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Abstract We define a motivic conductor for any presheaf with transfers F using the categorical framework
developed for the theory of motives with modulus by Kahn, Miyazaki, Saito and Yamazaki. If F is a
reciprocity sheaf, this conductor yields an increasing and exhaustive filtration on F (L), where L is any
henselian discrete valuation field of geometric type over the perfect ground field. We show that if F is a
smooth group scheme, then the motivic conductor extends the Rosenlicht–Serre conductor; if F assigns
to X the group of finite characters on the abelianised étale fundamental group of X, then the motivic
conductor agrees with the Artin conductor defined by Kato and Matsuda; and if F assigns to X the group
of integrable rank 1 connections (in characteristic 0), then it agrees with the irregularity. We also show
that this machinery gives rise to a conductor for torsors under finite flat group schemes over the base field,
which we believe to be new. We introduce a general notion of conductors on presheaves with transfers and
show that on a reciprocity sheaf, the motivic conductor is minimal and any conductor which is defined
only for henselian discrete valuation fields of geometric type with perfect residue field can be uniquely
extended to all such fields without any restriction on the residue field. For example, the Kato–Matsuda
Artin conductor is characterised as the canonical extension of the classical Artin conductor defined in
the case of a perfect residue field.
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1. Introduction

Fix a perfect field k and let Sm be the category of separated smooth k-schemes. Let Cor
be the category of finite correspondences: it has the same objects as Sm, and morphisms

inCor are finite correspondences (see Section 2.1 for a precise definition). Let PST be the

category of additive presheaves of abelian groups onCor, called presheaves with transfers.
In this paper we give a construction which associates to each F ∈ PST a collection of

functions

cF =
{
cFL : F (L)→ N∪{∞}

}
L∈Φ

,

where N is the set of nonnegative integers, Φ is the collection of henselian discrete

valuation fields which are the fraction fields of the henselisation Oh
X,x of X ∈ Sm at

points x of codimension 1 in X and

F (L) = lim−→
V

F (V −Dx),

where V → X ranges over étale neighbourhoods of x and Dx is the closure of x in V .
We call cF the motivic conductor for F . Our main aim is to convince the reader that

our construction deserves such pretentious terminology. Indeed, it gives a unified way

to understand different conductors, such as the Artin conductor of a character of the
abelian fundamental group πab

1 (X) with X ∈ Sm along a boundary of X, the Rosenlicht–

Serre conductor of a morphism from a curve to a commutative algebraic k-group and the

irregularity of a line bundle with connections on X ∈ Sm along a boundary of X. It also

gives rise to a new conductor for G-torsors with G a finite flat k-group scheme. The latter
conductor specialises to the classical Artin conductor when G is constant.

Our construction of the motivic conductors is rather simple once we have the new

categorical framework introduced in [24, 25] at our disposal (see equation (1.0.1)). The
main aim of those works is to develop a theory of motives with modulus generalising

Voevodsky’s theory of motives in order to capture non-A1-invariant phenomena and

objects. The basic principle is that the category Cor should be replaced by the larger
category ofmodulus pairs,MCor: objects are pairs X =

(
X,X∞

)
consisting of a separated

k-scheme of finite type X and an effective (possibly empty) Cartier divisor X∞ on it such

that the complement X \X∞ is smooth. Morphisms are given by finite correspondences
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between the smooth complements satisfying certain admissibility conditions (see Section 3

for the precise definition). Let MCor ⊂ MCor be the full subcategory consisting of

objects
(
X,X∞

)
with X proper over k. We then define MPST (resp., MPST) as the

category of additive presheaves of abelian groups on MCor (resp., MCor). We have a

functor

ω :MCor→Cor,
(
X,X∞

)
�→X−|X∞|,

and two pairs of adjunctions

MPST
τ∗
←−
τ!−→

MPST, MPST
ω∗
←−
ω!−→

PST,

where τ∗ is induced by the inclusion τ :MCor→MCor and τ! is its left Kan extension,
and ω∗ is induced by ω and ω! is its left Kan extension (see Section 3.3 for more concrete

descriptions of these functors). A basic notion is �-invariance, where � =
(
P1,∞

)
∈

MCor – F ∈MPST is called �-invariant if F (X ) � F
(
X ⊗�

)
for all X ∈MCor (see

Section 3.1 for the tensor product ⊗ in MCor). It is an analogue of the A1-invariance1

exploited by Voevodsky in his theory of motives. We write CI for the full subcategory of

MPST consisting of �-invariant objects. We know [27, Lemma 2.1.7] that the inclusion
CI → MPST admits a right adjoint h0

� which associates to F ∈ MPST the maximal

�-invariant subobject of F . We define the functor

ωCI :PST
ω∗
−−→MPST

h0

�−−→CI,

and write F̃ = τ!ω
CIF ∈MPST, for F ∈PST. Then the motivic conductor cF for F ∈

PST is defined by

cFL (a) = min
{
n|a ∈ F̃

(
OL,m

−n
L

)}
, for a ∈ F (L). (1.0.1)

Here, for G ∈MPST, L= Frac
(
Oh

X,x

)
∈ Φ and n ∈ Z≥1, we put

G
(
OL,m

−n
L

)
= lim−→

V

G(V ,nDx),

where V →X ranges over étale neighbourhoods of x and Dx is the closure of x in V and

nDx is its nth thickening in V . By convention,

G
(
OL,m

−n
L

)
=G(OL) = lim−→

V

G(V ), for n= 0.

For G = F̃ there are natural inclusions F̃
(
OL,m

−n
L

)
↪→ F (L), which are used to define

equation (1.0.1). It turns out that
{
F̃
(
OL,m

−n
L

)}
n∈Z≥0

induces an increasing filtration

on F (L) which is exhaustive if F ∈ RSC. Here RSC is the full subcategory of PST
consisting of the objects belonging to the essential image of CI under ω!. Objects of

RSC are called reciprocity presheaves and play a key role in this note. We know (see [27,

Cor 2.3.4]) that RSC contains all A1-invariant objects in PST. Moreover, it contains

1Recall that F ∈PST is A1-invariant if F (X)� F
(
X×A1

)
for all X ∈ Sm.
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many interesting objects F which are not A1-invariant. In this paper we consider in

particular the following examples (where X runs over objects of Sm):

(i) F (X) = HomSm(X,Γ), where Γ is a smooth commutative algebraic k-group which
may have nontrivial unipotent part (for example, Γ =Ga).

(ii) F (X) =H1
ét(X,Q/Z) = Homcont

(
π1(X)ab,Q/Z

)
.

(iii) F (X) = Conn1(X) (resp., Conn1int(X)) the group of isomorphism classes of (resp.,

integrable) rank 1 connections on X. Here we assume ch(k) = 0.

(iv) F (X) =H1
fppf(X,Γ), where Γ is a finite flat k-group.

We prove the following (see Theorems 5.2, 7.20, 8.8 and 6.11 for the precise statements):

Theorem 1.

(1) In case (i), cFL agrees with the Rosenlicht–Serre conductor [47] if L has perfect

residue field. If ch(k) = p is positive and F =Wn is the group scheme of p-typical

Witt vectors of length n, then cFL agrees with a conductor defined by Kato and
Russell in [32] for any L.

(2) In case (ii), cFL agrees with the Artin conductor ArtL of Kato and Matsuda (see

Section 7.1).2

(3) In case (iii), cF agrees with the irregularity of connections.

As far as we know, the motivic conductor cF in case (iv) is new, and we give an explicit

description only in the case where the infinitesimal unipotent part of G is αp, where
p= ch(k) (see Theorem 9.12).

An amusing application of the motivic conductor cF is to give an explicit description

of the maximal A1-invariant part of F : let HI ⊂ PST be the full subcategory of A1-

invariant objects. The inclusion HI→PST admits a right adjoint h0
A1 which associates

to F ∈ PST the maximal A1-invariant subobject of F (see Section 4.30 for an explicit

description of h0
A1). Let NST⊂PST be the full subcategory of Nisnevich sheaves – that

is, those objects F ∈ PST whose restrictions to Sm ⊂Cor are sheaves with respect to
the Nisnevich topology.

Theorem 2. For F ∈RSC∩NST and X ∈ Sm, we have

h0
A1(F )(X) =

⋂
ρ

{
a ∈ F (X)|cF (ρ∗a)≤ 1

}
,

where ρ ranges over all morphisms SpecL→X with L ∈ Φ.

When F =H1
ét(−,Q/Z) from case (ii) (resp., F = Conn1int from case (iii)), Theorem 2

asserts that the maximal A1-invariant part of F is precisely the subsheaf of tame
characters (resp., regular singular connections).

2It coincides with the classical Artin conductor if L has perfect residue field.
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In what follows, we fix F ∈RSC∩NST and introduce a class of collections of functions

c= {cL : F (L)→ N}L∈Φ

which may be called conductors for F . Let FuncΦ(F,N) be the partially ordered set

consisting of collections of functions with partial order given by c ≤ c′, if cL(a) ≤ c′L(a)
for all L∈Φ and a∈F (L). Let CI(F ) be the partially ordered set consisting of subobjects

G of ωCIF such that the induced maps ω!G → ω!ω
CIF are isomorphisms and with

partial order given by inclusion. Then every G ∈ CI(F ) gives rise to an exhaustive

increasing filtration
{
τ!G
(
OL,m

−n
L

)}
n≥0

on F (L), and we define cG ∈ FuncΦ(F,N)
by

cGL (a) = min
{
n | a ∈ τ!G

(
OL,m

−n
L

)}
, for a ∈ F (L).

By definition, the motivic conductor cF of F is cω
CIF and cF ≤ cG, for all G ∈ CI(F ).

Now a question is whether there is a simple characterisation of the poset
{
cG|G ∈CI(F )

}
in FuncΦ(F,N). We answer it in the following refined form. Let n be a positive integer or
∞. Let Φ≤n ⊂ Φ be the collection of such L that trdegk(L) ≤ n. (Note that in positive

characteristic, Φ≤1 consists precisely of those L∈Φ that have a perfect residue field.) Let

FuncΦ(F,N)≤n be the poset consiting of collections of functions

c= {cL : F (L)→ N}L∈Φ≤n

with partial order defined in the same manner as FuncΦ(F,N). There is an obvious
restriction functor

FuncΦ(F,N)→ FuncΦ(F,N)≤n, c �→ c≤n. (1.0.2)

We then introduce the six axioms (c1)–(c6) for FuncΦ(F,N)≤n (compare Definitions 4.3

and 4.22) and call those elements satisfying the axioms semicontinuous conductors of
level n. Let Cond(F )sc≤n be the subposet of FuncΦ(F,N)≤n consisting of such objects.

Write Cond(F )sc for Cond(F )sc≤n with n =∞.3 For example, for F =H1
ét(−,Q/Z) from

case ii, the classical Artin conductor {ArtL}L∈Φ≤1
is an element of Cond(F )sc≤1 and the

Kato–Matsuda conductor {ArtL}L∈Φ is an element of Cond(F )sc. We show the following
(see Theorem 4.25):

Theorem 3.

(1) cG ∈ Cond(F )sc for every G ∈CI(F ).

(2) There exists an order-reversing map

Cond(F )sc≤n →CI(F ), c �→ F̂c,

such that c= (cF̂c)≤n. For X =
(
X,X∞

)
∈MCor with X =X−|X∞|, we have

F̂c(X ) = {a ∈ F (X)|cX(a)≤X∞},

3There is one axiom, (c4), which is not preserved by functor (1.0.2). So it does not induce
Cond(F )sc → Cond(F )sc≤n.
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where cX(a)≤X∞ means that for any L∈Φ≤n and any morphism ρ : SpecOL →X
such that ρ(SpecL) ∈X, cL(ρ

∗a) is not more than the multiplicity of the pullback

of X∞ along ρ.

As a consequence, we obtain the following (see Theorem 4.25(4)):

Corollary 1. There exists a unique map

Cond(F )sc≤n → Cond(F )sc, c �→ c∞,

such that F̂c = F̂c∞ and c= (c∞)≤n.

We call c∞ the canonical extension of c. For example, the Kato–Matsuda Artin

conductor is the canonical extension of the classical Artin conductor. We say F has

level n if
(
cF
)≤n ∈ Cond(F )sc≤n; in this case, cF is the canonical extension of

(
cF
)≤n

, by
Theorem 4.25(5). We show that F =H1

ét(−,Q/Z) in case ii is of level 1 (see Theorem 8.8),

F =Conn1 (resp., F =Conn1int) from case (iii) is of level 2 (resp., 1) – see Theorem 6.11

– and F =H1
fppf(−,Γ) from case (iv) is of level 1 if the infinitesimal unipotent part of Γ

is trivial and is of level 2 otherwise (see Theorem 9.12).

In Section 2 we explain how to extend a presheaf with transfers to the category of regular
schemes over k which are pro-smooth; this is well known, and we include it only for lack of

reference. In Section 3 we recall the necessary constructions and results from the theory of

motives with modulus as developed in [24, 25, 27, 26, 45]. Then we introduce in Section 4

the notion of (semicontinuous) conductors and prove Theorems 3 and 2. We close the
section with a discussion of the relation between the motivic conductor of a reciprocity

sheaf and certain vanishing properties of its associated symbol. This is needed in order

to prove in the later sections that a certain conductor is equal to the motivic one, the
main point being Corollary 4.40. In the second part we consider various conductors which

are mostly classical and show that they are motivic in our sense. Kähler differentials and

rank 1 connections are considered in Section 6, where ch(k) = 0. In the following sections
we assume ch(k) = p > 0. In Section 7 we show that one of the conductors defined by

Kato and Russell for Wn is motivic. We use this in Section 8 to show that the Kato–

Matsuda conductor for characters is motivic, which yields also a description of the motivic

conductor for lisse Q̄�-sheaves of rank 1. Finally, in Section 9 we define and investigate a
conductor for torsors under finite flat k-groups, which we believe to be new. The general

pattern of these computations is always the same: first we show that the collection c= {cL}
defined in the various situations defines a semicontinuous conductor (of a certain level)
in the sense of Definitions 4.3 and 4.14, then we do a symbol computation to show that

this conductor is actually motivic. Note, however, that the actual computations in the

various cases differ quite a bit.

1.1. Conventions

We work over a perfect field k. If K/k is a field extension, then by a K-scheme we will

always mean a scheme which is separated and of finite type overK. In contrast, the phrase

scheme over K refers to any scheme morphism X → SpecK. By a smooth K-scheme we
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mean a K-scheme which is smooth over K. We denote by SmK the category of such
schemes and set Sm= Smk. For k-schemes X and Y we write X×Y instead of X×k Y .

For any scheme X we denote by X(i) the set of i-codimensional points of X.

Part 1. The general theory

2. Presheaves with transfers on pro-smooth schemes

The material in this section is well known; we give some details for lack of reference.

2.1. Denote by Cor the category of finite correspondences of Suslin and Voevodsky.

Recall that the objects are the smooth k-schemes, and morphisms are given by

correspondences – that is, Cor(X,Y ) is the free abelian group generated by prime
correspondences, the integral closed subschemes V ⊂X×Y which are finite and surjective

over a connected component of X. Given two prime correspondences V ∈Cor(X,Y ) and

W ∈Cor(Y ,Z), their composition is given by the intersection product (see, for example,
[46, V, C])

W ◦V = p13∗ (p
∗
12V ·p∗23W ), (2.1.1)

where pij denotes the projection from X×Y ×Z to the factor (i,j).

Denote by ProCor the pro-category of Cor – that is, objects are functors Io → Sm,

i �→Xi, where I is a filtered essentially small category, and the morphisms between two
pro-objects (Xi)i∈I and (Yj)j∈J are given by

ProCor((Xi), (Yj)) = lim←−
j∈J

lim−→
i∈I

Cor(Xi,Yj) .

Definition 2.2. We define the category Corpro as follows: the objects are the Noetherian
regular schemes over k of the form

X = lim←−
i∈I

Xi, (2.2.1)

where (Xi)i∈I is a projective system of smooth k-schemes indexed by a partially ordered

set and with affine transition maps Xi → Xj , i ≥ j. If X and Y are two objects in

Corpro, then Corpro(X,Y ) = Cor(X,Y ) is the free abelian group generated by prime
correspondences in the sense of Section 2.1. The composition is defined in the same way

as in the case of Cor. (Note that this still makes sense by [46, V, B, 3., Théorème 1].)

Remark 2.3.

(1) All objects in Corpro are separated, Noetherian and regular schemes over k. Any
affine, Noetherian and regular scheme over k defines an object in Corpro, by [41,

(1.8) Theorem] and [1, Exp I, Proposition 8.1.6].

(2) Note that for X,Y ∈ Corpro, the cartesian product X × Y does not need to be
Noetherian; but if Y ∈ Sm and X ∈Corpro, then X×Y ∈Corpro.

Lemma 2.4. Let A be a k-algebra which is Noetherian, regular and a directed limit
A= lim−→i∈I

Ai, where the Ai are smooth and of finite type over k and the transition maps

Ai →Aj, j ≥ i are flat. Let X be a regular quasi-projective A-scheme. Then X ∈Corpro.
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Proof. Set Si = SpecAi and S = SpecA= lim←−i
Si. Choose an S-embedding X ⊂Pn

S . We
find an i0 and a subscheme Xi0 ⊂Pn

Si0
such that X =Xi0 ×Si0

S. Set Xi :=Xi0 ×Si0
Si, for

i≥ i0. Then the transition mapsXj →Xi, j ≥ i≥ i0, are affine and flat, and hence so is the

projection τi :X = lim←−i
Xi →Xi0 . Since X is regular, there exists an open neighbourhood

Ui0 ⊂ Xi0 containing τi0(X) which is regular (see [17, Corollaire (6.5.2)]). Since Ui0 is

of finite type over the perfect field k, it is even smooth. Set Ui = Ui0 ×Si0
Si. Then the

transition maps Uj → Ui, j ≥ i ≥ i0, are affine and flat, each Ui is smooth and we have

X = lim←−i
Ui; hence X ∈Corpro.

Lemma 2.5. There is (up to isomorphism) a canonical and faithful functor

Corpro →ProCor, lim←−
i

Xi �→ (Xi).

Proof. For any X ∈Corpro we choose once and for all a projective system (Xi)i∈I as in

equation (2.2.1). In particular, (Xi) ∈ProCor. Note that if X = lim←−j∈J
X ′

j , then (Xi)∼=(
X ′

j

)
in ProSm. Take X = lim←−i∈I

Xi and Y = lim←−j∈J
Yj in Corpro and let V ⊂X×Y be

a prime correspondence. For any scheme S over k, we denote by

ρi :X×S →Xi×S, ρi′,i :Xi′ ×S →Xi×S, i′ ≥ i,

and by

σj : Y ×S → Yj ×S, σj′,j : Yj′ ×S → Yj ×S, j′ ≥ j,

the projection and transition maps of (Xi×S) and (Yj×S), respectively. By assumption,

all these maps are affine. For all j, the morphism V →X×Yj induced by σj is a morphism

of finite-type X-schemes. Since V is finite over X, its image σj(V )⊂X×Yj is proper over

X. Hence V → σj(V ) is proper and affine, and hence finite. Since X is Noetherian, σj(V )
is finite over X, and hence we obtain a well-defined correspondence σj∗V ∈Cor(X,Yj)

with the property

σj∗V = 0⇐⇒ V = 0. (2.5.1)

Furthermore, since X × Yj is Noetherian, we find an index i (depending on j) and a

correspondence Vi,j ∈Cor(Xi,Yj) such that

σj∗V = ρ∗i Vi,j .

If we find i′ and V ′
i′,j with ρ∗i′V

′
i′,j = σj∗V , then clearly Vi,j = V ′

i′,j in lim−→i
Cor(Xi,Yj).

Therefore we obtain a well-defined element Vj

Cor(Xi,Yj)→ lim−→
i

Cor(Xi,Yj), Vi,j �→ Vj .

By the base-change formula (see equation (2.5.6)), we obtain σj′,j∗Vj′ = Vj . We obtain a
morphism

Corpro(X,Y )→ProCor((Xi), (Yj)), V �→ (Vj)j . (2.5.2)
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It is injective by formula (2.5.1). Finally we have to check that morphism (2.5.2) is

compatible with composition. Take Z = lim←−l∈L
Zl ∈ Corpro. For any scheme S over k,

denote by

τl : Z×S → Zl×S

the projection map. Take prime correspondences V ∈ Corpro(X,Y ) and W ∈
Corpro(Y ,Z). For any l ∈ L we find an index j(l) ∈ J and a correspondence Wj(l),l ∈
Cor

(
Yj(l),Zl

)
such that τl∗W = σ∗

j(l)Wj(l),l. For any j(l) we find an index i(j(l)) ∈ I and

a correspondence Vi(j(l)),j(l) ∈ Cor
(
Xi(j(l)),Yj(l)

)
such that σj(l)∗V = ρ∗i(j(l))Vi(j(l)),j(l).

Then the compatibility of morphism (2.5.2) will hold if we can show

τl∗(W ◦V ) = ρ∗i(j(l))
(
Wj(l),l ◦Vi(j(l)),j(l)

)
, for all l ∈ L. (2.5.3)

To this end, we recall some well-known formulas. Assume we are given the diagram

X ′ f ′
��

h′

��

Y ′

h

��
X

f �� Y
g �� Z

of schemes over k which are in Corpro, and assume the square is cartesian and Tor-

independent. Then for for cycles α on X, β, β′ on Y , and γ on Z the following the

following relations hold as soon as both sides of the equation are defined (see [46, V, C]):

f∗g∗γ = (g ◦f)∗γ. (2.5.4)

g∗f∗α= (g ◦f)∗α. (2.5.5)

h∗f∗α= f ′
∗h

′∗α. (2.5.6)

f∗(β ·β′) = f∗(β) ·f∗(β′). (2.5.7)

f∗(α ·f∗(β)) = f∗(α) ·β. (2.5.8)

Using these formulas it is straightforward – but a bit longish – to check that equa-

tion (2.5.3) holds. Indeed, since all cycles involved are always finite over some scheme over
k, it will be clear that the formulas in question are defined; the base-change formula (2.5.6)

will be applied only in cases where one of the maps f or h is flat, and hence the Tor-

independence condition will be automatic. (But note that h might not be flat, so there
might appear higher Tors in the computation of h∗ and h′∗.) This finishes the proof.

2.6. A presheaf with transfers in the sense of Suslin and Voevodsky is a functor F :

Coro →Ab; they form the category PST. We extend it to a functor F :ProCoro →Ab
by the formula

F ((Xi)i∈I) := lim−→
i

F (Xi).
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Precomposing F with the functor from Lemma 2.5, we obtain presheaves on Corpro,

which we again denote by F ,

F : (Corpro)o →Ab .

For α ∈ Corpro(X,Y ), we denote by α∗ = F (α) : F (Y ) → F (X) the induced map. If

f :X → Y is a morphism with graph Γf ⊂X×Y between k-schemes which are objects
in Corpro, then we set

f∗ := Γ∗
f : F (Y )→ F (X); (2.6.1)

if f is a finite morphism and Γt
f ⊂ Y ×X is the transpose of the graph of f , we set

f∗ :=
(
Γt
f

)∗
: F (X)→ F (Y ). (2.6.2)

3. Review of reciprocity sheaves

In this section we collect some definitions, notations and results from [24, 25, 27, 45].

3.1. A modulus pair X =
(
X,X∞

)
consists of a separated and finite-type k-scheme X

and an effective Cartier divisor X∞ ≥ 0 such that the open complement X :=X \ |X∞|
is smooth. We say X is a proper modulus pair if X is proper over k. A basic example is

the cube

� :=
(
P1

k,∞
)
.

Let X =
(
X,X∞

)
and Y =

(
Y ,Y∞

)
be two modulus pairs with corresponding opens

X =X \ |X∞| and Y = Y \ |Y∞|, respectively. The modulus pair X ⊗Y is defined by

X ⊗Y :=
(
X×Y ,X∞×Y +X×Y∞

)
. (3.1.1)

An admissible prime correspondence from X to Y is a prime correspondence V ∈
Cor(X,Y ) satisfying the condition

X∞|V N ≥ Y∞|V N , (3.1.2)

where V
N → V ⊂ X × Y is the normalisation of the closure of V . We denote by

Coradm(X ,Y) ⊂ Cor(X,Y ) the subgroup generated by admissible correspondences.
Assume X is a proper modulus pair. Recall from [27, Lemma 2.2.2] that the presheaf

with transfers h0(X ) ∈PST is defined by

h0(X )(S) = Coker

(
Coradm

(
�⊗S,X

) i∗0−i∗1−−−→Cor(S,X)

)
,

where we write S instead of (S,∅) and iε : S ↪→A1
S is the ε-section, ε ∈ {0,1}. We have

a natural quotient map Ztr(X) → h0(X ), where Ztr(X) is the presheaf with transfers
representing X – that is, Ztr(X)(S) =Cor(S,X).

Definition 3.2 ([27, Definition 2.2.4]). Set F ∈ PST, X ∈ Sm and a ∈ F (X). We say

a has SC-modulus (or just modulus) X if X =
(
X,X∞

)
is a proper modulus pair with

https://doi.org/10.1017/S1474748021000074 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000074


Reciprocity sheaves and their ramification filtrations 81

X =X \ |X∞| and the Yoneda map a : Ztr(X)→ F factors via

Ztr(X)
a ��

���
��

��
��

��
F.

h0(X )

∃

�����������

That is, for any S ∈Sm and any correspondence γ ∈Coradm
(
�×S,X

)
⊂Cor

(
A1×S,X

)
we have i∗0γ

∗a= i∗1γ
∗a.

We say F has SC-reciprocity if for all X ∈ Sm any a ∈ F (X) has a modulus. We denote

by RSC⊂PST the full subcategory consisting of presheaves with transfers which have

SC-reciprocity. Further, we set

RSCNis =RSC∩NST,

where NST⊂PST is the full subcategory of Nisnevich sheaves with transfers.

3.3. It is shown in [27] that the presheaves in RSC are in fact induced by presheaves on

modulus pairs in the following way: let X =
(
X,X∞

)
and Y =

(
Y ,Y∞

)
be modulus pairs

with corresponding opens X and Y , respectively. An admissible correspondence from X
to Y (see Section 3.1.1) is called left proper if the closure in X×Y of all its irreducible

components is proper over X. We denote by MCor(X ,Y)⊂Cor(X,Y ) the subgroup of

all left proper admissible correspondences. This subgroup is stable under composition of
correspondences (see [24, Proposition 1.2.3]). Hence we can define the category MCor

whose objects are the modulus pairs and with morphisms given by admissible left proper

correspondences. We denote by MCor the full subcategory whose objects are the proper
modulus pairs. We denote by MPST the category of presheaves on MCor and by

MPST the category of presheaves on MCor. By [24, Proposition 2.2.1, Proposition

2.3.1, Proposition 2.4.1] there are three pairs of adjoint functors (ω!,ω
∗), (ω!,ω

∗) and

(τ!,τ
∗),

PST
ω∗

�� MPST
τ∗

��
ω!��

MPST
ω! ��τ!��

PST,
ω∗

��

which are given by

ω∗F
(
X,X∞

)
= F

(
X \ |X∞|

)
, ω!H(X) =H(X,∅), (3.3.1)

ω∗F
(
X,X∞

)
= F

(
X \ |X∞|

)
, ω!G(X)∼= lim−→

X∈MSm(X)

G(X ), (3.3.2)

τ∗F (X ) = F (X ), τ!G(U)∼= lim−→
X∈Comp(U)

G(X ), (3.3.3)

where MSm(X) is the subcategory of MCor whose objects are the proper modulus pairs

with corresponding opens X and with only those morphism which map to the identity
in Cor(X,X), and Comp(U) is the category of compactifications of U =

(
U,U∞

)
– that

is, its objects are proper modulus pairs X =
(
X,U∞+Σ

)
, where U∞ and Σ are effective

Cartier divisors such that X \ |Σ| = U and U∞|U = U∞, and the morphisms are those
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which map to the identity in MCor(U,U) (see [24, Lemma 2.4.2]). The functors ω!, ω!,

τ! are exact and we have ω! = ω!τ!.

We denote by CI the full subcategory of MPST of cube-invariant objects – that is,
those F ∈MPST which satisfy the condition that for any proper modulus pair X , the

pullback along X ⊗�→X induces an isomorphism

F (X )∼= F
(
X ⊗�

)
.

By [27, Proposition 2.3.7] we have ω!(CI) =RSC, and there is a fully faithful left exact

functor ωCI :RSC→CI given by

ωCI(F )
(
X,X∞

)
=
{
a ∈ F

(
X \X∞

)
| a has modulus

(
X,X∞

)}
. (3.3.4)

We have

ω!τ!ω
CI(F )∼= ω!ω

CI(F )∼= F. (3.3.5)

3.4. We recall some more definitions and results from [24, 25, 45] related to Nisnevich
sheaves.

For F ∈ MPST and X =
(
X,X∞

)
∈ MCor we denote by FX the presheaf on X ét

defined by (
U

u−→X
)
�→ FX (U) := F (U,u∗X∞). (3.4.1)

We denote by MNST the full subcategory of MPST consisting of those F such that

FX is a Nisnevich sheaf on X for any X =
(
X,X∞

)
∈MCor. Further, MNST is the full

subcategory of MPST consisting of F such that τ!F ∈MNST. By [24, Theorem 4.5.5]

and [25, Theorem 4.2.4], there are exact sheafification functors (that is, left adjoints to

the natural inclusions)

aNis :MPST→MNST, aNis :MPST→MNST,

such that

(1) (aNisF )(X ) = lim−→f :Y
∼−→X

FX,Nis(Y ,f∗X∞), where X =
(
X,X∞

)
∈ MCor, FX,Nis

denotes the Nisnevich sheafification of the presheaf FX on X ét, and the limit is
over all proper birational morphisms f : Y →X which restrict to an isomorphism

Y \ |f∗X∞| �−→X \ |X∞|;
(2) τ! restricts to an exact functor τ! :MNST→MNST and satisfies

aNisτ!F = τ!aNisF for all F ∈MPST . (3.4.2)

It follows that aNis = τ∗aNisτ! and

aNis�MNST = idMNST, aNis�MNST = idMNST.

By [25, Proposition 6.2.1],

aNisω
∗ = ω∗aVNis, aNisω

∗ = ω∗aVNis,
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where aVNis :PST→NST is Voevodsky’s Nisnevich sheafification functor (see [49, Lemma

3.1.6]), and we obtain induced functors

ω∗ :NST→MNST, ω∗ :NST→MNST .

Lemma 3.5. For F ∈ RSCNis, we have ωCIF ⊂ aNisω
CIF ⊂ ω∗F in MPST (see

Definition 3.2 and equation (3.3.4) for notation). Here the first inclusion is given by

the unit of adjunction.

Proof. By definition, ωCIF ⊂ ω∗F . We obtain the commutative diagram

aNisω
CIF � � �� aNisω

∗F

ωCIF

��

� � �� ω∗F,

in which the vertical maps are induced by adjunction. The vertical map on the right is

an isomorphism, since ω∗F ∈MNST, and the top horizontal map is an inclusion, since
aNis is exact. This gives the statement.

Remark 3.6. It follows from Corollary 4.16 that the first inclusion in Lemma 3.5 is

actually an equality.

3.7. We define the category MCorpro as follows: the objects are pairs X =
(
X,X∞

)
,

where

(1) X is a separated Noetherian scheme over k of the form X = lim←−i∈I
Xi, with

(
Xi

)
i∈I

a projective system of separated finite-type k-schemes indexed by a partially ordered

set with affine transition maps τi,j :Xi →Xj , i≥ j;

(2) X∞ = lim←−i∈I
Xi,∞, with Xi,∞ an effective Cartier divisor on Xi, such that Xi \

|Xi,∞| is smooth for all i and τ∗i,jXj,∞ =Xi,∞, i≥ j;

(3) X \ |X∞| is regular.

The morphisms are given by the admissible left proper correspondences, which are
verbatim defined as in Section 3.3. That the composition of correspondences in Corpro

induces a well-defined composition in MCorpro is shown in the same way as in [24,

Proposition 1.2.3].

Lemma 3.8. There is (up to isomorphism) a canonical and faithful functor

MCorpro →ProMCor, lim←−
i

(
Xi,Xi,∞

)
�→
(
Xi,Xi,∞

)
i
.

Proof. Let X =
(
X,X∞

)
, Y =

(
Y ,Y∞

)
∈ProMCor. We write X = lim←−i∈I

Xi with Xi =(
Xi,Xi,∞

)
, and similarly Y = lim←−j∈J

Yj . Set X =X \ |X∞|, and so on. We have to show

that the injection (2.5.2) restricts to

MCorpro(X ,Y)→ProMCor((Xi), (Yj)) . (3.8.1)
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To this end, let V ∈MCorpro(X ,Y) be a left proper admissible correspondence. For j ∈ J ,

denote by σj(V ) the image of V under the projection X×Y →X×Yj . Then σj(V ) is a

finite prime correspondence, as was observed in the proof of Lemma 2.5. Let V ⊂X×Y
be the closure of V . By assumption, V is proper over X. Since X×Yj is separated and

of finite type over X, the image of V in X×Yj is closed and proper over X; hence it is

equal to the closure σj(V ) of σj(V ). Now [24, Lemma 1.2.1] yields

X∞|σj(V )
N ≥ Yj,∞|σj(V )

N , (3.8.2)

with the notation from formula (3.1.2). As in the proof of Lemma 2.5, we find an index
i0 ∈ I and a finite correspondence Vi0,j ⊂Xi0 ×Yj which pulls back to σj(V ). We can also

assume (after possibly enlarging i0) that the closure V i0,j ⊂Xi0 ×Y j of Vi0,j pulls back

to σj(V ). We obtain the cartesian diagram

σ(Vj) ��

��

X = lim←−Xi

��
V i0,j

�� Xi0 .

Since the upper horizontal arrow is proper, the lower horizontal arrow becomes proper

after possibly enlarging i0 (see [18, Théorème (8.10.5), (xii)]). Hence, by our construction

and formula (3.8.2), the scheme Vi0,j = V i0,j ∩ (Xi0 × Yj) is a left proper admissible
correspondence from Xi0 to Yj and gives a well-defined element

Vj ∈ lim−→
i∈I

ProMCor(Xi,Yj) .

This shows that morphism (2.5.2) restricts to formula (3.8.1).

3.9. Let F ∈MPST. Using Lemma 3.8, we can extend F to a presheaf on MCorpro by
the formula

F (X ) = lim−→
i

F (Xi), X = lim←−
i

Xi ∈MCorpro .

4. Conductors for presheaves with transfers

Definition 4.1.

(1) We say that L is a henselian discrete valuation field of geometric type (over k) (or

that L is a henselian dvf) if it is a discrete valuation field and its ring of integers

is equal to the henselisation of the local ring of a smooth k-scheme U in a 1-
codimensional point x ∈ U (1) – that is, OL =Oh

U,x. For n ∈ N≥1∪{∞}, we set

Φ = {L henselian dvf}, Φ≤n = {L ∈ Φ | trdeg(L/k)≤ n}.

Note that in positive characteristic, Φ≤1 consists precisely of the henselian dvfs

with perfect residue field.
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(2) Let X be a smooth k-scheme. A henselian dvf point of X is a k-morphism SpecL→
X, with L ∈ Φ.

(3) Let X =
(
X,X∞

)
be a modulus pair with X =X \ |X∞|. A henselian dvf point of

X is a henselian dvf point ρ : SpecL → X extending to SpecOL → X. Note, if it

exits, such an extension is unique, and if X is proper, then there always exists an

extension. We will denote this extension also by ρ. We will also write ρ : SpecL→X
for the henselian dvf point of X defined by ρ.

Notation 4.2.

(1) Set F ∈PST and X ∈ Sm. A henselian dvf point ρ : η = SpecL→X is a morphism

in Corpro (see Defintion 2.2). Hence we get a morphism (see Section 2.6)

ρ∗ : F (X)→ F (η) =: F (L), a �→ ρ∗a.

Also, η = SpecL→ SpecOL = η is in Corpro, and we get an induced map F (OL) :=

F (η)→ F (L).

(2) Let X =
(
X,X∞

)
be a modulus pair with X = X \ |X∞| and ρ : SpecL → X a

henselian dvf point. Then we denote by

vL(X∞) = v(ρ∗X∞) ∈ N0

the multiplicity of X∞ pulled back along ρ.

Definition 4.3. Set F ∈PST and n ∈ [1,∞]. A conductor of level n for F is a collection

of set maps

c= {cL : F (L)→ N0 | L ∈ Φ≤n}
satisfying the following properties for all L ∈ Φ≤n and all X ∈ Sm:

(c1) cL(a) = 0 ⇒ a ∈ Im(F (OL)→ F (L)).

(c2) cL(a+ b)≤max{cL(a),cL(b)}.
(c3) cL(f∗a)≤

⌈
cL′ (a)
e(L′/L)

⌉
for any finite morphism f : SpecL′ → SpecL and any a∈F (L′).

Here e(L′/L) denotes the ramification index of L′/L and �−� is the roundin up.

(c4) Assume a ∈ F
(
A1

X

)
satisfies ck(x)(t)∞(ρ∗xa)≤ 1 for all x ∈X with trdeg(k(x)/k)≤

n−1, where k(x)(t)∞ := Frac
(
Oh

P1
x,∞

)
and ρx : Speck(x)(t)∞ →A1

X is the natural

map. Then a ∈ π∗F (X), with π :A1
X →X the projection.

(c5) For any a ∈ F (X) there exists a proper modulus pair X =
(
X,X∞

)
with X =

X \ |X∞|, such that for all ρ : SpecL→X we have

cL(ρ
∗a)≤ vL(X∞).

A conductor of level ∞ will be simply called a conductor.

Remarks 4.4.

(1) If F is homotopy invariant, then setting cL(a) = 0 if a ∈ Im(F (OL) → F (L)) and

cL(a) = 1 otherwise defines a conductor (of any level).
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(2) If c= {cL} is a conductor for F , then for any L we have

a ∈ Im(F (OL)→ F (L))⇐⇒ cL(a) = 0. (4.4.1)

Indeed, if a ∈ Im(F (OL) → F (L)), then we find a smooth k-scheme U , a 1-

codimensional point x ∈ U (1), a k-morphism SpecOL → SpecOU,x → U and an
element ã ∈ F (U) such that ρ∗ã= a ∈ F (L), where ρ : SpecL→ SpecOL → U . The

vanishing of cL(a) hence follows directly from axiom (c5).

(3) Let c = {cL} be a conductor. Then c≤n := {cL | trdeg(L/k) ≤ n} is a conductor if
and only if c≤n satisfies axiom (c4).

Definition 4.5. Set F ∈ PST and let c = {cL} be a conductor of level n for F . Let

X =
(
X,X∞

)
be a modulus pair with X =X \ |X∞|. For a ∈ F (X), we write

cX(a)≤X∞

to mean cL(ρ
∗a)≤ vL(X∞) for all henselian dvf points ρ : SpecL→X with trdeg(L/k)≤n

(see Definition 4.1).

Lemma 4.6. Let c be a conductor of some level for F ∈PST, X ∈Sm and a∈F (X). Let

X =
(
X,X∞

)
be any proper modulus pair with X =X \X∞. Then there exists a natural

number n≥ 1 such that cX(a)≤ n ·X∞.

Proof. By Definition 4.3, axiom (c5), there exists a proper modulus pair X1 =
(
X1,X1,∞

)
with corresponding open X and such that cL(ρ

∗a)≤ vL(X1,∞) for all ρ. We find a proper

normal k-schemeX2 with k-morphisms f :X2 →X, f1 :X2 →X1 such thatX2\|f∗X∞|=
X =X2 \ |f∗

1X1,∞|. Take n≥ 1 with f∗
1X1,∞ ≤ n ·f∗X∞. Then for ρ : SpecL→X,

cL(ρ
∗a)≤ vL(X1,∞) = vL(f

∗
1X1,∞)≤ vL(n ·f∗X∞) = vL(n ·X∞).

Hence the statement.

Proposition 4.7. Set F ∈PST and let c be a conductor of level n for F . Then

MCor � X =
(
X,X∞

)
�→ Fc(X ) :=

{
a ∈ F

(
X \ |X∞|

)
|cX(a)≤X∞

}
defines an object in MPST. Furthermore (see Section 3.3 for notations), the following
are true:

(1) For any X ∈MCor, the pullback along the projection map X ⊗�→X induces an

isomorphism Fc(X )∼= Fc

(
X ⊗�

)
. In particular, τ∗Fc ∈CI.

(2) ω!τ
∗Fc

∼= F .

(3) F ∈NST⇒ Fc ∈MNST.

Proof. We start by showing Fc ∈ MPST. Let X =
(
X,X∞

)
and Y =

(
Y ,Y∞

)
be two

modulus pairs with corresponding opens X and Y , respectively. We have to show that

a left proper admissible prime correspondence V ∈MCor(X ,Y) ⊂Cor(X,Y ) sends the
subgroup Fc(Y) ⊂ F (Y ) to Fc(X ) ⊂ F (X). Take a ∈ Fc(Y) and a henselian dvf point

ρ : η = SpecL→X with trdeg(L/k)≤ n. We have to show

cL(ρ
∗V ∗a)≤ v(ρ∗X∞). (4.7.1)
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Since V →X is finite, (η×X V )red is a disjoint union of points ηi =SpecLi, with Li ∈Φ≤n.

Thus

V ◦ρ=
∑
i

mi ·ηi ∈Cor(η,Y ),

with some multiplicities mi ∈ N. For each i we get a commutative diagram

ηi ��

ρi

��

fi

��

V

��

�� Y

η
ρ �� X,

where ρi is a henselian dvf point of Y and fi is finite. We have ηi =Γρi
◦Γt

fi
in Cor(η,Y )

(see Section 2.6 for the notation). Thus

ρ∗V ∗ =
∑
i

mi ·fi∗ρ∗i : F (Y )→ F (η). (4.7.2)

Since the closure V of V in X×Y is proper over X and ρ extends to ρ, we see that ρi
extends to ρi as in the diagram

SpecOLi

ρi

		��

��

V

��

�� Y

SpecOL
ρ �� X.

Since V satisfies the modulus condition (3.1.2), we get

vLi
(X∞)≥ vLi

(Y∞). (4.7.3)

Indeed, let B be the local ring of V at the image of the closed point of OLi
, x and y ∈B

be the local equations for X∞�V and Y∞�V , respectively, and x̄ and ȳ be their images in
OLi

\{0}. Then condition (3.1.2) says that x/y ∈ Frac(B) is a root of a monic polynomial

P (T )∈B[T ]. It follows that x̄/ȳ ∈Li is a root of the image of P (T ) under B[T ]→OLi
[T ]

– that is, x̄/ȳ is integral over OLi
, which means vLi

(x̄)≥ vLi
(ȳ).
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Let j be an index with cL
(
fj∗ρ

∗
ja
)
=maxi {cL (fi∗ρ∗i a)}. We obtain

cL(ρ
∗V ∗a) = cL

(∑
i

mi ·fi∗ρ∗i a
)

by equation (4.7.2), (4.7.4)

≤ cL
(
fj∗ρ

∗
ja
)

by Definition 4.3, axiom (c2),

≤
⌈
cLj

(
ρ∗ja
)

e(Lj/L)

⌉
by Definition 4.3, axiom (c3),

≤
⌈
vLj

(Y∞)

e(Lj/L)

⌉
, a ∈ Fc(Y),

≤
⌈
vLj

(X∞)

e(Lj/L)

⌉
by formula (4.7.3)

= vL(X∞),

where the last equality follows from vLj
(X∞) = e(Lj/L)vL(X∞). This proves for-

mula (4.7.1) and hence that Fc is in MPST.
Next we prove statement (1) in the proposition. Let X =

(
X,X∞

)
be a modulus pair

with X =X \|X∞|. Denote by π :X×A1
k →X the projection and by i0 :X ↪→X×A1

k the

zero section. These define morphisms π ∈MCor
(
X ⊗�,X

)
and i0 ∈MCor

(
X ,X ⊗�

)
.

We have to show that π∗ : Fc(X )→ Fc

(
X ⊗�

)
is an isomorphism. Since i∗0π

∗ = idFc(X ),

it suffices to show that π∗ is surjective. Take a ∈ Fc

(
X ⊗�

)
. For any henselian dvf point

ρ : SpecL→
(
P1

X,{∞}X
)
with trdeg(L/k)≤ n, we have

cL(ρ
∗a)≤ vL

(
X∞×P1+X×{∞}

)
= vL(X×{∞}).

Hence by Definition 4.3, axiom (c4), there exists an element b ∈ F (X) with π∗(b) = a. We

have to check that b∈Fc(X ). Take ρ : SpecL→X , a henselian dvf point with trdeg(L/k)≤
n. Then i0 ◦ρ : SpecL→X ⊗� is a henselian dvf point, and thus

cL(ρ
∗b) = cL(ρ

∗i∗0π
∗b) = cL((i0 ◦ρ)∗a)

≤ vL
(
X∞×P1+X×{∞}

)
= vL(X∞).

Hence b ∈ Fc(X ). Statement (2) follows directly from equation (3.3.2) and Definition 4.3,

axiom (c5). Finally we address statement (3). For X =
(
X,X∞

)
, the presheaf Fc,X on

X ét (see formula (3.4.1)) is given by(
U

u−→X
)
�→ {a ∈ F (U \ |u∗X∞|)|cU (a)≤ u∗X∞} .

We have to show that this is a Nisnevich sheaf. Since F is a Nisnevich sheaf, it suffices
to show the following: let u : U →X be an étale map, set a ∈ F (U \ |u∗X∞|) and assume

there is a Nisnevich cover �iUi
�ui−−→U so that cUi

(u∗
i a)≤ u∗

i u
∗X∞ for all i. Then we have

to show cU (a)≤ u∗X∞. To this end, observe that if ρ : SpecL→ (U,u∗X∞) is a henselian

dvf point with trdeg(L/k)≤ n and x∈U is the image point of the closed point of SpecOL,

then by the functoriality of henselisation, ρ factors via SpecOL → SpecOh
U,x → U . Hence
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there is an i such that ρ factors via SpecOL → Ui
ui−→ U . Thus cL(ρ

∗a)≤ vL(u
∗
i v

∗X∞) =

vL(v
∗X∞). This completes the proof.

4.8. Set F ∈PST and let c be a conductor of some level for F . Let Fc ∈MPST be as

in Proposition 4.7. We set (see Section 3.3 for notation)

F̃c := τ!τ
∗Fc ∈MPST .

By adjunction we have a natural map

F̃c → Fc

which is injective. Indeed, on X =
(
X,X∞

)
∈ MCor it is given by the inclusion inside

F
(
X \ |X∞|

)
,

F̃c(X ) = lim−→
Y∈Comp(X )

Fc(Y)→ Fc(X ).

By Proposition 4.7 and [25, Lemma 4.2.5] (or a similar argument as in the proof of

Proposition 4.7(3)), we have

F ∈NST⇒ F̃c ∈MNST . (4.8.1)

4.9. Set F ∈ RSC. Denote by CI(F ) the partially ordered set consisting of those
subobjects G ⊂ ωCIF in MPST such that the induced map ω!G → ω!ω

CIF = F is an

isomorphism and the partial order is given by the inclusion G1 ⊂G2 We set

CI(F )Nis :=CI(F )∩MNST .

Lemma 4.10. Set F ∈RSC and G∈CI(F ). Then G1 = τ!G∈MPST has the following
properties:

(1) the unit G1 ↪→ ω∗ω!G1 of the adjunction (ω!,ω
∗) is injective;

(2) the counit τ!τ
∗G1

�−→G1 of the adjunction (τ!,τ
∗) is an isomorphism;

(3) for all X ∈MCor, the pullback G1(X )
�−→G1

(
X ⊗�

)
is an isomorphism.

Proof. Note that (2) follows directly from τ∗τ! = id. We show (1) and (3). The inclusion

G ↪→ ωCIF yields a commutative diagram

G1
� � ��

��

τ!ω
CIF� �

��
ω∗ω!G1

�� ω∗ω!τ!ω
CIF = ω∗F.

Here the top horizontal row is injective by the exactness of τ!, the vertical maps are

induced by adjunction and the vertical map on the right is injective by equation (3.3.4).

It follows that the vertical map on the left is injective; furthermore, the injectivity of the
top horizontal map and [45, Lemma 1.15, Lemma 1.16] imply that G1 is �-invariant.

Remark 4.11. Lemma 4.10 says that τ!CI(F )⊂ τCIsp, in the notation of [45].
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Lemma 4.12. Set F ∈PST and let c be a conductor of some level for F . Then τ∗F̃c =

τ∗Fc ∈CI(F ) (see Section 4.8 for notation). If F ∈NST, then τ∗Fc ∈CI(F )Nis.

Proof. By Proposition 4.7(2), it suffices to show that there is an inclusion τ∗Fc ↪→ ωCIF

inside ω∗F . For X a proper modulus pair, set Ztr(X ) :=MCor(−,X ) and

h�
0 (X ) = Coker

(
Ztr(X )

(
�⊗−

) i∗0−i∗1−−−→ Ztr(X )

)
.

By [24, Lemma 1.1.3] and [27, Lemma 2.2.2], we have (see Sections 3.1 and 3.3 for

notation)

ω!Ztr(X ) = Ztr(X), ω!h
�
0 (X ) = h0(X ),

where X = X \ |X∞|. Take a ∈ Fc(X ) ⊂ F (X). Since Fc is cube invariant, by Proposi-

tion 4.7, the Yoneda map a :Ztr(X )→ τ∗Fc factors via the quotient map Ztr(X )→ h�
0 (X ).

Applying ω! = ω!τ! we see that the Yoneda map a : Ztr(X) → F in PST defined by

a∈F (X) factors via Ztr(X)→ h0(X ) – that is, a∈ ωCIF (X ). This proves the lemma.

Notation 4.13. Set L∈Φ. Denote by s∈ S := SpecOL the closed point. For all n≥ 1 we

have (S,n · s) ∈MCorpro (see Section 3.7). Set G ∈MPST; we extend it to a presheaf

on MCorpro. For n≥ 0 we introduce the following notation:

G
(
OL,m

−n
L

)
:=

{
ω!G(S) =G(S,∅) if n= 0,

G(S,n ·s) if n≥ 1.

Definition 4.14. Set F ∈ RSCNis and G ∈ CI(F ) (see Section 4.9). We denote by

cG =
{
cGL
}
the family of maps cGL : F (L)→ N0, L ∈ Φ, defined as

cGL (a) := min
{
n≥ 0 | a ∈ τ!G

(
OL,m

−n
L

)}
.

This is well defined, since

F (L) = ω!τ!(G)(L) = τ!(G)(L,∅) =
⋃
n

τ!G
(
OL,m

−n
)
.

When G= ωCIF , we write

cF := cω
CIF (4.14.1)

and call cF the motivic conductor of F .

Theorem 4.15. Let F be a presheaf with transfers.

(1) If F has a conductor c of some level, then F ∈RSC.

(2) If F ∈RSCNis and G ∈ CI(F ) (see Section 4.9), then the family cG =
{
cGL
}
(see

Definition 4.14) is a conductor for F in the sense of Definition 4.3. In particular,
cF is a conductor for F .

(3) Set F ∈RSCNis and G ∈CI(F ). Then in MPST,

τ!G⊂ F̃cG,
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and for all L ∈ Φ and n≥ 0, we have

τ!G
(
OL,m

−n
L

)
= F̃cG

(
OL,m

−n
L

)
.

(4) Set F ∈RSCNis and let c be a conductor for F (of some level). Then

F̃c ⊂ τ!ω
CIF = F̃cF ,

where cF is the motivic conductor (see definition (4.14.1)).

In particular,

F ∈RSCNis ⇐⇒ F ∈NST and F has a conductor (of some level).

Proof. (1). We have F =ω!τ
∗Fc ∈ω!(CI)⊂RSC, by Proposition 4.7 and [27, Proposition

2.3.7]. For (2), we check the properties from Definition 4.3. Set G1 := τ!G; then

Definition 4.3, axiom (c1), follows from ω!G1(OL) = ω!G(OL) = F (OL), and axiom (c2)

is obvious. As for axiom (c3), let L′/L be a finite extension of henselian dvfs with
ramification index e. The induced finite morphism f : SpecOL′ → SpecOL induces a

morphism in MCorpro,

(SpecOL,n ·sL)→ (SpecOL′,en ·sL′),

where sL (resp., sL′) are the closed points. This yields the commutative diagram

G1(OL′,∅)

f∗

��

�� G1

(
OL′,m−en

L′
)

��

f∗

��

ω∗ω!G1

(
OL′,m−en

L′
)
= F (L′)

f∗

��
G1(OL,∅) �� G1

(
OL,m

−n
L

)
�� ω∗ω!G1

(
OL,m

−n
L

)
= F (L).

Hence, we obtain the following inequality, which implies axiom (c3):

cGL (f∗a)≤min
{
n | a ∈G1

(
OL′,m−en

L′
)}

=min
{
n | cGL′(a)≤ en

}
.

The following claim clearly implies axiom (c4):

Claim 4.15.1. Set X ∈ Sm and a∈ F (A1
X). Assume X connected with function field K.

Set K(t)∞ := Frac
(
Oh

P1
K,∞

)
inducing the henselian dvf point SpecK(t)∞ →

(
P1

K,∞
)
.

Assume cGK(t)∞
(aK)≤ 1, where aK ∈ F

(
A1

K

)
is the restriction of a. Then a ∈ F (X).

Proof of Claim 4.15.1. The restriction map F
(
A1

X

)
→ F

(
A1

K

)
is injective, by [26,

Theorem 6] and [27, Corollary 3.2.3]; thus it suffices to show aK ∈ F (K). Set G1,Nis :=

aNis(G1) (see Section 3.4). Consider the Nisnevich localisation exact sequence

G1,Nis

(
P1

K,∞
)
→G1,Nis

(
A1

K,∅
)
→G1(K(t)∞,∅)/G1

(
OK(t)∞,∞

)
.

By [45, Theorem 4.1], we have G1,Nis

(
A1

K,∅
)
= G1

(
A1

K,∅
)
= F

(
A1

K

)
. Hence our

assumption implies that aK comes from G1,Nis

(
P1

K,∞
)
and the desired assertion follows

from the cube invariance of G1,Nis (see [45, Theorem 10.1]) and Remark 4.11:

G1,Nis

(
P1

K,∞
)
�G1,Nis(K,∅) =G1(K,∅)� F (K).
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Next we prove axiom (c5). Set X ∈ Sm and a ∈ F (X). We can assume that X is not

proper over k. Take any X =
(
X,X∞

)
∈MCor such that X =X−|X∞|. We have

F (X) = ω!G(X) = lim−→
n>0

G
(
X,n ·X∞

)
,

and hence a ∈ G
(
X,n ·X∞

)
, for some n. Then for any henselian dvf point SpecL →(

X,n ·X∞
)
, we get a ∈G1

(
OL,m

−nvL(X∞)
L

)
so that cFL(a)≤ n ·vL(X∞). This completes

the proof of statement 2.
For statement (3), it follows directly from the definition of FcG in Proposition 4.7 that

τ!G ⊂ FcG ; hence also τ!G = τ!τ
∗τ!G ⊂ τ!τ

∗FcG = F̃cG . Furthermore, the equality in the

second part of the statement comes from the inclusions

τ!G
(
OL,m

−n
L

)
⊂ F̃cG

(
OL,m

−n
L

)
⊂
{
a ∈ F (L) | a ∈ τ!G

(
OL,m

−n
L

)}
,

where the first inclusion comes from the foregoing and the second holds by definition.

Finally we come to statement (4). The inclusion F̃c ⊂ τ!ω
CIF follows from Lemma 4.12.

The equality F̃cF = τ!ω
CIF now follows from this and (3). This completes the proof.

Corollary 4.16. The functor ωCI : RSC → CI restricts to a functor ωCI : RSCNis →
CINis :=CI∩MNST.

Proof. Take F ∈RSCNis. By Theorem 4.15, Proposition 4.7(3) and formula (4.8.1), we

have τ!ω
CIF = F̃cF ∈MNST. Hence ωCIF ∈MNST, by definition (see Section 3.4).

Notation 4.17. Set F ∈RSCNis. In the following we will simply write

F̃ := F̃cF = τ!ω
CIF.

By Corollary 4.16 we have τ∗F̃ ∈CI(F )Nis (see Section 4.9).

Corollary 4.18. Set F ∈ RSCNis. Denote by
(
cF
)≤n

the restriction of the motivic

conductor to trdeg ≤ n. Assume that
(
cF
)≤n

is a conductor of level n. Then

F̃(cF )≤n = F̃ .

Proof. Clearly F̃cF ⊂ F̃(cF )≤n , and ⊃ holds by Theorem 4.15(4).

Proposition 4.19. Let F1 ⊂ F2 be an inclusion in RSCNis. Then the restriction of the

motivic conductor of F2 to F1 is equal to the motivic conductor on F1 – that is,

cF1 =
(
cF2
)
|F1

.

Proof. Set a ∈ F1(X). By the definition of the motivic conductor, it suffices to show that

a has modulus
(
X,X∞

)
as an element in F2(X) if and only if it has the same modulus

as an element in F1(X). This is obvious (see Definition 3.2).

https://doi.org/10.1017/S1474748021000074 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000074


Reciprocity sheaves and their ramification filtrations 93

Lemma 4.20. Set F1,F2 ∈RSCNis. Set L ∈ Φ and ai ∈ Fi(L). Then cF1⊕F2

L (a1+a2) =

max
{
cF1

L (a1),c
F2

L (a2)
}
.

Proof. This is direct from Definition 4.14.

Proposition 4.21. Let k1/k be an algebraic (hence separable) field extension and set
F ∈RSCNis,k1

(that is, F is a contravariant functor Cork1
→Ab which is a Nisnevich

sheaf on Smk1
and has SC-reciprocity). Denote by Rk1/kF :Sm=Smk →Ab the functor

given by

X �→Rk1/kF (X) := F (Xk1
),

where Xk1
=X×Speck Speck1. Then Rk1/kF ∈RSCNis and its motivic conductor is given

by

c
Rk1/kF

L (a) = max
i

{
cFLi

(ai)
}
,

where L⊗k k1 ∼=
∏

iLi and a= (ai) ∈Rk1/kF (L) =
∏

iF (Li).

Proof. The first statement follows from the definition of RSCNis; for the second, observe

that for L ∈ Φ the k1-algebra L⊗k k1 =
∏

iLi is unramified over L, and hence (see
Notation 4.17 for notation)

R̃k1/kF
(
OL,m

−n
L

)
=
∏
i

F̃
(
OLi

,m−n
Li

)
.

This yields the statement.

4.1. Semicontinuous conductors

Definition 4.22. Set F ∈PST and let c be a conductor of level n ∈ [1,∞] for F . We say

c is semicontinuous if it satisfies the following condition:

(c6) Set X ∈ Sm with dim(X) ≤ n and Z ⊂ X a smooth prime divisor with generic

point z and K = Frac
(
Oh

X,z

)
. Then for any a ∈ F (X \Z) with cK(aK)≤ r there

exists a Nisnevich neighbourhood u : U → X of z and a compactification Y =(
Y ,Y∞

)
of (U,r ·u∗Z) such that (see Definition 4.5 for notation)

cY (aU )≤ Y∞,

where aU (resp., aK) denotes the restriction of a to U (resp., K).

Lemma 4.23. Set F ∈ PST and let c be a conductor of level n for F . The following

statements are equivalent:

(1) c is semicontinuous;

(2) F̃c

(
OL,m

−r
L

)
= {a ∈ F (L) | cL(a)≤ r} for L ∈ Φ≤n, r ≥ 0.

Proof. Set a ∈ F (L). Then a ∈ F̃c

(
OL,m

−r
L

)
if and only if there exist a smooth scheme

X, a smooth prime divisor Z on X with generic point z, a k-isomorphism OL
∼= Oh

X,z,
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an element ã ∈ F (X \Z) restricting to a and a compactification Y =
(
Y ,Y∞

)
of (X,r ·Z),

such that cY (ã) ≤ Y∞. From this description we see that the ⊂ inclusion in (2) always

holds, while the ⊃ inclusion is equivalent to the semicontinuity of c.

Corollary 4.24. Set F ∈RSCNis and let c be a semicontinuous conductor of level n for

F . Then
(
cF
)≤n ≤ c – that is, for all L ∈ Φ≤n and all a ∈ F (L) we have cFL (a)≤ cL(a).

Proof. This follows from Theorem 4.15(4) and Lemma 4.23.

We can summarise part of the foregoing as follows:

Theorem 4.25. Set F ∈RSCNis.

(1) Any G ∈ CI(F ) (see Section 4.9) defines a semicontinuous conductor cG (see

Definition 4.14). For G1 ⊂G2 in CI(F ), we have cG2 ≤ cG1 .

(2) Let c be a conductor of level n ∈ [0,∞]. Then τ∗Fc ∈CI(F )Nis. For c1 ≤ c2 we have

τ∗Fc2 ⊂ τ∗Fc1 . If, furthermore, c is semicontinuous, then c=
(
cτ

∗Fc
)≤n

.

(3) Assume that G ∈CI(F )Nis satisfies

G(X ) =
{
a ∈ F (X)

∣∣∣ρ∗a ∈ τ!G
(
OL,m

−vL(X∞)
L

)
,

∀ρ : SpecL→X ,
with L ∈ Φ

}
,

for all proper modulus pairs X =
(
X,X∞

)
with X =X \ |X∞|. Then τ∗FcG =G.

(4) Let c be a semicontinuous conductor of level n for F (possibly only defined on

trdeg≤ n). Then there exists a unique semicontinuous conductor c∞ for F with the

properties

τ∗Fc = τ∗Fc∞ and c= (c∞)≤n.

We call c∞ the canonical extension of c.

(5) Assume that the restriction
(
cF
)≤n

of the motivic conductor to trdeg ≤ n is

a conductor. Then its canonical extension is the motivic conductor – that is,((
cF
)≤n
)∞

= cF .

Proof. (1) holds from Theorem 4.15(3) and Lemma 4.23. (2) follows from Lemmas 4.12

and 4.23. (3) holds by the definitions involved. For (4), set G := τ∗Fc; then G ∈CI(F )

by (2) and it satisfies the condition from (3) by Lemma 4.23. Set c∞ := cG. Then c∞ has
the desired properties by (3) and (2). Finally, (5) follows from Corollary 4.18.

We finish this section with some lemmas which are needed later.

Definition 4.26. Set F ∈ RSCNis. We say F is proper if the following equivalent
conditions are satisfied:

(1) For all X ∈ Sm and any dense open U ⊂X, the restriction map F (X)
�−→ F (U) is

an isomorphism.

(2) Any conductor c on F is trivial – that is, cL = 0 for all L.
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For (2) ⇒ (1), use the fact that axiom (c4) implies F ∈ HINis, and then the statement

follows from Voevodsky’s Gersten resolution (compare [28, Lemma 10.3]).

Lemma 4.27. Let 0→ F1
ϕ−→ F

ψ−→ F2 → 0 be an exact sequence in NST and with F1,

F2 ∈RSCNis, and assume F1 is proper.

Then F ∈ RSCNis. Any (semicontinuous) conductor c of level n on F2 induces a
(semicontinuous) conductor cψ = {cL ◦ψ}L of level n on F . Furthermore, the motivic

conductor of F is given by cF = cF2ψ.

Proof. Let c be a conductor of level n on F2. Then cψ clearly satisfies axioms (c2),

(c3) and (c5) (and (c6), if c does). By the properness of F1, we have an isomorphism

F (L)/F (OL)∼= F2(L)/F2(OL), which implies (c1). Assume that a ∈ F
(
A1

X

)
satisfies the

assumption in (c4) for cψ. Let π :A1
X →X be the projection and i :X ↪→A1

X the zero
section. Then ψ(a−π∗i∗a)=ψ(a)−π∗i∗ψ(a)∈F2

(
A1

X

)
satisfies the assumption from (c4)

for c; hence it lies in π∗F2(X), and thus is zero. Therefore, a−π∗i∗a∈F1

(
A1

X

)
=π∗F1(X),

and hence it is zero – that is, a= π∗i∗a. This shows that cψ satisfies (c4). Therefore cψ
is a conductor of level n. Thus Theorem 4.15 yields F ∈RSCNis and F̃cF2ψ

(
OL,m

−n
L

)
⊂

F̃
(
OL,m

−n
L

)
. We have inclusions

F̃cF2ψ

(
OL,m

−n
L

)
/F1(OL) ↪→ F̃

(
OL,m

−n
L

)
/F1(OL) ↪→ F̃2

(
OL,m

−n
L

)
,

where the second map is injective by the properness of F1. Since F̃2 = F̃2,cF2 , the
composition is an isomorphism; thus cF = cF2ψ.

Lemma 4.28. Let ϕ : F →→ G be a surjection in NST. Let c = {cL : F (L)→ N}L∈Φ≤n

be a collection of maps. Define c̄= {c̄L :G(L)→ N}L∈Φ≤n
by

c̄L(a) := min{cL(ã) | ã ∈ F (L) with ϕ(ã) = a}.

If c satisfies (c1) (resp., (c2), (c3) or (c6)), then so does c̄.

Furthermore, suppose ϕ has the following property: for all X ∈ Sm there exists a proper
modulus pair

(
X,X∞

)
with X = X \X∞, such that for all x ∈ X the map ϕ induces a

surjection

F
(
X

h

(x) \X∞,(x)

)
→→G

(
X

h

(x) \X∞,(x)

)
, (4.28.1)

where X
h

(x) = SpecOh
X,x

and X∞,(x) denotes the restriction of X∞ to X
h

(x). Then c̄

satisfies (c5), if c does.

Proof. (c1). If c̄L(a) = 0, then there exists a lift ã ∈ F (L) with cL(ã) = 0, and hence
ã ∈ F (OL) by (c1) for c. Therefore a ∈G(OL).

(c2). Set a,b ∈G(L). Take lifts ã,b̃ ∈ F (L) with cL(ã) = c̄L(a) and cL

(
b̃
)
= c̄L(b). Then

by (c2) for c,

c̄L(a+ b)≤ cL

(
ã+ b̃

)
≤max

{
cL(ã),cL

(
b̃
)}

=max{c̄L(a),c̄L(b)}.
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(c3). Let f : SpecL′ → SpecL be a finite extension with ramification index e and set

a ∈G(L′). Take a lift ã ∈ F (L′) with c̄L′(a) = cL′(ã). Then by (c3) for c,

c̄L(f∗a)≤ cL(f∗ã)≤
⌈
cL′(ã)

e

⌉
=

⌈
c̄L′(a)

e

⌉
.

(c6). Let X,z ∈ Z,K be as in (c6) and a ∈G(X \Z) with c̄K(aK)≤ r. Let ãK ∈ F (K) be
a lift of aK with cK(ãK) = c̄K(aK). Since SpecK = SpecOK \ZOK

, we find a Nisnevich

neighbourhood U → X of z and an element ã ∈ F (U \Z) which restricts to ãK . After

possibly shrinking U around z, we may assume that ϕ(ã) = a|U\ZU
. By (c6) for F , we

may shrink U further around z to obtain a compactification Y =
(
Y ,Y∞

)
of (U,r ·ZU )

such that

c̄Y (aU )≤ cY (ãU )≤ Y∞.

(c5). Assuming condition (4.28.1), set X ∈ Sm and a ∈ G(X). Let X =
(
X,X∞

)
be a

proper modulus pair with X =X \ |X∞| as in condition (4.28.1). This condition implies

that we find a finite Nisnevich cover
{
Ui →X

}
i
and ãi ∈F (Ui,X) such that ϕ(ãi) = a|Ui,X

in G(Ui,X), where {Ui,X →X}i is the induced Nisnevich cover of X. Let Yi =
(
Y i,Yi,∞

)
be a compactification of (Ui,X∞|Ui

) which admits a morphism Yi →X extending Ui →
X and inducing a morphism of proper modulus pairs Yi → X . By (c5) for c and (the

proof of) Lemma 4.6, we find an integer N � 0 such that cL(ρ
∗ãi)≤N ·vL(Yi,∞) for all

ρ : SpecL→ Ui,X = Y i \ |Yi,∞|, L ∈ Φ≤n. Let ρ : SpecL→X be any henselian dvf point
with L ∈ Φ≤n; denote by s ∈ X the image of the closed point under the induced map

ρ̄ : SpecOL → X. By the Nisnevich property, there exist an i and a point si ∈ Ui such

that Ui →X induces an isomorphism si
�−→ s. Hence ρ̄ factors via Ui ↪→ Y i →X. Thus

c̄L(ρ
∗a)≤ cL(ρ

∗ãi)≤N ·vL(Yi,∞) =N ·vL(X∞),

where for the equality we used (Yi,∞)|Ui
= (X∞)|Ui

. Thus a satisfies (c5) for(
X,N ·X∞

)
.

4.2. Homotopy-invariant subsheaves

Corollary 4.29. Let F ∈NST be A1-invariant (in particular, F ∈RSCNis). Then the

motivic conductor of F is given by

cFL (a) =

{
0 if a ∈ F (OL),

1 otherwise.

Proof. The right-hand side defines a conductor, as already noted in Remark 4.4; it is
clearly semicontinuous. By Corollary 4.24 we get ≤ in the statement, and (c1) forces it

to be an equality.

4.30. We denote by HI the category of A1-invariant presheaves with transfers and set

HINis :=HI∩NST. It follows immediately from Definition 3.2 that we have HI⊂RSC

and HINis ⊂RSCNis.
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Set F ∈PST. For X ∈ Sm, we denote by

h0
A1(F )(X)

the subset of F (X) formed by those sections a ∈ F (X) for which the Yoneda map a :

Ztr(X)→ F factors via

hA1

0 (X) = Coker

(
Ztr(X)

(
−×A1

k

) i∗0−i∗1−−−→ Ztr(X)

)
∈PST.

We immediately see that X �→ h0
A1(F )(X) defines a subpresheaf with transfers of F ,

since hA1

0 (X) ∈ HI (see, for example, [48, Proposition 3.6]) and we have h0
A1(F ) ∈ HI;

furthermore, it has the universal property that any morphism H → F in PST with
H ∈ HI factors uniquely via a morphism H → h0

A1(F ) in HI. Note that if F ∈ NST,

then h0
A1(F ) ∈ HINis. Indeed, by [49, Theorem 3.1.12], Nisnevich sheafification induces

an exact functor HI→HINis, and thus we obtain natural inclusions in PST

h0
A1(F ) ↪→ h0

A1(F )Nis ↪→ FNis = F.

Since h0
A1(F )Nis ∈ HI, the second inclusion factors via h0

A1(F ); hence h0
A1(F ) =

h0
A1(F )Nis.

Proposition 4.31. Set F ∈PST and let c be a conductor of level n for F . Then

X �→ F c≤1(X) :=

{
a ∈ F (X)

∣∣∣∣cL(ρ∗a)≤ 1,
∀ρ : SpecL→X
with L ∈ Φ≤n

}
defines a homotopy-invariant subpresheaf with transfers of F . If F ∈NST, then F c≤1 ∈
HINis.

Proof. Showing that F c≤1 ∈ PST is equivalent to the following: let V ∈Cor(X,Y ) be

a finite prime correspondence and set a ∈ F c≤1(Y ); then for all henselian dvf points

ρ : SpecL→X with trdeg(L/k)≤ n, we have

cL(ρ
∗V ∗a)≤ 1.

This follows from the calculation in equation (4.7.4). The A1-invariance of F c≤1 follows

directly from (c4). The last statement is proven similarly as in Proposition 4.7(3).

Corollary 4.32. Set F ∈RSCNis with motivic conductor cF . Then

h0
A1(F ) = F cF≤1.

Proof. By Proposition 4.31 we have F cF≤1 ⊂ h0
A1(F ). By Proposition 4.19 and

Corollary 4.29 we have
(
cF
)
|h0

A1 (F )
= ch

0
A1 (F ) ≤ 1; hence h0

A1(F )⊂ F cF≤1.

Corollary 4.33. Set F ∈RSCNis. Assume that for all L ∈ Φ we have

F̃
(
OL,m

−1
L

)
= F (OL). (4.33.1)
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Let X ∈ Sm be proper over k and U ⊂X be dense open. Then

h0
A1(F )(U) = F (X).

In particular, if F satisfies equation (4.33.1), then X �→ F (X) is a birational invariant

on smooth proper schemes.

Proof. By Corollary 4.32,

h0
A1(F )(U) = F cF≤1(U).

Hence F (X)⊂ h0
A1(F )(U), and by equation (4.33.1) we also have

h0
A1(F )(U)⊂

⋂
x∈X(1)

F
(
Oh

X,x

)
.

By [45, Cor 0.3], ⋂
x∈X(1)

F
(
Oh

X,x

)
= F (X).

Taking all this together yields the statement.

4.3. Local symbols

4.34. We recall the notion of local symbols for reciprocity sheaves; see [47, III, §1], [26,
Proposition 5.2.1] or [23, 1.5] for details.
Set F ∈ RSCNis. If L/K is a finite field extension of finitely generated fields over k,

we denote by TrL/K : F (L) → F (K) the map induced by the transfer structure on F .

For X ∈Corpro, x ∈X and a ∈ F (X) we denote by a(x) ∈ F (x) the pullback of a along

x ↪→X.
Let K be a function field over k and C be a regular projective K-curve. Note that

C ∈Corpro, by Lemma 2.4. For x∈C(0) a closed point, we write vx for the corresponding

normalised discrete valuation on K(C)× and mx ⊂ OC,x for the maximal ideal, and set

U
(n)
x := 1+mn

x ⊂O×
C,x, n≥ 1. Let D =

∑
nx ·x be an effective Cartier divisor on C and

set a∈ F̃ (C,D) (see Notation 4.17 for the notation F̃ ). Then there exists a family of maps{
(a,−)C/K,x :K(C)× → F (K)

}
x∈C(0)

which is uniquely determined by the following properties:

(LS1) (a,−)C/K,x :K(C)× → F (K) is a group homomorphism;

(LS2) (a,f)C/K,x = vx(f)TrK(x)/K(a(x)), for x ∈ C \ |D|;

(LS3)
(
a,U

(nx)
x

)
C/K,x

= 0;

(LS4)
∑

x∈C(0)
(a,f)C/K,x = 0.

It follows from uniqueness that the family {(a,−)C/K,x} does not depend on the chosen

modulus D. Furthermore, from uniqueness we can deduce the following properties:

(LS5) (−,−)C/K,x : F (K(C))×K(C)× → F (K) is bilinear;
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(LS6) if h : F →G is a morphism in RSCNis, then in G(K),

h((a,f)C/K,x) = (h(a),f)C/K,x, all a ∈ F (K(C)),f ∈K(C)×.

Let K ′/K be a finite field extension, C ′/K ′ ∈Corpro a projective curve and π : C ′ → C

a finite morphism over SpecK ′ → SpecK. Then we have the following properties:

(LS7) for b ∈ F (K ′(C ′)), f ∈K(C)× and x ∈ C(0),

(π∗(b),f)C/K,x =
∑
y/x

TrK′/K(b,π∗f)C′/K′,y;

(LS8) for a ∈ F (K(C)), g ∈K ′(C ′)× and x ∈ C(0),

(a,π∗g)C/K,x =
∑
y/x

TrK′/K(π∗(a),g)C′/K′,y.

In both cases, the sum is over all y ∈ C ′ mapping to x.

Lemma 4.35. Set F ∈ RSCNis and let C be a regular projective and geometrically

connected K-curve. Let K ′/K be a finitely generated field extension, and denote by
τ : SpecK ′ → SpecK the induced map and by τC : CK′ = C ⊗K K ′ → C the projection.

Then ∑
y∈τ−1

C (x)

(τ∗Ca,τ
∗
Cf)CK′/K′,y = τ∗(a,f)C/K,x in F (K ′)

for all a ∈ F (K(C)), f ∈K(C)× and x ∈ C(0).

Proof. Let U ⊂ C be open with a ∈ F (U). Using the approximation lemma, (LS1)

and (LS3), we can assume that for a givenm≥ 1 we have f ∈U
(m)
z for all z ∈C \(U ∪{x});

in particular, choosing m large enough we get (a,f)C/K,z =0. Identifying f with the finite

K-morphism C →P1
K , we obtain a∈F

(
f−1

(
P1

K \{1}
)
\{x}

)
, and (LS2) and (LS4) yield

−(a,f)C/K,x = (i∗0− i∗∞)f∗a in F (K).

The formula in the statement now follows by applying τ∗ to this equality, using the

base-change formula τ∗P1 ◦f∗ = (τ∗Cf)∗ τ
∗
C induced by the cartesian diagram

CK′
τC ��

τ∗
Cf

��

C

f

��
P1

K′
τP1 �� P1

K,

and using (LS1)–(LS4) backwards.

Lemma 4.36. Set L ∈ Φ. Let C be a regular curve over a k-function field K. Assume

that there exist a closed point x ∈ C and a k-morphism u : SpecOL → C inducing an

isomorphism Oh
C,x

∼=OL. Then there is an isomorphism

F (K(C))/F (OC,x)
�−→ F (L)/F (OL)
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induced via pullback along u. If OC,x has a coefficient field, then we have an isomorphism

F (K(C))/F (OC,x,m)
�−→ F (L)/F (OL,m),

where for a local ring A ∈Corpro with maximal ideal m we set

F (A,m) := Ker(F (A)→ F (A/m)).

Proof. We prove the first isomorphism. The natural map in the statement is compatible

with pullbacks and push-forwards on both sides. Thus we can apply the standard
trick replacing k by its maximal pro-� extensions for various primes �, to assume k

is infinite. By Gabber’s presentation theorem (see, for example, [8, 3.1.2]), we find an

open U ⊂ C containing x, a k-function field E and an étale morphism ϕ : U → P1
E

such that x = ϕ−1(ϕ(x)) and ϕ induces an isomorphism x
�−→ ϕ(x). It follows from

[45, Lemma 4.2, Lemma 4.3] that (U,n · x) is a V -pair, for all n ≥ 1, in the sense

of [45, Definition 2.1]. If v : U ′ → U is an affine Nisnevich neighbourhood of x with

v−1(x) = {x′}, then the pullback v∗ : F (K(U))/F (OU,x)
�−→ F (K(U ′))/F (OU ′,x,) is an

isomorphism, by [45, Lemma 4.4, (3)]. We obtain the first isomorphism of the statement
by taking the limit over all Nisnevich neighbourhoods v. For the second isomorphism,

observe that if a coefficient field σ : κ ↪→OC,x exists, then σ∗ induces a splitting of the

restriction to the closed point F (OC,x)→ F (κ); in particular, it is surjective. We obtain

isomorphisms F (OC,x)/F (OC,x,mx)∼=F (κ)∼=F (OL)/F (OL,mL) which together with the
first statement and the five lemma yield the second isomorphism in the statement.

4.37. Set F ∈ RSCNis. Let L ∈ Φ have residue field κ = OL/mL, and let σ : K ↪→ OL

be a k-homomorphism such that the induced map K ↪→ κ is a finite field extension (for

example, σ could be a coefficient field.) We define the local symbol

(−,−)L,σ : F (L)×L× → F (K)

as follows: we find a regular projective K-curve C and a κ-point x ∈ C(κ) satisfying

L= Frac
(
Oh

C,x

)
, σ :K →OC,x

nat.−−→OL. (4.37.1)

Additionally, we assume that OC,x has a coefficient field. Denote by u : SpecOL →
SpecOC,x the induced map. The symbol (−,−)L,σ is defined as the composition

(−,−)L,σ : F (L)×L× −→ F (L)/F (OL,mL)× lim←−
n

L×/U
(n)
L

Lemma 4.36∼= F (K(C))/F (OC,x,mx)× lim←−
n

K(C)×/U (n)
x

(−,−)C/K,x−−−−−−−−→ F (K),

where the last map is given by

(a,(fn))C/K,x :=
(
ã,f̃r

)
C/K,x

,

with ã ∈ F̃ (OC,x,m
−r) a lift of a and f̃r ∈ K(C)× a lift of fr; this is well defined and

bilinear by (LS2), (LS3) and (LS5).
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Lemma 4.38. The symbol (−,−)L,σ defined in Section 4.37 is independent of the choice

of the presentation (4.37.1).

Proof. Let v : C ′ → C be a K-morphism between regular projective K-curves, and let
x ∈ C and x′ ∈ C ′ be closed points such that v is étale in a neighbourhood of x′ and
induces an isomorphism x′ �−→ x. Assume that OC,x has a coefficient field. Let E =K(C)

and E′ =K(C ′) be the function fields. Then it suffices to show that for all a ∈ F (E) and

f ∈ E×, we have

(a,f)C/K,x = (v∗a,v∗f)C′/K,x′ . (4.38.1)

We denote E×
x := lim←−E×/U

(n)
x , and so on. Then the composition

E×
x

1⊗id−−−→
(
Ex⊗E E′)× ∼=

∏
y/x

E′×
y

proj−−→ E′×
x′

is induced by v∗ and is an isomorphism with its inverse induced by the norm. Thus we

can use the approximation lemma, (LS3) and the continuity of the norm map to choose
g ∈ E′× close to v∗f at x′ and close to 1 at all y ∈ v−1(x)\{x′} to obtain the following:

(1) (v∗a,v∗f)C′/K,x′ = (v∗a,g)C′/K,x′ ;

(2) (v∗a,g)C′/K,y′ = 0 for all y′ ∈ v−1(x)\{x′};
(3) (a,f)C/K,x = (a,NmE′/E(g))C/K,x.

We thus have

(a,f)C/K,x
(LS8),(3)

=
∑

y′∈v−1(x)

(v∗a,g)C′/K,y′
(1),(2)
= (v∗a,v∗f)C′/K,x′,

which yields the statement.

Remark 4.39. Note that if the composition K
σ−→ OL → κ is purely inseparable, then

there does not need to exist a coefficient field of OL which contains K. This is why in

Section 4.37 it does not in general suffice to consider coefficient fields. (In characteristic
0 it does.) For coefficient fields σ :K ↪→OL, the symbol (−,−)L,σ will in general depend

on the choice of σ.

Corollary 4.40. Let L1/L be an extension of henselian dvfs of ramification index e – that

is, mLOL1
=me

L1
. (The extension L1/L does not need to be algebraic or finitely generated.)

Let σ1 :K →OL1
be a k-homomorphism inducing a finite field extension K ↪→OL1

/mL1
.

Set F ∈RSCNis and a ∈ F̃
(
OL,m

−r
L

)
, r ≥ 0. Then(

aL1
,U

(er)
L1

)
L1,σ1

= 0,

where aL1
∈ F (L1) is the pullback of a.

Proof. We have aL1
∈ F̃

(
OL1

,m−er
L1

)
and hence the statement follows from the

construction of the symbol in Section 4.37 and (LS3).
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Lemma 4.41. Set F ∈RSCNis. Let K/k be a function field and X be a normal affine

integral finite-type K-scheme with function field E. Let xi ∈X(1), i= 1, . . . ,r, be distinct

1-codimensional points. Then for all integers ni ≥ 0, the natural map

F (E)

∩r
i=1F̃

(
OX,xi

,m−ni
xi

) �−→
r∏

i=1

F (E)

F̃
(
OX,xi

,m−ni
xi

)
is an isomorphism, where F̃

(
OX,xi

,m0
xi

)
:= F (OX,xi

).

Proof. Let A be the semilocalisation of X at the points xi and denote by D =
∑

inixi

the divisor on U := SpecA. (Note that we allow |D|� {x1, . . . ,xr}.) We claim

F̃ (U,D) = ∩r
i=1F̃

(
OX,xi

,m−ni
xi

)
. (4.41.1)

Indeed, by definition, F̃ (U,D) = F̃(U,D)(U); furthermore, F̃(U,D) is a sheaf on UNis and

is a subsheaf of the constant sheaf F (K) (by [26, Theorem 6] and [27, Corollary 3.2.3]).
Since SpecE�i SpecOX,xi

→ U is a Nisnevich cover, the claim follows.

The natural map in the statement is compatible with pullbacks and push-forwards

on both sides. Thus we can apply the standard trick replacing k by its maximal pro-
� extensions for various primes �, to assume k is infinite. By Gabber’s presentation

theorem (see, for example, [8, 3.1.2]), we find a function field K1/k and an essentially

étale morphism ϕ :U →A1
K1

such that {x1, . . . ,xr}=ϕ−1ϕ({x1, . . . ,xr})∼=ϕ({x1, . . . ,xr}).
By [45, Lemma 4.2, Lemma 4.3], (U,

∑
imixi) is a V -pair for all mi ≥ 0. Let Uh be the

henselisation of U with respect to the radical in A (see [42, XI, §2, Théorème 2]) and set

Dh :=D|Uh ; by [45, Lemma 4.4, (2), (3)], we have an isomorphism

F (U \{x1, . . . ,xr})/F̃ (U,D)
�−→ F

(
Uh \{x1, . . . ,xr}

)
/F̃
(
Uh,Dh

)
.

Now the statement follows from Uh = �iSpecOh
X,xi

(see [42, XI, §2, Proposition 1, 1)],

equation (4.41.1) and Lemma 4.36).

Lemma 4.42. Set F ∈ RSCNis and let π : SpecL′ → SpecL be a finite extension of
henselian dvfs. Denote by σ : K → OL a k-morphism such that the composition L →
OL/mL is a finite field extension; denote by σ′ :K →OL′ the induced map. Then we have

(1) (π∗b,f)L,σ = (b,π∗f)L′,σ′ , b ∈ F (L′), f ∈ O×
L ;

(2) (a,π∗g)L,σ = (π∗a,g)L′,σ′ , a ∈ F (L), g ∈ O×
L′ .

Proof. We can spread out the situation as follows: There exists a finite and surjective
morphism π :C ′ →C between regular and projective K-curves, with function fields E′ =
K(C ′), E =K(C), points x′ ∈ C ′ and x = π(x′) ∈ C and elements ã ∈ F (E), b̃ ∈ F (E′),
f̃ ∈O×

C,x, g ∈O×
C′,x′ inducing π, σ, σ′, a, b, f , g. We prove (1): by Lemma 4.41 we find an

element b1 ∈ F (E′) with b̃− b1 ∈ F (OC′,x′), and b1 ∈ F (OC′,y) for all y ∈ π−1(x) \ {x′}.
Since π∗f̃ ∈ O×

C′,y, for all y/x, we obtain

(b,π∗f)L′,σ′
(LS1),(LS2)

=
∑
y/x

(b1,π
∗f)C′/K,y

(LS7)
=
(
π∗(b1),f̃

)
C/K,x

. (4.42.1)
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Note that E′⊗E L∼=
∏

y/xE
′
y, where E′

y is the henselisation of E′ at y. Thus in F (L) we

have

π∗b1 =
∑
y/x

πy∗b1,

where πy : SpecL→ SpecE′
y is the natural map; in particular, πx′ = π. Hence in F (L),

π∗b1 ≡ π∗b mod F (OL);

this together with equation (4.42.1) and (LS1) implies (1).

Now for (2): by the approximation lemma we find g1 ∈ E′× such that

(π∗ã,g1)C′/K,y = 0, y ∈ π−1(x)\{x′},

and

(π∗ã,g1)C′/K,x′ = (π∗a,g)L′,σ′ .

Furthermore, we have the following equality in L×:

NmE′/E(g1) =
∏
y/x

NmE′
y/L

(g1).

If g1 is close enough to 1 at the points y ∈ π−1(x)\{x′}, we have NmE′
y/L

(g1) ∈ U
(N)
L for

N � 0. Thus we can choose g1 with the additional property

(ã,NmE′/E(g1))C/K,x = (a,NmL′/L(g))L,σ.

(2) now follows from (LS8) and the foregoing.

Part 2. Applications

5. Algebraic groups and the local symbol

In this section, k is a perfect field and G is a commutative algebraic k-group. Note that as
sheaves on Sm, we have G=Gred, and hence we can always identify G with the smooth

commutative k-group Gred. We fix an algebraic closure k̄ of k; note that Spec k̄ ∈Corpro.

5.1. Let G be a commutative algebraic k-group. Then G ∈ RSCNis, by [27, Corollary

3.2.5]. Let L ∈ Φ≤1 have residue field κ. Let ι : κ ↪→ k̄ be a k-embedding. We denote by
Lsh
ι the strict henselisation of L with respect to ι. Note that Lsh

ι is a henselian dvf of

geometric type over k̄. We write

(−,−)Lsh
ι

:G
(
Lsh
ι

)
×Lsh

ι

× →G
(
k̄
)

(5.1.1)

for the symbol (−,−)Lsh
ι ,σ from Section 4.37, with σ : k̄ ↪→ Osh

L,ι the unique coefficient

field; in this case this is the symbol defined by Rosenlicht and Serre (see [47, III, §1]). If
we choose a different k-embedding ι′ : κ ↪→ k̄, then we find an automorphism τ : k̄ → k̄
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with τ ◦ ι = ι′ inducing a unique isomorphism of OL-algebras τ : Osh
L,ι

�−→ Oh
L,ι′ and by

equation (4.38.1),

τ
(
(a,f)Lsh

ι

)
= (τ(a),τ(f))Lsh

ι′
.

We will usually drop the ι from the notation and write Lsh = Lsh
ι . We define the

Rosenlicht–Serre conductor of a ∈G(L) by

RoSeL(a) :=

⎧⎨⎩0 if a ∈G(OL),

min
{
n≥ 1 |

(
a,U

(n)

Lsh

)
Lsh

= 0
}

otherwise.

Note that it is independent of the choice of ι : κ ↪→ k̄.

Theorem 5.2. Let G be a commutative algebraic k-group.

(1) The Rosenlicht–Serre conductor RoSe = {RoSeL}trdeg(L/k)=1 is a semicontinuous

conductor of level 1 on G (in the sense of Definitions 4.3 and 4.22).

(2) Let cG be the motivic conductor of G (see Definition 4.14) and denote by
(
cG
)≤1

its restriction to Φ≤1. Then RoSe =
(
cG
)≤1

.

In particular, the motivic conductor extends the Rosenlicht–Serre conductor to henselian

dvfs over k with nonperfect residue field, and we have G̃ = G̃RoSe (see Section 4.8 and

Notation 4.17 for notation).

Proof. The last statement follows from Corollary 4.18. For (1) we check that RoSe

satisfies the properties from Definition 4.3. (c1) and (c2) are obvious. Let L′/L be a finite

extension of henselian dvfs with trdeg(L/k) = 1 and a∈G(L′). Let κ ↪→ κ′ be the induced
map on the residue fields, and fix an embedding κ′ ⊂ k̄. Then L′sh is finite over Lsh and

e
(
L′sh/Lsh

)
= e(L′/L). Thus (c3) follows directly from Lemma 4.42(1). To check (c4),

first observe that if a ∈ G
(
A1

X

)
is not in G(X) (via pullback), then we find a closed

point x ∈ X such that aA1
x
is not in G(x). (Since G is a finite-type k-scheme and X is

Jacobson.) Thus it suffices to show the following:

Claim. Let κ/k be a finite field extension and set κ(t)∞ = Frac
(
Oh

P1
κ,∞

)
. Assume that

a ∈G
(
A1

κ

)
has RoSeκ(t)∞(a)≤ 1. Then a ∈G(κ).

Otherwise a �∈ G(κ). Then its pullback ak̄ ∈ G
(
A1

k̄

)
is not in G

(
k̄
)
, and we can thus

find two points x,y ∈A1
(
k̄
)
= k̄ such that ak̄(x) �= ak̄(y). Take f = (t−x)/(t−y) ∈ k̄(t).

Then f ∈ U
(1)

k̄(t)∞
, and we obtain

0 = (ak̄,f)κ̄(t)∞ =−ak̄(x)+ak̄(y),

where the first equality follows from RoSeκ(t)∞(a) ≤ 1 and the second from (LS4) and
(LS2). This yields a contradiction and thereby proves the claim. (c5) follows from the fact

that G is a reciprocity sheaf and Corollary 4.40. Finally, we deal with (c6) (continuity for

n = 1). Assume that C is a smooth k-curve, x ∈ C is a closed point and a ∈ G(C \{x})
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with RoSeLx
(ax) ≤ n, where Lx = Frac

(
Oh

C,x

)
and ax ∈ G(Lx) denotes the pullback of

a. Let C be the smooth compactification of C and let C∞ =
(
C \C

)
red

. Choose N such

that RoSeLy
(ay)≤N for all y ∈ |C∞|. Then

(
C,n · {x}+N ·C∞

)
is a compactification of

(C,n · {x}) and we claim

RoSeC(a)≤ (n · {x}+N ·C∞). (5.2.1)

Indeed, let SpecL → C \ {x} be a henselian dvf point with trdeg(L/k) = 1. If SpecOL

maps to C \ {x}, then RoSeL(aL) = 0. Otherwise we get a finite extension Lsh/Lsh
y for

some y ∈ {x}∪|C∞|, say of ramification index e. Set u∈U
(nye)

Lsh , where nx = n and ny =N ,

for y �= x. By Lemma 4.42(2) we have

(aL,u)Lsh =
(
aLy

,NmLsh/Lsh
y
(u)
)
Lsh

y

,

which vanishes by NmLsh/Lsh
y
(u)∈U

(ny)

Lsh
y

and RoSeLy
(ay)≤ ny. This proves claim (5.2.1),

hence (c6), and finishes the proof of (1).
By Corollary 4.24, we have cG,1 ≤ RoSe. Thus for (2) it suffices to show that if

a ∈ G̃
(
OL,m

−r
L

)
, for some L ∈ Φ≤1 and r ≥ 1, then RoSeL(a) ≤ r. This follows from

Corollary 4.40.

Remark 5.3. An extension of RoSe to dvfs of higher transcendence degree over k was also

constructed in [33] (char 0) and [32] (char p > 0). The construction essentially coincides

with the extension from Theorem 5.2, but considering the log version, whereas here the
nonlog one is considered (compare Theorem 7.20).

6. Differential forms and irregularity of rank 1 connections

In this section we assume that the base field k has characteristic 0. We fix a ring

homomorphism R → k which induces the structure of an R-scheme on any k-scheme.
(Of main interest are R= k or Z.)

6.1. Kähler differentials

6.1. Set X ∈ Sm. We denote by Ω•
X/R the de Rham complex on X relative to R, and by

d : Ω•
X/R → Ω•+1

X/R the differential. We set Ω•
X := Ω•

X/Z. We have an exact sequence

Ω1
R⊗RΩ•−1

X → Ω•
X → Ω•

X/R → 0. (6.1.1)

We denote the Nisnevich sheaf on Sm given by X �→ H0
(
X,Ωq

X/R

)
by Ωq

/R and set

Ωq := Ωq
/Z. By [26, Theorem A.6.2] and [27, Corollary 3.2.5], we have Ωq ∈RSCNis. Since

the action of finite correspondences on Ω• is Ω•
k-linear (a fortiori, it is Ω•

R-linear), the
morphism α∗ : Ωq(Y )→Ωq(X), α∈Cor(X,Y ), induces via sequence (6.1.1) the structure

of a Nisnevich sheaf with transfers on Ωq
/R, and we obtain Ωq

/R ∈RSCNis.

Lemma 6.2. The differential d : Ωq
/R → Ωq+1

/R is a map in RSCNis.
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106 K. Rülling and S. Saito

Proof. We have to show that if α ∈ Cor(X,Y ) is a finite correspondence, X,Y ∈ Sm,

then α∗d = dα∗ as maps Ωq
/R(Y )→ Ωq

/R(X). Since the restriction Ωq
/R(X)→ Ωq

/R(U) is

injective for any dense open U ⊂X (by [26, Theorem 6]), it suffices to verify the equality

after shrinking X arbitrarily around its generic points. In particular, we can assume that

X is connected and α = Z ⊂X×Y is a prime correspondence which is finite étale over

X (here we use char(k) = 0). Denote by f : Z →X and g : Z → Y the maps induced by
projection. Then Z∗ = f∗g

∗. The compatibility of d with g∗ is clear. Hence it remains to

show f∗d = df∗ for a finite étale map f : Z →X between smooth schemes. In this case,

we have f∗Ω
q
Z/R = f∗OZ ⊗OX

Ωq
X/R and f∗ =Trf ⊗idΩq

/R
, by [7, Proposition 2.2.23]. Thus

the compatibility we seek is shown as in [20, II, Proof of Proposition (2.2), case 2].

6.3. Set L ∈ Φ, with local parameter t ∈ mL ⊂ OL. We denote by Ω•
OL/R(log) the

differential graded algebra of logarithmic differentials – that is, the graded subalgebra

of Ω•
L/R generated by Ω•

OL/R and dlog t. In particular, Ω0
OL/R(log) =OL. For q ≥ 0 and

a ∈ Ωq
L/R, we define

cdRL (a) :=

⎧⎨⎩0 if a ∈ Ωq
OL/R,

min
{
n≥ 1 | a ∈ 1

tn−1 ·Ωq
OL/R(log)

}
otherwise.

Theorem 6.4. For all q ≥ 0, the collection cdR =
{
cdRL
}
defined in Section 6.3 coincides

with the motivic conductor – that is (see Definition 4.14),

cdR = c
Ωq

/R .

Furthermore, the restriction
(
cdR
)≤q+1

is a semicontinuous conductor.

Proof. We start by showing that cdR is a semicontinuous conductor of level q + 1.

Properties (c1) and (c2) from Definition 4.3 are obvious.

(c3). Let L′/L be a finite extension of a henselian dvf with ramification index e =
e(L′/L), and denote by f : SpecL′ → SpecL the induced map. Set a ∈Ωq

L′/R. We have to

show

cdRL (f∗a)≤
⌈
cdRL′ (a)

e

⌉
. (6.4.1)

We know that f∗ restricts to Ωq
OL′/R

→Ωq
OL/R, and by the well-known formula f∗dlog =

dlog◦NmL′/L also to

f∗ : Ω
q
OL′/R

(log)→ Ωq
OL/R(log). (6.4.2)

Moreover, f∗ is continuous with respect to the mL-adic topology (which on Ωq
L′/R is

the same as the mL′ -adic topology). We may therefore replace Ωq
L′/R and Ωq

L/R by

the corresponding completed modules. Furthermore, it suffices to treat the two cases

separately in which L′/L is either totally ramified or unramified.
Case 1: e = 1. In this case, a local parameter t ∈ OL is also a local parameter of OL′

and hence formula (6.4.1) follows directly from expression (6.4.2) and the L-linearity

of f∗.
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Case 2: e > 1, L, L′ complete and OL/mL = OL′/mL′ . Let K ↪→ OL be a coefficient

field; it also defines a coefficient field of OL′ . Let τ ∈OL′ and t ∈OL be local parameters.

Then we can identify L′ =K((τ)) and 1
τn−1 · Ω̂q

OL′/R
(log) with the τ -adic completion of

1
τn−1 ·

((
K[τ ]⊗K Ωq

K/R

)
⊕
(
K[τ ]dlogτ ⊗K Ωq−1

K/R

))
.

Furthermore, observe that 1
τ i dlogτ = − 1

i d
(

1
τ i

)
, i ≥ 1. Since f∗ commutes with the

differential (by Lemma 6.2), we are reduced to showing

f∗
(

1
τ i

)
∈ 1

tr−1OL, r :=
⌈
n
e

⌉
, for all i ∈ [1,n−1]. (6.4.3)

We compute for i ∈ [1,n−1]

mr
L ·df∗

(
1
τ i

)
=mr

L ·f∗
(
−iτ−i−1dτ

)
⊂ f∗

(
m

er−i−1
L′ dτ

)
⊂ f∗

(
Ω1

OL′/R

)
⊂ Ω1

OL/R.

This implies formula (6.4.3), once we observe that in characteristic 0 we have mr
L ·da ∈

Ω1
OL/R if and only if mr−1

L ·a ∈ OL, for any a ∈ L=K((t)).

(c4). For cdR,q+1, it follows directly from the following facts, where A is a finite-type
smooth k-algebra:

(i) Ωq
A[t]/R =

(
k[t]⊗kΩ

q
A/R

)
⊕
(
Ωq−1

A/R⊗kΩ
1
k[t]/k

)
;

(ii) for any nonzero α ∈Ωq
A/R, there exists a prime ideal p⊂A with trdeg(k(p)/k) = q,

where k(p) =Ap/p, such that the image of α in Ωq
k(p)/R is nonzero;

(iii) H0
(
P1

k,Ω
1
P1/k(log∞)

)
= 0, H0

(
P1,OP1

)
= k.

(Note that 6.1 is easy for R= k and follows in general from the natural map Ωq
/R →Ωq

/k.)

For (c5) it suffices to observe that if a ∈ H0
(
X,Ωq

X/R⊗OX
OX(D)

)
for some proper

modulus pair (X,D), then cdRX (a)≤D.
Finally, (c6). Let U = SpecA be smooth affine and Z ⊂ U be a smooth divisor which

we can assume to be principal Z =Div(t). Let

a=
1

tr−1
a1+

1

tr−1
a2dlog t, a1 ∈ Ωq

A/R,a2 ∈ Ωq−1
A/R,r ≥ 1.

Let
(
Y ,Z+Σ

)
be a compactification of (U,Z) with Z |U = Z and Y normal. Let Y = ∪Vi

be an open covering such that Vi = SpecBi, Σ|Vi
= Div(fi) and Z |Vi

= Div(τi), with

τi,fi ∈ Bi. Note that SpecBi[1/fi]⊂ U is open for all i. Hence, in Bi[1/fi] we can write

t= τiei, with ei ∈ (Bi[1/fi])
×. Let Ei be the Cartier divisor on Vi defined by ei. We have

|Ei| ⊂ |Σ|Vi
|. By Lemma 6.5, there exists N1 � 0 such that vL(Ei)≤N1vL

(
Σ|Vi

)
for all

SpecL→ U and all i. Furthermore, there exists an N2 ≥ 0 such that fN2
i a1 ∈ Ωq

Bi/R
and

fN2
i a2 ∈Ωq−1

Bi/R
for all i. Choose N ≥ r ·N1+N2. Set ρ : SpecL→ U , L ∈Φ. Assume that
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the closed point of SpecOL maps into
∣∣Z+Σ

∣∣∩Vi for some i. Then

cL(ρ
∗a)≤ (r−1)vL

(
Z
)
+(r−1)vL(Ei)+N2vL(Σ)+1

≤ (r−1)vL
(
Z
)
+(r−1)N1vL(Σ)+N2vL(Σ)+1

≤ vL
(
r ·Z+N ·Σ

)
.

Hence cdR
Y

(a)≤
(
r ·Z+N ·Σ

)
, which proves (c6).

Thus cdR is a semicontinuous conductor on Ωq
/R and Theorem 4.15(3) yields, for n≥ 1,

filn := 1
tn−1 ·Ωq

OL/R(log)⊂ Ω̃q
/R

(
OL,m

−n
L

)
for any L ∈ Φ with local parameter t ∈ OL. It remains to show the other inclusion.

By Corollary 4.40 it suffices to show the following: let K ↪→ OL be some coefficient
field and extend it in the canonical way to σ : K(x) ↪→ OLx

, where x is a variable and

Lx = Frac
(
OL[x]

h
(t)

)
. Assume a ∈ filr+1. Then the following implication holds:

(a,1−xtr)Lx,σ = 0 ⇒ a ∈ filr, (6.4.4)

where the local symbol on the left-hand side is the one from Section 4.37 for Ωq
/R. Since

the local symbol for Ωq
/R is uniquely determined by (LS1)–(LS4), we see that it is given

by

(a,1−xtr)Lx,σ =Rest(adlog(1−xtr)),

where we use the isomorphism Lx =K(x)((t)) defined by σ to compute the residue symbol

on the right. To prove implication (6.4.4), it suffices to consider a modulo filr; we have

a≡ 1

tr
α+β

dt

tr+1
mod filr,

for α ∈ Ωq
K/R, β ∈ Ωq−1

K/R. We compute in Ωq
K(x)/R

Rest(adlog(1−xtr)) =−rxα+βdx.

This shows implication (6.4.4) and completes the proof.

Lemma 6.5. Let X be a Noetherian integral normal scheme and E and F be two Cartier
divisors on X; assume that F is effective. If |E| ⊂ |F |, then there exists N ≥ 1 such that for

all maps SpecO→X whose image is not contained in |F |, with O a DVR with valuation

v, we have v(E)≤N ·v(F ).

Proof. The question is local on X; hence we can assume E and F are given by functions

e,f ∈ k(X)×. Let Div(e) and Div(f) be the associated Weil divisors. Since |E| ⊂ |F | and
F is effective, we find N ≥ 1 such that Div(e)≤N ·Div(f), which by the normality of X
implies fN/e ∈ Γ(X,OX). This yields the statement.
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Remark 6.6. The proof of Theorem 6.4 also shows that

cdR
′

L (a) =

⎧⎨⎩0 if a ∈ Ωq
OL/R,

min
{
n≥ 2 | a ∈ 1

tn−1 ·Ωq
OL/R

}
otherwise,

defines a semicontinuous conductor on Ωq, but it coincides with the motivic one only for
q = 0.

Corollary 6.7. Set ZΩq
/R = Ker

(
d : Ωq

/R → Ωq+1
/R

)
. Then ZΩq

/R ∈ RSCNis, and its

motivic conductor c
ZΩq

/R =
(
c
Ωq

/R

)
|ZΩq

/R

restricts to a conductor of level q.

Proof. The formula for c
ZΩq

/R follows from Proposition 4.19. It remains to show that it has

level q. Set a∈ZΩq
/R

(
A1

X

)
with cdRk(x)(t)∞(a)≤ 1, for all points x∈X with trdeg(k(x)/k)≤

q−1. This implies a ∈H0
(
X,k[t]⊗kΩ

q
X/R

)
∩ZΩq

/R

(
A1

X

)
(compare the proof of (c4) in

Theorem 6.4). Hence a ∈ ZΩq
/R(X). This shows that

(
c
ZΩq

/R

)≤q

satisfies (c4).

Corollary 6.8.

(1) Let X = (X,D) ∈MCor be a proper modulus pair. Then

Ω̃q
/R(X ) =H0

(
X1,Ω

q
X1/R

(logD1)(D1−D1,red)
)
,

where π :X1 →X is any resolution of singularities which is an isomorphism over
X \D and such that D1 := π∗D is supported on a simple normal crossings divisor.

(See Notation 4.17 for the notation Ω̃q
/R.)

(2) Let h0
A1

(
Ωq

/R

)
be the maximal A1-invariant subsheaf of Ωq

/R. Then for X ∈ Sm,

h0
A1

(
Ωq

/R

)
(X) =H0

(
X,Ωq

X/R
(logD)

)
,

where X is any smooth compactification of X with simple normal crossings divisor

D at ∞.

Proof. First note that Ω̃q
/R(X ) = Ω̃q

/R(X1,π
∗D), where π :X1 →X is any blowup with

centre in D, since (X,D) ∼= (X1,π
∗D) in MCor. Let X = (X,D) be a proper modulus

pair with Dred a simple normal crossings divisor. Write D =
∑

i ri ·ηi with ηi ∈X(1) and

set Lηi
:= Frac

(
Oh

X,ηi

)
. Then it is direct to check that we have cdRL (ρ∗a)≤ vL(D) for all

henselian dvf points ρ : SpecL→X if and only if cdRLηi
(a)≤ ri for all i. Thus the corollary

follows from Theorems 6.4 and 4.15(4) and Corollary 4.32.

6.2. Rank 1 connections and irregularity

Lemma 6.9. The homomorphism dlog :O×
X →Ω1

X/R, X ∈Sm induces a morphism dlog :

O× → Ω1
/R in RSCNis
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Proof. The proof is similar to the one of Lemma 6.2, except that we have to replace the
formula f∗d= df∗ by f∗dlog = dlogNmZ/X , where f :Z →X is a finite étale map between

smooth schemes.

6.10. Denote by Conn1(X) the group of isomorphism classes of rank 1 connections on
X ∈ Sm, and by Conn1int(X) the subgroup of integrable connections. We have canonical

group isomorphisms

Conn1(X)∼=H1
(
XZar,O×

X

dlog−−−→ Ω1
X/k

)
∼=H0

(
X,
(
Ω1

/k/dlogO×
X

)
Nis

)
and

Conn1int(X) ∼= H1
(
XZar,O×

X

dlog−−−→ ZΩ1
X/k

)
∼= H0

(
X,
(
ZΩ1

/k/dlogO×
)
Nis

)
.

Indeed, the first isomorphism is well known (use the fact that the first Zariski cohomology

can be computed as Čech cohomology); we show the second as follows: let k̄X be the
algebraic closure of k in k(X); we consider it as a constant sheaf on X. We obtain the

isomorphism [
O×

X/
(
k̄X
)× dlog−−−→ Ω1

X/k

]
∼=
(
Ω1

/k/dlogO×
X

)
Zar

[−1]

in the derived category of abelian sheaves on XZar, and similarly with ZΩ1
/k. Observe

that Ω1
/k and O× are already Nisnevich sheaves, hence(

Ω1
/k/dlogO×

X

)
Zar

=
(
Ω1

/k/dlogO×
X

)
Nis

.

Since Hi
(
XZar,k̄

X
)
= 0 for all i≥ 1, we obtain

H1
(
XZar,O×

X → Ω1
X/k

)
=H1

(
XZar,O×

X/
(
k̄X
)× → Ω1

X/k

)
,

and similarly with ZΩ1
/k. This yields the second isomorphism.

By Lemma 6.9 and [45, Theorem 0.1] we obtain

Conn1,Conn1int ∈RSCNis.

For E ∈ Conn1(X) we denote by ωE ∈ H0
(
X,
(
Ω1

/k/dlogO×
)
Nis

)
the element corre-

sponding to E under the isomorphism from before.

Set L∈Φ and let t∈OL be a local parameter. Recall (for example, from [31, Definition.

1.12]) that the irregularity of E ∈ Conn1(SpecL)∼=Ω1
L/k/dlogL

× is defined by

irrL(E) = min
{
n≥ 0 | ωE ∈ Im

(
1
tn ·Ω1

OL/k(log)→ Ω1
L/k/dlogL

×
)}

.

Theorem 6.11. Notations are as in Section 6.10. The motivic conductor of E ∈
Conn1(L) is given by

cConn1

L (E) =

{
0 if E extends to an OL-connection,

irrL(E)+1 otherwise.
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Moreover, on Conn1 the motivic conductor restricts to a level 2 conductor, and on Conn1int
it restricts to a level 1 conductor.

Proof. Set H1 :=
(
Ω1

/k/dlogO×
)
Nis

and H1
int :=

(
ZΩ1

/k/dlogO×
)
Nis

. For a ∈H1(L) we

define

cirrL (a) := min
{
cdRL (ã) | ã ∈ Ω1

L/k lift of a
}

(see Section 6.3 for the definition of cdR). It suffices to prove the identity

cH
1

= cirr (6.11.1)

for the motivic conductor of H1 and that
(
cirr
)≤2

and
(
cirr
)≤1

|H1
int

satisfy (c4). It follows

directly from Theorem 6.4 and Lemma 4.28 that cirr satisfies (c1)–(c6), except maybe (c4)
and (c5). For (c5), note that given X ∈ Sm, we find by resolution of singularities a

compactification X =
(
X,X∞

)
with X ∈ Sm. In particular, for all x ∈X the local ring

Oh
X,x

is factorial, and hence so is any of its localisations. Therefore, it follows from the

exact sequence

H0
(
Y ,Ω1

Y/k

)
→H1(Y )→ Pic(Y ),

for any integral scheme Y over k, that condition (4.28.1) from Lemma 4.28 is satisfied;

hence cirr satisfies (c5). Next we deal with (c4). Take a ∈H1
(
A1

X

)
with

cirrk(x)(t)∞
(ax)≤ 1, for all x ∈X with trdeg(k(x)/k)≤ 1, (6.11.2)

where ax is the restriction of a to k(x)(t)∞. Using the A1-invariance of X �→Hi
(
X,O×

X

)
,

consider the exact sequence

H0
(
X,O×

X

) dlog−−−→H0
(
A1

X,Ω1
A1

X/k

)
→H1

(
A1

X

)
→H1

(
X,O×

X

)
. (6.11.3)

Let π : A1
X → X be the projection and i : X ↪→ A1

X a section. By sequence (6.11.3)

there exists an ã ∈ H0
(
A1

X,Ω1
A1

X/k

)
mapping to a− π∗i∗a, and any such lift satisfies

formula (6.11.2) with cirr replaced by cΩ
1
/k . Thus ã∈H0

(
X,Ω1

X/k

)
, by (c4) for

(
cΩ

1
/k

)≤2

;

hence
(
cirr
)≤2

satisfies (c4). Similarly, we prove (c4) and (c5) for
(
cirr
)≤1

|H1
int

.

Hence cirr is a semicontinuous conductor, and we obtain cH
1 ≤ cirr. We now show

the other inequality. Set L ∈ Φ and let σ : K ↪→ OL be a coefficient field. Denote by

filn ⊂H1(L) the image of filn = 1
tn−1Ω

1
OL/k(log). Take a ∈ filr+1. Similarly as in the proof

of Theorem 6.4 (around equation (6.4.4), and with the notation from there), it suffices to

show the implication

(a,1−xtr)Lx,σ = 0 in H1(K(x))⇒ a ∈ filr. (6.11.4)

Let ã ∈ filr+1 be a lift of a; write

ã=
1

tr
α+β

dt

tr+1
mod filr,
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with α ∈ Ω1
K/k and β ∈K. Then the left-hand side of equation (6.11.4) is equivalent to

Rest(ãdlog(1−xtr)) = dlogf for some f ∈K(x)×.

Computing the residue symbol yields

− rxα+βdx= dlogf in Ω1
K(x)/k. (6.11.5)

We claim this can only happen if α = β = 0. Indeed, first observe that if h ∈ K((x))×

is a formal Laurent series such that there exists a form γ ∈ Ω1
K/k with dlog(h) =

x · γ in Ω̂1
K((x))/k, then γ = 0 = dlog(h). Thus equation (6.11.5) implies that dlog(f ·

exp(−βx)) = 0 in Ω̂1
K((x))/k. Hence there exists an element λ ∈ k1, the algebraic closure

of k in K, such that

λ · exp(βx) = f ∈K(x)×,

which is only possible if β=0; it follows α=0. Thus a∈ filr, which proves equation (6.11.4)

and completes the proof.

Corollary 6.12. Set X ∈ Sm. Then h0
A1

(
Conn1int

)
(X) is the group of isomorphism

classes of regular singular rank 1 connections on X (see Section 4.30 for notation).

Proof. Let E ∈Conn1int(X). Then by definition (see [10, II, Definition 4.5]), E is regular

singular if and only if irr(ρ∗E) = 0, for all henselian dvf points ρ : SpecL → X with

trdeg(L/k)= 1. By Theorem 6.11 and Corollary 4.18, this is equivalent to c
Conn1

int

L (ρ∗a)≤ 1

for all L. Thus the statement follows from Corollary 4.32.

7. Witt vectors of finite length

In this section we assume that k is a perfect field of characteristic p> 0. Denote by Wn the

ring scheme of p-typical Witt vectors of length n. We will denote by WnOX the (Zariski,

Nisnevich, étale) sheaf on X defined by Wn. The restriction of Wn to k-schemes – which,
by abuse of notation, we will again denote by Wn – is in particular a smooth commutative

group over k. Hence Wn ∈RSCNis (see Section 5.1).

7.1. Let A be a ring. Recall that there is an isomorphism of groups

Wn(A)
�−→ (1+TA[[T ]])×/

⎧⎨⎩ ∏
s �∈{1,p,...,pn−1}

(1− bsT
s) | bs ∈A

⎫⎬⎭, (7.1.1)

(a0, . . . ,an−1) �→
n−1∏
i=0

(
1−aiT

pi
)
.

Assume that A is normal and we have an inclusion of rings A ↪→ B making B a finite
A-module. Then B[[T ]] is finite over the normal ring A[[T ]], and hence the norm map

Nm : B[[T ]]× → A[[T ]]× induces a trace Tr : Wn(B) → Wn(A) (see, for example, [44,

Proposition A.9]).
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Now assume that f : Y →X is a finite and surjective k-morphism, where X is a normal
k-scheme. Then the local traces glue to give

Trf :Wn(Y )→Wn(X).

Lemma 7.2. In the foregoing situation, Trf = f∗ : Wn(Y ) → Wn(X), the map used to

define the transfer structure on the group scheme Wn.

Proof. Set a ∈Wn(Y ) and let d= deg(f). Recall that the element f∗(a) is defined by the

composition

X → Symd
XY

∑d a−−−→Wn.

It suffices to check that Trf (a) and f∗(a) coincide on a dense open subset. Thus we

can assume that X is affine integral and f : Y →X is finite free. Furthermore, Wn is a
direct factor of the scheme of big Witt vectors Wpn , and Tr and f∗ extend to the big

Witt vectors. Thus it suffices to show the equality on the big Witt vectors Wr for r ≥ 1.

Let Sr = Speck[t]/
(
tr+1

)
and denote by ε : S = Speck ↪→ Sr the S-section. We have the

following isomorphism of S-group schemes (compare Section (7.1.1)):

Wr
∼=Ker

(
ResSr/S(Gm)

ε∗−→Gm

)
,

where ResSr/S(Gm) denotes the Weil restriction. Denote by fr : Yr →Xr the base change

of f along Sr → S. Set b ∈Wr(Y ), which we can view as an element in ResSr/S(Gm)(Y ).
Then the image of f∗(b) in Wr(X)⊂ ResSr/S(Gm)(X) is equal to the Sr-morphism

fr∗(b) :Xr → Symd
Xr

Yr =Xr×X Symd
X(Y )

∏d b−−−→Gm,Sr
.

Now the statement follows from the fact that f∗ = Nm on Gm (see [2, Exp. XVII, Ex

6.3.18]).

7.3. Set L ∈ Φ. Denote by fillogj Wn(L), j ≥ 0, the Brylinski–Kato filtration [5, 30] – that

is,

fillogj Wn(L) =
{
a ∈Wn(L) | [x] ·Fn−1(a) ∈Wn(OL), all x ∈m

j
L

}
=
{
(a0, . . . ,an−1) ∈Wn(L) | pn−1−iv(ai)≥−j,all i

}
,

where [x] denotes the Teichmüller lift of x and F : Wn(L) → Wn(L) is the Frobenius,

which by contravariant functoriality is induced by the Frobenius of L (or by covariant
functoriality by the base change over Speck of the Frobenius on the Spec(Fp)-ring scheme

Wn). We observe that for s≥ 0 we have

Vs
(
fillogj Wn(L)

)
⊂ fillogj Wn+s(L), (7.3.1)

where V is the Verschiebung on the Witt vectors. The nonlog version introduced by

Matsuda in [37, 3.1] is given (with the conventions from [35, 2.1]) by

filjWn(L) = fillogj−1Wn(L)+Vn−r
(
fillogj Wr(L)

)
, j ≥ 1,
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where r = min{n,ordp(j)}. (This is equal to Matsuda’s fil′j−1Wn(L).) Assume r =

ordp(j)< n; then

(a0, . . . ,an−1) ∈ filjWn(L)⇐⇒ pn−1−iv(ai)

{
≥−j if i �= n−1− r,

>−j otherwise.

This is the description given in [32, 4.7]. (There filjWn(L) denotes what we call

filjWn(L).) We directly check that

Fn−1 d(filjWn(L))⊂m
−j
L ·Ω1

OL
, (7.3.2)

where Fn−1 d is the map

Fn−1 d :Wn(L)→ Ω1
L, (a0, . . . ,an−1) �→

n−1∑
i=0

ap
n−1−i−1

i dai. (7.3.3)

7.4. Set L ∈ Φ. The F -saturation of fillogj Wn(L) and filjWn(L) is introduced in [32]:

fillog,Fj Wn(L) =
∑
r≥0

F r
(
fillogj Wn(L)

)
, j ≥ 0, (7.4.1)

and

filFj Wn(L) =
∑
r≥0

F r (filjWn(L)), j ≥ 1. (7.4.2)

Let κ be the residue field of OL. Denote by κ[F ] the noncommutative polynomial ring

in the variable F and with coefficients in κ with relation Fa= apF in κ[F ] for a ∈ κ. By

[32, 4.7], there is an injective homomorphism for j ≥ 1

θ̄j :
fillog,Fj Wn(L)

filFj Wn(L)
↪→ κ[F ]⊗κ

(
Ω1

OL
(log)⊗OL

m
−j
L /m−j+1

L

Ω1
OL

⊗OL
m

−j
L /m−j+1

L

)
, (7.4.3)

induced by (compare formula 7.3.2)∑
r≥0

F r(ar) �→
∑
r≥0

(
F r⊗Fn−1 dar

)
.

For a ∈ Wn(L), we define the Brylinski–Kato–Matsuda–Russell conductor γn,L(a)

(compare [32, Theorem 8.7]) by

γn,L(a) :=

{
0 if a ∈Wn(OL),

min
{
j ≥ 1 | a ∈ filFj Wn(L)

}
otherwise.

Note that filF1 Wn(L) =Wn(OL). Thus γn,L(a) = 0 or ≥ 2.

Proposition 7.5. The collection

γn = {γn,L :Wn(L)→ N0 | L ∈ Φ}

is a semicontinuous conductor on Wn, as is its restriction γ≤1
n .
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Proof. Set γ := γn. Conditions (c1) and (c2) of Definition 4.3 are clear. For (c3), let

L′/L be a finite extension of henselian dvfs. Let e = e(L′/L) be the ramification index.

Set a ∈Wn(L
′) and define r := γL′(a). We have to show

Tr(a) ∈ filFs Wn(L), with s :=
⌈r
e

⌉
, (7.5.1)

where Tr = TrL′/L (see Lemma 7.2). This is immediate if r = 0. Thus, we can assume

r ≥ 2 and write a =
∑

j≥0F
j (aj), with aj ∈ filrWn(L

′). We have Tr(aj) ∈ fillogs Wn(L).
Indeed, this follows from

[ms
L] ·Fn−1 (Tr(aj))⊂ Tr

(
[mse

L′ ] ·Fn−1 (aj)
)

⊂ Tr
(
[mr

L′ ] ·Fn−1 (aj)
)

⊂ Tr(Wn(OL′))⊂Wn(OL),

where for b ∈Wn(L) we denote
[
m

j
L

]
· b :=

{
[x] · b | x ∈m

j
L

}
. Hence

Tr(a) =
∑
j

F j (Tr(aj)) ∈ fillog,Fs Wn(L).

By the injectivity of θ̄s in formula (7.4.3), it suffices to show

ms
L ·Fn−1dTr(aj) ∈ Ω1

OL
, all j ≥ 0. (7.5.2)

By [44, Theorem 2.6], the trace Tr extends to a trace between the de Rham–Witt

complexes Tr :WnΩ
·
L′ →WnΩ

·
L which is compatible with the differential and Frobenius,

is WnΩ
·
L-linear and equals the classical trace on Kähler differentials for n= 1. We obtain

ms
L ·Fn−1dTr(a) =ms

L ·Tr
(
Fn−1da

)
⊂ms

L ·Tr
(
m

−r
L′ ·Ω1

OL′

)
, a ∈ filrWn(L

′) (see formula (7.3.2),

⊂ Tr
(
m

es−r
L′ ·Ω1

OL′

)
⊂ Tr

(
Ω1

OL′

)
⊂ Ω1

OL
.

This completes the proof for (c3).

Next we show that the restriction of γ to Φ≤1 satisfies (c4). Set X ∈ Sm and a ∈
Wn

(
A1

X

)
with

γk(x)(t)∞ (ρ∗xa)≤ 1 (7.5.3)

for closed points x ∈X, where k(x)(t)∞ = Frac
(
Oh

P1
x,∞

)
. We have to show a ∈Wn(X).

We may assume X = SpecA, and thus a ∈ Wn(A[t]). If a is not constant, then we find

a closed point x ∈ X such that the image of a in Wn(k(x)[t]) is not constant. Hence

ak(x)(t)∞ �∈Wn(Ok(x)(t)∞) – that is, γ(ak(x)(t)∞)≥ 2, contradicting assumption (7.5.3).
(c5). Set X ∈ Sm and a ∈ Wn(X) = H0(X,WnOX). Let X =

(
X,X∞

)
be a proper

modulus pair with X = X \ |X∞|. For an effective Cartier divisor E on X, denote

by WnOX(E) the invertible subsheaf of j∗WnOX\|E| corresponding to the image of
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[OX(E)] ∈H1
ét

(
X,O×

X

)
in H1

ét

(
X,WnO×

X

)
under the map induced by the Teichmüller

lift. If e is an equation for E at x ∈X, then WnOX,x(E) =WnOX,x · 1
[e] . There exists an

integer N such that a ∈H0
(
X,WnOX(N ·X∞)

)
.

Claim 7.5.1.
(
X,rX∞

)
satisfies (c5) for any r > pn−1N .

Indeed, let ρ : SpecL → X be a henselian dvf point. Assume that the closed point

s ∈ SL maps into X∞ and let f ∈OX,ρ(s) be a local equation for X∞. Let m= vL(f). For

r > pn−1N , we find
[
m

rm−1
L

]
·Fn−1(a) ∈Wn(OL); hence (see Section 7.3)

a ∈ fillogrm−1Wn(L)⊂ filrmWn(L)⊂ filFrmWn(L);

that is, γL(ρ
∗a)≤ rm= vL(r ·X∞), proving Claim 7.5.1.

Finally we deal with (c6). Set X ∈ Sm and let Z ⊂ X be a smooth prime divisor

with generic point z. Let K =Frac
(
Oh

X,z

)
. Set a ∈Wn(X \Z). Assume aK ∈ filFj Wn(K),

j ≥ 2. Then there exists an affine Nisnevich neighbourhood U = SpecA → X of z such
that ZU = div(t) on U and aU =

∑
s≥0F

s(as+Vn−r(bs)), where r=min{ordp(j),n} and

as ∈Wn(A[1/t]), bs ∈Wr(A[1/t]), with

[t]j−1 ·Fn−1(as) ∈Wn(A), [t]j ·F r−1(bs) ∈Wr(A). (7.5.4)

Let
(
Y ,Z+Σ

)
be a compactification of (U,Z) with Z |U = Z and Y normal. Let Y = ∪Vi

be an open covering such that Vi = SpecBi, Σ|Vi
= Div(fi) and Z |Vi

= Div(τi), with

τi,fi ∈ Bi. Note that SpecBi[1/fi]⊂ U is open for all i. Hence, in Bi[1/fi] we can write
t = τiei, with ei ∈ (Bi[1/fi])

×. Let Ei be the Cartier divisor on Vi defined by ei. We

have |Ei| ⊂ |Σ|Vi
|. By Lemma 6.5, there exists N1 ≥ 0 such that fN1

i /ei ∈Bi for all i. By

formula (7.5.4), there exists an N2 ≥ 0 such that for all i and all s,

[fi]
N2 [t]j−1 ·Fn−1(as) ∈Wn(Bi), [fi]

N2 [t]j ·F r−1(bs) ∈Wr(Bi).

Choose N ≥ j ·N1+N2 such that pn |N . We obtain for all i

[τi]
j−1[fi]

N−1 ·Fn−1(as) ∈Wn(Bi), [τi]
j [fi]

N ·F r−1(bs) ∈Wr(Bi).

Set ρ : SpecL→ U , L ∈ Φ. Assume that the closed point of SpecOL maps into
∣∣Z+Σ

∣∣.
Then it follows that

ρ∗as ∈ fillog
vL((j−1)·Z+(N−1)·Σ)

Wn(K)⊂ filvL(j·Z+N ·Σ)Wn(K)

and

ρ∗bs ∈ fillog
vL(j·Z+N ·Σ)

Wr(K).

By the choice of N we have

r0 := min
{
ordp

(
vL
(
j ·Z+N ·Σ

))
,n
}
≥ r =min{ordp(j),n} ;

hence

Vn−r(ρ∗bs) ∈Vn−r0 fillog
vL(j·Z+N ·Σ)

Wr0(K)⊂ filvL(j·Z+N ·Σ)Wn(K).
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Running over all ρ : SpecL→ U yields

γY (a)≤ j ·Z+N ·Σ.

This proves (c6) and completes the proof of the proposition.

Proposition 7.5 gives cWn ≤ γn, by Corollary 4.24. We show later in Theorem 7.20

that equality holds using symbol computations. If we restrict to trdeg(L/k) = 1 and k
is infinite, this follows, for example, from [32, Proposition 6.4, (3)]. To handle the case

of higher transcendence degree, we need some preparations. We start by identifying the

local symbol for Wn on regular projective curves over function fields.

7.6. Set X ∈ Sm. We denote by WnΩ
•
X the de Rham–Witt complex of length n on X

[22]. By [27, Corollary 3.2.5] we have WnΩ
q ∈ RSCNis. See also [15] and [7] for details

on how to define the transfer structure. If f : X → Y is a morphism in Sm, then the

morphism

Γ∗
f = f∗ :WnΩ

q(Y )→WnΩ
q(X)

induced by its graph Γf ∈Cor(X,Y ) is the natural pullback morphism induced by the
functoriality of the de Rham–Witt complex. If f is finite and surjective, then the transpose

of the graph defines an element Γt
f ∈Cor(Y ,X) and Γt∗

f = f∗, where f∗ is the push-forward
defined using duality theory.

Lemma 7.7.

(1) The restriction, Verschiebung, Frobenius and differential (which are part of the
structure of the de Rham–Witt complex) define morphisms in RSCNis:

R :Wn+1Ω
q →WnΩ

q, V :WnΩ
q →Wn+1Ω

q,

F :Wn+1Ω
q →WnΩ

q, d :WnΩ
q →WnΩ

q+1.

(2) Let Wn be the algebraic group of Witt vectors of length n considered as a presheaf

on Sm. Then there is a unique structure of presheaf with transfers on Wn, for all
n, which is unique with the following properties:

(a) the restriction R :Wn+1 →Wn is compatible with the transfer structure for all

n;

(b) if f : X → Y is a morphism in Sm with graph Γf ∈ Cor(X,Y ), then Γ∗
f :

Wn(Y )→Wn(X) is the pullback from the presheaf structure.

In particular, the Nisnevich sheaf with transfers WnΩ
0 = WnO from Section 7.6

coincides with the Nisnevich sheaf with transfers defined by the algebraic group Wn

[27, Corollary 3.2.5].

Proof. (1). We have to show that if α ∈Cor(X,Y ) is a finite correspondence, then the

following morphisms are equal on H0 (Y ,WnΩ
q
Y ):

α∗R=Rα∗, α∗V = V α∗, α∗F = Fα∗, α∗d= dα∗.

This follows from [7, Proof of Proposition 3.5.4].
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(2). The existence of such a transfer structure follows, for example, from Section 7.6.

The last part of the statement follows because the two transfer structures satisfy (2a)

and (2b).
It remains to prove the uniqueness. Assume we have two transfer actions on Wn

with (2a) and (2b). For a finite correspondence α ∈ Cor(X,Y ), denote by α∗,α� :

Wn(Y )→Wn(X) the two actions. We have to show that they are equal. Let f :X → Y be
a morphism. By assumption, we have Γ∗

f = Γ�
t =: f∗; if f is finite and and surjective, we

set f∗ :=
(
Γt
f

)∗
and f� :=

(
Γt
f

)�
. In general, for α as before, we want to show α∗ = α�.

It suffices to check this after shrinking X around its generic points. Hence, we can assume

that X is connected and α= Z ⊂X×Y with Z smooth, integral and finite free over X.

Denote by f :Z →X and g :Z → Y the maps induced by the projections. Then α� = f�g∗

and α∗ = f∗g
∗. It remains to show f� = f∗. We may shrink X further and hence assume

that f : Z = SpecL→X = SpecK is induced by a finite field extension L/K of function

fields over k. By transitivity, it suffices to consider the two cases where L/K is either

separable or purely inseparable of degree p.
Case 1: L/K separable. Let K ′/K be a Galois hull of L/K and set X ′ = SpecK ′. We

obtain the cartesian diagram

∐n
i=1X

′

��

∐
i σi �� Z

f

��
X ′ u �� X,

where the vertical map on the left is induced by the universal property of the coproduct
from the identity on X ′, u is induced by the inclusion K ↪→ K ′ and the σi : X

′ → Z,

i= 1, . . . ,n, are induced by all the K-embeddings L ↪→K ′. For a ∈Wn(L) we obtain

u∗f∗a=
(
Γt
f ◦Γu

)∗
=
∑
i

Γ∗
σi
,

and similarly with u∗f�. Thus u∗f∗ = u∗f�, and since u∗ :Wn(K) ↪→Wn(K
′) is injective,

we have proven the claim in this case.

Case 2: L/K purely inseparable of degree p. In this case we have

f∗f
∗(−) = [L :K] · (−) = p · (−) = f�f�(−) on Wn(X). (7.7.1)

Let p : Wn → Wn+1 be the map lift-and-multiply-by-p; thus it sends a Witt vector

(a0, . . . ,an−1) in Wn(A), where A is some Fp-algebra, to
(
0,ap0, . . . ,a

p
n−1

)
. Set b ∈Wn(L).

Clearly we find an element a ∈Wn+1(K) such that f∗a= p(b). We obtain

p(f∗b)
(2a)
= f∗p(b) = f∗(f

∗a)
equation (7.7.1)

= p ·a= pR(a).

The same computation works for f�b. Thus p(f∗b) = p(f�b), and the claim follows from

the injectivity of p.
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Lemma 7.8. Let f : Y → X be a finite and surjective morphism in Sm. Then for all
u ∈H0

(
Y ,O×

Y

)
and all n≥ 1 we have

f∗dlog[u] = dlog[NmY/X(u)] in H0
(
X,WnΩ

1
X

)
,

where NmY/X : f∗O×
Y →O×

X is the usual norm.

Proof. Note that f is flat by [38, Theorem 23.1], hence also finite locally free, so that

NmY/X is defined. It suffices to prove the equality after shrinking X around its generic
points. Thus we can assume that f corresponds to a finite field extension L/K. By

transitivity, it suffices to consider the cases where L/K is separable or purely inseparable

of degree p.
Case 1: L/K finite separable. We have WnΩ

q
L = Wn(L)⊗Wn(K)WnΩ

q
K [22, I, Propo-

sition 1.14]. By the projection formula and Lemma 7.7(2), we have f∗ = TrL/K⊗id. Let

Ksep be a separable closure of K. Note that Wn(K)→Wn(K
sep) is faithfully flat (since it

is ind-étale and SpecWn(K) is one point). Hence by étale base change and fppf descent,
the natural map WnΩ

1
K →WnΩ

1
Ksep is injective. Thus it suffices to check the equality in

WnΩ
1
Ksep . Let σ1, . . . ,σr : L ↪→Ksep be all K-embeddings; then by the foregoing we have

in WnΩ
1
Ksep

f∗dlog[u] =
r∑

i=1

σi(dlog[u]) = dlog

[
r∏

i=1

σi(u)

]
= dlog[NmL/K(u)].

Case 2: L/K purely inseparable of degree p. We have NmL/K(u) = up ∈K. Since the map

lift-and-multiply-by-p, p :WnΩ
1
K →Wn+1Ω

1
K , is injective by [22, I, Proposition 3.4] and

commutes with f∗, the statement follows from the following equality in Wn+1Ω
1
K :

p(f∗dlog[u]n) = f∗dlog[u
p]n+1 = f∗(1) · dlog[up]n+1 = pdlog[NmL/K(u)]n.

This completes the proof of the lemma.

7.9. Let A be a ring of characteristic p and set B := A[[t]]
[
1
t

]
. Recall from [29, §2.2,

Proposition 3] and [43, Proposition 2.12] that there is a residue map

Rest :WnΩ
∗
B →WnΩ

∗−1
A , (7.9.1)

which is WnΩ
∗
A-linear (where we consider the left-module structures), commutes with R,

F , V , and d, is zero on WnΩ
∗
A[[t]] and satisfies the equality Rest(αdlog[t]) = α(0), for

α ∈WnΩ
∗
A[[t]].

Let K be a function field over k and C be a regular projective connected curve over K
with function field E =K(C). Recall from [44, Definition-Proposition 1] that the residue

map

ResC/K,x :WnΩ
∗
E →WnΩ

∗−1
K

at a closed point x ∈ C is defined as follows: by a result of Hübl and Kunz we find an
integer m0 ≥ 0 such that for all m≥m0, the curve Cm := Spec

(
OC ∩K

(
Epm))

is smooth

over K and, if xm denotes the image of x under the finite homeomorphism C → Cm,

then the residue field Km := K(xm) is separable over K. Hence Oh
Cm,xm

has a unique
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coefficient field containing K, which we identify with Km. Set Em :=K(Cm) =K
(
Epm)

.

The choice of a local parameter t ∈ OCm,xm
yields a canonical inclusion Em ↪→Km((t)).

We define ResC/K,x as the composition

WnΩ
∗
E

TrE/Em−−−−−→WnΩ
∗
Em

↪→WnΩ
∗
Km((t))

formula (7.9.1)−−−−−−−−−→WnΩ
∗
Km

TrKm/K−−−−−→WnΩ
∗−1
K .

(Here we should observe that if π : SpecL→ SpecK is a finite extension, then the trace

TrL/K : WnΩ
q
L → WnΩ

q
K from [43, Theorem 2.6] is equal to the push-forward π∗ from

Section 7.6. Indeed, in the case q = 0 this follows from Lemmas 7.7(2) and 7.2; by
transitivity, the general case is reduced to a simple extension L = K[a], in which case

it follows from the facts that both maps commute with V , F , d and satisfy a projection

formula, and from the equality [a]i−1d[a] = i−1
0 F ed[a]i0 , where i= pei0 ≥ 1 with (i0,p)= 1.)

Remark 7.10. In [43, 2.] and [44], where the trace and the residue symbol mentioned

earlier are constructed, it is always assumed that the characteristic is not 2. The reason
for this that the structure theorem by Hesselholt and Madsen on which those sources

rely was only known for Z(p)-algebras, with p odd, at that time. This theorem is used in

a proposition and a lemma from those sources which are needed to define the trace and
the formal residue symbol, respectively. However, the Hesselholt–Madsen theorem is also

available for Z(2)-algebras by [9, 4.2], hence all the results from [44, 43] extend to the case

p= 2.

Lemma 7.11. Let C/K and x ∈ C be as in Section 7.9. Then the corresponding local

symbol of WnΩ
q (see Section 4.34) is given by

(a,f)C/K,x =ResC/K,x(α ·dlog[f ]), α ∈WnΩ
q
K(C), f ∈K(C)×,

where [f ] = (f,0, . . . ,0) ∈Wn(K(C)).

In particular, if L ∈ Φ with coefficient field σ : K ↪→ OL and local parameter t ∈ OL,
then the local symbol (−,−)L,σ :WnΩ

q
L×L× →WnΩ

q
K (see Section 4.37) is given by the

composition

WnΩ
q
L×L× σ̂∧dlog◦[−]◦σ̂−−−−−−−−−→WnΩ̂

q+1
K((t))

Rest−−−→WnΩ
q
K,

where we denote by σ̂ : L ↪→K((t)) the canonical inclusion.

Proof. We have to show that the family of maps {ResC/K,x(−·dlog[−])}x with x running

through all the closed points of C satisfies properties (LS1)–(LS4) from Section 4.34. (LS1)

(linearity) is clear, and since we can choose the modulus D for (LS3) as large as we want,
this condition too is clear, from Lemma 7.13. (LS4) (the reciprocity law) holds by [44,

Theorem 2] (see also Remark 7.10). It remains to show (LS2) – that is,

ResC/K,x(αdlog(f)) = vx(f)TrK(x)/K(α(x)), α ∈WnΩ
q
C,x.

To this end, choose m as in Section 7.9. Then K(x)/K(xm) is purely inseparable of

degree, say, ps, and we can write

[E : Em] = ps+e,
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where pe is the ramification index of x/xm. Denote by ps : WnΩ
q → Wn+sΩ

q the map

lift-and-multiply-by-ps; it is injective, by [22, I, Proposition 3.4]. Denote by σ : Km :=

K(xm) ↪→Oh
Cm,xm

↪→Oh
C,x the inclusion of the coefficient field. By [44, Theorem 2.6(iii)],

there exists a β ∈Wn+sΩ
q
Km

mapping to psα(x) ∈Wn+sΩ
q
K(x) and we have

TrK(x)/Km
(α(x)) =Rs(β). (7.11.1)

By the choice of β, we have

ps(α)−σ(β) ∈Ker
(
Wn+sΩ

q

Oh
C,x

→Wn+sΩ
q
K(x)

)
. (7.11.2)

Since the kernel is the differential graded ideal generated by Wn+s(mx), we obtain in

Wn+sΩ
q
K

psResC/K,x(αdlog[f ]) = ResC/K,x

(
ps(αdlog[f ])

)
=ResC/K,x(σ(β)dlog[f ]), formula (7.11.2),

= ResCm/K,xm
(TrE/Em

(σ(β)dlog[f ]))), defn.,

= ResCm/K,xm
(βdlogNmE/Em

[f ]), Section 7.8,

= vxm
(NmE/Em

(f))) ·TrKm/K(β), defn.,

= [K(x) :K(xm)] ·vx(f) ·TrKm/K(β)

= vx(f) ·psTrKm/K(Rs(β))

= vx(f) ·psTrK(x)/K(α(x)), equation (7.11.1).

Here the first equality follows from the fact that ResC/K,x commutes with the restriction

R. (This follows from the definition and the fact that Rest from formula (7.9.1) and Tr

commute with R; for the latter, see, for example, Lemma 7.7(1).) The statement follows
from the injectivity of ps.

7.12. Let A be a Z(p)-algebra. For an A-algebra B we denote by WnΩ
•
B/A the relative

de Rham–Witt complex of Langer and Zink [36]. It is equipped with R, F, V, d as usual.
If B[x] is the polynomial ring with coefficients in B, we denote by Ir ⊂WnΩ

•
B[x]/A the

differential graded ideal generated by Wn(x
rB[x]). We define the x-adic completion of

WnΩ
•
B[x]/A to be

WnΩ̂
•
B[[x]]/A := lim←−

r

WnΩ
•
B[x]/A/Ir.

Note that WnΩ
•
B[x]/A/Ir = WnΩ

•
(B[x]/(xr))/A (see [14, Lemma 2.4]). In particular,

WnΩ̂
•
B[[x]]/A is a Wn(B[[x]]) = lim←−r

Wn(B[x]/(xr))-module.

Lemma 7.13. The following equality holds in WnΩ̂
1
Z(p)[[x]]/Z(p)

:

−dlog[1−x] =
∑
i≥0

[x]id[x]+

n−1∑
s=1

∑
(j,p)=1

1
j dV

s
(
[x]j
)
.
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Proof. We prove this by induction over n. The case where n= 1 is clear. Assume n≥ 2.
By [36, Corollary 2.13] we find unique elements ai ∈ Wn

(
Z(p)

)
and bs,j ∈ Wn−s

(
Z(p)

)
such that

−dlog[1−x] =
∑
i≥0

ai[x]
id[x]+

n−1∑
s=1

∑
(j,p)=1

dVs
(
bs,j [x]

j
)
.

Applying Fn−1, we obtain in Ω̂1
Z(p)[[x]]/Z(p)

−dlog(1−x) =
∑
k≥0

xkdx

=
∑
i≥0

Fn−1(ai)x
(i+1)pn−1−1dx+

n−1∑
s=1

∑
(j,p)=1

Fn−1−s (bs,j)jx
jpn−1−s−1dx.

By the induction hypothesis, we have (for all i, j, and for s= 1, . . . ,n−2)

ai = 1+Vn−1(ei), bs,j =
1
j +Vn−s−1 (fs,j),

with ei,fs,j ∈ Z(p). Comparing coefficients, we obtain in Z(p)

1 = Fn−1(ai) = 1+pn−1ei,

and for s= 1, . . . ,n−2,

1
j = Fn−s−1 (bs,j) =

1
j +pn−s−1fs,j ;

hence ei = fs,j = 0. Further, we find bn−1,j = 1/j ∈W1

(
Z(p)

)
.

7.14. Let K be a field and Rest : WnΩ
∗
K((t)) → WnΩ

∗−1
K((t)) be the residue map (7.9.1).

Then for all r,s≥ 0, i,j ∈ Z, a ∈Wn−r(K) and b ∈Wn−s(K), the following equality holds

in Wn(K):

Rest
(
Vr
(
[a][t]i

)
dVs

(
[b][t]j

))
={

sgn(j)gcd(i,j)Vr+s−c
(
[a]p

s−c

[b]p
r−c
)

if jpr+ ips = 0,

0 otherwise,

where sgn(j) := j/|j| if j �= 0, and sgn(0) := 0 and c=min{r,s} [43, Proposition 2.12].

Lemma 7.15. Set L ∈ Φ and let σ :K ↪→OL be a coefficient field. Let t ∈ OL be a local

parameter, and set c ∈K.

(1) Let r ≥ 1 and write r = per0, with (r0,p) = 1, e≥ 0. Then

([t]−r0,1− trc)L,σ =−r0V
e([c]), in We+1(K).

(2) Let r ≥ 1 with (r,p) = 1 and m = pum0, with (m0,p) = 1, u ≥ 1. Assume r > m0.

Then for all n≥ 1,

([t]−m,1− trc)L,σ = 0, in Wn(K).
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Proof. (1). By Lemmas 7.11 and 7.13, we have

([t]−r0,1− trc)L,σ =Rest([t]
−r0 dlog[1− trc])

=−
∑
i≥0

Rest
(
[c]i[t]ir−r0d[trc]

)
−

e∑
s=1

∑
(j,p)=1

1
j Rest

(
[t]−r0dVs([c]j [t]jr)

)
.

Now the claim follows from Section 7.14. The proof of (2) is similar.

Lemma 7.16. Set L∈Φ and let t∈OL be a local parameter. Let K ↪→OL be a coefficient
field. Then for r ≥ 1, any element a ∈ fillogr Wn(L)/Wn(OL) can be written uniquely as

a=
∑

0>ipn−1≥−r

ai[t]
i+

n−1∑
s=1

∑
0>jpn−1−s≥−r

(j,p)=1

Vs
(
bs,j [t]

j
)
,

where ai ∈Wn(K) and bs,j ∈Wn−s(K).

Proof. We can assume L is complete, and hence we have L = K((t)). By [21, Lemma

4.1.1] (see also [43, Lemma 2.9]), we can write any element a in Wn(K((t)))/Wn(K[[t]])
uniquely in the form

a=
∑
0>i

ai[t]
i+

n−1∑
s=1

∑
0>j

(j,p)=1

Vs
(
bs,j [t]

j
)
,

with ai ∈Wn(K) and bs,j ∈Wn−s(K). Now, a ∈ fillogr Wn(L)/Wn(OL) is equivalent to the

following equality in Wn(K((t)))/Wn(K[[t]]):

0 = [t]rFn−1(a) =
∑
0>i

Fn−1(ai)[t]
ipn−1+r +

n−1∑
s=1

∑
0>j

(j,p)=1

Vs
(
Fn−1 (bs,j)

)
· [t]jpn−1−s+r.

This yields the statement.

Corollary 7.17. Let r = per0 ≥ 1 with e ≥ 0 and (r0,p) = 1. Let L ∈ Φ have local
parameter t ∈ OL and let σ : K ↪→ OL be a coefficient field. Set grlogr Wn(L) :=

fillogr Wn(L)/fil
log
r−1Wn(L), n≥ 1.

(1) Assume e ∈ [0,n−1]. Then there is a group isomorphism

We+1(K)
�−→ grlogr Wn(L), b �→Vn−1−e(b[t]−r0) mod fillogr−1Wn(L).

(2) Assume e≥ n. Then there is a group isomorphism

Wn(K)
�−→ grlogr Wn(L), b �→ b[t]−pe−n+1r0 mod fillogr−1Wn(L).
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Proof. This follows directly from Lemma 7.16.

Corollary 7.18. Let r= per0 ≥ 1 with e≥ 0 and (r0,p)= 1. Let L∈Φ have local parameter

t ∈OL and let σ :K ↪→OL be a coefficient field. Set grrWn(L) := filrWn(L)/filr−1Wn(L),

n≥ 1.

(1) Assume e= 0. Write r−1 = pe1r1 with e1 ≥ 0 and (r1,p) = 1. Then grrWn(L) = 0
if e1 ≥ n, and if e1 ∈ [0,n−1], then there is a group isomorphism

K
�−→ grrWn(L), b �→Vn−1−e1([bt−r1 ]) mod filr−1Wn(L).

(2) Assume e ∈ [1,n−1]. Then there is a group isomorphism

K⊕We(K)
�−→ grrWn(L),

(b,c) �→Vn−1
(
bt−(r−1)

)
+Vn−e(c[t]−r0p) mod filr−1Wn(L).

(3) Assume e≥ n. Then there is a group isomorphism

K⊕Wn(K)
�−→ grrWn(L),

(b,c) �→Vn−1
(
bt−(r−1)

)
+ c[t]−pe−n+1r0 mod filr−1Wn(L).

Proof. Define e′ := min{e,n} and recall

filrWn(L) = fillogr−1Wn(L)+Vn−e′ fillogr We′(L).

Thus (2) and (3) follow directly from Lemma 7.16. (For the injectivity in (2), we use

the fact that Vn−e(c[t]−r0p) = Vn−e−1(V(c)[t]−r0).) Furthermore, it is immediate from

Lemma 7.16 that there is an injective map as in (1) and that any element in the target
has a representative of the form Vn−1−e1(β[t]−r1) with β ∈We1(K). Thus the statement

follows if we show Vn−1−e1(V(β1)[t]
−r1) ∈ filr−1Wn(L). But by Lemma 7.16 the element

Vn−1−e1(V(β1)[t]
−r1)=Vn−e1(β1[t]

−pr1) lies in Vn−e1 fillogr−1We1(L)⊂ filr−1Wn(L). Hence

the statement.

Proposition 7.19. Let L ∈ Φ have residue field κL and local parameter t ∈ OL. Let

z1, . . . ,zm ⊂OL be a lift of some p-basis of κ/k. Let σ0 :K0 ↪→OL be the unique coefficient

field with zi ∈K0, i= 1, . . . ,m. Let x be an indeterminate and set Lx := Frac
(
OL[x]

h
(t)

)
.

Denote also by σ0 : K0(x) ↪→ Lx the canonical extension of σ0. Let r ≥ 1 and set a ∈
filFr Wn(L). Assume one of the following:

(1) (r,p) = 1 or r = p= 2 or m= 0, and
(
a,1−xtr−1

)
Lx,σ0

= 0.

(2) r > 2, p|r, m≥ 1 and
(
a,1−xtr−1

)
Lx,σj

= 0, for j = 0,1, where σ1 :K1 ↪→OL is the

unique coefficient field with zi/
(
1+ zp

e

i t
)
∈K1 for all i, with e = ordp(r), and we

denote also by σ1 :K1(x) ↪→OLx
the canonical extension.

Then a ∈ filFr−1Wn(L).
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Proof. Since k is perfect, a p-basis over k is the same as a separating transcendence basis
over k (see, for example, [18, Théorème 0.21.4.5]), hence there are unique coefficient fields

K0 and K1 as in the statement [4, IX, §3, No. 2]. By Proposition 7.5 and Corollary 4.24,

we know filFr−1Wn(L)⊂Wn

(
OL,m

−r+1
L

)
; furthermore, for all b∈Wn

(
OL,m

−r+1
L

)
we have(

b,1−xtr−1
)
Lx,σ

= 0 for all coefficient fields σ (by Corollary 4.40). Thus in the following

we may replace a by a+ b with b ∈ filFr−1Wn(L). We will use σ0 to identify L̂=K0((t)).

Write r = per0 with e≥ 0 and (r0,p) = 1. We distinguish four cases.

Case 1: e= 0. Write r−1 = pe1r1 with (r1,p) = 1 and e1 ≥ 0. By Corollary 7.18(1) we
have grrWn(L) = 0 if e1 ≥ n, and there is nothing to show; if e1 ∈ [0,n−1], we have

a≡
∑
h≥0

FhVn−1−e1([bh][t]
−r1) mod filFr−1Wn(L),

with bh ∈K0. We compute in Wn(K0(x))

0 =

(∑
h

Fh
(
Vn−1−e1([bh][t]

−r1)
)
,1−xtr−1

)
Lx,σ0

, by (1),

=
∑
h

FhVn−1−e1
(
[bh] ·

(
[t]−r1,1−xtr−1

)
Lx,σ0

)
, by Lemma 7.11,

=−r1
∑
h

FhVn−1−e1([bh]V
e1([x])), by Lemma 7.15(1),

=−r1V
n−1

(∑
h

bp
e1+h

h xph

)
.

Hence bh = 0 for all h≥ 0, which completes the proof of the first case.

Case 2: r = p= 2. By Corollary 7.18(2) and (3) we have

a≡
∑
h

FhVn−1
(
bht

−1+ cht
−2
)
mod Wn(OL),

with bh,ch ∈K0. Note that

Rest
(
t−1dlog(1−xt)

)
= x, Rest

(
t−2dlog(1−xt)

)
= x2.

Hence by (1),

0 = (a,1−xt)Lx,σ0
=Vn−1

(∑
h

b2
h

h x2h + c2
h

h x2h+1

)
.

We obtain

b0 = 0 and ch = b2h+1, all h≥ 0.

Thus reshuffling the sum defining a, we obtain

a=
∑
h

FhVn−1
(
bht

−1+F
(
bh+1t

−1
))

= 2
∑
h

FhVn−1
(
bht

−1
)
= 0.
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Case 3: 1≤ e≤ n−1 and r > 2. By Corollary 7.18(2) we have

a≡
∑
h≥0

Fh
(
Vn−1

(
bh[t]

−(r−1)
)
+Vn−e(ch[t]

−r0p)
)
mod filFr−1Wn(L),

where bh ∈ K0 and ch ∈ We(K0). By a similar computation as in the first case, the
vanishing

(
a,1−xtr−1

)
Lx,σ0

= 0 together with r− 1 > r0 and Lemma 7.15(1) and (2)

imply bh = 0, for all h≥ 0. Thus

a≡
∑
h≥0

Fh
(
Vn−e(ch[t]

−r0p)
)
mod filFr−1Wn(L).

It suffices to show

ch ∈ FWe(K0), all h≥ 0. (7.19.1)

Indeed, then V n−e(ch[t]
−r0p) = FV n−e (c′h[t]

−r0), for some c′h ∈ We(K0), which lies in

Ffillogr/pWn(L)⊂ Ffillogr−2Wn(L) (use r ≥ 3 for the last inclusion).

If m = trdeg(κ/k) = 0, then K0 is perfect and formula (7.19.1) holds. This completes

the proof of the implication: (1) ⇒ a ∈ filr−1WnOL.

Now assume m≥ 1. We prove formula (7.19.1) by contradiction using
(
a,1−xtr−1

)
Lx,σ1

= 0 with σ1 :K1(x) ↪→OLx
as in (2). Thus, assume that not all ch are in FWe(K0). Let

h0 be the minimal h with ch �∈ FWe(K0). Hence, modulo filFr−1Wn(L), we can write a as
Fh0(V n−e(a′)), with a′ =

∑
h≥h0

Fh−h0(ch[t
−r0p]). Since F : Wn (Kj(x)) → Wn (Kj(x))

and V n−e :We (Kj(x))→Wn (Kj(x)), j = 0,1, are injective, the element a′ also satisfies(
a′,1−xtr−1

)
Lx,σj

= 0, j = 0,1. Thus we can assume n = e and h0 = 0 – that is, c0 �∈
FWe(K0) – and we want to find a contradiction. Since the elements z1, . . . ,zm ∈K0 from
the statement form a p-basis, we can write c0 as

c0 =

e−1∑
j=0

V j

⎛⎝ ∑
I⊂[0,p−1]m

[aI,j ]
p
[z]I

⎞⎠,

where aI,j ∈K0 and [z]I = [z1]
i1 · · · [zm]im , for I = (i1, . . . ,im). Therefore, c0 �∈ FWe(K0)

translates into

∃j ∈ [0,e−1], I ∈ [0,p−1]m \{(0, . . . ,0)} such that aI,j �= 0. (7.19.2)

Since we want to compute the local symbol with respect to the coefficient field σ1 :

K1(x) ↪→OLx
, we have to rewrite c0 as an element in Wn(K1[[t]]). Define

yi :=
zi

1+ zp
e

i t
∈K1, i= 1, . . . ,m.

Then

c0 =

e−1∑
j=0

V j

⎛⎝ ∑
I⊂[0,p−1]m

[aI,j ]
p
[
y
(
1+ zp

e

t
)]I⎞⎠,
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where
[
y
(
1+ zp

e

t
)]I

:=
∏m

h=1

[
yh

(
1+ zp

e

h t
)]ih

. Note that aI,j,zh ∈K0 ⊂K1[[t]] are not

constant. The composition Fe−1 d : We(−) → Ω1 is a morphism of reciprocity sheaves

(see Lemma 7.7). Hence Fe−1 d commutes with the local symbol, which on Ω1 is given

by (α,f)Lx,σ1
= ResK1((t))(α∧dlogf) (see Lemma 7.11). Using Fe−1 dF = 0 on We, we

obtain the following equalities in Ω1
K1(x)

:

0 = Fe−1 d
(
a,1−xtr−1

)
Lx,σ1

=
(
Fe−1 d(c0[t]

−r0p),1−xtr−1
)
Lx,σ1

=

e−1∑
j=0

∑
I

(
Fe−1−j d

(
[aI,j ]

p
[
y
(
1+ zp

e

t
)]I

[t]−r0p
j+1

)
,1−xtr−1

)
Lx,σ1

=

e−1∑
j=0

∑
I

Rest

(
ap

e−j

I,j t−rFe−1−j d

([
y
(
1+ zp

e

t
)]I)

dlog
(
1−xtr−1

))
.

Write

aI,j = āI,j + tbI,j, āI,j ∈K1,bI,j ∈K1[[t]].

Denote by

σ̄j :Kj
�−→ κL, j = 0,1,

the isomorphisms induced by σj :Kj ↪→OL. Then σ̄1 (āI,j) = σ̄0 (aI,j); in particular,

aI,j = 0⇐⇒ āI,j = 0. (7.19.3)

For j ∈ [0,e− 1], we have ap
e−j

I,j ≡ āp
e−j

I,j mod t2, and thus we obtain from the previous
computation

0 =−
e−1∑
j=0

∑
I⊂[0,p−1]m

Rest

(
āp

e−j

I,j t−rFe−1−j d

([
y
(
1+ zp

e

t
)]I)

d
(
xtr−1

))
. (7.19.4)

We have

Fe−1−j d
[
y
(
1+ zp

e

t
)]I

=

m∑
h=1

ih

(
y
(
1+ zp

e

t
))Ipe−1−j

dlog
(
yh

(
1+ zp

e

h t
))

. (7.19.5)

Note that

zh = yh+ tζh, ζh ∈K1[[t]],h= 1, . . . ,m.

Thus, zp
e

h ≡ yp
e

h mod tp
e

. Hence the coefficient of Fe−1−j d
[
y
(
1+ zp

e

t
)]I

in K1 in front

of dt is equal to

fI,j := qp
e

I yIp
e−1−j

, with qI =

m∑
h=1

ihyh; (7.19.6)
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the coefficient of Fe−1−j d
[
y
(
1+ zp

e

t
)]I

in Ω1
K1

in front of t is equal to dfI,j . (This is 0

if j ∈ [0,e−2].) Thus by equation (7.19.4) we have

0 =

e−1∑
j=0

∑
I

(
āp

e−j

I,j (fI,jdx+xdfI,j)
)
= d

⎛⎝e−1∑
j=0

∑
I

āp
e−j

I,j fI,j ·x

⎞⎠ .

Hence the element in the brackets has to be a pth power – that is, by definition (7.19.6),

Kp
1 �

e−2∑
j=0

⎛⎝ ∑
I⊂[0,p−1]m

(
āI,jq

pj

I

)p
yI

⎞⎠pe−1−j

·x+
∑

I⊂[0,p−1]m

I �=0

(
āI,e−1q

pe−1

I

)p
yIx.

Note that

qI = 0⇐⇒ I = 0.

Since y1, . . . ,ym and x form a p-basis of K1(x) over k, we obtain

āI,e−1 = 0, for all I ⊂ [0,p−1]m \{(0, . . . ,0)},

and

e−2∑
j=0

∑
I⊂[0,p−1]m

(
āI,jq

pj

I

)pe−1−j

yIp
e−2−j

= 0.

Since y1, . . . ,ym ∈K1 form a p-basis over k, we obtain, similarly as before, āI,e−2 = 0 for

all I �= 0. We may proceed in this way and obtain

āI,j = 0, for all I �= 0,j ≥ 0.

By formula (7.19.3), this contradicts formula (7.19.2) and proves the statement in this
case.

Case 4: e≥ n and r > 2. By Corollary 7.18(3), we have

a≡
∑
h≥0

Fh
(
ch[t]

−pe−n+1r0 +V n−1
(
bh[t]

−(r−1)
))

mod filFr−1Wn(L),

where ch ∈ Wn(K0) and bh ∈ K0. As before, it follows from
(
a,1−xtr−1

)
Lx,σ0

= 0 and

Lemma 7.15 that bh = 0 for all h≥ 0. Thus

a≡
∑
h≥0

Fh
(
ch[t]

−pe−n+1r0
)
mod filFr−1Wn(L).

Applying Ve−n+1, we obtain

Ve−n+1(a)≡
∑
h≥0

FhV
(
c′h[t]

−r0p
)
mod filFr−1We+1(L),

where c′h = V e−n(ch) ∈ We(K0). Since V e−n+1(a) ∈ filrWe+1(L), we can apply the
third case, in particular formula (7.19.1), to conclude ch ∈ FWn(K0), and then also

a ∈ filFr−1Wn(L). This completes the proof of the proposition.
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Theorem 7.20. Set L ∈ Φ and r ≥ 0. Then

filFr Wn(L) = W̃n(OL,m
−r);

that is, the Brylinski–Kato–Matsuda–Russell conductor is motivic.

Proof. We have filFr Wn(L)⊂ W̃n(OL,m
−r), by Proposition 7.5 and Theorem 4.15(4), and

we know this is an equality for r= 0. Let t ∈OL be a local parameter. By Corollary 4.40,
we have

a ∈ W̃n(OL,m
−r)⇒ (a,1−xtm)Lx,σ = 0, for all m≥ r and all σ,

where Lx = Frac
(
OL[x]

h
(t)

)
and σ runs through all coefficient fields σ : K ↪→ OL.

Furthermore, we know that for any a ∈ W̃n(OL,m
−r) there exists some m≥ r such that

a ∈ filFmWn(L). Hence the statement follows from Proposition 7.19.

8. Lisse sheaves of rank 1 and the Artin conductor

In this section k is a perfect field of characteristic p > 0.

8.1. The case of finite monodromy

8.1. Consider the constant presheaf with transfers Q/Z – that is, an elementary corre-
spondence V ∈Cor(X,Y ), with X,Y smooth and connected, that acts by multiplication

with [V :X]. By [39, Lemma 6.23],

X �→H1(X) :=H1
ét(X,Q/Z) = Homcont

(
π1(X)ab,Q/Z

)
is a presheaf with transfers, which we denote by H1 in the following.

Note that H1 ∈NST, as follows from the following lemma:

Lemma 8.2. Let A be an abelian group. It defines a constant étale sheaf on Sm. Then

the presheaf X �→H1
ét(X,A) is a Nisnevich sheaf on Sm.

Proof. Let Hi be the Nisnevich sheafification of X �→Hi
ét(X,A). Then for any X ∈ Sm,

we have an exact sequence

H1
Nis

(
X,H0

)
→H1

ét(X,A)→H0
Nis

(
X,H1

)
→H2

Nis

(
X,H0

)
.

But H0 = A is constant, and hence by [49, Theorem 3.1.12] we have Hi
Nis

(
X,H0

)
=

Hi
Zar

(
X,H0

)
= 0 for all i≥ 1. Thus the presheaf from the statement is equal to H1.

Lemma 8.3. The Artin–Schreier–Witt sequence

0→ Z/pnZ→Wn
F−1−−−→Wn → 0 (8.3.1)

is an exact sequence of étale sheaves with transfers on Sm, where F : Wn → Wn is the

base change over Speck of the Frobenius on the Fp-group scheme Wn.
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Proof. The exactness of sequence (8.3.1) on Xét is classical. The map F −1 :Wn →Wn is

a morphism of k-group schemes, and hence is compatible with transfers; for the inclusion

Z/pnZ ↪→Wn, this follows directly from Lemma 7.2.

8.4. We denote by δn the composition

δn :Wn(L)→Wn(L)/(F −1)Wn(L)∼=H1
ét(L,Z/p

nZ) :=H1
pn(L),

which is the connecting homomorphism stemming from the Artin–Schreier–Witt

sequence (8.3.1). Then we set

filjH
1
pn(L) := δn (filjWn(L)) = δn

(
filFj Wn(L)

)
.

For j ≥ 0, we set

filjH
1(L) :=

{
Im(H1(OL)→H1(L)) if j = 0,

H1(L){p′}⊕
⋃

n≥1filjH
1
pn(L) if j ≥ 1,

(8.4.1)

with H1(L){p′}=
⊕

� �=pH
1
ét(L,Q�/Z�) the prime-to-p part of H1(L).

For χ ∈H1(L), we define

ArtL(χ) = min
{
j ≥ 0 | χ ∈ filjH

1(L)
}
. (8.4.2)

Proposition 8.5. The collection

Art =
{
ArtL :H1(L)→ N0 | L ∈ Φ

}
is a semicontinuous conductor on H1, as is its restriction Art≤1.

Proof. By Proposition 7.5 and Lemma 4.28, Art satisfies (c1)–(c6) except possibly

for (c4). (For (c5), note that Wn(Y ) → H1
pn(Y ) is surjective for any affine scheme over

k.) It remains to show that Art≤1 satisfies (c4). Let X be a smooth k-scheme and set

a ∈H1
(
A1

X

)
with

Art1k(x)∞ (ρ∗xa)≤ 1, for all closed points x ∈X(0), (8.5.1)

where ρx : Speck(x)(t)∞ = SpecFrac
(
Oh

P1
x,∞

)
→ A1

X is the natural map. We want to

show : a∈H1(X). Since H1 =H1{p′}⊕ lim−→n
H1

pn , with H1{p′} the A1-invariant subsheaf

of prime-to-p torsion, we can assume a ∈ H1
pn

(
A1

X

)
. Furthermore, the question is local

on X, so we can assume X = SpecA affine. We consider first the case where n = 1.
Condition (8.5.1) implies

ρ∗xa ∈ Im
(
H1

p

(
Oh

P1
x,∞

)
→H1

p (k(x)(t)∞)
)
. (8.5.2)

Denote by a(x) the restriction of a to A1
x. Since H1

p is a Nisnevich sheaf, we conclude

a(x) ∈H1
p

(
P1

x

)
=H1

p (x).
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Thus we find a polynomial ã= a0+a1t+ · · ·+ant
n ∈A[t] mapping to a such that for all

closed points x ∈X, there exist bx ∈ k(x) and gx ∈ k(x)[t] with

ã(x) = bx+gpx−gx, in k(x)[t]. (8.5.3)

Assume n≥ 1. Then n= p ·n1 for some n1 ≥ 1. We claim

an = cp1, some c1 ∈Ap. (8.5.4)

Indeed, write n= pem with e≥ 1 and (p,m) = 1, and for a fixed closed point x ∈X write

gx = c0+ c1t+ · · ·+ cpe−1mtp
e−1m; then equation (8.5.3) implies

an(x) = cppe−1m, apim(x) = cppi−1m− cpim,i ∈ [1,e−1], am(x) =−cm.

Hence for all maximal ideals m⊂A, we have

an ≡
e−1∑
j=0

(
−apjm

)pe−j

mod m.

It follows that an =
(∑e−1

j=0

(
−apjm

)pe−j−1)p
∈Ap, which yields equation (8.5.4).

Now a(1) = ã−(c1t
n1)p+c1t

n1 also has property (8.5.3), and its degree is strictly smaller

than n. We can replace a by a(1) in the foregoing discussion and go on in this way until
we reach a polynomial a(r) ∈ A[t] whose degree is strictly smaller than p, in which case

equation (8.5.3) forces it to be constant = cr ∈A. We obtain

ã= cr+
r−1∑
i=1

(cit
ni)p− cit

ni,

whence a ∈H1
p (X).

Let n≥ 1. If a ∈H1
pn

(
A1

X

)
satisfies formula (8.5.1), then so does pn−1a ∈H1

p

(
A1

X

)
. In

the case where n= 1, by the exact sequence

0→H1
pn−1(X)→H1

pn(X)
pn−1·−−−→H1

p (X)→ 0

(X is affine) we find an element b ∈H1
pn(X) such that pn−1(a− b) = 0. Since a− b also

satisfies formula (8.5.1), we obtain a− b ∈ H1
pn−1(X) by induction. This completes the

proof.

Lemma 8.6. Let K be a field of positive characteristic, x an indeterminate and g ∈
Wn(K(x)). Assume F (g)− g = Vn−1(bx) for some b ∈ K. Then g ∈ Z/pnZ – that is,
F (g)−g = 0.

Proof. If n=1, then gp−g= bx forces g to be constant and hence gp−g=0 – that is, g ∈
Fp. If n≥ 2, then F (g)−g is 0 when restricted toWn−1(K(x)). Hence g=m · [1]+Vn−1(f)

with f ∈K(x),m∈Z. Thus F (f)−f = bx, and we conclude with the case where n=1.
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Proposition 8.7. Let L, t∈OL and σj :Kj ↪→OL, j =0,1, be as in Proposition 7.19. We
also denote by σj :Kj(x) ↪→OLx

the canonical extension. Set r ≥ 1 and a ∈ filrH
1
pn(L).

Assume one of the following:

(1) (r,p) = 1 or r = p= 2 or m= 0, and
(
a,1−xtr−1

)
Lx,σ0

= 0.

(2) r > 2, p|r, m≥ 1 and
(
a,1−xtr−1

)
Lx,σj

= 0, for j = 0,1.

Then a ∈ filr−1H
1
pn(L).

Proof. Let ã ∈ filrWn(L) be a lift of a. If
(
a,1−xtr−1

)
Lx,σj

= 0, for some j ∈ {0,1}, then
we find gj ∈Wn (Kj(x)) such that(

ã,1−xtr−1
)
Lx,σj

= F (gj)−gj . (8.7.1)

It suffices to show ã ∈ filFr−1Wn(L). Write r = per0 with e≥ 0 and (r0,p) = 1.

Case 1: e = 0. Write r− 1 = pe1r1 with e1 ≥ 0 and (p,r1) = 0. If e1 ≥ n, then by

Corollary 7.18(1) we have filrH
1
pn(L) = filr−1H

1
pn(L); otherwise we have

ã≡Vn−1−e1([b][t]−r1) mod filr−1Wn(L)

for some b ∈K0. Thus

F (g0)−g0 =
(
ã,1−xtr−1

)
Lx,σ0

, by (1),

=Vn−1−e1
(
[b]
(
[t]−r1,1−xtr−1

)
Lx,σ0

)
, by Lemma 7.11,

=−r1V
n−1
(
bp

e1
x
)
, by Lemma 7.15(1).

Lemma 8.6 implies F (g0)−g0 = 0. Hence ã ∈ filFr−1Wn(L), by Proposition 7.19(1).
Case 2: r = p = 2. As in the proof of Proposition 7.19 (case 2), we have ã ≡

Vn−1
(
bt−1+ ct−2

)
mod Wn(OL), with b,c ∈K0, and

g20 −g0 = (ã,1−xt)Lx,σ0
= V n−1

(
bx+ cx2

)
.

This implies c= b2; hence a ∈H1
pn(OL) = fil1H

1
pn(L).

Case 3: 1≤ e≤ n−1 and r > 2. By Corollary 7.18(2) we have

ã≡Vn−1
(
bj [t]

−(r−1)
)
+Vn−e

(
cj [t]

−r0p
)
mod filFr−1Wn(L),

where bj ∈Kj and cj ∈We(Kj), j = 0,1. By Lemma 7.15(1) we have(
Vn−1

(
bj [t]

−(r−1)
)
,1−xtr−1

)
Lx,σj

=−(r−1)Vn−1 (bjx) ;

and by Lemma 7.15(2) we have(
Vn−e

(
cj [t]

−r0p
)
,1−xtr−1

)
Lx,σj

= 0.

Thus by (2),

F (gj)−gj =
(
ã,1−xtr−1

)
Lx,σj

=−(r−1)Vn−1 (bjx) .
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By Lemma 8.6 we have F (gj) − gj = 0, for j = 0,1. Hence ã ∈ filFr−1Wn(L), by

Proposition 7.19.

Case 4: e≥ n and r > 2. By Corollary 7.18(3) we have

a≡ cj [t]
−pe−n+1r0 +V n−1

(
bj [t]

−(r−1)
)
mod filFr−1Wn(L),

where cj ∈Wn (Kj) and bj ∈Kj , for j = 0,1. As in the third case, the following equality
follows from Lemma 7.15 for j = 0,1:

F (gj)−gj =
(
ã,1−xtr−1

)
Lx,σj

=−(r−1)Vn−1 (bjx) .

Hence ã ∈ filFr−1Wn(L) as before. This completes the proof.

Theorem 8.8. Set L ∈ Φ and r ≥ 0. Then

filrH
1(L) = H̃1(OL,m

−r);

that is, the Artin conductor is motivic, Art = cH
1

. Furthermore,
(
cH

1
)≤1

is a conductor

of level 1.

Proof. The last statement follows from the first and Proposition 8.5. By Corollary 4.29 it

suffices to show the corresponding statement on the subsheaf of pn-torsion, for all n≥ 1.
Here the proof is the same as in Theorem 7.20, if we replace Wn everywhere by H1

pn , filF

by fil, the reference to Proposition 7.5 by a reference to Proposition 8.5 and the reference

to Proposition 7.19 by a reference to Proposition 8.7.

8.2. Lisse sheaves of rank 1

In this subsection we fix a prime number � �= p, an algebraic closure Q� of Q� and a

compatible system of primitive roots of unity {ζn} ⊂Q
×
� .

8.9. We denote by Lisse1(X) the group of isomorphism classes of lisse Q̄�-sheaves on X
of rank 1, with group structure given by ⊗. Note that

Lisse1(X)∼= lim−→
E/Q�

H1
ét

(
X,O×

E

)
:= lim−→

E/Q�

lim←−
n

H1
ét

(
X, (OE/m

n
E)

×
)
, (8.9.1)

where E runs over subextensions of Q�/Q� which are finite over Q�, and OE and

mE denote the ring of integers and the maximal ideal, respectively. Indeed, a sheaf

M ∈ Lisse1(X) corresponds uniquely to a continuous morphism πab
1 (X) → Q

×
� , which

in particular implies that it factors as a continuous morphism πab
1 (X)→ E×, with some

E as before (see, for example, [11, 1.1]). Since any representation of a profinite group in a

finite-dimensional E-vector space has an OE-lattice, we see that such a morphism factors

via a continuous map

πab
1 (X)→AutOE

(
m

−j
E OE

)
=O×

E .
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The isomorphism classes of such maps correspond uniquely to elements in lim←−n
H1

ét(
X, (OE/m

n
E)

×
)
. By Section 8.1 and Lemma 8.2, the isomorphism (8.9.1) induces the

structure of a Nisnevich sheaf with transfers on X �→ Lisse1(X) – that is,

Lisse1 ∈NST .

Write

|OE/mE |= �rE, �rE −1 = psE ·hE, with (hE,p) = 1,sE ≥ 0.

Then μ�rE−1

(
Q�

)
⊂O×

E and the roots of unity fixed at the beginning of this subsection

induce a canonical isomorphism

O×
E
∼= Z/psE ×Z/hE ×U

(1)
E .

Since U
(1)
E is a pro-� group, this yields the decomposition

Lisse1 = Lisse1,p
′
⊕H1

p∞ in NST,

where

X �→ Lisse1,p
′
(X) := lim−→

E/Q�

lim←−
n

H1
ét

(
X,Z/hE ×U

(1)
E /U

(n)
E

)
,

X �→H1
p∞(X) := lim−→

E/Q�

H1
ét(X,Z/psE ) =H1

p∞(X).

Set L ∈ Φ. For j ≥ 0, we define

filjLisse
1(L) :=

{
Im
(
Lisse1(OL)→ Lisse1(L)

)
if j = 0,

Lisse1,p
′
(L)⊕filjH

1
p∞(L) if j ≥ 1,

(8.9.2)

where filjH
1
p∞(L) = ∪nfiljH

1
pn(L) is defined in Section 8.4.

Corollary 8.10. Let the notation be as in Section 8.9. Then the following are true:

(1) Lisse1 ∈RSCNis;

(2) the motivic conductor is given by

cLisse
1

L (M) = min
{
j ≥ 0 |M ∈ filjLisse

1(L)
}
,

which furthermore restricts to a level 1 conductor;

(3) if X ∈ Sm is proper over k and U ⊂X is dense open, then

h0
A1

(
Lisse1

)
(U) = Lisse1,p

′
(U)⊕H1

p∞(X)

(see Section 4.30 for notation).

Proof. Note that Lisse1,p
′
∈HINis. Hence (1) and (2) follow directly from Theorem 8.8

together with Corollary 4.29 and Lemma 4.20. For (3), observe that by Theorem 8.8 and

the definition of the Artin conductor, we have H1
p∞
(
OL,m

−1
L

)
= H1

p∞(OL); hence the

statement follows from Corollary 4.33.
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Remark 8.11. Set U ∈ Sm and denote by πab,t
1 (U/k) the abelian tame fundamental

group in the sense of [31, 7]; it is a quotient of πab
1 (U). Denote by Tame1(U) the subgroup

of Lisse1(U) consisting of those lisse sheaves of rank 1 whose corresponding representation

factors via πab,t
1 (U/k). Then

h0
A1

(
Lisse1

)
(U) = Tame1(U).

Indeed, we classically have Tame1(C) = Lisse1,p
′
(C)⊕H1

p∞
(
C
)
, in the case where C ∈Sm

is a curve over k with smooth compactification C. Hence this ⊂ inclusion follows from

Corollary 8.10(3) and the description of πab,t
1 (U/k) via curve-tameness [26]. The other

inclusion follows from the A1-invariance of Tame1.

9. Torsors under finite group schemes over a perfect field

In this section, k is a perfect field of positive characteristic p. We fix an algebraic closure
k̄ of k. The term k-group is short for commutative group scheme of finite type over k.

Lemma 9.1. Let G be a finite k-group. Then there exists an exact sequence of sheaves

on (Sch/k)fppf , the fppf site on k-schemes,

0→G→H1 →H2 → 0, (9.1.1)

with Hi, i = 1,2, smooth k-groups. Furthermore, if we denote by u : (Sch/k)fppf →
(Sch/k)ét the morphism from the fppf site to the étale site, then the sequence induces
a canonical isomorphism

Ru∗G∼= [H1 →H2] (9.1.2)

in the derived category of abelian sheaves on (Sch/k)ét. In particular, for all n ≥ 0 the

presheaf on Sm

Sm �X �→Hn (Xfppf,G)∼=Hn(Xét,H1 →H2) (9.1.3)

admits the structure of a presheaf with transfers. This transfer structure does not depend

on the choice of sequence (9.1.1) (up to isomorphism).

Proof. By a result of Raynaud (see [3, 3.1.1]), there exists a closed immersion G ↪→ A,

with A an abelian variety. By [13, Exp V IA, Théorème 3.2], the fppf-quotient sheaf

(A/G)fppf is representable by a k-group A/G and the quotient map A → A/G is finite
and faithfully flat. Hence A/G is reduced and hence a smooth k-group. This shows the

existence of a sequence (9.1.1). By [19, Théorème (11.7)], a smooth k-group is acyclic for

the direct image functor

u∗ : Shv((Sch/k)fppf)→ Shv((Sch/k)ét).

Hence sequence (9.1.1) is a u∗-acyclic resolution of the fppf sheaf G, which yields the

canonical isomorphism (9.1.2). SinceH1 →H2 is a complex of étale sheaves with transfers,

the presheaf (9.1.3) has transfers, by [39, Lemma 6.23]. Finally, we have to show that
this transfer structure does not depend on the resolution (9.1.1). Assume 0→G→ L1 →
L2 → 0 is a second such exact sequence. We obtain a commutative diagram with exact

rows in (Sch/k)fppf :
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0 �� G �� L1×H1
��

��

(L1×H1)/G

��

�� 0

0 �� G �� H1
�� H2

�� 0,

where the vertical arrows are induced by projection and the top horizontal arrow on the

left is the diagonal embedding of G; we also have such a sequence with H replaced by
L in the lower line. This yields the isomorphism [H1 → H2] ∼= [L1 → L2] in the derived

category of étale sheaves with transfers, proving the final statement.

Notation 9.2. Let G be a finite k-group. Then we denote by H1(G)∈PST the presheaf
with transfers from Lemma 9.1,

X �→H1(G)(X) :=H1 (Xfppf,G) .

Lemma 9.3. Let Gal
(
k̄/k
)
be the absolute Galois group of k and G an étale k-group.

Then the functor

Sm �X �→Hn
(
Gal
(
k̄/k
)
,G(Xk̄)

)
(9.3.1)

defined by the Galois cohomology groups is a proper sheaf in RSCNis in the sense of
Definition 4.26.

Proof. The composition

Cork(X,Y )→Cork̄(Xk̄,Yk̄)→HomAb(G(Yk̄),G(Xk̄))

factors through the homomorphism of Galois modules; hence formula (9.3.1)∈PST. Since

G is étale, we have G(Xk̄) = G
(
k̄
)π0(Xk̄). It follows that formula (9.3.1) is A1-invariant

and that restrictions to dense open subsets are isomorphisms. Hence it is a Nisnevich

sheaf and proper.

Lemma 9.4. Let G be an étale k-group. Then the exact sequence

E(X) : 0→H1
(
Gal
(
k̄/k
)
,G(Xk̄)

)
→H1(G)(X)→K1(X)→ 0,

with

K1(X) := Ker

(
H1
(
Xk̄,ét,Gk̄

)Gal(k̄/k) →H2
(
Gal
(
k̄/k
)
,G(Xk̄)

))
,

coming from the E2-page of the Hochschild–Serre spectral sequence defines an exact

sequence X �→ E(X) in PST.

Proof. First note that by Grothendieck’s theorem (see Lemma 9.1) we have H1(G)(X) =
H1(Xét,G), so that the sequence E(X) is indeed induced by the Hochschild–Serre

spectral sequence. We show that transfers act on the whole spectral sequence. By a

limit argument, it suffices to consider finite Galois extensions L/k and the corresponding
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spectral sequence. Let G→ I• be an injective resolution in Shét(Cork), the category of

étale sheaves with transfers. Then

Hi(Xét,G) =Hi(I•(X)) =Hi
(
I•(XL)

Gal(L/k)
)
, i≥ 0, (9.4.1)

for all X ∈ Sm (see [39, Lemma 6.23]). Moreover, Hi (XL,ét,I
n) = 0 = Hi(Xét,I

n) for

i≥ 1 and n≥ 0 (see again [40]). Hence

Hi(Gal(L/k),In(XL)) = 0. (9.4.2)

Let C•(Gal(L/k),M) be the complex of cochains computing the cohomology of the
Gal(L/k)-module M . By equations (9.4.1) and (9.4.2), the cohomology groups Hi

ét(X,G)

are the cohomology groups of the total complex associated to the double complex

C•(Gal(L/k),I•(XL)). The Hochschild–Serre spectral sequence arises from a filtration of

this complex. Furthermore, the canonical map Cork(X,Y )×Gal(L/k)→Cork(XL,YL),
(α,σ) �→ (α⊗k L) ◦ (idX×kY ×σ) induces the structure of a complex of presheaves with

Gal(L/k)-equivariant transfers on X �→ I•(XL). Hence X �→ C•(Gal(L/k),I•(XL)) is a

double complex in PST. This proves the lemma.

Lemma 9.5. Let G be an étale k-group of order prime to p. Then H1(G) ∈HINis (see

Notation 9.2 for notation).

Proof. In this case Gk̄ is a constant finite k-group of order prime to p. By [48, Cor 5.29],

the presheaf X �→K1(X) from Lemma 9.4 is A1-invariant, and by Lemmas 8.2 and 9.3
it is a Nisnevich sheaf. Thus the claim follows from Lemmas 9.4 and 9.3.

Lemma 9.6. Let G be an étale k-group of p-primary order. Then H1(G) ∈RSCNis and

the motivic conductor cH
1(G) is given by

c
H1(G)
L :H1(G)(L)→

⊕
i

H1
ét(SpecLi,Gk̄)

maxi

{
c
H1(Gk̄)
Li

}

−−−−−−−−−−−→ N0,

where L⊗k k̄=
∏

iLi and cH
1(Gk̄) is computed in Theorem 8.8 (note that Gk̄ =⊕jZ/pnj ).

In particular,
(
cH

1(G)
)≤1

is a conductor. Moreover, if X is smooth proper and U ⊂X is

dense open, then h0
A1

(
H1(G)

)
(U) =H1(G)(X) (see Section 4.30 for notation).

Proof. Note in this case that H2
(
Gal
(
k̄/k
)
,G(Xk̄)

)
= 0 (see, for example, [2, Exp X,

Théorème 5.1]). Thus the first statement follows from Lemmas 9.4, 9.3, 8.2 and 4.27,
Propositions 4.19 and 4.21 and Theorem 8.8. For the final statement, observe that

H̃1(G)
(
OL,m

−1
L

)
=H1(G)(OL).

This follows directly from the explicit description of the motivic conductor on H1(Gk̄) in

Theorem 8.8. Hence the final statement follows from Corollary 4.33.
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Lemma 9.7. Let G be an infinitesimal finite k-group. Then

H1 (Xfppf,G)∼=H1
(
Xk̄,fppf,Gk̄

)Gal(k̄/k)
, for all X ∈ Sm .

Furthermore, this isomorphism induces an isomorphism in NST (compare Proposi-

tion 4.21 for notation):

H1(G)∼= (Rk̄/kH
1(Gk̄))

Gal(k̄/k).

Proof. There is also a Hochschild-Serre spectral sequence for the fppf cohomology (see, for

example, [40, III, Remark 2.21]). Since G is infinitesimal, we have G(Y ) = 0 for all reduced

schemes Y over k. Thus the fppf version of the exact sequence E(X) from Lemma 9.4

yields the first isomorphism. By Lemma 9.1, this isomorphism is compatible with the
transfer structure. It remains to show that H1(G) is a Nisnevich sheaf. By the remark

from the beginning of this proof, any sequence (9.1.1) yields an injection H1 ↪→H2 when

restricted to Sm. Thus isomorphism (9.1.2) implies

Ru∗G∼= (H2/H1)ét[−1]

in the derived category of étale sheaves on Sm, where (H2/H1)ét denotes the étale

sheafification of the presheaf X �→H2(X)/H1(X). Hence

H1(G)(X) =H0(X,(H2/H1)ét).

It follows that H1(G) is even an étale sheaf.

Lemma 9.8. Assume G is an infinitesimal finite k-group of multiplicative type. Then

H1(G) ∈HINis.

Proof. By Lemma 9.7 we may assume k = k̄. In this case G is diagonalisable and we find
an exact sequence (9.1.1) with Hi =Gni

m , some ni ≥ 1 (see [12, IV, §1, 1.5 Corollary]). The

statement follows from the A1-invariance of X �→Hi(XZar,Gm), i= 0,1, and Hilbert 90.

9.9. We denote

αp := Ker(F :Ga →Ga),

where F is the absolute Frobenius on the additive group. Then αp is a unipotent

infinitesimal finite k-group. Set L ∈ Φ and let t ∈ OL be a local parameter. Recall from

Section 7.3 that filjGa(L) := filjW1(L) is given by

filjGa(L) =

⎧⎪⎨⎪⎩
OL if j = 0,

1
tj−1 ·OL if (j,p) = 1,
1
tj ·OL if p | j.

(9.9.1)

We denote by

filjH
1 (αp)(L) (9.9.2)
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the image of filjGa(L) under the connecting homomorphism

δ :Ga(L)→H1 (αp)(L) =H1 (SpecLfppf,αp) .

Note that filjH
1 (αp)(L) is also equal to the image of the Frobenius saturated filtration

filFj W1(L).

Proposition 9.10. We have H1 (αp) ∈RSCNis, and the motivic conductor cH
1(αp) on

H1 (αp) is given by

c
H1(αp)
L (b) = min

{
j ≥ 0 | b ∈ filjH

1 (αp)(L)
}
. (9.10.1)

In particular, either b∈H1 (αp)(OL) or c
H1(αp)
L (b)≥ 2. Furthermore, it restricts to a level

2 conductor.

Proof. Denote the collection of maps H1 (αp)(L)→N0 defined by the right-hand side of
equation (9.10.1) by c. By Proposition 7.5 and Lemma 4.28, c satisfies (c1)–(c6) except

possibly for (c4). (For (c5), note that Ga(Y ) → H1 (αp)(Y ) is surjective for any affine

scheme Y over k.) We claim that c≤2 satisfies (c4). Let X be a smooth k-scheme and set
b ∈H1 (αp)

(
A1

X

)
with

ck(x)∞ (ρ∗xb)≤ 1, for all x ∈X with trdeg(k(x)/k)≤ 1, (9.10.2)

where ρx : Speck(x)(t)∞ = SpecFrac
(
Oh

P1
x,∞

)
→ A1

X is the natural map. We want to

show b ∈H1 (αp)(X). This is equivalent to b= π∗i∗b in H1 (αp)
(
A1

X

)
; by the definition

of c and Lemma 9.7, we can therefore assume k is algebraically closed. Furthermore, the
question is local on X, hence we can assume X = SpecA affine. Note that for a general

β ∈H1 (αp)(L)\H1 (αp)(OL), we have cL(β)≥ 2, as follows directly from equation (9.9.1).

Hence condition (9.10.2) implies

ρ∗xb ∈ Im
(
H1 (αp)

(
Oh

P1
x,∞

)
→H1 (αp)(k(x)(t)∞)

)
.

Denote by b(x) the restriction of b to A1
x. Since H

1 (αp) is a Nisnevich sheaf, we conclude

b(x) ∈H1 (αp)
(
P1

x

)
=H1 (αp)(x).

Thus we find a polynomial b̃ = b0+ b1t+ · · ·+ bnt
n ∈ A[t] mapping to b such that for all

points x ∈X with trdeg(k(x)/k)≤ 1, there exist cx ∈ k(x) and gx ∈ k(x)[t] with

b̃(x) = cx+gpx, in k(x)[t]. (9.10.3)

It follows immediately that b̃ ∈ A[tp], and it remains to show bi ∈ Ap for all i ≥ 1, since
then b = b0 in H1 (αp)

(
A1

X

)
. Thus we are reduced to showing the following: let X =

SpecA→ Ad = Speck[x1, . . . ,xd] be an étale map and set a ∈ A \Ap. Then there exists

a smooth connected curve i : C ↪→X such that i∗a ∈ O(C)\O(C)p. If a �∈ Ap, we find a
variable, say x1, such that a= a0+a1x1+ · · ·+anx

n
1 , where ai ∈ Ap[x2, . . . ,xd] := B and

a �∈B [xp
1]. A tuple λ= (λ2, . . . ,λd) ∈ kd−1 induces a closed immersion iλ :A1 →Ad given

by x1 �→ x1, xi �→ λi, i = 2, . . . ,d. Denote by Cλ the pullback of X along iλ. Since k is
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algebraically closed, we find a tuple λ such that a|Cλ
�∈ O(Cλ)

p. This proves the claim;

hence c≤2 satisfies (c4).

Corollary 4.24 yields cH
1(αp) ≤ c. To show the other inequality it suffices by Corol-

lary 4.40 to show the following: set L∈Φ and t∈OL a local parameter, and let σ :K ↪→OL

be some coefficient field; extend it in the canonical way to σ : K(x) ↪→ OLx
, where

Lx = Frac
(
OL[x]

h
(t)

)
. Assume b ∈ filrH

1 (αp)(L), r ≥ 1. Then the following implication

holds: (
b,1−xtr−1

)
Lx,σ

= 0 for all σ ⇒ b ∈ filr−1H
1 (αp)(L), (9.10.4)

where the local symbol on the left-hand side is the one from Section 4.37 for H1 (αp) and

σ runs through all coefficient fields of OL. By (LS6), the local symbol on H1 (αp) is given

by (
b,1−xtr−1

)
Lx,σ

= δ
(
Rest,σ

(
b̃dlog

(
1−xtr−1

)))
,

where b̃ ∈ filrGa(L) is a lift of b, δ : Ga(K(x)) → H1 (αp)(K(x)) is the connecting

homomorphism and we use the isomorphism Lx =K(x)((t)) defined by σ and t to compute
the residue symbol on the right. To prove implication (9.10.4), it suffices to consider b

modulo filr. Fix σ :K ↪→OL.

Case 1: (r,p) = 1 = (r−1,p). In this case, b̃≡ c/tr−1 mod filr−1Ga(L) for some c ∈K.

Hence

Rest,σ

(
b̃dlog

(
1−xtr−1

))
=−(r−1)cx.

Since δ(−(r−1)cx) = 0 if and only if cx ∈K(x)p, this is only possible if c= 0.
Case 2: p | r− 1. In this case, filrH

1 (αp)(L) = filr−1H
1 (αp)(L), and there is nothing

to show.

Case 3: p | r. In this case, b̃≡ c/tr−1+ e/tr mod filr−1Ga(L) for some c,e ∈K. By the
same argument as in the first case, we obtain the implication(

b,1−xtr−1
)
Lx,σ

= 0⇒
(
b̃,1−xtr−1

)
Lx,σ

= 0 in Ga(K(x)).

Since this hold for all σ, Proposition 7.19 (in the case where n= 1) yields b̃∈ filFr−1Ga(L),

hence b ∈ filr−1H
1 (αp)(L). This completes the proof.

Proposition 9.11. Let G be a finite unipotent infinitesimal k-group. Then the following

are true:

(1) H1(G) ∈RSCNis.

(2) The motivic conductor cH
1(G) restricts to a level 2 conductor.

(3) If X is a proper smooth k-scheme and U ⊂X is open dense, then h0
A1

(
H1(G)

)
(U)=

H1(G)(X) (see Section 4.30 for notation).

Proof. (1). We find an exact sequence in the category of k-groups

0→G→H1 →H2 → 0
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with Hi smooth unipotent k-groups. Indeed, by [12, V, §1, 4.2, 4.7], we find a closed

immersion G ↪→WN
n :=H1 for some n,N , and by [12, IV, §2, 2.3] the quotient H2 :=H1/G

is again unipotent, and it is automatically reduced, hence smooth. As in the proof of
Lemma 9.7, we find H1(G)∼= (H2/H1)ét, where (H2/H1)ét is the étale sheaf associated to

the presheaf Sm�X �→H2(X)/H1(X). Let v :Smét →SmNis be the natural morphism of

sites. Since H1 is smooth unipotent, it is a successive extension of Gas, hence R
1v∗H1 =0.

We obtain an isomorphism in NST:

H1(G)∼= (H2/H1)Nis,

where (H2/H1)Nis is the Nisnevich sheaf associated to the presheaf X �→H2(X)/H1(X).

Thus H1(G) ∈ RSCNis follows from Hi ∈ RSCNis and [45, Theorem 0.1], which states

that Nisnevich sheafification preserves SC-reciprocity.
(2). By [12, IV, 5.8], G admits a descending sequence

0 =Gn ⊂Gn−1 ⊂ ·· · ⊂G0 =G (9.11.1)

with successive quotients Gr−1/Gr
∼= αp. In particular, H2 (Xfppf,G) = 0, for all affine

smooth k-schemes X. Note that this induces for all r ∈ [1,n] an exact sequence in NST

0→H1(Gr)→H1(Gr−1)→H1 (αp)→ 0. (9.11.2)

Indeed, by Lemma 9.7 this sequence is in NST; hence it suffices to check its exactness

on any smooth affine k-scheme X, in which case it follows from H0 (Xfppf,αp) = 0 =

H2 (Xfppf,Gr). By Proposition 9.10, the motivic conductor of H1 (αp) restricts to a

level 2 conductor, and by induction we may assume that so does the motivic conductor
of H1(Gr−1). We deduce that the motivic conductor of H1(Gr) restricts to a level 2

conductor from sequence (9.11.2) and a similar argument as at the end of the proof of

Proposition 8.5.
(3). We claim

H̃1(G)
(
OL,m

−1
L

)
=H1(G)(OL). (9.11.3)

The claim is true for G = αp, by the explicit formula of the motivic conductor in

Proposition 9.10. Consider sequence (9.11.1) and assume the claim is proven for Gr.

Set b∈ ˜H1(Gr−1)
(
OL,m

−1
)
. By the exact sequence (9.11.2) and the claim for αp, we find

a c ∈H1(Gr−1)(OL) such that b− c is in the image of H1(Gr)(L). By Proposition 4.19

we find

b− c ∈ H̃1(Gr)
(
OL,m

−1
)
=H1(Gr)(OL),

which proves equation (9.11.3). Hence (3) follows from Corollary 4.33.

In summary:

Theorem 9.12. Let G be a finite k-group. Then the following are true:

(1) H1(G) ∈RSCNis.

(2) The motivic conductor of H1(G) restricts to conductor of level 2, and if G has no

infinitesimal unipotent factor, to a conductor of level 1.
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142 K. Rülling and S. Saito

(3) Write G=G′×Gunip with Gunip unipotent and G′ without any unipotent subgroup,

and let X be smooth proper over k and U ⊂X be dense open. Then

h0
A1

(
H1(G)

)
(U) =H1(G′)(U)⊕H1 (Gunip)(X).

Proof. By [12, IV, §3, 5.9] we can decompose G uniquely into a product

G=Gem×Geu×Gim×Giu,

where Gem is étale multiplicative – that is, it is an étale k-group without p-torsion;

Geu is étale unipotent – that is, it is an étale k-group with p-primary torsion; Gim is

infinitesimal and of multiplicative type; and Giu is an infinitesimal unipotent k-group.
Hence the statement follows from Lemmas 9.5, 9.6 and 9.8 and Proposition 9.11.

Remark 9.13. Let G be a finite unipotent k-group. Note that by Theorem 9.12(3), the

functor X �→ H1 (Xfppf,G) is a birational invariant for smooth proper k-schemes. This
gives a new proof of this (probably) well-known result (it also follows, for example, from

[6]).

Acknowledgments We thank the referee for helpful remarks. The first author is
supported by DFG Heisenberg Grant RU 1412/2-2. Part of the work was done while he

was a visiting professor at the TU München. He thanks Eva Viehmann for the invitation

and the support. The second author is supported by JSPS KAKENHI Grant 15H03606
and the DFG SFB/CRC 1085 “Higher Invariants”. The authors declare no conflicts of

interest.

References
[1] M. Artin, A. Grothendieck and J. L. Verdier, Séminaire de géométrie algébrique
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1973).

[3] P. Berthelot, L. Breen and W. Messing, Théorie de Dieudonné cristalline. II, Lecture
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[23] F. Ivorra and K. Rülling, K -groups of reciprocity functors, J. Algebraic Geom. 26(2)
(2017), 199–278.

[24] B. Kahn, H. Miyazaki, S. Saito and T. Yamazaki, Motives with modulus, I: Modulus
sheaves with transfers for non-proper modulus pairs, Épijournal Géom. Algébrique 5 (2021),
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[27] B. Kahn, S. Saito and T. Yamazaki, Reciprocity sheaves, II, to appear in Homology,
Homotopy and Applications https://arxiv.org/abs/1707.07398.

[28] B. Kahn and T. Yamazaki, Voevodsky’s motives and Weil reciprocity, Duke Math. J.
162(14) (2013), 2751–2796.

[29] K. Kato, A generalization of local class field theory by using K-groups. II, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 27(3) (1980), 603–683.

https://doi.org/10.1017/S1474748021000074 Published online by Cambridge University Press

https://epiga.episciences.org/7114
https://epiga.episciences.org/7115
https://arxiv.org/abs/1707.07398
https://doi.org/10.1017/S1474748021000074
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