evolution of turbulent
length scales and the turbulent mixing transition.

The current work is presented in the following sections. Section 2 provides a description
of the experimental apparatus and test facility, as well as a discussion of the experimental
excitation and diagnostics. Section 3 analyses the results of the experiments, discussing
the growth of the mixing layer, anisotropy, turbulent length scales, mixing transition and
spectral quantities. Section 4 gives the discussion and conclusions of the study.

2. Experimental set-up
2.1. Apparatus description

The experiments were performed at the University of Arizona Fluid Instabilities
Laboratory. Figure 1 shows a schematic representation of the shock tube used. The tube
is 9 m long, and is comprised of three sections: a round, 3.7 m long wound fibreglass
driver section, coupled to a square 4.1 m long fibre reinforced plastic driven section, and
a 1.2 m long clear acrylic test section. The driven and test sections have a square inner
cross-section of 8.9 cm, and are coupled to a 10.2 cm diameter wound fibreglass driver
using fibre reinforced plastic flanges. The shock tube design is similar to the membraneless
shock tube pioneered by Jones & Jacobs (1997) and Collins & Jacobs (2002), and reported
most recently by Jacobs et al. (2013).
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Figure 1. Schematic illustration of the shock tube showing the lengths of the main three sections of the
apparatus, and the relative locations of the various components.

A membraneless interface is formed in a similar manner to Jones, using a counter-flow
configuration where the light gas (air) flows into the driven section from an inlet
approximately 1 m above the interface location, and the heavy sulphur hexafluoride (SF6)
gas flows in from a plenum located in the bottom of the tube. This gas combination results
in an Atwood number (A = (ρ2 − ρ1)/(ρ2 + ρ1) where ρ2 and ρ1 are the heavy and light
gas densities, respectively) of 0.67. Both gases flow at a matched volumetric rate of 6 l
min−1 and are allowed to exit from a series of small holes drilled in the test section. This
causes the formation of a stable, diffuse, stratified interface at the location of the holes. The
driver section is pressurized to approximately 220 kPa and the ∼2 µm thick polypropylene
diaphragm separating the driver and driven sections is ruptured using a solenoid driven
firing mechanism, resulting in the formation of a Mach 1.17 shock wave travelling in the
downward (+x) direction, where it interacts with the interface. The shock wave reflects
from a configurable false wall in the bottom of the tube and interacts with the interface a
second time (reshock) approximately 4.5 s after the initial shock interaction. The false wall
is constructed from a stack of 25.4 mm thick Acrylonitrile Butadiene Styrene (ABS) plastic
plates, which is installed in the bottom of the tube. The false wall allows the effective
length of the test section to be shortened, adjusting the time of the reflected shock wave
arrival.

2.2. Interface excitation
Perturbations are excited via vertical oscillation of the gas column at a frequency of
approximately 24 Hz using a pair of voice coil drivers located near the bottom heavy gas
plenum and at the top of the driven section. The vertical oscillation results in the formation
of Faraday waves on the interface between the two gases. The Faraday forcing generates
a broadband, three-dimensional perturbation. Faraday waves invert at double the period
of the forcing frequency, and the initial amplitude for the experiments is controlled by
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(a) (b)

Figure 2. Example raw PIV images showing the initial perturbations just before shock arrival for (a)
high-amplitude (EX02) and (b) low-amplitude (EX12) experiments.
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Figure 3. Mean and envelope of spectral power for (a) high-amplitude and (b) low-amplitude experiments.

rupturing the membrane at a precise time relative to the phase of the actuation signal.
Two groups of experiments are presented – ‘high amplitude’ experiments where the
amplitude of the initial perturbation is maximized, and ‘low amplitude’ experiments where
the perturbation is near its inflection point. Example images of high and low-amplitude
perturbations are shown in figure 2. Images of the perturbation just prior to shock wave
arrival were processed to obtain a line representing the initial interface location. The
images of the perturbation are first convolved with a Gaussian weighted 10 pixel square
kernel to average the bright signal created by individual particles, and create a smoothed
image where the two gases appear with different intensity levels. A Sobel filter is then
used to detect gradients in the smoothed images, rendering the interface between the gases
as a bright line. A threshold is then applied to the Sobel filtered image to create a binary
image, from which a line that approximates the interface location can be traced. From
this line, the initial amplitude and frequency content of the perturbation was determined.
High amplitude experiments were found to have a root-mean-square (r.m.s.) amplitude
h0h ≈ 1.7 ± 0.3 mm with low amplitude experiments having an initial amplitude of
h0l ≈ 0.8 ± 0.3 mm. Average spectra of the interface line for high and low-amplitude
experiment initializations are shown in figure 3.

2.3. Diagnostics
The diagnostic technique employed in this study is PIV, which uses the motion of particles
seeded in the flow to produce quantitative planar measurements of velocity. The particles
were produced by evaporation of a mixture of glycerol and propylene glycol at a 50–50
ratio. The seeder consists of a small Buchner flask containing the seed fluid, with a
length of wound FeCrAl (Kanthal) wire forming a heating element with an approximate
resistance of 0.5Ω . The seed fluid is wicked to the heating element using 3 mm silica
rope, and the heater is powered at approximately 1.25 watts to produce an appropriate
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seeding level for PIV. The particles were sized in situ by measuring their response to
shock acceleration and found to have an average size of ∼1.6 µm.

The particles are illuminated using a Photonix DM-70 YLF laser, which is collimated
and steered into the test section axially from the bottom. The beam is focused using
a cylindrical lens with a long focal distance, with the beam waist coinciding with the
measurement location. The beam is spread into a sheet using a concave cylindrical lens,
and passes through a fused silica window located in the shock tube end wall. The thickness
of the laser sheet throughout the measurement area is <1 mm. Images are captured using
three Photonix APX-RS high speed cameras fitted with 105 mm Nikon Micro-Nikkor f/2.8
AF lenses (resulting depth of field 2 cm). The cameras are operated in double-frame mode
capturing image pairs at a rate of 2000 Hz with an imaging area of 1024 by 784 pixels,
resulting in a particle image pixel pitch of 125 µm px−1.

The particle images were processed using Lavision’s DaVis software, employing an
iterative, multi-pass algorithm with an adaptive window used in the final pass. The
minimum window size of 16 by 16 pixels with 75 % overlap results in a final vector
spacing of 500 µm. The individual vector fields are then stitched together resulting in
a final measurement field of 680 by 164 vectors covering 33.6 by 8.0 cm. Spurious
vectors are detected and removed using the universal outlier detection described by
Westerweel & Scarano (2005). On average, 98 % of first-choice vectors were kept, with
the rejected vectors being removed and replaced by alternate choices using the universal
outlier detection algorithm. Combined r.m.s. error from the correlation statistics method
(Wieneke 2015) and peak locking is found to be ∼0.6 m s−1. Due to the random nature of
the error it does not significantly affect aggregate measures such as mean velocity fields,
and only has a minor effect on measures such as turbulent kinetic energy (TKE) (which
varies by ±0.02 %).

2.4. Experimental runs
Sixteen total experiments were performed on a perturbed air/SF6 interface (A = 0.67)
with a shock Mach number of 1.17 ± 0.002. Nine experiments were conducted at high
amplitude, with the remaining seven experiments being conducted with low-amplitude
perturbations. After shock interaction, the interface grows undisturbed for ∼4.5 ms,
whereupon the reflected shock wave returns and interacts with the interface a second time
(reshock). After the second shock interaction, the interface is observed for another ∼2.5
ms until the arrival of a reflected expansion wave accelerates the interface, ending the
pure Richtmyer–Meshkov (RM) growth phase. A montage showing the vorticity field of
a full experimental run is shown in figure 4. The figure qualitatively shows the decay in
vorticity with time, in addition to illustrating the dramatic increase in vorticity following
reshock. Panel (a) shows the interface a short time after shock interaction (0.27 ms). The
reflected shock wave is observable in frames ( j, k), where the shock wave is noticeably
thickened after interaction with the growing interface. The shock wave is observable in
the PIV due to the differential acceleration particles which are relatively larger or smaller
than their neighbours. Post-reshock, the increase in TKE is readily observable, along with
a reduction in the average size of turbulent eddies.

3. Data analysis and results

3.1. Mixing layer growth
The growth of the RMI has long been assumed (Alon et al. 1994) to follow a power-law
behaviour of the form h ∝ C(t − t0)θ . Experiments and simulations have observed a wide
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Figure 4. A sequence of vorticity fields obtained from PIV processing of a typical experiment (high-amplitude
experiment 2) at (a) t = 0.27 ms, (b) t = 0.77 ms, (c) t = 1.27 ms, (d) t = 1.77 ms, (e) t = 2.27 ms,
( f ) t = 2.77 ms, (g) t = 3.27 ms, (h) t = 3.77 ms, (i) t = 4.27 ms, ( j) t = 4.77 ms, (k) t = 5.27 ms, (l) t =
5.77 ms, (m) t = 6.27 ms, (n) t = 6.77 ms. Reshock occurs at ∼4.6 ms.
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Figure 5. A typical kinetic energy field from a single frame (a). The transverse mean of the kinetic energy
field (b) with centroid and thresholded bounds used for calculating the width of mixing region.

range of growth exponents θ , from θ = 0.18 on the low end to as high as θ = 0.62 (Zhou
2017a) depending on the parameters of the experiment or computation. Barenblatt (1983)
showed that for self-similar, Boussinesq (low Atwood number) flow with no dissipation
(constant kinetic energy) that θ = 2/3. For dissipative flows, if the kinetic energy decays
according to a power law TKE= kt−q, Thornber et al. (2010) have shown that θ can
be related to the kinetic energy decay exponent q by the relation θ = (2 − q)/3. θ is
important to estimate as it is generally accepted to be the most fundamental parameter
describing self-similar RMI growth. It is typically not calculated following reshock
particularly because most shock tube RMI experiments have very limited experimental
time to observe the interface following reshock (a problem which is not well addressed in
these experiments). However, it is our belief that the power-law growth expression should
be appropriately applied there as well. Note that it is sometimes assumed that the value
of θ should be universal for a fully turbulent self-similar RMI. Thus, there is no reason
to expect reshock to be different from the singly shocked instability. We therefore think it
important to make the best analysis possible following reshock.

Due to the sparse nature of the seeding for the PIV diagnostic, the turbulent mixing
layer (and therefore its width) is not directly observable throughout the course of the
experiment. Instead, we calculate θ by measuring the spread of TKE, positing that
the energetic turbulence of the mixing layer coincides with the location of the mixing
region. An estimation of the turbulent kinetic energy is made here using the following
definitions: TKX= ∑

xy
1
2(u − ū)2), TKY= ∑

xy
1
2 (v − v̄)2), TKE=TKX+TKY+TKZ

where TKZ=TKY due to assumed homogeneity in the spanwise and out of plane
directions. Fluctuating quantities are determined on a per-row basis, where the mean
velocity of each row in the spanwise (y) direction is subtracted. Figure 5 shows the method
of calculating width for a typical frame. Using the spanwise (y) mean of TKE, we calculate
a threshold based on 5 % of the peak TKE in the spanwise mean, and use this to find the
edges of the mixing region. The difference between these points is taken as the width (h).
The centroid of the spanwise mean (calculated as

∫
xf (x)dx/

∫
f (x)dx where f (x) is the

spanwise average of the TKE field) is also used as the centreline of the growing mixing
layer.
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Figure 6. Interface width (h) based on the full width of the kinetic energy vs time for (a) high-amplitude
experiments and (b) low-amplitude experiments.

Profiles of h vs time are shown in figure 6. The value of θ is found for each experiment
individually using nonlinear least squares regression to the form min(Σ ||F(xi) − yi||2)
where F(xi) is a nonlinear function (in this case F(xi) = h = Ctθ ) and yi are data,
with bi-square weighting (a method which seeks to diminish the effect of outlier data
by minimizing a weighted sum of squares, where the weight given to each data point
depends on how far the point is from the fitted line). The quality of fitting was evaluated
through 95 % confidence intervals of the fitted coefficients. These were obtained using
the confidence interval functionality of MATLAB’s curve fitting toolbox, which uses the
inverse R factor from QR decomposition of the Jacobian, the degrees of freedom for error
and the r.m.s. error to estimate an interval. This analysis gives an estimation of the error
in the computed value of θ due to sampling error (frame to frame variations in the width
which arise when structures enter or leave the plane of measurement) and whether or not
the growth of the interface truly exhibits power-law type behaviour. Confidence in fits to
individual experiments is high following the incident shock for high- and low-amplitude
experiments, with decreasing confidence in the reshocked results due to the limited number
of unaccelerated samples post reshock (before the arrival of the reflected rarefaction wave).
A 95 % confidence interval of the mean value of θ is computed (CI = t∗(s/

√
n), where t∗

is Student’s t variable, s is the standard deviation of the computed θ values and n is the
sample size) and are shown in table 1. These statistics give an indication of how much run
to run variation exists in the experimental set, caused by inconsistency in the initial forcing,
variation in shock speed and other environmental variables. Low-amplitude experiments
are less consistent than high-amplitude experiments following the initial shock, likely due
to the additional sensitivity in starting amplitude due to timing jitter (the perturbation is
at its highest velocity near the inflection point, and small timing errors result in larger
differences in the perturbation amplitude at shock arrival).

A plot of all experimental runs in logarithmic scale is shown in figures 7 and 8,
along with a line representing the mean value of θ from individual fits. When fitting to
the ensemble (i.e. fitting all experiments simultaneously), the value of θ found is very
similar to the averaged θ obtained when fitting the experiments individually. After the
passage of the second shock wave, there is a brief period of time where the mixing
layer compresses and inverts before it resumes its growth, which is readily observed in
figure 6(a,b), and can also be observed by the departure from the fitted curve for the
early time points in figures 7(b) and 8(b). This compression and inversion is observed
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TKE width TKE decay

High-amplitude incident 0.51 ± 0.04 0.51 ± 0.06
High-amplitude reshock 0.33 ± 0.07 0.46 ± 0.09
Low-amplitude incident 0.45 ± 0.08 0.68 ± 0.11
Low-amplitude reshock 0.50 ± 0.07 0.62 ± 0.29

Table 1. Statistics for fits of θ to the spread of TKE width and TKE decay.

10–4 10–3

h (m)

10–2

10–1

θ = 0.51 ± 0.04

t (s)t (s)

10–4 10–3

10–2

10–1

θ = 0.33 ± 0.07

(a) (b)

Figure 7. Logarithmic plots of h vs time for the high-amplitude experiments following the incident shock
interaction (a) and following reshock (b). The dashed lines represent curve fits to the ensemble data. The
growth exponents shown were computed from the mean of individual experimental runs. Also shown are the
95 % confidence intervals of the mean.

t (s) t (s)

10–4 10–3 10–4 10–3

h (m)

10–2

10–1

(a)

10–2

10–1

(b)

θ = 0.45 ± 0.08
θ = 0.50 ± 0.07

Figure 8. Logarithmic plots of h vs time for the low-amplitude experiments following the incident shock
interaction (a) and following reshock (b). The dashed lines represent curve fits to the ensemble data. The
growth exponents shown were computed from the mean of individual experimental runs. Also shown are the
95 % confidence intervals of the mean.

much more clearly in high fidelity simulations such as in those of Thornber et al.
(2011) and Tritschler et al. (2014). In comparing measured θ values for the two sets
of experiments the effect of the perturbation amplitude on the growth exponent after a
single shock interaction appears to be small, with low amplitude experiments exhibiting
θ ∼ 0.06 lower than the high-amplitude experiments, similar to the bifurcated results
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Figure 9. Growth of the mixing layer in dimensionless coordinates for high- and low-amplitude experiments
following the initial shock (a), and with added points for reshock (b).

observed in the work of Jacobs et al. (2013) where the initial condition phase was
uncontrolled. The θ values following reshock are much more pronounced between the
low- and high-amplitude experiments, with high-amplitude experiments demonstrating a
growth exponent of θ ≈ 0.33, compared to low-amplitude experiments which continue to
grow with θ ≈ 0.5. A plausible explanation for this difference is that the low-amplitude
experiments, being less turbulent at the time of reshock, may contain steeper density
gradients during interaction with the second shock. This would result in more energetic
shock interaction with the mixing layer, and enhanced growth following reshock. In order
to quantify this effect, a non-dimensional time τ = ku′

rms|ct and a non-dimensional mixing
layer width kh were used, where k is the wavenumber of the initial perturbation and
u′

rms|c is the streamwise root mean square centreline velocity. Figure 9(a) shows mixing
layer width in these non-dimensional variables, and reveals that in addition to a slightly
retarded growth rate, the low-amplitude experiments have grown significantly less than
their counterparts at the arrival of reshock. This lack of development for low-amplitude
experiments can explain the differences in the reshocked growth exponents. Figure 10
shows post-reshock measured θ values as a function of dimensionless time at reshock,
which demonstrates how measured θ correlates with instability development prior to
reshock. The negative slope of the regression line fit to the data indicates that smaller
θ values correlate with greater pre-reshock development. When non-dimensionalizing the
reshocked data in a similar fashion (figure 9b), the dimensionless coordinates make it clear
that the low-amplitude reshock case agrees well with both incident shock cases, confirming
that they have similar growth behaviour and thus yield similar θ values. On the other hand,
the non-dimensionalized high-amplitude reshock data fall well below those of the other
three cases, which is consistent with the lower θ value obtained for this case.

Barenblatt (1983) showed that for a Boussinesq (i.e. small Atwood number), self-similar
flow with constant kinetic energy that the product hḣ2 is constant, and therefore the mixing
layer width should grow according to h = C(t − t0)2/3. Thus, with no dissipation and A 	
1, θ is expected to be 2/3. Dissipation causes TKE to decay with time, and an increase in
dissipation will produce a consequent reduction in the value of θ . Recent work by Thornber
et al. (2010) suggests that a relationship exists between the growth rate of the mixing
layer width and the decay of kinetic energy. They have shown that the total fluctuating
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Figure 10. Post reshock θ vs non-dimensional time in the frame just prior to reshock. High-amplitude
experiments which exhibit a larger non-dimensional time (i.e. a more developed state) at reshock result in
lower growth exponents following reshock. The negative slope of the regression (black dashed line), indicates
that low post-reshock θ correlates with large non-dimensional time (a well-developed mixing region) before
the arrival of reshock.

kinetic energy is proportional to the width of the mixing layer multiplied by the mean
kinetic energy. Assuming that h ∝ tθ and that the mean kinetic energy is proportional to ḣ2,
they obtain TKE(t) ∝ t3θ−2. Using this method to obtain estimates of θ is advantageous
because it is an integral quantity, and is less likely to be influenced by the presence of
large flow structures at the edges of the mixing layer (a common problem encountered
when making edge based measurements of the width of the mixing region).

Plots of the decay of kinetic energy are shown in figures 11 and 12. TKE decay is not
observed at early times, when the developing mixing layer has not yet generated a full
range of scales. In order to avoid fitting to not fully developed measurements, points are
only fitted for dimensionless time kḣt > 1, after which time most experiments are observed
to begin to decay. θ is obtained for each experimental run individually, with statistics on
the mean θ value shown in table 1. Good agreement is observed between the TKE width
measurements and TKE decay measurements for high-amplitude experiments following
the interaction with the first shock, with both methods yielding θ ∼ 0.51. Agreement
following reshock is less favourable, though the measurements do have overlapping
confidence intervals. We obtain the expected θ ∼ 2/3 value for non-dissipative flows in
low-amplitude pre-reshock measurements using the TKE decay method, yet calculate
much lower values when measuring the width of the TKE region. The disagreement
may be caused by a violation of some core assumption in Thornber’s model, such as
the requirement that the flow be self-similar. Thornber et al. (2010) found θ ∼ 0.26 after
interaction with the initial shock, and θ ∼ 0.28 following a second shock interaction for
simulations performed with a narrow-band initial perturbation. Tritschler et al. (2014),
using a broad-band perturbation with an added dominant wavelength that is more similar
to the perturbation used in the experiments presented here, found θ ∼ 0.58 after the initial
shock passage and θ ∼ 0.29 following reshock. Similarly, Gowardhan et al. (2011) found
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Figure 11. Logarithmic plots of kinetic energy decay vs time for the high-amplitude experiments following
initial shock interaction (a) and following reshock (b). Here, θ is computed from the mean fit to individual
experimental runs. Also shown is the 95 % confidence interval of the mean. Omitted data points with k0ḣ0t < 1
are shown with red x.
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Figure 12. Logarithmic plots of kinetic energy decay vs time for the low-amplitude experiments following
initial shock interaction (a) and following reshock (b). Here, θ is computed from the mean fit to individual
experimental runs. Also shown is the 95 % confidence interval of the mean. Omitted data points with k0ḣ0t < 1
are shown with red x.

θ ∼ 0.5 for their high-amplitude experiments with perturbations ranging from narrow to
broadband.

3.2. Anisotropy
Persistent anisotropy is widely observed during late time RMI evolution in previous
experiments and simulations. It is expected that the flow should be anisotropic during
the early stages of development, as the bulk of the motion imparted by the passage
of the shock wave is in the streamwise direction. As the flow transitions into the
nonlinear turbulent phase, the anisotropy ratio (the ratio of fluctuating kinetic energy
TKX/TKY) is frequently observed to asymptote to a constant value (Thornber et al.
2010; Tritschler et al. 2014; Oggian et al. 2015; Thornber et al. 2017). A constant value
of the anisotropy ratio is expected for self-similar flows; self-similar decay suggesting
that all three velocity components are decaying at the same rate. The anisotropy ratio
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Figure 13. Anisotropy ratio (TKX/TKY) for the high-amplitude (a) and low-amplitude (b) experiments.
Constant anisotropy ratio, as observed in high-amplitude experiments before the arrival of reshock, is a
necessary but not sufficient condition for self-similarity.

is plotted for all experiments in figure 13, with a moving average filter illustrating the
mean behaviour. High-amplitude experiments are observed to asymptote to an approximate
value of ∼1.88 approaching reshock, with a slight rise after reshock followed by a
downward trend, indicating that the mixing region after the reshock is becoming more
homogeneous. Low-amplitude experiments are not observed to asymptote during the span
of the experiment, with the decreasing value indicating that the initially high streamwise
energy is still being converted to cross-stream energy via mode coupling as the flow
evolves. Thornber et al. (2010, 2017) noticed similar behaviour to the high-amplitude
experiment set in his simulations, reaching an asymptotic value of ∼1.52 after the
initial shock, with an increased value of ∼1.7 following reshock. This is somewhat
counter-intuitive, as it is expected that the intensified turbulence following a second shock
interaction would result in the mixing layer becoming more homogeneous rather than less.

The spatial distribution of anisotropy in the mixing layer can also be investigated using
the Reynolds anisotropy tensor, defined as bij = uiuj/k − δij/3, k = uiui/2. The diagonal
components (b11, b22) of the tensor represent energy in the primary flow directions x and
y respectively, and are bounded between −1

3 and 2
3 with a trace of zero. The symmetric

off-diagonal components are bounded by ±1
2 and are non-zero when shear is present in

the flow. Spanwise (y) averaged profiles are ensemble averaged relative to their centreline
coordinate xc and are shown in figure 14. These profiles show strong anisotropy in the
centre of the mixing layer, decaying towards the edges immediately after first shock
interaction for both the high and low-amplitude experiments. At the intermediate time
(before reshock) the anisotropy becomes well distributed in high-amplitude experiments,
while low-amplitude cases exhibit a larger amount of anisotropy overall. Also, the heavy
gas side (positive coordinate in figure 14) in the low-amplitude experiments develops a
slightly higher degree of anisotropy at the intermediate time. Similar asymmetry was
observed in the numerical simulations of Tritschler et al. (2014). Reshock brings the flow
in both cases to a similar average level of anisotropy, though the asymmetry observed
in the low-amplitude experiments is still faintly present in the reshocked flow. Mohaghar
et al. (2017, 2019) observe similar levels and distribution of anisotropy in their inclined
shock tube experiments.
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Figure 14. Ensemble streamwise profiles of elements of the anisotropy tensor bij. Profiles are averaged relative
to the centreline of the mixing region (x–xc), where the positive x-direction is towards the heavy gas side. The
high (a,c,e) and low (b,d, f ) amplitude profiles are shown at the earliest time following shock interaction (0.27
ms - a,b), the latest time before reshock (4.27 ms - c,d) and the latest time following reshock (6.77 ms - e, f ).

The mean of the diagonal elements of the anisotropy tensor averaged in time and
across the mixing layer are shown in figure 15. Anisotropy is initially high following
shock interaction, with high-amplitude experiments exhibiting a slightly larger average
anisotropy due to the larger interpenetration speeds of the growing layer at the earliest
times. The high-amplitude experiments, which are driven harder by the shock interaction,
quickly fall to the asymptotic value. Mode coupling occurs more quickly in these
experiments, which are at a higher overall energy. Following reshock, both experiments
are brought to similar levels of anisotropy.

3.3. Turbulent length scales, mixing transition and spectral quantities
Using the velocity fields obtained from the PIV diagnostic, it is possible to compute a
variety of length scales that are pertinent to the turbulent energy cascade. Several of
these can be measured directly, while others are derived from the outer-scale Reynolds
number. The first of the measurable scales is the integral length scale (Pope 2000), which
describes the size of the largest coherent eddies present in the flow field. The spatial
autocorrelation of the streamwise fluctuating velocity field is used, and averaged over the
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Figure 15. Ensemble mean of the diagonal elements of the anisotropy tensor across the mixing layer vs
non-dimensional time. Blue lines indicate high-amplitude experiments, and red lines indicate low-amplitude
experiments. Anisotropy following the incident shock (a) falls more rapidly in the high-amplitude experiments
than in the low-amplitude experiments. After the second shock interaction (b) both groups of experiments have
achieved similar levels of isotropy.

streamwise direction (streamwise averages indicated by 〈 〉). The autocorrelation function
f (r) is defined as

f (r) =
〈
u′

i(x + r)u′
i(x)

〉
〈
u′2

i
〉 , (3.1)

which is then integrated to its first zero crossing to define the integral length

Li =
∫ f (r)=0

0
f (r) dr. (3.2)

A second length scale obtained from f (r) is the Taylor microscale, λT , which is an
intermediate scale that lacks a precise physical interpretation, but is often used to describe
the length scale below which viscosity begins to significantly affect the flow. The Taylor
microscale can be estimated using the curvature of the velocity autocorrelation function at
r = 0 (Champagne, Harris & Corrsin 1970; Pope 2000),

λTc =
[
−1

2
d2f (0)

dr2

]−1/2

. (3.3)

Here, the curvature is estimated by means of a parabolic fit to the central five points of
the autocorrelation. This calculation is performed in both the streamwise and transverse
directions, yielding longitudinal and transverse estimates of the Taylor microscale. The
Taylor microscale can also be estimated using gradient based methods, by taking the
quotient of the variance and the gradient of the fluctuating velocity field

λTg =

⎡
⎢⎢⎢⎢⎣

2
〈
u′2〉〈

∂u′2

∂x

2〉
⎤
⎥⎥⎥⎥⎦

1/2

. (3.4)
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Figure 16. Ensemble-averaged integral length scale vs time (a), and Taylor microscale evolution vs time (b).
Solid markers indicate measurements following reshock.

The longitudinal and transverse Taylor microscale is calculated using both methods,
and a combined Taylor microscale is obtained by averaging the results from each method.
Following Mohaghar et al. (2019), the longitudinal and transverse Taylor microscales
are added in quadrature, and the combined measurement is obtained by averaging the
results of the two methods. Figure 16 shows the ensemble-averaged time evolution of
the integral length scale and the combined Taylor microscale measurements. Both groups
of experiments exhibit similar growth of the integral length scale with time, consistent
with the frequently observed inverse cascade of TKE. The Taylor microscale is large at
early times, with a decreasing value with time as the large structures present immediately
following the shock interaction break down. λT is observed to fall rapidly to an almost
constant value following the first shock interaction in the high-amplitude experiments,
while the breakdown happens much more gradually in the low-amplitude experiments. The
rapid creation of small scales is attributed to the increased energy transfer from the shock
wave to the interface in the case of a larger initial amplitude. The fact that λT becomes
nearly constant is perhaps an indication that a stationary state has been reached in the
evolving turbulent mixing layer. The increasing trend in the integral length scale, coupled
with the decreasing trend in the Taylor microscale is an indication that energy is being
transferred in both the forward (larger wavenumber) and backward (smaller wavenumber)
directions.

The transition from a laminar flow to a turbulent flow is a well-documented phenomenon
which is generally understood to be a consequence of a flow’s inability to remain stable as
the damping effects of viscosity are reduced with increasing Reynolds number. Dimotakis
(2000) observed a second transition in a number of flows, known as the mixing transition,
which occurs at a Reynolds number beyond that which is responsible for the laminar
to turbulent transition. This mixing transition is characterized by an abrupt decrease
in the size of the turbulent length scales present in the flow, with an accompanying
increase in mixing. He identifies a characteristic Reynolds number across a wide variety of
flows where this transition occurs. Rayleigh–Taylor and Richtmyer–Meshkov mixing are
typically defined by the ’outer scale’ Reynolds number Re = hḣ/ν, which is the definition
used here and by Dimotakis. Flows exceeding a threshold value undergo a rapid increase in
small scale formation, enhanced mixing and the development of a fully turbulent inertial
range.
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Figure 17. Outer-scale Reynolds number vs time for high- and low-amplitude experiments. The constant value
of the Reynolds number is consistent for a growth exponent of θ ≈ 0.5. The dashed black line indicates the
Re = 104 threshold for mixing transition based on the criterion of Dimotakis (2000).

To evaluate the mixing transition and inertial range formation, several new length scales
are required. Specifically, if sufficient separation exists between the Liepmann–Taylor
scale

λL ≡ 5Re−1/2h, (3.5)

and the inner-viscous scale

λν ≡ 50Re−3/4h (3.6)

(Dimotakis 2000), the flow should have an established inertial range due to the decoupling
of the large, energy containing scales and the small dissipative scales. Put another way, if
the ratio of the Liepmann–Taylor scale to the inner-viscous scale is greater than unity,
the flow should undergo mixing transition. This is equivalent to a Reynolds number
in excess of 104 (Dimotakis 2000). Figure 17 shows measurements of the outer-scale
Reynolds number for all of the experiments of the present study where it can be observed.
Low-amplitude experiments are largely below the threshold required for mixing transition
following the first shock interaction, while the high-amplitude experiments start and
remain above Re = 104. Both sets of experiments are elevated well above 104 following
reshock. For the low-amplitude experiments Reynolds number is observed to remain
roughly constant in time, which is consistent with the observed growth parameter θ ≈
0.5. For the high-amplitude experiments a slight decay can be observed consistent with
θ ≈ 0.33.

Dimotakis’ criterion applied to the data of figure 17 indicates that the high amplitude
experiments should exhibit a developed inertial range during the singly shocked period,
and both sets of experiments should show evidence of an inertial range following reshock.
However, Zhou, Robey & Buckingham (2003) and Robey et al. (2003) propose that a
transitional Reynolds number is a necessary but not sufficient condition for flow transition.
They propose that flow drive time is an additional condition for transition in accelerated,
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Figure 18. Modified criterion for mixing transition for the high-amplitude (a), and low-amplitude
(b) experiments; λν must be smaller than both λL and λD for mixing transition to occur.

unsteady flows and propose a new length scale, the outer-viscous scale,

λD ≡ C(νt)1/2, (3.7)

with C = 5 suggested for boundary layer type problems and appropriate for the developing
RMI. This outer-viscous scale corresponds to the growth of a viscous shear layer which
must develop between the interpenetrating fluids in order for mode coupling subsequent
mixing transition. Their more strict criterion states that the inner-viscous scale λν must be
smaller than the least upper bound of the Liepmann–Taylor scale λL and the outer-scale
viscous shear layer scale λD (λν < min[λL, λD]).

Figure 18 shows the time evolution of the three scales pertinent to mixing transition. In
figure 18(a), the high-amplitude experiments exhibit λL that is larger than λν (although this
difference in the pre-reshock values appears small in this logarithmic plot), consistent with
a Reynolds numbers > 104, while the low-amplitude experiments (b) show λL smaller then
λν which is consistent with a Reynolds number below Dimotakis’ threshold as indicated
in figure 17). Both experiments of figure 18 demonstrate that for almost all measured times
the laminar viscous scale λD is the smallest scale, indicating that the extended criterion
for mixing transition has not been met. Furthermore, since the growth parameter θ ≈ 0.5
in these experiments the Reynolds number is approximately constant. Thus the derived
Liepmann–Taylor scale and the inner-viscous scale (3.5), (3.6) both grow approximately
as h ∼ t0.5 which is the same rate as that of the laminar viscous scale which also grows
with the square root of time. This seemingly indicates that there is no future time where an
experiment with θ ≈ 0.5 will transition. For RMI flows with θ < 0.5, the laminar viscous
scale λD does not grow as fast as the inner-viscous scale λν , and will not tend towards
transition for any length of experimental observation. Only for θ > 0.5 does this theory
predict a future time at which transition will occur, which is not a commonly observed θ in
shock tube RMI experiments. This apparent contradiction may indicate that for RMI with
θ < 0.5 either the flow transitions immediately upon shock impact or it will not transition
at all. A summary of all measured and derived length scales is shown in figure 19. The
solid dashed line indicates the effective resolution of the PIV diagnostic.

The TKE spectrum is useful to quantify the scales over which energy is distributed.
The method used to calculate the spectra presented here is similar to that used by Latini,
Schilling & Don (2007) and Mohaghar et al. (2017), with the exception that in the present
case the density field is unknown. In addition, a Hanning window is applied to the data to
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Figure 19. Summary of length scales for the high-amplitude (a), and low-amplitude (b) experiments. Black
markers indicate measured scales and red markers indicate scales derived from the outer-scale Reynolds
number. The dashed black line indicates four times the Nyquist sampling criterion, which corresponds to the
PIV window size and therefore the effective resolution of the diagnostic.
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Figure 20. Spectra of the TKE for the high-amplitude (a), and low-amplitude (b) experiments. The dashed
black line indicates a k−5/3 scaling. The solid black line indicates the diagnostic window size.

suppress high frequency ringing due to finite sample size. Ensemble-averaged TKE spectra
are shown in figure 20. According to Dimotakis (2000) and Zhou et al. (2003), the inertial
range should begin to form between the laminar viscous scale λD and the Liepmann–Taylor
scale λL. While the vector resolution which is output by the PIV algorithm is small enough
to capture these scales, the large vector density is derived from overlapping interrogation
areas when correlating the particle motion (a common practice when calculating PIV). It
is uncertain what the real effective resolution of the PIV method is, due to the adaptive
window sizing during the final step of the calculation which allows for the size, aspect
ratio and orientation of the window to change according to the gradients detected during
earlier calculations/passes. The adaptive PIV algorithm used in the final pass can alter
the nominally 16 × 16 window into an 8 × 32 pixel window, according to the steepness
of the detected flow gradients. The true resolution of the diagnostic is at largest the size
of the un-adapted window used during the calculation (nominally 16 pixels square, ≈1.98
mm). This would result in some unquantified attenuation in the measured energy for scales
smaller than this. Figure 20 shows the turbulent kinetic energy spectra for the high- and
low-amplitude experiments. The vertical black line in the image indicates undeformed
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size of the smallest PIV interrogation window (and therefore the lowest unattenuated
resolution). Frequencies beyond this could potentially be attenuated artificially by the
averaging operation inherent to PIV calculations.

Figure 20 once again demonstrates the difference in total kinetic energy between the
two experimental sets, with the peak spectral energy for high-amplitude experiments
containing approximately six times the energy of low-amplitude experiments following
the first shock interaction. After reshock, both sets are elevated to roughly the same
total energy, though the low-amplitude experiments continue to dissipate less quickly.
The spectral energy of high-amplitude experiments is increased by approximately two
decades after reshock, while low-amplitude experiments gain almost three decades. This
may be caused by the lower mixing efficiency during the first phase of the low-amplitude
experiments, resulting in sharper density gradients and therefore increased vorticity
deposition during reshock. The character of the spectral slopes does not evolve drastically
throughout the course of the experiment, with all scales losing energy at approximately
the same rate (though it is again observed that low-amplitude experiments are dissipating
much more slowly, even following reshock).

There are many computational and experimental observations of various spectral slopes
for late time RMI flows, and it is still not entirely resolved whether the scaling for the
late-time Richtmyer–Meshkov follows the classic Kolmogorov k−5/3, or some steeper
slope such as the k−3/2 proposed by Zhou (2001). Recently, Thornber et al. (2011)
observed that when the flow is still in early development following reshock, the slope
is steeper than −5/3 (Thornber found −2 in the broadband case most similar to the
experiments presented here), but may reach −5/3 or −3/2 at much later times. However,
these inertial scalings are predicated on the notion that the turbulence is fully developed
and has undergone mixing transition. This does not appear to be the case here, as evidenced
by the continuous curvature of the spectra. Experiments conducted at a higher Mach
number and with higher wavenumber perturbations would be needed to produce late-time
RMI with inertial scalings.

4. Conclusion

Experiments on the turbulent RMI have been conducted to investigate the evolution of
the instability when initialized with perturbations with small and large initial amplitudes,
but similar wavenumbers. Time resolved particle image velocimetry captures full-field
velocity measurements of the accelerated air/SF6 interface for approximately 4.5 ms
following an incident Mach 1.17 shock wave, and an additional 2.5 ms following the arrival
of the reflected shock wave. These quantitative measurements illustrate a lasting effect of
experimental initialization on the growing instability during the measurement period and
persisting into the reshocked regime.

A growth exponent of θ ≈ 0.5 is found for all cases except the high-amplitude reshocked
regime (where θ ≈ 0.33). It is interesting to note that the K–ε model gives a value of θ

equalling 1/3 as shown by Gauthier & Bonnet (1990). The θ ≈ 0.5 value obtained is at the
large end of experimentally observed θ values. The amplitude of the initial perturbation is
observed to only have a minor bearing on the measured value of θ following the incident
shock wave when measured by edge based methods. Low-amplitude experiments evolve
with lower turbulent kinetic energy and reach a smaller non-dimensional amplitude leading
into reshock. This lower development results in decreased mixing of the flow at the latest
times following the incident shock, and causes persistent differences during the reshocked
observation period, including a larger linear growth rate and a larger growth exponent.
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The method of Thornber et al. (2010) which relies on the decay of turbulent kinetic
energy to determine the growth exponent, reliably reproduces θ values from width
measurements in the high-amplitude case when the mixing layer is most energetic.
The low-amplitude experiments, which are in possible violation of some of the core
assumptions required for Thornber’s model, fail to reproduce similar θ values when
compared to width measurements. It is possible that the lower turbulent kinetic energy
in the growing mixing layer resulting from the low-amplitude initial perturbation does
not result in the generation of strongly dissipative scales and consequently, the method of
measuring θ from TKE decay predicts a value of 2/3. Interestingly, despite being elevated
to roughly the same total energy as the high-amplitude experiments following a second
shock interaction, the low-amplitude experiments exhibit roughly constant TKE in the
reshocked regime. This is likely caused by the finite flow drive time required to generate
dissipative scales (Zhou et al. 2003). Longer experimental observation time (which is not
practical in a single-ended shock tube due to the arrival of a reflected expansion wave)
may result in measurable dissipation after sufficient passage of time.

Anisotropy, which is widely observed in RM accelerated flows, quickly asymptotes
to a constant value in high-amplitude experiments, which is an indication of potential
self-similarity for this group of experiments. On the other hand, low-amplitude
experiments exhibit a continued evolution of the anisotropy ratio, passing energy from
the streamwise to spanwise directions, a demonstration that the flow has not yet achieved
self-similarity. Following reshock, both experimental cases exhibit similar anisotropy.
Low-amplitude experiments also exhibit asymmetry in the anisotropy ratio – with the
heavy gas side of the mixing layer containing more anisotropy than the light gas side.

An analysis of the outer-scale Reynolds number indicates that high-amplitude
experiments lie just above the threshold for turbulent mixing transition given by Dimotakis
(2000), while low-amplitude experiments remain largely below. Following reshock, both
sets are driven to roughly the same Reynolds number, which is an order of magnitude
above the proposed transition point. Further length scale analysis following the work
of Zhou et al. (2003) illustrates that for both initializations pre- and post-reshock, the
flow has not transitioned. According to their theory, the growth parameter found in the
present experiments (θ ≈ 0.5) would not produce the possibility of a future transition,
since the rate of growth of the laminar viscous scale matches that of the inner-viscous
and Liepmann–Taylor scales. Measured kinetic energy spectra do not exhibit a constant
turbulent scaling exponent over the measured range of scales, consistent with a lack of
inertial range formation. The distribution of energy along the spectral curves does not
change drastically during the course of the experiments, with dissipation affecting all
resolved scales roughly equally. If there is any evolution of the spectra as the turbulent
RMI develops, it is occurring below the resolution of the diagnostic.
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