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Abstract We define a motivic conductor for any presheaf with transfers F' using the categorical framework
developed for the theory of motives with modulus by Kahn, Miyazaki, Saito and Yamazaki. If F' is a
reciprocity sheaf, this conductor yields an increasing and exhaustive filtration on F(L), where L is any
henselian discrete valuation field of geometric type over the perfect ground field. We show that if F is a
smooth group scheme, then the motivic conductor extends the Rosenlicht—Serre conductor; if F' assigns
to X the group of finite characters on the abelianised étale fundamental group of X, then the motivic
conductor agrees with the Artin conductor defined by Kato and Matsuda; and if F' assigns to X the group
of integrable rank 1 connections (in characteristic 0), then it agrees with the irregularity. We also show
that this machinery gives rise to a conductor for torsors under finite flat group schemes over the base field,
which we believe to be new. We introduce a general notion of conductors on presheaves with transfers and
show that on a reciprocity sheaf, the motivic conductor is minimal and any conductor which is defined
only for henselian discrete valuation fields of geometric type with perfect residue field can be uniquely
extended to all such fields without any restriction on the residue field. For example, the Kato-Matsuda
Artin conductor is characterised as the canonical extension of the classical Artin conductor defined in
the case of a perfect residue field.
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1. Introduction

Fix a perfect field k£ and let Sm be the category of separated smooth k-schemes. Let Cor
be the category of finite correspondences: it has the same objects as Sm, and morphisms
in Cor are finite correspondences (see Section 2.1 for a precise definition). Let PST be the
category of additive presheaves of abelian groups on Cor, called presheaves with transfers.
In this paper we give a construction which associates to each F' € PST a collection of
functions

e ={cf : F(L) » NU{oc}}, g

where N is the set of nonnegative integers, ® is the collection of henselian discrete
valuation fields which are the fraction fields of the henselisation Og(,x of X € Sm at
points x of codimension 1 in X and

F(L)=limF(V—-D,),

where V' — X ranges over étale neighbourhoods of x and D, is the closure of z in V.
We call ¢’ the motivic conductor for F. Our main aim is to convince the reader that
our construction deserves such pretentious terminology. Indeed, it gives a unified way
to understand different conductors, such as the Artin conductor of a character of the
abelian fundamental group 7P (X) with X € Sm along a boundary of X, the Rosenlicht—
Serre conductor of a morphism from a curve to a commutative algebraic k-group and the
irregularity of a line bundle with connections on X € Sm along a boundary of X. It also
gives rise to a new conductor for G-torsors with G a finite flat k-group scheme. The latter
conductor specialises to the classical Artin conductor when G is constant.

Our construction of the motivic conductors is rather simple once we have the new
categorical framework introduced in [24, 25] at our disposal (see equation (1.0.1)). The
main aim of those works is to develop a theory of motives with modulus generalising
Voevodsky’s theory of motives in order to capture non-Al'-invariant phenomena and
objects. The basic principle is that the category Cor should be replaced by the larger
category of modulus pairs, MCor: objects are pairs X = (Y, Xoo) consisting of a separated
k-scheme of finite type X and an effective (possibly empty) Cartier divisor X, on it such
that the complement X \ X, is smooth. Morphisms are given by finite correspondences
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between the smooth complements satisfying certain admissibility conditions (see Section 3
for the precise definition). Let MCor C MCor be the full subcategory consisting of
objects (Y,Xoo) with X proper over k. We then define MPST (resp., MPST) as the
category of additive presheaves of abelian groups on MCor (resp., MCor). We have a
functor

w:MCor — Cor, (X,Xo)—X —|Xul,

and two pairs of adjunctions

MPST <~ MPST,  MPST < PST,

— —

where 7% is induced by the inclusion 7: MCor — MCor and 7 is its left Kan extension,
and w* is induced by w and wy is its left Kan extension (see Section 3.3 for more concrete
descriptions of these functors). A basic notion is [-invariance, where 00 = (Pl,oo) €
MCor — F € MPST is called O-invariant if F(X)~ F (X ®0) for all X € MCor (see
Section 3.1 for the tensor product ® in MCor). It is an analogue of the A'l-invariance'
exploited by Voevodsky in his theory of motives. We write CI for the full subcategory of
MPST consisting of [-invariant objects. We know [27, Lemma 2.1.7] that the inclusion
CI — MPST admits a right adjoint h% which associates to F' € MPST the maximal

O-invariant subobject of F. We define the functor

« h
W€l PST 2 MPST — CI,

and write F = nwCtF € MPST, for F € PST. Then the motivic conductor ¢ for F €
PST is defined by

cF(a) :min{n|a€ﬁ’(@L,mZ")}, for a € F(L). (1.0.1)
Here, for G € MPST, L = Frac (0% ,) € ® and n € Z>,, we put
G (OL,mZ") = li%mG(V,an)7
v

where V' — X ranges over étale neighbourhoods of x and D, is the closure of  in V and
nD, is its nth thickening in V. By convention,

G(Op,m;")=G(0OL) = I'QG(V), for n=0.
%

For G = F there are natural inclusions F' (Op,m") < F(L), which are used to define
equation (1.0.1). It turns out that {F ((’)L,mzn)} induces an increasing filtration

n€EZ>o

on F(L) which is exhaustive if ' € RSC. Here RSC is the full subcategory of PST
consisting of the objects belonging to the essential image of CI under w;. Objects of
RSC are called reciprocity presheaves and play a key role in this note. We know (see [27,
Cor 2.3.4]) that RSC contains all Al-invariant objects in PST. Moreover, it contains

'Recall that F € PST is Al-invariant if F(X)~ F (X x A') for all X € Sm.
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many interesting objects F which are not Al-invariant. In this paper we consider in
particular the following examples (where X runs over objects of Sm):

(i) F(X)=Homgm(X,T'), where I is a smooth commutative algebraic k-group which
may have nontrivial unipotent part (for example, I' = G,).
(i) F(X)=H}(X,Q/Z) =Homeoy (m1(X)**,Q/Z).
(iif) F(X) = Conn'(X) (resp., Conn;,, (X)) the group of isomorphism classes of (resp.,
integrable) rank 1 connections on X. Here we assume ch(k) = 0.

(iv) F(X)= Hi,,¢(X,T), where T is a finite flat k-group.
We prove the following (see Theorems 5.2, 7.20, 8.8 and 6.11 for the precise statements):

Theorem 1.

(1) In case (i), cf' agrees with the Rosenlicht-Serre conductor [/7] if L has perfect
residue field. If ch(k) = p is positive and F' =W, is the group scheme of p-typical
Witt vectors of length n, then cf agrees with a conductor defined by Kato and

Russell in [32] for any L.

(2) In case (ii), cE agrees with the Artin conductor Arty of Kato and Matsuda (see
Section 7.1).”

(3) In case (iii), c'' agrees with the irregularity of connections.

As far as we know, the motivic conductor ¢ in case (iv) is new, and we give an explicit
description only in the case where the infinitesimal unipotent part of G is «a), where
p = ch(k) (see Theorem 9.12).

An amusing application of the motivic conductor ¢ is to give an explicit description
of the maximal A'l-invariant part of F: let HI C PST be the full subcategory of Al-
invariant objects. The inclusion HI — PST admits a right adjoint h&l which associates
to F € PST the maximal A'-invariant subobject of F (see Section 4.30 for an explicit
description of hoAl ). Let NST C PST be the full subcategory of Nisnevich sheaves — that
is, those objects F' € PST whose restrictions to Sm C Cor are sheaves with respect to
the Nisnevich topology.

Theorem 2. For F € RSCNNST and X € Sm, we have
B (F)(X) =({a € P(X)[c"(pa) <1},

P
where p ranges over all morphisms Spec L — X with L € ®.
int
asserts that the maximal Al-invariant part of F is precisely the subsheaf of tame
characters (resp., regular singular connections).

When F = H}, (—,Q/Z) from case (ii) (resp., F = Connj,, from case (iii)), Theorem 2

2Tt coincides with the classical Artin conductor if L has perfect residue field.
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In what follows, we fix F'€ RSCNNST and introduce a class of collections of functions
c= {CL : F(L) — N}Lecp

which may be called conductors for F. Let Funce(F,N) be the partially ordered set
consisting of collections of functions with partial order given by ¢ < ¢/, if ¢z (a) < ¢} (a)
for all L € ® and a € F(L). Let CI(F') be the partially ordered set consisting of subobjects
G of w®F such that the induced maps wG — ww®lF are isomorphisms and with
partial order given by inclusion. Then every G € CI(F') gives rise to an exhaustive
increasing filtration {nG (Or,m;")} on F(L), and we define ¢“ € Funce(F,N)

n>0
by

¢(a)=min{n|aenG(Or,m;")}, foraeF(L).

By definition, the motivic conductor ¢ of F' is “'F and of < c%, for all G € CI(F).
Now a question is whether there is a simple characterisation of the poset {CG |G € CI(F )}
in Funce (F,N). We answer it in the following refined form. Let n be a positive integer or
o0. Let ®<,, C ® be the collection of such L that trdeg, (L) < n. (Note that in positive
characteristic, ®<; consists precisely of those L € ® that have a perfect residue field.) Let
Funcg (F,N)<,, be the poset consiting of collections of functions

c= {CL : F(L) — N}LE‘I’SW,

with partial order defined in the same manner as Funcg(F,N). There is an obvious
restriction functor

Funcg (F,N) — Funce (F,N)<,, ¢+ cS™ (1.0.2)

We then introduce the six axioms (c1)—(c6) for Funce (F,N)<,, (compare Definitions 4.3
and 4.22) and call those elements satisfying the axioms semicontinuous conductors of
level n. Let Cond(F)%, be the subposet of Funce (F,N)<,, consisting of such objects.
Write Cond(F)*¢ for Cond(F)%¢, with n = 00.? For example, for F = H}, (—,Q/Z) from
case ii, the classical Artin conductor {Arty}reca., is an element of Cond(F) and the
Kato-Matsuda conductor {Art}recq is an element of Cond(F)*¢. We show the following
(see Theorem 4.25):

Theorem 3.
(1) ¢ € Cond(F)*¢ for every G € CI(F).
(2) There exists an order-reversing map
Cond(F)¥, — CL(F), ¢ F,
such that ¢ = (cFe)Sn. For X = (X,Xo) € MCor with X =X — | X, we have
F(X)={a€ F(X)lex(a) < X},

3There is one axiom, (c4), which is not preserved by functor (1.0.2). So it does not induce
Cond(F)*¢ — Cond(F)%,,.
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where cxz(a) < Xoo means that for any L € ®<,, and any morphism p: SpecOr, — X
such that p(SpecL) € X, cr(p*a) is not more than the multiplicity of the pullback
of X along p.

As a consequence, we obtain the following (see Theorem 4.25(4)):
Corollary 1. There exists a unique map
Cond(F)%,, — Cond(F)*, e ™,
such that E. = Foe and ¢ = (¢)<".

We call ¢* the canonical extension of c. For example, the Kato—Matsuda Artin
conductor is the canonical extension of the classical Artin conductor. We say F' has
level n if (CF)SH € Cond(F)%¢ ; in this case, ¢ is the canonical extension of (CF)SH, by
Theorem 4.25(5). We show that F' = H},(—,Q/Z) in case ii is of level 1 (see Theorem 8.8),
F = Conn' (resp., F = Conn;.,) from case (iii) is of level 2 (resp., 1) — see Theorem 6.11
—and F = Hflppf(—,f‘) from case (iv) is of level 1 if the infinitesimal unipotent part of T’
is trivial and is of level 2 otherwise (see Theorem 9.12).

In Section 2 we explain how to extend a presheaf with transfers to the category of regular
schemes over k which are pro-smooth; this is well known, and we include it only for lack of
reference. In Section 3 we recall the necessary constructions and results from the theory of
motives with modulus as developed in [24, 25, 27, 26, 45]. Then we introduce in Section 4
the notion of (semicontinuous) conductors and prove Theorems 3 and 2. We close the
section with a discussion of the relation between the motivic conductor of a reciprocity
sheaf and certain vanishing properties of its associated symbol. This is needed in order
to prove in the later sections that a certain conductor is equal to the motivic one, the
main point being Corollary 4.40. In the second part we consider various conductors which
are mostly classical and show that they are motivic in our sense. Kéahler differentials and
rank 1 connections are considered in Section 6, where ch(k) = 0. In the following sections
we assume ch(k) =p > 0. In Section 7 we show that one of the conductors defined by
Kato and Russell for W,, is motivic. We use this in Section 8 to show that the Kato—
Matsuda conductor for characters is motivic, which yields also a description of the motivic
conductor for lisse Qg-sheaves of rank 1. Finally, in Section 9 we define and investigate a
conductor for torsors under finite flat k-groups, which we believe to be new. The general
pattern of these computations is always the same: first we show that the collection ¢ ={cp }
defined in the various situations defines a semicontinuous conductor (of a certain level)
in the sense of Definitions 4.3 and 4.14, then we do a symbol computation to show that
this conductor is actually motivic. Note, however, that the actual computations in the
various cases differ quite a bit.

1.1. Conventions

We work over a perfect field k. If K/k is a field extension, then by a K-scheme we will
always mean a scheme which is separated and of finite type over K. In contrast, the phrase
scheme over K refers to any scheme morphism X — Spec K. By a smooth K-scheme we
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mean a K-scheme which is smooth over K. We denote by Smpyg the category of such
schemes and set Sm = Smy,. For k-schemes X and Y we write X xY instead of X x,Y.
For any scheme X we denote by X (9 the set of i-codimensional points of X.

Part 1. The general theory
2. Presheaves with transfers on pro-smooth schemes

The material in this section is well known; we give some details for lack of reference.

2.1. Denote by Cor the category of finite correspondences of Suslin and Voevodsky.
Recall that the objects are the smooth k-schemes, and morphisms are given by
correspondences — that is, Cor(X,Y) is the free abelian group generated by prime
correspondences, the integral closed subschemes V' C X x Y which are finite and surjective
over a connected component of X. Given two prime correspondences V' € Cor(X,Y’) and
W € Cor(Y,Z), their composition is given by the intersection product (see, for example,

[46, V, C])
WoV =pis. (p12V -p3sW), (2.1.1)
where p;; denotes the projection from X x Y x Z to the factor (3,7).
Denote by ProCor the pro-category of Cor — that is, objects are functors 1° — Sm,
1 +— X;, where [ is a filtered essentially small category, and the morphisms between two
pro-objects (X;);es and (Yj)jeJ are given by
ProCor ((X,), (1})) = limlim Cor (X,,Y;).
jeJiel
Definition 2.2. We define the category CorP*® as follows: the objects are the Noetherian
regular schemes over k of the form
X =lim X;, (2.2.1)
where (X;);er is a projective system of smooth k-schemes indexed by a partially ordered
set and with affine transition maps X; — X;, ¢ > j. If X and Y are two objects in
Cor?™, then Cor”°(X,Y) = Cor(X,Y) is the free abelian group generated by prime

correspondences in the sense of Section 2.1. The composition is defined in the same way
as in the case of Cor. (Note that this still makes sense by [46, V, B, 3., Théoréme 1].)

Remark 2.3.

(1) All objects in CorP™ are separated, Noetherian and regular schemes over k. Any
affine, Noetherian and regular scheme over k defines an object in Cor”™®, by [41,
(1.8) Theorem] and [1, Exp I, Proposition 8.1.6].

(2) Note that for X,Y € CorP™, the cartesian product X xY does not need to be
Noetherian; but if Y € Sm and X € CorP"®, then X xY € Cor”™°.

Lemma 2.4. Let A be a k-algebra which is Noetherian, reqular and a directed limit
A= li_n%eIAi, where the A; are smooth and of finite type over k and the transition maps
A; — Aj, j>1 are flat. Let X be a regular quasi-projective A-scheme. Then X € Cor®*°.
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Proof. Set S; =SpecA; and S = Spec A = @ S;. Choose an S-embedding X C P%. We
find an 79 and a subscheme X;, C P’ such that X = X, XS5, S. Set X; :=X,, XS5, Sl, for
i > t9. Then the transition maps X; —> X, 3 >1>1g, are afﬁne and flat, and hence so is the
projection 7; : X = hmiX — Xiy- Slnce X is regular, there exists an open neighbourhood
Ui, C X;, containing 7;,(X) which is regular (see [17, Corollaire (6.5.2)]). Since U, is
of finite type over the perfect field k, it is even smooth. Set U; = U, X8, S;. Then the
transition maps U; — U;, j > ¢ > iy, are affine and flat, each U; is smooth and we have
X = Ian U;; hence X € Cor®?™. O

Lemma 2.5. There is (up to isomorphism) a canonical and faithful functor

Cor”° — ProCor, Hm X; — (X5).

Proof. For any X € Cor®* we choose once and for all a projective system (Xz)lel as in
equation (2.2.1). In particular, (X;) € ProCor. Note that if X = L s Xj then (X;) =

(X'») in ProSm. Take X = mieIXi and Y = @jEJY—j in Cor”™ and let V C X xY be

J
a prime correspondence. For any scheme S over k, we denote by

piZXXS—)XiXS, pi/7iZXiIXS—>XiXS, i/Zi,
and by
0;:Y x8=Y;x8, oj Yy xS —=Y; xS, j' >,

the projection and transition maps of (X; x S) and (Y; x S), respectively. By assumption,
all these maps are affine. For all j, the morphism V' — X x Y} induced by ¢ is a morphism
of finite-type X-schemes. Since V is finite over X, its image ¢;(V) C X x Y is proper over
X. Hence V — 0,;(V) is proper and affine, and hence finite. Since X is Noetherian, o;(V)
is finite over X, and hence we obtain a well-defined correspondence ¢;.V € Cor (X,Y;)
with the property

0;xV=0=V=0. (2.5.1)

Furthermore, since X x Y; is Noetherian, we find an index ¢ (depending on j) and a
correspondence V; ; € Cor (X;,Y;) such that

05V = pi Vij-

If we find ¢ and V) ; with p},V}) ; = 0.V, then clearly V; ; =V}, ; in lim, Cor (X;,Yj;).
Therefore we obtain a well- deﬁned element V;

COI‘(Xz',Yj)—HigCor(X,,YJ) Vi V.

By the base-change formula (see equation (2.5.6)), we obtain o,/ ;. Vj =V;. We obtain a
morphism

Cor™™*(X,Y) = ProCor (X.). (), V= (V). (252)
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It is injective by formula (2.5.1). Finally we have to check that morphism (2.5.2) is
compatible with composition. Take Z = @le L2 € Cor"™®. For any scheme S over k,
denote by

TlZZXS—)ZlXS

the projection map. Take prime correspondences V € Cor®°(X,Y) and W €
Cor™?(Y,Z). For any | € L we find an index j(I) € J and a correspondence W), €
Cor (Y;(1),Z;) such that 7, W = o7 yWija,i- For any j(l) we find an index i(j(l)) € I and
a correspondence Vj(;)) i) € Cor (Xi(j(l)),yj(l)> such that o;().V = p;‘(j(l))Vi(j(l))’j(l).
Then the compatibility of morphism (2.5.2) will hold if we can show

T (WoV) = p:(j(l)) (Wj(l),l OVi(j(l))J‘(l))v forall [ € L. (2.5.3)

To this end, we recall some well-known formulas. Assume we are given the diagram

X/ fﬁ/ Y/

NI

f g

X ——Y —7

of schemes over k which are in Cor”*®, and assume the square is cartesian and Tor-
independent. Then for for cycles @ on X, 3, / on Y, and v on Z the following the
following relations hold as soon as both sides of the equation are defined (see [46, V, C]):

9"y =1(gof)- (2.5.4)

g fra=(go f).a. (2.5.5)

h* foa= fih "o (2.5.6)
f1(B-8)=1(B)- (8. (2.5.7)
fola- f7(B)) = fula)-B. (2.5.8)

Using these formulas it is straightforward — but a bit longish — to check that equa-
tion (2.5.3) holds. Indeed, since all cycles involved are always finite over some scheme over
k, it will be clear that the formulas in question are defined; the base-change formula (2.5.6)
will be applied only in cases where one of the maps f or h is flat, and hence the Tor-
independence condition will be automatic. (But note that h might not be flat, so there
might appear higher Tors in the computation of A* and h’*.) This finishes the proof. [

2.6. A presheaf with transfers in the sense of Suslin and Voevodsky is a functor F :
Cor® — Ab; they form the category PST. We extend it to a functor F': ProCor® — Ab
by the formula

F((Xi)ier) = li_Q}F(Xz')'
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Precomposing F' with the functor from Lemma 2.5, we obtain presheaves on Cor?™,
which we again denote by F,

F:(Cor??)° — Ab.

For a € Cor™°(X,Y), we denote by a* = F(a) : F(Y) — F(X) the induced map. If
f:X =Y is a morphism with graph I'y C X XY between k-schemes which are objects
in Cor®™®, then we set

fr=T5:FY) = F(X); (2.6.1)
if f is a finite morphism and th C Y x X is the transpose of the graph of f, we set

foi= (%) F(X) = F(Y). (2.6.2)

3. Review of reciprocity sheaves
In this section we collect some definitions, notations and results from [24, 25, 27, 45].

3.1. A modulus pair X = (Y,XOO) consists of a separated and finite-type k-scheme X
and an effective Cartier divisor X, > 0 such that the open complement X := X \ |X|
is smooth. We say X is a proper modulus pair if X is proper over k. A basic example is
the cube

O:= (P,lwoo) .
Let X = (Y,XOO) and Y = (?,Yoo) be two modulus pairs with corresponding opens
X =X\ |Xo| and Y =Y \ |Ye|, respectively. The modulus pair X ® ) is defined by
XRY:i=(XxY,Xoo xY +X xYq). (3.1.1)
An admissible prime correspondence from X to ) is a prime correspondence V €
Cor(X,Y) satisfying the condition

Xooon > Yoo

- (3.1.2)

v

where V" SV C X xY is the normalisation of the closure of V. We denote by
Cor,dgm(&X,Y) C Cor(X,Y) the subgroup generated by admissible correspondences.
Assume X is a proper modulus pair. Recall from [27, Lemma 2.2.2] that the presheaf
with transfers ho(X) € PST is defined by

ho(X)(S) = Coker (Coradm (O0®s5,%) foh, Cor(S,X)> ,

where we write S instead of (S,0) and i : S < A} is the e-section, € € {0,1}. We have
a natural quotient map Z (X) — ho(X), where Z¢,(X) is the presheaf with transfers
representing X — that is, Z,(X)(S) = Cor(S,X).

Definition 3.2 ([27, Definition 2.2.4]). Set F € PST, X € Sm and a € F(X). We say
a has SC-modulus (or just modulus) X if X = (Y7Xoo) is a proper modulus pair with
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X = X\ |Xoo| and the Yoneda map a : Z,(X) — F factors via

Ztr(X) = F

A

ho(X)

That is, for any .S € Sm and any correspondence v € Cor,qm (ﬁ X S,X) C Cor (A1 X S,X)
we have iy a =iy a.

We say F has SC-reciprocity if for all X € Sm any a € F(X) has a modulus. We denote
by RSC C PST the full subcategory consisting of presheaves with transfers which have
SC-reciprocity. Further, we set

RSCyis = RSCNNST,
where NST C PST is the full subcategory of Nisnevich sheaves with transfers.

3.3. It is shown in [27] that the presheaves in RSC are in fact induced by presheaves on
modulus pairs in the following way: let X = (Y,Xoo) and Y = (?, YOO) be modulus pairs
with corresponding opens X and Y, respectively. An admissible correspondence from X
to ) (see Section 3.1.1) is called left proper if the closure in X x Y of all its irreducible
components is proper over X. We denote by MCor(X,)) C Cor(X,Y) the subgroup of
all left proper admissible correspondences. This subgroup is stable under composition of
correspondences (see [24, Proposition 1.2.3]). Hence we can define the category MCor
whose objects are the modulus pairs and with morphisms given by admissible left proper
correspondences. We denote by M Cor the full subcategory whose objects are the proper
modulus pairs. We denote by MPST the category of presheaves on MCor and by
MPST the category of presheaves on MCor. By [24, Proposition 2.2.1, Proposition
2.3.1, Proposition 2.4.1] there are three pairs of adjoint functors (wi,w*), (w,,w*) and
(T, 7%),

PST= _MPST = _ MPST __~ PST,

W T w

which are given by

E*F(Y>XW):F(Y\‘X00D= Q!H(X):H(Xﬂ)’ (3'3'1)

W (X, Xoo) = F (X \ | Xxl), wG(X)=  lim G(X), (3.3.2)
XEeMSm(X)

T F(X) = F(X), nGU)=  lm  G(X), (3.3.3)
XeComp(U)

where MSm(X) is the subcategory of MCor whose objects are the proper modulus pairs
with corresponding opens X and with only those morphism which map to the identity
in Cor(X,X), and Comp(i/) is the category of compactifications of U = (U, UOO) — that
is, its objects are proper modulus pairs X = (Y,Uoo —1—2), where U, and X are effective
Cartier divisors such that X'\ [X| =U and U i = Us, and the morphisms are those
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which map to the identity in MCor(U,U) (see [24, Lemma 2.4.2]). The functors wy, w,
71 are exact and we have wy = w,7.

We denote by CI the full subcategory of MPST of cube-invariant objects — that is,
those F' € MPST which satisfy the condition that for any proper modulus pair X', the
pullback along X ® 0 — X induces an isomorphism

FX)=F(x®0).

By [27, Proposition 2.3.7] we have w(CI) = RSC, and there is a fully faithful left exact
functor w€!: RSC — CI given by

w(F) (X, Xo) ={a€ F(X\ Xx) | a has modulus (X,X)}. (3.3.4)
We have
wnwCH(F) =2 wwCYF) = F. (3.3.5)

3.4. We recall some more definitions and results from [24, 25, 45] related to Nisnevich
sheaves.

For F € MPST and X = (X,X) € MCor we denote by Fy the presheaf on X
defined by

(U&Y) s Fy(U) = F(Uu* Xoo). (3.4.1)

We denote by MINST the full subcategory of MPST consisting of those F' such that
Fy is a Nisnevich sheaf on X for any X = (Y, Xoo) € MCor. Further, MNST is the full
subcategory of MPST cousisting of F' such that nF' € MNST. By [24, Theorem 4.5.5]
and [25, Theorem 4.2.4], there are exact sheafification functors (that is, left adjoints to
the natural inclusions)

anis - MPST — MINST, anis : MPST — MNST,
such that

(1) (QNjSF) (X) = hgf:Y%YFX,NiS(va*XOO)v where X' = (YaXOO) € MCOI‘, FX,NiS

denotes the Nisnevich sheafification of the presheaf Fy on X, and the limit is
over all proper birational morphisms f :Y — X which restrict to an isomorphism
Y\lf*XOO| i>y\l)(c>0|v

(2) 7 restricts to an exact functor 7 : MNST — MINST and satisfies

anis T F = mnanisF for all F € MPST. (3.4.2)
It follows that anis = 7*an;s7 and
aNisjMNsT = 1AMNST, aNisMNsT = IdMNST-
By [25, Proposition 6.2.1],

* _ ok V o ok V
AanjsW = W aniss ANisW = W ayjis;s
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where ay;, : PST — NST is Voevodsky’s Nisnevich sheafification functor (see [49, Lemma
3.1.6]), and we obtain induced functors

w* : NST — MNST, w* :NST — MNST.

Lemma 3.5. For F € RSCyis, we have wC'F C aniswC'F C w*F in MPST (see
Definition 3.2 and equation (3.3.4) for notation). Here the first inclusion is given by
the unit of adjunction.

Proof. By definition, wC'F C w*F. We obtain the commutative diagram
aNiswCIF(—> aNisw*F

|

WO 5 W*F,

in which the vertical maps are induced by adjunction. The vertical map on the right is
an isomorphism, since w*F € MINST, and the top horizontal map is an inclusion, since
anis is exact. This gives the statement. O

Remark 3.6. It follows from Corollary 4.16 that the first inclusion in Lemma 3.5 is
actually an equality.

3.7. We define the category MCorP™ as follows: the objects are pairs X = (X,X.),
where

(1) X is a separated Noetherian scheme over k of the form X = @ie[yi’ with (Yi)iel
a projective system of separated finite-type k-schemes indexed by a partially ordered
set with affine transition maps 7; ; : X; = X, i > j;
(2) Xoo = @iel Xi oo, with X; o, an effective Cartier divisor on X;, such that X\
| X ool is smooth for all ¢ and 7 i X 00 = Xijoos © 2>
(3) X\ |Xsl is regular.
The morphisms are given by the admissible left proper correspondences, which are
verbatim defined as in Section 3.3. That the composition of correspondences in Cor™

induces a well-defined composition in MCor”" is shown in the same way as in [24,
Proposition 1.2.3].

Lemma 3.8. There is (up to isomorphism) a canonical and faithful functor

MCor"° — ProMCor, lgl (Yi,X@oo) > (Yi,Xi,oo)i.

Proof. Let X = (X,X), Y = (Y,Ys) € ProMCor. We write X = Wm, _ X; with X; =
(Xi,Xi,00), and similarly Y = @jejyj. Set X = X\ | Xw|, and so on. We have to show
that the injection (2.5.2) restricts to

MCor?(X,Y) — ProMCor ((X;), (V;)) .- (3.8.1)
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To this end, let V'€ MCor?™°(X,)) be a left proper admissible correspondence. For j € J,
denote by o;(V') the image of V under the projection X xY — X xY;. Then o;(V) is a
finite prime correspondence, as was observed in the proof of Lemma 2.5. Let V. C X x Y
be the closure of V. By assumption, V is proper over X. Since X x Y; is separated and
of finite type over X, the image of V in X x Y; is closed and proper over X; hence it is
equal to the closure (V') of ¢;(V). Now [24, Lemma 1.2.1] yields

——N 2 Y o —— 8.
" = Yooy (88.2)
with the notation from formula (3.1.2). As in the proof of Lemma 2.5, we find an index
ig € I and a finite correspondence V;, ; C X;, x Y; which pulls back to o;(V). We can also
assume (after possibly enlarging iy) that the closure V,, ; C X;, xY; of V;, ; pulls back
to (V). We obtain the cartesian diagram

Since the upper horizontal arrow is proper, the lower horizontal arrow becomes proper
after possibly enlarging ig (see [18, Théoreme (8.10.5), (xii)]). Hence, by our construction
and formula (3.8.2), the scheme Vi, ; = V;, ;N (X;, X Y;) is a left proper admissible
correspondence from &, to J; and gives a well-defined element

V; € ligPrOMCor (X,Y5).
el

This shows that morphism (2.5.2) restricts to formula (3.8.1). O

3.9. Let '€ MPST. Using Lemma 3.8, we can extend F to a presheaf on MCor®?'® by
the formula

F(Xx)= hﬂF(Xz), X = @Xi € MCorP?™°.

4. Conductors for presheaves with transfers
Definition 4.1.

(1) We say that L is a henselian discrete valuation field of geometric type (over k) (or
that L is a henselian dvf) if it is a discrete valuation field and its ring of integers
is equal to the henselisation of the local ring of a smooth k-scheme U in a 1-
codimensional point z € UM — that is, O = Ol . For n € N>1 U {oo}, we set

® = {L henselian dvf}, O, ={L € ®|trdeg(L/k) <n}.

Note that in positive characteristic, ®<; consists precisely of the henselian dvfs
with perfect residue field.
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(2) Let X be a smooth k-scheme. A henselian dvf point of X is a k-morphism Spec L —
X, with L € ®.

(3) Let X = (X,Xo) be a modulus pair with X = X \ |X|. A henselian dvf point of
X is a henselian dvf point p: Spec L — X extending to SpecO; — X. Note, if it
exits, such an extension is unique, and if X" is proper, then there always exists an
extension. We will denote this extension also by p. We will also write p: SpecL — X
for the henselian dvf point of X’ defined by p.

Notation 4.2.

(1) Set F e PST and X € Sm. A henselian dvf point p: n=SpecL — X is a morphism
in Cor™™® (see Defintion 2.2). Hence we get a morphism (see Section 2.6)

p* F(X)— F(n)=:F(L), a— pra.
Also, n=SpecL — SpecOf, =7 is in Cor"™, and we get an induced map F(Op) :=
F(m)— F(L).
(2) Let X = (X,Xs) be a modulus pair with X = X\ |X| and p: SpecL — X a
henselian dvf point. Then we denote by
v (Xoo) =0(p" Xo) € Ng
the multiplicity of X, pulled back along p.

Definition 4.3. Set F'€ PST and n € [1,00]. A conductor of level n for F is a collection
of set maps

c={cr: F(L) =Ny |Led,}
satisfying the following properties for all L € &<, and all X € Sm:

(cl) ep(a) =0 = a€Im(F(Or) — F(L)).

(c2) er(a+b) <max{cr(a),cr(b)}.

(e3) cr(fra) < LC(LL',(/GL))—‘ for any finite morphism f : Spec L' — Spec L and any a € F(L').
Here e(L’'/L) denotes the ramification index of L’/L and [—] is the roundin up.

(c4) Assume a € F (Ak) satisfies ¢y, (). (pha) <1 for all z € X with trdeg(k(z)/k) <
n—1, where k(z)(t) o := Frac (01}3;,
map. Then a € 7*F(X), with 7: A% — X the projection.

(ch) For any a € F(X) there exists a proper modulus pair X = (Y,Xoo) with X =
X\ |Xl, such that for all p: SpecL — X we have

er(pfa) <vp(Xoo).

A conductor of level oo will be simply called a conductor.

) and p, : Speck(z)(t)oo — AL is the natural

oo

Remarks 4.4.

(1) If F' is homotopy invariant, then setting cr(a) =0 if @ € Im(F(Or) — F(L)) and
cr(a) =1 otherwise defines a conductor (of any level).
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(2) If ¢={er} is a conductor for F, then for any L we have
a €Im(F(Or) — F(L)) <= cr(a) =0. (4.4.1)

Indeed, if a € Im(F(Or) — F(L)), then we find a smooth k-scheme U, a 1-
codimensional point z € UM, a k-morphism SpecOp — SpecOy,, — U and an
element a € F(U) such that p*a=a € F(L), where p: SpecL — SpecOr, — U. The
vanishing of ¢r,(a) hence follows directly from axiom (c5).

(3) Let ¢ = {cL} be a conductor. Then ¢=" := {cy, | trdeg(L/k) < n} is a conductor if
and only if ¢S satisfies axiom (c4).

Definition 4.5. Set F' € PST and let ¢ = {c} be a conductor of level n for F. Let
X = (X,X) be a modulus pair with X = X \ [ X|. For a € F(X), we write

cx(a) < Xoo
to mean cr,(p*a) <wvp(Xs) for all henselian dvf points p: Spec L — X with trdeg(L/k) <n
(see Definition 4.1).

Lemma 4.6. Let ¢ be a conductor of some level for F € PST, X € Sm and a € F(X). Let
X = (Y,Xoo) be any proper modulus pair with X = X \ Xoo. Then there exists a natural
number n > 1 such that cx(a) <n-X.

Proof. By Definition 4.3, axiom (c5), there exists a proper modulus pair X; = (Yl,Xl’m)
with corresponding open X and such that ¢z (p*a) <vr(X1,00) for all p. We find a proper

normal k-scheme X5 with k-morphisms f: Xo — X, f1: Xo — X7 such that X\ |f* Xoo| =
X =X\ |f{ X1,00]- Take n > 1 with fi X1 00 <n-f*Xs. Then for p:SpecL — X,

cr(p*a) SvL(Xi,00) = vL(f1 X1,00) SvL(n- f*Xoo) =vr(n- Xoo).

Hence the statement. O

Proposition 4.7. Set F € PST and let ¢ be a conductor of level n for F. Then
MCor> X = (Y,Xoo) — F.(X):= {a € F(Y\ |Xoo|) le(a) < Xoo}

defines an object in MIPST. Furthermore (see Section 3.3 for notations), the following
are true:

(1) For any X € MCor, the pullback along the projection map X @ — X induces an
isomorphism F.(X) = F, (X ®ﬁ). In particular, 7*F, € CI.

(2) wT*F. 2 F.

(3) FeNST = F, € MNST.
Proof. We start by showing F. € MPST. Let X = (Y,XOO) and Y = (Y,YOO) be two
modulus pairs with corresponding opens X and Y, respectively. We have to show that
a left proper admissible prime correspondence V € MCor(X,)) C Cor(X,Y) sends the
subgroup F.(Y) C F(Y) to F.(X) C F(X). Take a € F.()) and a henselian dvf point
p:n=SpecL — X with trdeg(L/k) <mn. We have to show

cr(p*V*a) <v(p" Xoo). (4.7.1)
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Since V' — X is finite, (7 X x V)req is a disjoint union of points 7; = Spec L;, with L; € ®<,,.
Thus

Vop= Zmz -m; € Cor(n,Y),
i
with some multiplicities m; € N. For each ¢ we get a commutative diagram

/ .

—V ——Y

2

n—"= X

i
fi

)

where p; is a henselian dvf point of Y and f; is finite. We have n; =T, of?i in Cor(n,Y)
(see Section 2.6 for the notation). Thus

PV = Zm Jipl i F(Y) = F(n). (4.7.2)

Since the closure V of V in X x Y is proper over X and p extends to p, we see that p;
extends to p; as in the diagram

SpecOp, ——=V ——=Y

|,

SpecOy, X
Since V satisfies the modulus condition (3.1.2), we get

Indeed, let B be the local ring of V' at the image of the closed point of Op,, z and y € B
be the local equations for X v and Yoo IV respectively, and  and ¢ be their images in
Or, \{0}. Then condition (3.1.2) says that z/y € Frac(B) is a root of a monic polynomial
P(T) € B[T]. It follows that z/y € L; is a root of the image of P(T") under B[T] — Oy, [T
— that is, z/y is integral over Op,, which means vy, (Z) > v, (y).
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Let j be an index with ¢, (fj*p;*-a) =max; {cr, (fixpfa)}. We obtain

cr(p*V*a)=cp (Z m; - fi*pfa> by equation (4.7.2), (4.7.4)
<cg (fjip;fa) by Definition 4.3, axiom (c2),
< m-‘ by Definition 4.3, axiom (c3),
< [, we )
< _m-‘ by formula (4.7.3)
=v5(Xwo),

where the last equality follows from wvr (Xo) = e(L;/L)vr(Xoo). This proves for-
mula (4.7.1) and hence that F, is in MPST.

Next we prove statement (1) in the proposition. Let X' = (Y,Xoo) be a modulus pair
with X = X'\ | Xo|. Denote by 7: X x A} — X the projection and by ig: X < X x A} the
zero section. These define morphisms m € MCor (X®E,X) and ig € MCor (X,X@i).
We have to show that 7 : F,.(X) — F,. (¥ ®0) is an isomorphism. Since i§m* =idp, (x),
it suffices to show that 7* is surjective. Take a € F (X ®ﬁ). For any henselian dvf point
p:SpecL — (P%,{oc}x) with trdeg(L/k) < n, we have

cr(pfa) < v (Xeo x P14+ X x {o0}) = v, (X x {o0}).

Hence by Definition 4.3, axiom (c4), there exists an element b € F'(X) with 7%(b) = a. We
have to check that b € F,(X). Take p: Spec L — X, a henselian dvf point with trdeg(L/k) <
n. Then igop: SpecL — X ® is a henselian dvf point, and thus

cL(p*b) = cL(pign™b) = cL((ioop)a)
<op (Xoo x P'+ X x {00}) = v1,(Xe0).

Hence b € F.(X). Statement (2) follows directly from equation (3.3.2) and Definition 4.3,
axiom (c5). Finally we address statement (3). For X = (X,X), the presheaf F, x on

Xt (see formula (3.4.1)) is given by
(U u Y) s {a € F(U\ |u* Xoo|)ev (@) < u* Xoo}-

We have to show that this is a Nisnevich sheaf. Since F' is a Nisnevich sheaf, it suffices
to show the following: let u: U — X be an étale map, set a € F(U \ |[u*X|) and assume
there is a Nisnevich cover L;U; — U so that ¢y, (ufa) < ufu* X for all i. Then we have
to show cy(a) < u*Xo. To this end, observe that if p: Spec L — (U,u* X ) is a henselian
dvf point with trdeg(L/k) <n and x € U is the image point of the closed point of SpecOy,,
then by the functoriality of henselisation, p factors via SpecOp, — Spec O’[}’m — U. Hence
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there is an 7 such that 7 factors via Spec O, — U; —» U. Thus cr(pfa) <vp(ujv*Xe) =
vy, (v* X ). This completes the proof. O

4.8. Set F € PST and let ¢ be a conductor of some level for F. Let F. € MPST be as
in Proposition 4.7. We set (see Section 3.3 for notation)

F..=n7"F.c MPST.

By adjunction we have a natural map

F,—F,
which is injective. Indeed, on X = (Y,XOO € MCor it is given by the inclusion inside
F(X\[Xxl),
F.(X)= i F.(Y) — F.(X).
YeComp(X)

By Proposition 4.7 and [25, Lemma 4.2.5] (or a similar argument as in the proof of
Proposition 4.7(3)), we have

F eNST = F, € MNST. (4.8.1)

4.9. Set F € RSC. Denote by CI(F) the partially ordered set consisting of those
subobjects G C wCIF in MPST such that the induced map wiG — ww®'F = F is an
isomorphism and the partial order is given by the inclusion G; C G2 We set

CI(F)nis :== CI(F)NnMNST.
Lemma 4.10. Set F € RSC and G € CI(F). Then G1 =G € MPST has the following
properties:
(1) the unit G1 — w*w, Gy of the adjunction (wy,w*) is injective;
(2) the counit nT* Gy = Gy of the adjunction (1, 7*) is an isomorphism;

(3) for all X € MCor, the pullback G1(X) = G1 (X ®0) is an isomorphism.

Proof. Note that (2) follows directly from 7*m =id. We show (1) and (3). The inclusion
G < wCIF yields a commutative diagram

G———~ T;WVFIF
w'w Gl —— w'wnwCF =w*F.

Here the top horizontal row is injective by the exactness of 7y, the vertical maps are
induced by adjunction and the vertical map on the right is injective by equation (3.3.4).
It follows that the vertical map on the left is injective; furthermore, the injectivity of the
top horizontal map and [45, Lemma 1.15, Lemma 1.16] imply that G; is O-invariant. O

Remark 4.11. Lemma 4.10 says that 7 CI(F) C "CI°?, in the notation of [45].
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Lemma 4.12. Set F € PST and let ¢ be a conductor of some level for F. Then 7*F, =
7*F, € CI(F) (see Section 4.8 for notation). If F € NST, then 7*F, € CI(F)nis-

Proof. By Proposition 4.7(2), it suffices to show that there is an inclusion 7*F, < w€tF
inside w*F. For X’ a proper modulus pair, set Z,(X) := MCor(—,X") and

hg' (X)) = Coker (Ztr(X) (Oe-) i, Ztr(X)> .

By [24, Lemma 1.1.3] and [27, Lemma 2.2.2], we have (see Sections 3.1 and 3.3 for
notation)

WZ(X) =Z(X),  whG(X) = ho(X),

where X = X \ | X|. Take a € F.(X) C F(X). Since F, is cube invariant, by Proposi-
tion 4.7, the Yoneda map a : Z, (X) — 7* F, factors via the quotient map Zi, (X) — h5 (X).
Applying wy = wyn1 we see that the Yoneda map a: Z(X) — F in PST defined by
a € F(X) factors via Z, (X) — h°(X) — that is, a € wCTF(X). This proves the lemma. [

Notation 4.13. Set L € ®. Denote by s € .S :=SpecOy, the closed point. For all n > 1 we
have (S,n-s) € MCor"™® (see Section 3.7). Set G € MPST; we extend it to a presheaf
on MCorP™. For n > 0 we introduce the following notation:

G(Op,m;") = {M!G(S) =G(S,0) ifn=0,

G(S,n-s) ifn>1.
Definition 4.14. Set F € RSCyis and G € CI(F) (see Section 4.9). We denote by
= {Cf} the family of maps c§ : F(L) — Ny, L € ®, defined as

¥ (a) = min{n>0|a€nG(OLm;")}.
This is well defined, since

F(L) =wn(G)(L) = n(G)(L,0) =| JnG (Or,m™™).

When G = wClF, we write

= ' F (4.14.1)
and call ¢! the motivic conductor of F.
Theorem 4.15. Let F be a presheaf with transfers.

(1) If F has a conductor ¢ of some level, then F € RSC.

(2) If F € RSCyis and G € CI(F) (see Section 4.9), then the family ¢ = {c§} (see

Definition 4.14) is a conductor for F' in the sense of Definition 4.5. In particular,

cf" is a conductor for F.

(3) Set F' € RSCyis and G € CI(F). Then in MPST,
nG C Fcc,
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and for oll L € ® and n >0, we have
nG (Op,mp") =F.e (Op,m;").
(4) Set F € RSCnis and let ¢ be a conductor for F' (of some level). Then
FG C T;wCIF = FCF,
where ¢ is the motivic conductor (see definition (4.14.1)).
In particular,

F € RSCyijs < F € NST and F has a conductor (of some level).

Proof. (1). We have F = w 7" F, € w(CI) C RSC, by Proposition 4.7 and [27, Proposition
2.3.7]. For (2), we check the properties from Definition 4.3. Set G; := nG; then
Definition 4.3, axiom (c1), follows from w,G1(Or) = wiG(Or) = F(Op), and axiom (c2)
is obvious. As for axiom (c3), let L'/L be a finite extension of henselian dvfs with
ramification index e. The induced finite morphism f : SpecOp — SpecOj, induces a
morphism in MCor?P*,

(SpecOp,n-sp) — (SpecOr,en-syr),
where sy, (resp., sz+) are the closed points. This yields the commutative diagram

G1(Op,0) —= G4 (OL/,mz/en) — w'w Gy (OLHmZ/en) =F(L)

lf* | |

Gl(OL,[Z)) —— Gl (OL,mZ") Q*Q!Gl (OL7mE") = F(L)

Hence, we obtain the following inequality, which implies axiom (c3):

& (fea) < min{n |a € Gy (Op,m")} =min{n | fi(a) <en}.
The following claim clearly implies axiom (c4):
Claim 4.15.1. Set X € Sm and a € F(AY). Assume X connected with function field K .
Set K (t)oo := Frac (Ol};}(’oo) inducing the henselian dvf point Spec K (t)s — (P}@oo).
Assume C?{(t)w(aK) <1, where ax € F (Ak) is the restriction of a. Then a € F(X).

Proof of Claim 4.15.1. The restriction map F(A}() — F(A}() is injective, by [26,
Theorem 6] and [27, Corollary 3.2.3]; thus it suffices to show ax € F(K). Set G1,nis :=
anis(G1) (see Section 3.4). Consider the Nisnevich localisation exact sequence

Gi,nis (P, 00) = Ginis (Ak,0) = G1(K (t)00,0)/G1 (Ok 1)..,00) -

By [45, Theorem 4.1], we have Ginis(Ak,0) = Gi(AL,0) = F(Ak). Hence our
assumption implies that ax comes from G nis (P}(,oo) and the desired assertion follows
from the cube invariance of Gy nis (see [45, Theorem 10.1]) and Remark 4.11:

Gi,nis (P, 00) = Gy nis (K, 0) = G1 (K, 0) ~ F(K).
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Next we prove axiom (c5). Set X € Sm and a € F(X). We can assume that X is not
proper over k. Take any X = (Y,XOO) € MCor such that X = X —|X,|. We have

F(X)=wG(X)=1lnG(X,n-X),
(X) .()nﬂw( )

and hence a € G (Y,n'Xoo), for some n. Then for any henselian dvf point SpecL —
(Y,n-Xoo), we get a € G (OL,mZm}L(X"")) so that ¢f'(a) <n-vp(Xs). This completes
the proof of statement 2.

For statement (3), it follows directly from the definition of F.c in Proposition 4.7 that
TG C F,c; hence also nG =n7"nG C n7*F.c = ﬁ‘cc. Furthermore, the equality in the
second part of the statement comes from the inclusions

nG(Op,mp") C F.e (Op,m;") C {a€ F(L) |a€nG(OL,m;")},

where the first inclusion comes from the foregoing and the second holds by definition.
Finally we come to statement (4). The inclusion F,. C nwCLF follows from Lemma 4.12.
The equality F,r = wCIF now follows from this and (3). This completes the proof. [

Corollary 4.16. The functor wC' : RSC — CI restricts to a functor w®! : RSCyis —
CINis := CINMNST.

Proof. Take I € RSChis. By Theorem 4.15, Proposition 4.7(3) and formula (4.8.1), we
have 1wCF = F,r € MNST. Hence wCIF € MNST, by definition (see Section 3.4). [
Notation 4.17. Set F' € RSCyjs. In the following we will simply write

F = FCF =nwClE
By Corollary 4.16 we have 7*F € CI(F)yjs (see Section 4.9).
Corollary 4.18. Set F' € RSCyis. Denote by (CF)Sn the restriction of the motivic
conductor to trdeg < n. Assume that (cF)Sn is a conductor of level n. Then

Fpyen = F.

Proof. Clearly F.r C F(CF)gn, and D holds by Theorem 4.15(4). O

Proposition 4.19. Let Fy C F5 be an inclusion in RSCyis. Then the restriction of the
motiwic conductor of Fy to Fy is equal to the motivic conductor on Fy — that is,

Fi _ (F
cl—(c 2)‘F1.

Proof. Set a € F1(X). By the definition of the motivic conductor, it suffices to show that
a has modulus (Y,Xoo) as an element in F5(X) if and only if it has the same modulus
as an element in F(X). This is obvious (see Definition 3.2). O
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Lemma 4.20. Set Fy,F, € RSCyjis. Set L € ® and a; € F;(L). Then C€1®F2 (a1 +a2) =
max{cfl (a1),ct? (ag)}.

Proof. This is direct from Definition 4.14. O

Proposition 4.21. Let ki/k be an algebraic (hence separable) field extension and set
F € RSCis, i, (that is, F is a contravariant functor Cory, — Ab which is a Nisnevich
sheaf on Smy,, and has SC-reciprocity). Denote by Ry, /i, F' : Sm = Smy, — Ab the functor
given by

XHRk]/kF(X) = F(Xk1)7

where X, = X Xspeck Specky. Then Ry, /1, F' € RSCis and its motivic conductor is given
by

C?kl/kF(a) = n’llax{cg7 (ai)}7
where L@y k1 =[], L and a = (a;) € Ry, F'(L) =[], F(L;).

Proof. The first statement follows from the definition of RSCyjs; for the second, observe
that for L € ® the kj-algebra L ®i ki = HZ. L; is unramified over L, and hence (see
Notation 4.17 for notation)

Ry i F (Op,mz"™) = [[F (01, mz") .
i
This yields the statement. O

4.1. Semicontinuous conductors

Definition 4.22. Set F' € PST and let ¢ be a conductor of level n € [1,00] for F. We say
¢ is semicontinuous if it satisfies the following condition:

(c6) Set X € Sm with dim(X) <n and Z C X a smooth prime divisor with generic
point z and K = Frac (O% ). Then for any a € F(X \ Z) with cx(ax) <7 there
exists a Nisnevich neighbourhood u: U — X of z and a compactification ) =
(Y,Ys) of (U,r-u*Z) such that (see Definition 4.5 for notation)

ey (av) < Yoo,
where ay (resp., ax) denotes the restriction of a to U (resp., K).

Lemma 4.23. Set F € PST and let ¢ be a conductor of level n for F. The following
statements are equivalent:

(1) ¢ is semicontinuous;
2) E. Orm;")={a€ F(L)|cr(a)<r} for L€ Oy, r>0.
( L <

Proof. Set a € F(L). Then a € F, (Op,m7") if and only if there exist a smooth scheme
X, a smooth prime divisor Z on X with generic point z, a k-isomorphism Op, = O;‘(’Z,
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an element a € F(X \ Z) restricting to a and a compactification Y = (Y,Y4) of (X,r-Z),
such that ¢y-(@) < Y. From this description we see that the C inclusion in (2) always
holds, while the D inclusion is equivalent to the semicontinuity of c. O

Corollary 4.24. Set F' € RSCyjs and let ¢ be a semicontinuous conductor of level n for
F. Then (c) =" < ¢ — that is, for all L € ®<,, and all a € F(L) we have cf (a) < cp(a).

Proof. This follows from Theorem 4.15(4) and Lemma 4.23. O

We can summarise part of the foregoing as follows:

Theorem 4.25. Set F € RSCyjs.

(1) Any G € CI(F) (see Section }.9) defines a semicontinuous conductor c (see
Definition 4.1/). For Gy C Gy in CI(F), we have c&2 < c©1.
(2) Let ¢ be a conductor of level n € [0,00]. Then 7*F, € CI(F)nis. For ¢; < ¢y we have

. . . * <n
T*F,., C T*F,,. If, furthermore, c is semicontinuous, then c = (cT FG) .

(3) Assume that G € CI(F)nis satisfies
Vp:SpecL — X

X)= F(X 5

G(@) = {ae F(X) with L € ® b

for all proper modulus pairs X = (Y,XOO) with X = X \|Xoo|. Then 7*F,c =G.

(4) Let ¢ be a semicontinuous conductor of level n for F (possibly only defined on
trdeg <n). Then there exists a unique semicontinuous conductor ¢ for F with the
properties

praenG (OL,mZUL(X“’)) ,

T*F.=1"F,« and c:(coo)S".

We call ¢*° the canonical extension of c.

(5) Assume that the restriction (CF)Sn of the motivic conductor to trdeg < n is
a conductor. Then its canonical extension is the motivic conductor — that is,

(=) =er.

Proof. (1) holds from Theorem 4.15(3) and Lemma 4.23. (2) follows from Lemmas 4.12
and 4.23. (3) holds by the definitions involved. For (4), set G := 7*F,; then G € CI(F)
by (2) and it satisfies the condition from (3) by Lemma 4.23. Set ¢ := c¢“. Then ¢ has
the desired properties by (3) and (2). Finally, (5) follows from Corollary 4.18. O

‘We finish this section with some lemmas which are needed later.

Definition 4.26. Set F' € RSCyjs. We say F is proper if the following equivalent
conditions are satisfied:

(1) For all X € Sm and any dense open U C X, the restriction map F(X) = F(U) is
an isomorphism.

(2) Any conductor ¢ on F'is trivial — that is, ¢z, =0 for all L.
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For (2) = (1), use the fact that axiom (c4) implies F' € HIy;s, and then the statement
follows from Voevodsky’s Gersten resolution (compare [28, Lemma 10.3]).

Lemma 4.27. Let 0 — F; RNy i> Fy, — 0 be an exact sequence in NST and with Fy,
F, € RSCyis, and assume Fy is proper.

Then F € RSCnis. Any (semicontinuous) conductor ¢ of level n on Fy induces a
(semicontinuous) conductor cip = {cp o}y of level n on F. Furthermore, the motivic
conductor of F is given by ¢’ = 4.

Proof. Let ¢ be a conductor of level n on Fy. Then ¢y clearly satisfies axioms (c2),
(¢3) and (c5) (and (c6), if ¢ does). By the properness of Fj, we have an isomorphism
F(L)/F(OL) = F5(L)/F2(Or), which implies (c1). Assume that a € F' (A% ) satisfies the
assumption in (c4) for cyp. Let m: AL — X be the projection and i: X < A% the zero
section. Then 1(a—7*i*a) = (a) —m*i*Y(a) € F» (Ak ) satisfies the assumption from (c4)
for ¢; hence it lies in 7* F3(X), and thus is zero. Therefore, a—7*i*a € Fy (Ak) =7*F1(X),
and hence it is zero — that is, a = 7*i*a. This shows that ci satisfies (c4). Therefore ¢y
is a conductor of level n. Thus Theorem 4.15 yields F' € RSCyjs and FCsz ((’)L,mzn) -
F (OL,mZ"). We have inclusions

FCF2¢ (OL,mZ") /Fl(OL) — F (OL,mZ") /Fl(OL) — F2 (OL,mZ"),
where the second map is injective by the properness of Fy. Since F, = FZCFQ, the
composition is an isomorphism; thus ¢’ = 2. O
Lemma 4.28. Let p: F — G be a surjection in NST. Let c={cr: F(L) = N}rca_,
be a collection of maps. Define ¢ ={¢r : G(L) = N}pea_, by
¢r(a) :=min{cr(a) | a € F(L) with p(a) =a}.

If ¢ satisfies (c1) (resp., (c2), (¢3) or (¢6)), then so does c.

Furthermore, suppose ¢ has the following property: for all X € Sm there exists a proper
modulus pair (Y,XOO) with X = X \ Xoo, such that for all x € X the map ¢ induces a
surjection

—h —h
F (X(w) \Xoo,(z)) BNYe (X(I) \Xoo,(x)) , (4.28.1)
where Y?m) = Spec(’)%’m and X () denotes the restriction of X to YZE). Then ¢
satisfies (c¢5), if ¢ does.

Proof. (cl). If ¢z (a) =0, then there exists a lift @ € F'(L) with c(a) = 0, and hence
a € F(Opr) by (cl) for ¢. Therefore a € G(O).

(c2). Set a,b € G(L). Take lifts a,b € F(L) with cr,(@) = &1.(a) and ¢, (b) — z.(b). Then
by (c2) for ¢,

¢r(a+b) <cg (&—H;) < max{cL(d)mL (5)} =max{cr(a),cr(b)}.
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(¢3). Let f:SpecL’ — SpecL be a finite extension with ramification index e and set
a € G(L'). Take a lift a € F(L') with ¢1/(a) = c/(@). Then by (c3) for c,

er(fua) < er(fd) < [CL' (‘Nﬂ _ F“‘ﬂ .

e (&

(c6). Let X,z € Z,K be as in (c6) and a € G(X \ Z) with éx(ax) <r. Let ax € F(K) be
a lift of ax with ¢k (ax) =€k (ax). Since Spec K = Spec Ok \ Zo,., we find a Nisnevich
neighbourhood U — X of z and an element a € F(U \ Z) which restricts to ax. After
possibly shrinking U around z, we may assume that ¢(a) = aj;\z,. By (c6) for F, we
may shrink U further around z to obtain a compactification ) = (?,YOO) of (U,r-Zy)
such that

ey (av) < cey(av) < Yoo
)s

(¢5). Assuming condition (4.28.1), set X € Sm and a € G(X). Let X = (X,X) be a
proper modulus pair with X = X \ | X| as in condition (4.28.1). This condition implies
that we find a finite Nisnevich cover {Ui — Y}z and @; € F'(U; x ) such that p(a;) = ay,
in G(U;,x), where {U; x — X}, is the induced Nisnevich cover of X. Let V; = (Y;,Y; )
be a compactification of (U;, X|y,) which admits a morphism Y; — X extending U; —
X and inducing a morphism of proper modulus pairs Y; — X. By (¢5) for ¢ and (the
proof of) Lemma 4.6, we find an integer N > 0 such that cr(p*a;) < N -vp(Y; ) for all
p:SpecL = U, x =Y ;\|Yicl|, L € ®<,. Let p:SpecL — X be any henselian dvf point
with L € ®<,; denote by s € X the image of the closed point under the induced map
p:SpecOp, — X. By the Nisnevich property7 there exist an ¢ and a point s; € U; such
that U; — X induces an isomorphism s; — s. Hence p factors via U; < Y; — X. Thus

cr(pta) <cp(p @) < N-vp(Yieo) =N-vp(Xso),

where for the equality we used (Yioo)y, = (Xoo)jv,- Thus a satisfies (c5) for
(X,N-X). O

4.2. Homotopy-invariant subsheaves

Corollary 4.29. Let F € NST be Al-invariant (in particular, F € RSCyis). Then the
motivic conductor of F is given by

F )_{0 ifae F(Op),

cr(a) = )
1 otherwise.

Proof. The right-hand side defines a conductor, as already noted in Remark 4.4; it is
clearly semicontinuous. By Corollary 4.24 we get < in the statement, and (c1) forces it
to be an equality. O

4.30. We denote by HI the category of Al-invariant presheaves with transfers and set
HIyis := HINNST. It follows immediately from Definition 3.2 that we have HI C RSC
and HlIy;s C RSCuyis.

https://doi.org/10.1017/51474748021000074 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000074

Reciprocity sheaves and their ramification filtrations 97

Set F' € PST. For X € Sm, we denote by
har (F)(X)

the subset of F(X) formed by those sections a € F(X) for which the Yoneda map a :
Z(X) — F factors via

h{?l (X) = Coker (Ztr(X) (— X Ai) ﬂ> Ztr(X)> € PST.

We immediately see that X ~— hQ,(F)(X) defines a subpresheaf with transfers of F,
since hoAl(X) € HI (see, for example, [48, Proposition 3.6]) and we have hQ, (F) € HI;
furthermore, it has the universal property that any morphism H — F in PST with
H € HI factors uniquely via a morphism H — hQ,(F) in HIL. Note that if F € NST,
then hQ,(F) € Hly;is. Indeed, by [49, Theorem 3.1.12], Nisnevich sheafification induces
an exact functor HI — Hly;s, and thus we obtain natural inclusions in PST

hOA1 (F) — h0A1 (F)Nis — FNis =F.
Since hQ:(F)nis € HI, the second inclusion factors via h%,(F); hence hQ,(F) =
hOAl (F)Nis-
Proposition 4.31. Set F € PST and let ¢ be a conductor of level n for F. Then

Vp: SpecL — X}

clpla) <L L ea.,

X FsY(X) = {a € F(X)

defines a homotopy-invariant subpresheaf with transfers of F. If F € NST, then F°S! €
Hlyis.

Proof. Showing that F°<! € PST is equivalent to the following: let V € Cor(X,Y) be
a finite prime correspondence and set a € F°<'(Y); then for all henselian dvf points
p:Spec L — X with trdeg(L/k) <n, we have

cn(p™V*a) <1

This follows from the calculation in equation (4.7.4). The Al-invariance of F¢<! follows
directly from (c4). The last statement is proven similarly as in Proposition 4.7(3). O

Corollary 4.32. Set F € RSCyis with motivic conductor c¥'. Then
. (F) = Fe' <1,
Proof. By Proposition 4.31 we have F¢ <1 C hQ%:(F). By Proposition 4.19 and

/ hS o, (F . cf
Corollary 4.29 we have (CF)Ihil(F) = c"at®) < 1; hence B, (F) C F¢ =1 O

Corollary 4.33. Set F' € RSCyjs. Assume that for all L € ® we have
F(Op,mp') =F(Oy). (4.33.1)
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Let X € Sm be proper over k and U C X be dense open. Then
har(F)(U) = F(X).
In particular, if F satisfies equation (4.33.1), then X — F(X) is a birational invariant
on smooth proper schemes.
Proof. By Corollary 4.32,
W (F)(U) = F*<1(U).
Hence F(X) C hY,(F)(U), and by equation (4.33.1) we also have
Ma(F)(U)C () F(O%.)-
zeX 1)
By [45, Cor 0.3],
N F(0k.)=FX).
zeX 1)

Taking all this together yields the statement. O

4.3. Local symbols

4.34. We recall the notion of local symbols for reciprocity sheaves; see [47, III, §1], [26,
Proposition 5.2.1] or [23, 1.5] for details.

Set F € RSCyis. If L/K is a finite field extension of finitely generated fields over k,
we denote by Trp g : F(L) — F(K) the map induced by the transfer structure on F'.
For X € Cor™°, z € X and a € F(X) we denote by a(x) € F(z) the pullback of a along
r— X.

Let K be a function field over &k and C' be a regular projective K-curve. Note that
C € Cor®™®, by Lemma 2.4. For = € C(g) a closed point, we write v, for the corresponding
normalised discrete valuation on K(C)* and m, C O¢,, for the maximal ideal, and set

Ui =1 +my COg,, n>1 Let D=3 n,-a be an effective Cartier divisor on C' and
set a € F(C,D) (see Notation 4.17 for the notation F'). Then there exists a family of maps

{@)esmr: KO = FIK)}, o
which is uniquely determined by the following properties:
(LS1) (a,—)c/k,2 : K(C)* — F(K) is a group homomorphism;
(LS2) (a,f)c/k,e = va(f) Tri(a)/k (a()), for z € C\|DJ;
(183) (a, Ué’“”)cmz —0;
(LS4) Xpecyy (@ f)c/r,e =0

It follows from uniqueness that the family {(a,—)c/k,»} does not depend on the chosen
modulus D. Furthermore, from uniqueness we can deduce the following properties:

(LS5) (= —=)c/k,z: F(K(C)) x K(C)* — F(K) is bilinear;
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(LS6) if h: F— G is a morphism in RSCyjs, then in G(K),

h((a’f)C/K,x) = (h(a)af)C/K,xa all a € F(K(C))vf S K(C)X

Let K'/K be a finite field extension, C’/K’ € Cor®® a projective curve and 7:C" — C
a finite morphism over Spec K/ — Spec K. Then we have the following properties:

(LST) for be F(K'(C")), f € K(C)* and z € C(g),

(me(0), f)e/k e = ZTYK//K(b,W*f)C//K/,y;

y/x

(LS8) for a € F(K(C)), g€ K'(C')* and z € C,

(a,mg)c/K’m = ZTYK’/K(F*(a)ag)C’/K’,y'
y/w

In both cases, the sum is over all y € C' mapping to .

Lemma 4.35. Set FF € RSCyis and let C' be a reqular projective and geometrically
connected K-curve. Let K'/K be a finitely generated field extension, and denote by
7 :Spec K’ — Spec K the induced map and by 7¢ : Cx = C @ K' — C the projection.
Then

Z (Té'aﬁTé'f)CK,/K’,y:T*(a7f)C/K,x in F<K/)
yers ' (x)
for alla € F(K(C)), fe K(C)* and x € C(g).
Proof. Let U C C be open with a € F(U). Using the approximation lemma, (LS1)
and (L.S3), we can assume that for a given m > 1 we have f € U™ forall z € C\(UU{x});
in particular, choosing m large enough we get (a, f)c/k,. = 0. Identifying f with the finite
K-morphism C — P}, we obtain a € F (f~1 (P} \ {1}) \ {}), and (LS2) and (LS4) yield
—(a.f)o/x.e = (ig—is) fra in F(K).

The formula in the statement now follows by applying 7* to this equality, using the
base-change formula 75, o fi = (74 f), 75 induced by the cartesian diagram

Cxr —S—C

o |

Tpl
Pl, L Pl

and using (LS1)—(LS4) backwards. O

Lemma 4.36. Set L € . Let C be a reqular curve over a k-function field K. Assume
that there exist a closed point x € C' and a k-morphism w : SpecOp, — C' inducing an
isomorphism (’)g’z = Or,. Then there is an isomorphism

F(K(C))/F(Oc,z) = F(L)/F(Or)
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induced via pullback along w. If Oc . has a coefficient field, then we have an isomorphism
F(K(C))/F(Oc,zm) = F(L)/F(Or,m),
where for a local ring A € Cor®™ with mazimal ideal m we set
F(Am):=Ker(F(A) — F(A/m)).

Proof. We prove the first isomorphism. The natural map in the statement is compatible
with pullbacks and push-forwards on both sides. Thus we can apply the standard
trick replacing k by its maximal pro-f extensions for various primes ¢, to assume k
is infinite. By Gabber’s presentation theorem (see, for example, [8, 3.1.2]), we find an
open U C C containing z, a k-function field E and an étale morphism ¢ : U — PL
such that z = ¢~ '(¢(z)) and ¢ induces an isomorphism = —» p(z). It follows from
[45, Lemma 4.2, Lemma 4.3] that (U,n-x) is a V-pair, for all n > 1, in the sense
of [45, Definition 2.1]. If v: U’ — U is an affine Nisnevich neighbourhood of z with
v=1(z) = {2}, then the pullback v* : F(K(U))/F(Op ) = F(K(U"))/F(Op: ) is an
isomorphism, by [45, Lemma 4.4, (3)]. We obtain the first isomorphism of the statement
by taking the limit over all Nisnevich neighbourhoods v. For the second isomorphism,
observe that if a coefficient field o : kK — O¢,, exists, then ¢* induces a splitting of the
restriction to the closed point F'(Oc¢,,) — F(k); in particular, it is surjective. We obtain
isomorphisms F(O¢ »)/F(Oc¢ z,my) = F(k) = F(Or)/F(Or,my) which together with the
first statement and the five lemma yield the second isomorphism in the statement. O

4.37. Set F € RSCyjs. Let L € ® have residue field kK = Op/mp, and let 0 : K — Of,
be a k-homomorphism such that the induced map K < & is a finite field extension (for
example, o could be a coefficient field.) We define the local symbol

(——=)p,o: F(L)xL* — F(K)

as follows: we find a regular projective K-curve C and a k-point z € C(k) satisfying

nat.

L =Frac ((’)’é’gj), 0:K—0¢,—0Or. (4.37.1)

Additionally, we assume that Oc¢ , has a coefficient field. Denote by u : SpecOp —
SpecO¢,,; the induced map. The symbol (—,—), » is defined as the composition

(= =)po : (L) x L — F(L)/F(Op,mp) x im L* /U{")

Lemma 4.36 . (*1*)0/1{ z
= F(K(C))/F(Oc,zm) x Im K (C)* /U ———= F(K),

n

where the last map is given by

@ Uesica=(000) e

with @ € F (Oc pm™") a lift of ¢ and f,. € K(C)* a lift of f,; this is well defined and
bilinear by (LS2), (LS3) and (LS5).
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Lemma 4.38. The symbol (—,—)r, o, defined in Section 4.37 is independent of the choice
of the presentation (4.37.1).

Proof. Let v: C’ — C be a K-morphism between regular projective K-curves, and let
z € C and 2’ € C' be closed points such that v is étale in a neighbourhood of z’ and
induces an isomorphism ' = z. Assume that O¢,, has a coefficient field. Let E = K (C)
and E' = K(C") be the function fields. Then it suffices to show that for all a € F'(F) and
f € E*, we have

<a7f)C/K,z = (U*a7v*f)c’/l(,x’- (4381)

We denote E = I'&HEX/UQ(;M, and so on. Then the composition

EX 2 (B,op B =[] B 2L B
y/@
is induced by v* and is an isomorphism with its inverse induced by the norm. Thus we
can use the approximation lemma, (1.S3) and the continuity of the norm map to choose
g € E'™ close to v* f at 2’ and close to 1 at all y € v=!(x)\ {2} to obtain the following:

(1) (v*avv*f)c//K,m’ = (’U*avg)C’/K,z/;
(2) (v*a,9)cr /i,y =0 for all y' € v (2) \ {a'};
(3) (a,f)e/k,» = (@, Nmg/ /5(9))c/ K,z

We thus have

(LS8),(3) * W2, .
(@.f)e/ke = Z (va,9)cr/k,y = (Va0 f)or ke

y'€v—1(z)

which yields the statement. O

Remark 4.39. Note that if the composition K % O, — & is purely inseparable, then
there does not need to exist a coefficient field of Oy which contains K. This is why in
Section 4.37 it does not in general suffice to consider coefficient fields. (In characteristic
0 it does.) For coefficient fields o : K < Oy, the symbol (—,—)r , will in general depend
on the choice of o.

Corollary 4.40. Let L1/L be an extension of henselian dufs of ramification index e — that
is, mOp, =mg . (The extension Ly /L does not need to be algebraic or finitely generated.)
Let 01 : K — Oy, be a k-homomorphism inducing a finite field extension K — Op, /my,, .
Set F € RSCyis and a € F (OL,mZT), r>0. Then

(aLNUl(,elr)) = Oa

Li,01

where ar, € F(L1) is the pullback of a.

Proof. We have ar, € F(OLl,mer) and hence the statement follows from the
construction of the symbol in Section 4.37 and (LS3). O
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Lemma 4.41. Set F € RSCyis. Let K/k be a function field and X be a normal affine
integral finite-type K -scheme with function field E. Let xz; € XV, i =1,....r, be distinct
1-codimensional points. Then for all integers n; > 0, the natural map
F(E) =~ T F(E)
m;“:lp (OX,I,;am;ini) i=1 F (OX,Inm;lnl)

is an isomorphism, where F (Ox,2,,m) = F(Ox a,).

Proof. Let A be the semilocalisation of X at the points x; and denote by D = X:lnzxZ
the divisor on U := Spec A. (Note that we allow |D| & {z1,...,2,}.) We claim
F(U,D)=N_F (Ox 4,,m;™). (4.41.1)

Zq

Indeed, by definition, F(U,D) = F(U,D)(U); furthermore, F(U,D) is a sheaf on Uyjs and
is a subsheaf of the constant sheaf F/(K) (by [26, Theorem 6] and [27, Corollary 3.2.3]).
Since Spec E'L; SpecOx 5, — U is a Nisnevich cover, the claim follows.

The natural map in the statement is compatible with pullbacks and push-forwards
on both sides. Thus we can apply the standard trick replacing k& by its maximal pro-
{ extensions for various primes ¢, to assume k is infinite. By Gabber’s presentation
theorem (see, for example, [8, 3.1.2]), we find a function field K;/k and an essentially
étale morphism ¢ : U — A such that {z1,...,2,} =0 ' o({z1,... 2. }) = o({z1,...,2,}).
By [45, Lemma 4.2, Lemma 4.3], (U, >, m;x;) is a V-pair for all m; > 0. Let U" be the
henselisation of U with respect to the radical in A (see [42, XI, §2, Théoreme 2|) and set
Dl .= Dyyn; by [45, Lemma 4.4, (2), (3)], we have an isomorphism

F{U\{z1,...,x,})/F(U,D) = F(U"\{z,...,2,}) /F (U",D").

Now the statement follows from U” = LJ; Spec O}m (see [42, X1, §2, Proposition 1, 1)],
equation (4.41.1) and Lemma 4.36). O

Lemma 4.42. Set F € RSCyis and let w: SpecL’ — SpecL be a finite extension of
henselian dufs. Denote by o : K — Op, a k-morphism such that the composition L —
Or/my, is a finite field extension; denote by o’ : K — Op: the induced map. Then we have

(1) (b f)ro = (b7 P, bE F(L), [ €O
(2) (avﬂ-*g)L,U = (ﬂ'*avg)L/,UU ac F(L)7 gc Ox/'

Proof. We can spread out the situation as follows: There exists a finite and surjective
morphism 7 : C’ — C between regular and projective K-curves, with function fields E’ =
K(C"), E=K(C), points 2’ € C" and & = 7(z') € C' and elements & € F(E), be F(E'),
fe O& 2> 9 €O, inducing 7, 0, o', a, b, f, g. We prove (1): by Lemma 4.41 we find an
element by € F(E') with b—b; € F(O¢r o), and by € F(O¢r,) for all y e 7 H(z) \ {'}.
Since 7T f € O¢ ,» for all y/x, we obtain

(bv’fr*f)L’,a’ (LS]L(LSZ) Z(bbf*f)c'/](,y Ugﬂ (ﬁ*(bl)vf

y/x

. 4.42.1
)C’/K,:c ( )
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Note that ' @p L > ]]
have

y/z Ey» where Ej is the henselisation of £ at y. Thus in F'(L) we

b1 = Z?Ty*bl,

y/@

where m, : Spec L — Spec £, is the natural map; in particular, 7., = 7. Hence in F'(L),
T«b1 = m.b mod F(Op);

this together with equation (4.42.1) and (LS1) implies (1).
Now for (2): by the approximation lemma we find g; € E’™ such that

(ﬁ*dhgl)c’/K,y:Oa yEﬂ-il(aj)\{m/h
and
(ﬁ*&ngl)c’/l(,m/ = (ﬂ—*a’ag)L’,a"
Furthermore, we have the following equality in L*:

NmE//E(gl) = HNmE/y/L(gl)

y/@

If g1 is close enough to 1 at the points y € 7 *(z)\ {2'}, we have Nmpg, /1(91) € UéN) for
N > 0. Thus we can choose g; with the additional property

(@, Nmg/ /g(91))c/k,e = (e, Nmp//1(9)) L0

(2) now follows from (LS8) and the foregoing. O

Part 2. Applications
5. Algebraic groups and the local symbol

In this section, k is a perfect field and G is a commutative algebraic k-group. Note that as
sheaves on Sm, we have G = G,q, and hence we can always identify G with the smooth
commutative k-group Greq. We fix an algebraic closure k of k; note that Speck € Cor®™.

5.1. Let G be a commutative algebraic k-group. Then G € RSCyjs, by [27, Corollary
3.2.5]. Let L € ®<; have residue field . Let ¢ : 5 < k be a k-embedding. We denote by
L5" the strict henselisation of L with respect to ¢. Note that L" is a henselian dvf of
geometric type over k. We write

(= =) pen 1 G (L") < L — G (k) (5.1.1)

for the symbol (—,—)p:n , from Section 4.37, with o : k— Oiﬁ the unique coefficient
field; in this case this is the symbol defined by Rosenlicht and Serre (see [47, III, §1]). If
we choose a different k-embedding ¢ : k < k, then we find an automorphism 7 : k — k
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with 70:. =" inducing a unique isomorphism of Op-algebras 7 : OSLZ = OZL, and by
equation (4.38.1),

T ((a7f)th) = (T(a)aT(f))Lf,h-

We will usually drop the ¢ from the notation and write L*" = L". We define the
Rosenlicht-Serre conductor of a € G(L) by

0 ifaEG(OL),

min{n >1] (a,UgSLZL)L = 0} otherwise.

RoSer(a) :=

Note that it is independent of the choice of ¢ : k < k.

Theorem 5.2. Let G be a commutative algebraic k-group.

(1) The Rosenlicht-Serre conductor RoSe = {RoSer }irdeg(r/k)=1 5 a semicontinuous
conductor of level 1 on G (in the sense of Definitions 4.3 and 4.22).
<1

(2) Let c© be the motivic conductor of G (see Definition 4.1/) and denote by (c©)~
<1

its restriction to ®<1. Then RoSe = (CG)* .
In particular, the motivic conductor extends the Rosenlicht-Serre conductor to henselian
dufs over k with nonperfect residue field, and we have G = GRroge (see Section 4.8 and
Notation /.17 for notation).

Proof. The last statement follows from Corollary 4.18. For (1) we check that RoSe
satisfies the properties from Definition 4.3. (c1) and (¢2) are obvious. Let L'/ L be a finite
extension of henselian dvfs with trdeg(L/k) =1 and a € G(L'). Let kK — £’ be the induced
map on the residue fields, and fix an embedding ' C k. Then L’ sh i finite over L*" and
e (L’Sh/L5h> =¢(L'/L). Thus (c3) follows directly from Lemma 4.42(1). To check (c4),
first observe that if a € G (A%) is not in G(X) (via pullback), then we find a closed
point x € X such that a1 is not in G(z). (Since G is a finite-type k-scheme and X is
Jacobson.) Thus it suffices to show the following:

Claim. Let k/k be a finite field extension and set k(t)s = Frac ((91’;1’00). Assume that
a€G(AL) has RoSe, ). (a) < 1. Then a € G(k).

Otherwise a ¢ G(x). Then its pullback a; € G (Az) is not in G (k), and we can thus
find two points z,y € A (k) =k such that ag(z) # ag(y). Take f = (t—z)/(t—y) € k().

Then f e U

B8 and we obtain

0= (ag, Nrt). = —ar(®) +ag(y),

where the first equality follows from RoSe,)_ (a) <1 and the second from (LS4) and
(LS2). This yields a contradiction and thereby proves the claim. (¢5) follows from the fact
that G is a reciprocity sheaf and Corollary 4.40. Finally, we deal with (¢6) (continuity for
n =1). Assume that C is a smooth k-curve, z € C' is a closed point and a € G(C'\ {z})
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with RoSer, (a;) < n, where L, = Frac (ng) and a, € G(L,) denotes the pullback of
a. Let C be the smooth compactification of C and let Cop = (C\C)__,. Choose N such

that RoSer, (ay) < N for all y € [Cs|. Then (Cin-{z} + N - Cy) is a compactification of
(Cyn-{z}) and we claim

RoSegz(a) < (n-{z}+N-Cx). (5.2.1)
Indeed, let SpecL — C'\ {z} be a henselian dvf point with trdeg(L/k) = 1. If SpecOp,
maps to C'\ {z}, then RoSer (ar) = 0. Otherwise we get a finite extension L*"/Ls" for

some y € {z}U|Cx|, say of ramification index e. Set u € U£Z£C)7 where ny =n and ny = N,
for y # x. By Lemma 4.42(2) we have

(ap,u)psn = (aLy,NmLsh,/L;h (u)) Lo
Yy
which vanishes by NmLsh/L;h (u) € Uég};) and RoSer,, (ay) <n,. This proves claim (5.2.1),
hence (c6), and finishes the proof of (1).
By Corollary 4.24, we have @1 < RoSe. Thus for (2) it suffices to show that if

a € G(Op,my"), for some L € ®<y and r > 1, then RoSer(a) < r. This follows from
Corollary 4.40. O

Remark 5.3. An extension of RoSe to dvfs of higher transcendence degree over k was also
constructed in [33] (char 0) and [32] (char p > 0). The construction essentially coincides
with the extension from Theorem 5.2, but considering the log version, whereas here the
nonlog one is considered (compare Theorem 7.20).

6. Differential forms and irregularity of rank 1 connections

In this section we assume that the base field k& has characteristic 0. We fix a ring
homomorphism R — k which induces the structure of an R-scheme on any k-scheme.
(Of main interest are R =k or Z.)

6.1. Kaihler differentials
6.1. Set X € Sm. We denote by QB(/R the de Rham complex on X relative to R, and by
d: Q% p = Q;;ﬁ% the differential. We set Q2% := Q% ;. We have an exact sequence

QR@rOY ' — Q% — Q%5 — 0. (6.1.1)

We denote the Nisnevich sheaf on Sm given by X — H° (X Q8% ) R) by Q‘; p and set

0= Q‘;Z. By [26, Theorem A.6.2] and [27, Corollary 3.2.5], we have Q2?7 € RSCljs. Since
the action of finite correspondences on 2* is Qf-linear (a fortiori, it is Q%-linear), the
morphism a* : Q4(Y) — Q4(X), o € Cor(X,Y), induces via sequence (6.1.1) the structure

of a Nisnevich sheaf with transfers on Q‘}R, and we obtain Q‘}R € RSChxs.

Lemma 6.2. The differential d : QjR — Q%;l is a map in RSCryjs.
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Proof. We have to show that if o € Cor(X,Y) is a finite correspondence, X,Y € Sm,
then a*d = da* as maps Q?R(Y) — Q‘}R(X). Since the restriction QZR(X) — Q?R(U) is
injective for any dense open U C X (by [26, Theorem 6)), it suffices to verify the equality
after shrinking X arbitrarily around its generic points. In particular, we can assume that
X is connected and o = Z C X XY is a prime correspondence which is finite étale over
X (here we use char(k) =0). Denote by f:Z — X and g: Z — Y the maps induced by
projection. Then Z* = f,g*. The compatibility of d with g* is clear. Hence it remains to
show f.d = df, for a finite étale map f:Z — X between smooth schemes. In this case,
we have f*Q%/R = .07 R0 Q?(/R and f, =Try ®idQ?R, by [7, Proposition 2.2.23]. Thus
the compatibility we seek is shown as in [20, II, Proof of Proposition (2.2), case 2]. O

6.3. Set L € ®, with local parameter t € my C Op. We denote by QbL/R(log) the
differential graded algebra of logarithmic differentials — that is, the graded subalgebra
of QF  generated by g, and dlogt. In particular, Q%L/R(log) =0Op. For ¢ >0 and
ac Q%/R, we define

0 ifaecQd .
¢i(a) == ot

o min{n >1lac 7= ~Q%L/R(log)} otherwise.

Theorem 6.4. For all ¢ > 0, the collection ¢i® = {C%R} defined in Section 0.3 coincides
with the motivic conductor — that is (see Definition 4.1/),

q
cdR = cQ/R.

<g+1 . . .
(cdR) 18 a semicontinuous conductor.

Furthermore, the restriction
Proof. We start by showing that ¢I® is a semicontinuous conductor of level g+ 1.
Properties (cl) and (c2) from Definition 4.3 are obvious.

(c3). Let L'/L be a finite extension of a henselian dvf with ramification index e =
e(L'/L), and denote by f: Spec L' — Spec L the induced map. Set a € QqL//R. We have to
show

AR(f,q) < {Wl . (6.4.1)

e

We know that f, restricts to QéL’/R — Q%L/R, and by the well-known formula f, dlog =
dlogoNmy, /g, also to

fe: Q%L//R(log) — QqOL/R(log). (6.4.2)

Moreover, f, is continuous with respect to the mg-adic topology (which on Qf, /R is
the same as the mys,-adic topology). We may therefore replace Qf, /R and Qf /R by
the corresponding completed modules. Furthermore, it suffices to treat the two cases
separately in which L'/L is either totally ramified or unramified.

Case 1: e =1. In this case, a local parameter ¢t € Oy, is also a local parameter of O,
and hence formula (6.4.1) follows directly from expression (6.4.2) and the L-linearity

of f,.
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Case 2: e>1, L, L' complete and Or/mp, = O/ /mp.. Let K < Op, be a coeflicient
field; it also defines a coefficient field of O L/ Let 7 € Ops and t € Of, be local parameters.
Then we can identify L' = K((7)) and —= 'Q%L,/R(log) with the 7-adic completion of

7_"171~((K[T]®KQ(;</R) ( []legT®KQK/R)>

Furthermore, observe that %dlogT = f%d(%), i > 1. Since f, commutes with the
differential (by Lemma 6.2), we are reduced to showing

fo (&) € 72450L, r=[2], foralli€[l,n—1]. (6.4.3)
We compute for ¢ € [1,n—1]

my - df (%) =m7 - f. (—Z‘Tiiild’r)
C fo (m$ ™" tdr)

This implies formula (6.4.3), once we observe that in characteristic 0 we have m’ -da €
Q%QL/R if and only if m} ' -a € Or, for any a € L = K((t)).

(c4). For ¢+ it follows directly from the following facts, where A is a finite-type
smooth k-algebra:

) Q%/r= (k[t] O 9?4/3) ® (QA/R Y H/k)

(ii) for any nonzero a € Qf’q/R, there exists a prime ideal p C A with trdeg(k(p)/k) = ¢,
where k(p) = Ap/p, such that the image of v in QZ(p)/R is nonzero;

(iii) HO (P,le%,l/k(logoo)) =0, H' (P1,0p1) = k.

(Note that 6.1 is easy for R =k and follows in general from the natural map Q’; R Q(} )
For (c¢5) it suffices to observe that if a € H° (X,Qg(/R ®ox Ox (D)) for some proper

modulus pair (X, D), then c¢{®(a) < D.
Finally, (c6). Let U = Spec A be smooth affine and Z C U be a smooth divisor which
we can assume to be principal Z = Div(t). Let
1

a = 11+

= Ta2 dlogt, a; € Q4

as €Q4 L r>1.

AR A/R’

tr—

Let (?,7—1— Z) be a compactification of (U,Z) with ZU =7 and Y normal. Let Y = UV
be an open covering such that V; = SpecB;, ¥y, = Div(f;) and Zy, = Div(r;), with
Ti, i € B;. Note that Spec B;[1/f;] C U is open for all i. Hence, in B;[1/f;] we can write
t =T1;e;, with e; € (B;[1/f:])*. Let E; be the Cartier divisor on V; defined by e;. We have
|E;| C |S)v;|. By Lemma 6.5, there exists N1 > 0 such that vy (E;) < Nyvg (E)y,) for all
Spec L — U and all i. Furthermore, there exists an Ny > 0 such that fN2 ay € Q% /R and

2ag € or all . oose >1-Ni+ Na. Set p:SpecL — € ssume that
f QB/Rf 11 7. Ch N Ny+N>. S S L—U,Led. A h

https://doi.org/10.1017/51474748021000074 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000074

108 K. Riilling and S. Saito

the closed point of Spec O, maps into |7+ E| NV, for some i. Then
cr(pa) < (r—1Nvg (Z) + (r—1vp(E;) + Nav (8) + 1
< (T — 1)'UL (7) + (’I“ — 1)N17)L(E) +N27)L(E) +1
<vp(r-Z+N-%).

Hence chR(a) < (r-Z+ N-X), which proves (c6).
Thus ¢® is a semicontinuous conductor on Q?  and Theorem 4.15(3) yields, for n > 1,

fil,, == gmtr - QG s p(log) C Qfp (Or,my")

for any L € ® with local parameter ¢t € Op. It remains to show the other inclusion.
By Corollary 4.40 it suffices to show the following: let K — O be some coefficient
field and extend it in the canonical way to o : K(x) < Op,_, where z is a variable and

L, = Frac ((’)L [x]?t)) Assume a € fil, ;1. Then the following implication holds:

(a,1—2t")p, o =0 = acfil, (6.4.4)

where the local symbol on the left-hand side is the one from Section 4.37 for Q? R Since

the local symbol for Q‘; r 1s uniquely determined by (LS1)-(LS4), we see that it is given
by

(a,1—at")r, o = Resi(adlog(l —xt")),
where we use the isomorphism L, = K (x)((t)) defined by o to compute the residue symbol

on the right. To prove implication (6.4.4), it suffices to consider @ modulo fil,; we have

1 dt
a = tTO[‘FBW mOd ﬁlr,

—1 .
for a € Q‘}{/R, Be Q(IJ(/R. We compute in Q(IJ(($)/R

Res;(adlog(l —xt")) = —rza+ fdz.

This shows implication (6.4.4) and completes the proof. O

Lemma 6.5. Let X be a Noetherian integral normal scheme and E and F be two Cartier
divisors on X ; assume that F is effective. If |E| C |F|, then there exists N > 1 such that for
all maps SpecO — X whose image is not contained in |F|, with O a DVR with valuation
v, we have v(E) < N -v(F).

Proof. The question is local on X; hence we can assume FE and F' are given by functions
e,f € k(X)*. Let Div(e) and Div(f) be the associated Weil divisors. Since |E| C |F| and
F is effective, we find N > 1 such that Div(e) < N -Div(f), which by the normality of X
implies fV /e € I'(X,0Ox). This yields the statement. O
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Remark 6.6. The proof of Theorem 6.4 also shows that

0 if a € Q2

OL/R7
min{nZﬂaEt%qu

dR’
cp” (a)= :
OL/R otherwise,

defines a semicontinuous conductor on 99, but it coincides with the motivic one only for
q=0.

Corollary 6.7. Set ZQ;R = Ker (d : Q;R — Q?;1>, Then ZQ?R € RSCuyis, and its

- ZQ4 Q1 .
motivic conductor ¢ /R = (c /R) , restricts to a conductor of level q.

Proof. The formula for ¢Z%/# follows from Proposition 4.19. It remains to show that it has
level q. Set a € ZQ‘;R (A%) with ci&)(t)m (a) <1, for all points x € X with trdeg(k(x)/k) <

q— 1. This implies a € H° (X,k[t] Rk Qg(/R) ﬂZQ‘;R (Ak) (compare the proof of (c4) in

q <q
Theorem 6.4). Hence a € ZQ‘}R(X). This shows that (CZQ/R) satisfies (c4). O

Corollary 6.8.
(1) Let X = (X,D) € MCor be a proper modulus pair. Then

Qo (X) = H° (X1,0%, p(log D1)(D1 = D rea) )

where m: X1 — X is any resolution of singularities which is an isomorphism over

X\ D and such that Dy :=7*D is supported on a simple normal crossings divisor.

(See Notation 4.17 for the notation Q’}R.)

(2) Let h. (Q?R) be the mazimal A'-invariant subsheaf of QZR. Then for X € Sm,

P (9) (X) = HO (X.0% (108 D)),

where X is any smooth compactification of X with simple normal crossings divisor
D at co.

Proof. First note that S%(X) = (?'/I;(Xl,ﬂ'*D), where 7: X7 — X is any blowup with
centre in D, since (X,D) 2 (X1,7*D) in MCor. Let X = (X,D) be a proper modulus
pair with D,eq a simple normal crossings divisor. Write D = ZZ r;i-m; withm, € X 1) and
set Ly, := Frac (O;lfn) Then it is direct to check that we have c{®(p*a) < vr(D) for all
henselian dvf points p : Spec L — X if and only if c%i (a) < r; for all i. Thus the corollary
follows from Theorems 6.4 and 4.15(4) and Corollary 4.32. O

6.2. Rank 1 connections and irregularity

Lemma 6.9. The homomorphism dlog: O% — Qk/R, X € Sm induces a morphism dlog :
0* — Q}R in RSCris

https://doi.org/10.1017/51474748021000074 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000074

110 K. Riilling and S. Saito

Proof. The proof is similar to the one of Lemma 6.2, except that we have to replace the
formula f.d = df. by f.dlog=dlogNmy, x, where f:Z — X is a finite étale map between
smooth schemes. O

6.10. Denote by Conn'(X) the group of isomorphism classes of rank 1 connections on
X €Sm, and by Connl,,(X) the subgroup of integrable connections. We have canonical
group isomorphisms

Conn'(X) = H' (XZanO)X( - Qﬁ(/k) = H" (X’ (Q}k/d10g0§)Nis)
and

1
Conny,

(X) = H! (Xzano)x( e ZQﬁ(ﬂc) = H (X’ (ZQ}k/legOX>Nis) '

Indeed, the first isomorphism is well known (use the fact that the first Zariski cohomology
can be computed as Cech cohomology); we show the second as follows: let kX be the
algebraic closure of k in k(X); we consider it as a constant sheaf on X. We obtain the
isomorphism

0%/ (F) =5 0l ] = (2)y/dog0¥) [

in the derived category of abelian sheaves on Xz, and similarly with ZQ}k. Observe
that Q} . and O* are already Nisnevich sheaves, hence

(2)1/ diog O§)Zar — (9, dlog 0§)Nis.
Since H? (XZar,l;X) =0 for all i > 1, we obtain
' (XZM,O)X( - Qﬁ(/k) = H! (XZar,O)X(/ (FX)* = Qﬁg/k) ,

and similarly with Z Q} - Lhis yields the second isomorphism.
By Lemma 6.9 and [45, Theorem 0.1] we obtain

Conn', Conn!, € RSChis.

int
For F € Conn'(X) we denote by wg € H° (X, (Q}k/dlogox)
sponding to E under the isomorphism from before.

Set L € ® and let t € Oy, be a local parameter. Recall (for example, from [31, Definition.
1.12]) that the irregularity of E € Conn'(Spec L) = QlL/k/dlogLX is defined by

) the element corre-
Nis

irr, (E) = min{n >0|wg €Im (tin-Q}gL/k(log) — Qi/k/dlog[/x)}.

Theorem 6.11. Notations are as in Section 6.10. The motivic conductor of E €
Conn' (L) is given by

CCOnnl(E) _Jo if E extends to an Or-connection,
L irrp, (E)+1 otherwise.
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Moreover, on Conn the motivic conductor restricts to a level 2 conductor, and on Conn},,
it restricts to a level 1 conductor.
Proof. Set H! := (Q}k /dlogOX)N
define

Cand P = (ZQ}k/dlogOX>NiS. For a € HY(L) we

is

i (a) = min{chlR(é) |ae Q}:/k lift of a}
(see Section 6.3 for the definition of c®). It suffices to prove the identity
M= (6.11.1)
for the motivic conductor of H! and that (ci”)gz and (ci”)ﬁ{l.1 satisfy (c4). It follows
directly from Theorem 6.4 and Lemma 4.28 that ¢'™* satisfies (c1)—(c6), except maybe (c4)
and (c5). For (¢5), note that given X € Sm, we find by resolution of singularities a
compactification X = (X,XOO) with X € Sm. In particular, for all x € X the local ring

O%z is factorial, and hence so is any of its localisations. Therefore, it follows from the
exact sequence

HO (Y,Q;/k) S HUY) = Pic(Y),

for any integral scheme Y over k, that condition (4.28.1) from Lemma 4.28 is satisfied;
hence ¢ satisfies (¢5). Next we deal with (c4). Take a € H' (A%) with

Coteywy (@2) <1, for all z € X with trdeg(k(z)/k) <1, (6.11.2)

where a, is the restriction of a to k(z)(t)s. Using the Al-invariance of X — H* (X,0%),
consider the exact sequence

H (X,0%) <5 H° (AL, Q4 1) = H' (AX) = B! (X,05). (6.11.3)

Let m: ALY — X be the projection and i: X < AL a section. By sequence (6.11.3)

there exists an a € H° (A}OQ.%&;/k) mapping to a —7*i*a, and any such lift satisfies

. 1\ <2

formula (6.11.2) with ¢ replaced by ¢*/*. Thus a € H® (X,Qﬁg/k), by (c4) for (cg/k> ;
<1

hence (') =% Satisfies (c4). Similarly, we prove (c4) and (c5) for (ci")‘—%1 .

Hence ¢ is a semicontinuous conductor, and we obtain M < "', We now show
the other inequality. Set L € ® and let o : K < O, be a coeflicient field. Denote by
fil, € H*(L) the image of fil,, = W%IQ}QL/k(log). Take a € fil, 1. Similarly as in the proof
of Theorem 6.4 (around equation (6.4.4), and with the notation from there), it suffices to
show the implication

(a,1—xt")r, » =0in H (K (z)) = a € fil,.. (6.11.4)
Let a € fil, 11 be a lift of a; write
.1 dt
a= t—ra—l—ﬁﬁ mod fil,,
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with a € Q}(/k and € K. Then the left-hand side of equation (6.11.4) is equivalent to
Res;(adlog(1—xt")) =dlog f for some f € K(z)*.

Computing the residue symbol yields

—rra+ fde=dogf in Qi (/- (6.11.5)
We claim this can only happen if o = 8 = 0. Indeed, first observe that if h € K((z))*
is a formal Laurent series such that there exists a form v € Q}(/k with dlog(h) =
x-vy in @}(((w))/k, then v = 0 = dlog(h). Thus equation (6.11.5) implies that dlog(f -
exp(—pz)) =0 in Q}{((z))/k. Hence there exists an element A € kq, the algebraic closure
of k in K, such that

A-exp(Bz) = f € K(2)%,

which is only possible if 3 = 0; it follows a = 0. Thus a € fil,., which proves equation (6.11.4)
and completes the proof. O

Corollary 6.12. Set X € Sm. Then hY, (Connj,) (X) is the group of isomorphism

classes of reqular singular rank 1 connections on X (see Section /.30 for notation,).

Proof. Let E € Conn} ,(X). Then by definition (see [10, II, Definition 4.5]), E is regular
singular if and only if irr(p*E) = 0, for all henselian dvf points p : SpecL — X with

trdeg(L/k) =1. By Theorem 6.11 and Corollary 4.18, this is equivalent to cgonnil““ (p*a) <1
for all L. Thus the statement follows from Corollary 4.32. O

7. Witt vectors of finite length

In this section we assume that k is a perfect field of characteristic p > 0. Denote by W, the
ring scheme of p-typical Witt vectors of length n. We will denote by W,,Ox the (Zariski,
Nisnevich, étale) sheaf on X defined by W,,. The restriction of W,, to k-schemes — which,
by abuse of notation, we will again denote by W,, —is in particular a smooth commutative
group over k. Hence W,, € RSCy;s (see Section 5.1).

7.1. Let A be a ring. Recall that there is an isomorphism of groups

W, (A) = (1+TA[[T])*/ 11 (1—bsT%) |bs €Ay, (7.1.1)
s¢{1,p,...,p"—1}

n—1
(ao, R 7an—1) — H (1 — aiTp%) .
=0

Assume that A is normal and we have an inclusion of rings A < B making B a finite
A-module. Then B[[T]] is finite over the normal ring A[[T]], and hence the norm map
Nm : B[[T]]* — A[[T]]* induces a trace Tr: W,(B) — W,(A) (see, for example, [44,
Proposition A.9]).
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Now assume that f:Y — X is a finite and surjective k-morphism, where X is a normal
k-scheme. Then the local traces glue to give
Try: Wo(Y) = W, (X).
Lemma 7.2. In the foregoing situation, Try = f. : Wy (Y) = Wy (X), the map used to

define the transfer structure on the group scheme W,.

Proof. Set a € W,,(Y) and let d = deg(f). Recall that the element f,(a) is defined by the
composition

da
X = Symdy =% W,

It suffices to check that Try(a) and f.(a) coincide on a dense open subset. Thus we
can assume that X is affine integral and f:Y — X is finite free. Furthermore, W,, is a
direct factor of the scheme of big Witt vectors W,», and Tr and f, extend to the big
Witt vectors. Thus it suffices to show the equality on the big Witt vectors W,. for r > 1.
Let S, = Speck[t]/ (t"*') and denote by ¢ : S = Speck < S, the S-section. We have the
following isomorphism of S-group schemes (compare Section (7.1.1)):

W, = Ker (Ressr/s(Gm) = Gm)a

where Resg, /5(Gy,) denotes the Weil restriction. Denote by f; : Y, — X, the base change
of f along S, — S. Set b€ W,.(Y), which we can view as an element in Resg, /5(Gn)(Y).
Then the image of f,(b) in W,.(X) C Resg, /5(Gn,)(X) is equal to the S,-morphism
) d v _ d o
Jrs(b) : X = Sym% Y, = X, xx Sym% (V) —— G s, -

Now the statement follows from the fact that f. =Nm on G, (see [2, Exp. XVII, Ex
6.3.18)). O
7.3. Set L € . Denote by ﬁl;Oan(L), j >0, the Brylinski-Kato filtration [5, 30] — that
is,

A2V, (L) = {a e W (L) | [2]- F*Y(a) € Wn(Oy), all z € mg}

= {(ao,...,an,l) e W, (L) | p" ' "v(a;) > —j,all i},

where [z] denotes the Teichmiiller lift of  and F : W, (L) — W, (L) is the Frobenius,
which by contravariant functoriality is induced by the Frobenius of L (or by covariant
functoriality by the base change over Speck of the Frobenius on the Spec(F,)-ring scheme
W,,). We observe that for s >0 we have

Ve (ﬁlgogwn(L)) C A1, (L), (7.3.1)

where V is the Verschiebung on the Witt vectors. The nonlog version introduced by
Matsuda in [37, 3.1] is given (with the conventions from [35, 2.1]) by

i1, W (L) = A1, W, (L) + V" (ﬁlg"gWT(L)) L i>1
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where r = min{n,ord,(j)}. (This is equal to Matsuda’s fil; W, (L).) Assume r =
ord,(j) < m; then
>—j ifi#Fn—1-—r,

(ag,...,an—1) € fil;W, (L) "y (ay) { ] )
> —j otherwise.

This is the description given in [32, 4.7]. (There °fil;W, (L) denotes what we call
fil; Wy, (L).) We directly check that

F" (6L, W, (L) cmp? Qb (7.3.2)
where F" "1 d is the map
n_l n—1—1i
' d:Wo(L) = Qp, (a0, ,an-1) = »_al " 'da,. (7.3.3)
1=0

7.4. Set L € ®. The F-saturation of ﬁl;ngn(L) and fil; W, (L) is introduced in [32]:

s, (L) =3 F" (ﬁ1;°an(L)) . j>0, (7.4.1)
r>0
and
AW, (L) =Y F"(fl;W,(L)), j>1. (7.4.2)
r>0

Let x be the residue field of Of. Denote by x[F] the noncommutative polynomial ring
in the variable F' and with coefficients in x with relation Fa = a”F in k[F] for a € . By
[32, 4.7], there is an injective homomorphism for j > 1

; RS W, (L) o N[F <Q}9L (log) ®o, m;’ /mLﬂ'“)

- I3 — 1
15 W, (L) QY ®@o, mp? /mp7t

(7.4.3)

induced by (compare formula 7.3.2)

ZF’"(@T) — Z (Fr@F" 'da,).

r>0 r>0

For a € W, (L), we define the Brylinski-Kato-Matsuda—Russell conductor ~,,(a)
(compare [32, Theorem 8.7]) by

Y, 1.(@) 1= min {] >1|ac ﬁlan(L)} otherwise.

Note that fill'W,, (L) = W,,(Or). Thus 7, (a) =0 or > 2.
Proposition 7.5. The collection
Tn = {'Yn,L : Wn<L) —Np | Le (I)}

is a semicontinuous conductor on W,, as is its restriction y=".
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Proof. Set 7 :=,. Conditions (cl) and (c2) of Definition 4.3 are clear. For (c3), let
L'/L be a finite extension of henselian dvfs. Let e = ¢(L’/L) be the ramification index.
Set a € W, (L') and define r :=~y/(a). We have to show

Tr(a) € A1F W, (L), with s := H , (7.5.1)

where Tr = Trz/,;, (see Lemma 7.2). This is immediate if » = 0. Thus, we can assume
r>2 and write a =Y 5 F7 (a;), with a; € fil, W,,(L'). We have Tr(a;) € fill°8 W, (L).
Indeed, this follows from
[my]- F"7 1 (Tr (ay)) € Tr ([mis]- "7 (ay))
C Tr ([m%.]- F" ' (a;))
C Tr(W,(Orr)) C Wy (OL),

where for b € W, (L) we denote {mJL} b= {[z] blxe mJL} Hence

Tr(a) =Y F7(Tr(ay)) € ily® "W, (L).

By the injectivity of §, in formula (7.4.3), it suffices to show
m} - F"'dTr(a;) € Qp,, all j>0. (7.5.2)

By [44, Theorem 2.6], the trace Tr extends to a trace between the de Rham-Witt
complexes Tr: W,Q;, — W,8; which is compatible with the differential and Frobenius,
is W, Q; -linear and equals the classical trace on Kahler differentials for n = 1. We obtain

mj - F" " 'dTr(a) =mj - Tr (F" 'da)
Cmj-Tr (mz/r : Qéy) . a€fil,W, (L) (see formula (7.3.2),
< Tr (m53 - 0b,,)
CTr (%L) cab,.
This completes the proof for (c3).

Next we show that the restriction of v to ®<; satisfies (c4). Set X € Sm and a €
W (A}() with

Ve(@)(B)oo (Pr@) <1 (7.5.3)

for closed points « € X, where k(x)(t)o = Frac (O’f,y1 DO). We have to show a € W,,(X).

We may assume X = Spec A, and thus a € W,,(A[t]). If a is not constant, then we find
a closed point € X such that the image of a in W, (k(x)[t]) is not constant. Hence
() (t) oo & Wnl(Oka)t)o.) — that is, Y(ak(a)(#).. ) = 2, contradicting assumption (7.5.3).
(¢5). Set X € Sm and a € W,(X) = H*(X,W,Ox). Let X = (X,X) be a proper
modulus pair with X = X \ [X|. For an effective Cartier divisor £ on X, denote
by W,Ox(E) the invertible subsheaf of j*WnOy\l Bl corresponding to the image of
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[O<(E)] € H (Y, O%) in H, (Y, Wn(’)%) under the map induced by the Teichmiiller
lift. If e is an equation for E at # € X, then W,0x . (E)=W,0% - ﬁ There exists an
integer N such that a € H? (X,W,,Ox(N - X)).

Claim 7.5.1. (X,rX.) satisfies (c5) for any r >p"~'N.

Indeed, let p: SpecL — X be a henselian dvf point. Assume that the closed point
s € Sy, maps into X, and let f € O 5(s) be a local equation for X .. Let m =wvr(f). For

r>p" LN, we find [m}" '] F"1(a) € W, (OL); hence (see Section 7.3)

a€fil® W, (L) Cfil Wi (L) C 81F W, (L);

rm—1"'"""n

that is, vr(p*a) <rm =vL(r- X ), proving Claim 7.5.1.

Finally we deal with (c6). Set X € Sm and let Z C X be a smooth prime divisor
with generic point z. Let K = Frac (O% ). Set a € W, (X \ Z). Assume ax € ﬁlan(K),
j > 2. Then there exists an affine Nisnevich neighbourhood U = Spec A — X of z such
that Zy =div(t) on U and ay =) o F*(as+ V" "(bs)), where r = min {ord,(j),n} and
as € Wy (A[1/1]), bs € W,.(A[1/1]), with

[t~ Frl(a,) € Wo(A),  [t)-F"=Y(bs) € W,(A). (7.5.4)

Let (Y,Z +X) be a compactification of (U,Z) with Z|;; = Z and Y normal. Let Y = UV;
be an open covering such that V; = SpecB;, ¥y, = Div(f;) and Z}y, = Div(7;), with
i, fi € B;. Note that Spec B;[1/f;] C U is open for all i. Hence, in B;[1/f;] we can write
t = 7ye;, with e; € (B;[1/f:])*. Let E; be the Cartier divisor on V; defined by e;. We
have |E;| C |Xy,|. By Lemma 6.5, there exists N1 > 0 such that N1 je; € B; for all i. By
formula (7.5.4), there exists an Ny > 0 such that for all ¢ and all s,

LIV P a) € Wa(Ba),  [fM2[H1 - F77 1 (bs) € Wi (By).
Choose N > j- Nj + N3 such that p™ | N. We obtain for all 4
LV AN F ) € Wa(Bi), Bl LAY - FTTH(bs) € Wi(B)).

Set p:SpecL — U, L € . Assume that the closed point of Spec @ maps into |Z+E|.
Then it follows that

* log _ W
pas < ﬁle((j—1)~7+(N—1)~E) Wn(K) C ﬁle (j~Z+N-E) n(K)
and
* log
P €A ey W),

By the choice of N we have
ro :=min{ord, (vy (j- Z4+N-X)),n} >r =min{ord,(j),n};
hence

Vn—r(p*bs) cynTro ﬁllog

w7y WroUK) AL (57 sy W ().
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Running over all p: SpecL — U yields
vy (a) <j-Z+N-X.

This proves (c6) and completes the proof of the proposition. O

Proposition 7.5 gives ¢"» < 4, by Corollary 4.24. We show later in Theorem 7.20
that equality holds using symbol computations. If we restrict to trdeg(L/k) =1 and k
is infinite, this follows, for example, from [32, Proposition 6.4, (3)]. To handle the case
of higher transcendence degree, we need some preparations. We start by identifying the
local symbol for W,, on regular projective curves over function fields.

7.6. Set X € Sm. We denote by W, Q% the de Rham-Witt complex of length n on X
[22]. By [27, Corollary 3.2.5] we have W,2? € RSCxy;s. See also [15] and [7] for details
on how to define the transfer structure. If f: X — Y is a morphism in Sm, then the
morphism

F= 11 WRQUY) —» WLQ0(X)
induced by its graph I'y € Cor(X,Y’) is the natural pullback morphism induced by the
functoriality of the de Rham-Witt complex. If f is finite and surjective, then the transpose

of the graph defines an element I‘} € Cor(Y,X) and I‘}* = f«, where f, is the push-forward
defined using duality theory.

Lemma 7.7.

(1) The restriction, Verschiebung, Frobenius and differential (which are part of the
structure of the de Rham—Witt complex) define morphisms in RSCuis:

R:Wp1 Q0 5 W, 00, VW00 — W10,

F W, 109 — W,Q4, d:W,Q4 — W, Qitt.

(2) Let W,, be the algebraic group of Witt vectors of length n considered as a presheaf

on Sm. Then there is a unique structure of presheaf with transfers on W, for all

n, which is unique with the following properties:

(a) the restriction R:W,11 — W, is compatible with the transfer structure for all
n;

(b) if f: X =Y is a morphism in Sm with graph I'y € Cor(X,Y), then I'} :
Wo(Y) = W, (X) is the pullback from the presheaf structure.

In particular, the Nisnevich sheaf with transfers W,,Q0 = W,,O from Section 7.6

coincides with the Nisnevich sheaf with transfers defined by the algebraic group W,

[27, Corollary 3.2.5].

Proof. (1). We have to show that if o € Cor(X,Y) is a finite correspondence, then the
following morphisms are equal on H (Y, W,,Q%):

a*R = Ra”™, o'V =Va¥, o' F = Fa*, o*d = da*.
This follows from [7, Proof of Proposition 3.5.4].
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(2). The existence of such a transfer structure follows, for example, from Section 7.6.
The last part of the statement follows because the two transfer structures satisfy (2a)
and (2b).

It remains to prove the uniqueness. Assume we have two transfer actions on W,
with (2a) and (2b). For a finite correspondence o € Cor(X,Y), denote by a*,a* :
Wo(Y) = W, (X) the two actions. We have to show that they are equal. Let f: X =Y be
a morphism. By assumption, we have I' = F* : f*;if f is finite and and surjective, we

set fi = (F}) and fy = (F;) . In general, for o as before, we want to show a* = a*.

It suffices to check this after shrinking X around its generic points. Hence, we can assume
that X is connected and a = Z C X xY with Z smooth, integral and finite free over X.
Denote by f:Z — X and g: Z — Y the maps induced by the projections. Then a* = fy4 g*
and o* = f.¢*. It remains to show fy = f.. We may shrink X further and hence assume
that f: Z =SpecL — X = SpecK is induced by a finite field extension L/K of function
fields over k. By transitivity, it suffices to consider the two cases where L/K is either
separable or purely inseparable of degree p.

Case 1: L/K separable. Let K'/K be a Galois hull of L/K and set X’ = Spec K’. We
obtain the cartesian diagram

I, x 1% 7

.

X —" X,

where the vertical map on the left is induced by the universal property of the coproduct
from the identity on X’ u is induced by the inclusion K < K’ and the o; : X' — Z,
i=1,...,n, are induced by all the K-embeddings L «— K'. For a € W, (L) we obtain

U f*a— F ZF

and similarly with u* fx. Thus u* f, = u* f, and since u* : W,,(K) — W,,(K’) is injective,
we have proven the claim in this case.
Case 2: L/K purely inseparable of degree p. In this case we have

fef (2) =LKl (=) =p- (=) = faf* (=) on Wy(X). (7.7.1)
Let p: W, = Wy,y1 be the map lift-and-multiply-by-p; thus it Sends a Witt vector
(ag,---,an_1) in W, (A), where A is some F,-algebra, to (0,af,.. 1)- Set b€ W, (L).

Clearly we find an element a € W, 1(K) such that f*a = p(b). We obtam

Q(L) ) equation (7.7.1)

p(feb) =" fip(b) = fu(f7a

The same computation works for fyb. Thus p(f.b) = p(fxb), and the claim follows from
the injectivity of p. O

p-a=pR(a).
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Lemma 7.8. Let f:Y — X be a finite and surjective morphism in Sm. Then for all
ue HO (Y,O;) and all n > 1 we have

[« dloglu] = dlog[Nmy/ x (u)] in H° (X,Wnﬁk),
where Nmyx : f.Oy — O% is the usual norm.

Proof. Note that f is flat by [38, Theorem 23.1], hence also finite locally free, so that
Nmy,x is defined. It suffices to prove the equality after shrinking X around its generic
points. Thus we can assume that f corresponds to a finite field extension L/K. By
transitivity, it suffices to consider the cases where L/K is separable or purely inseparable
of degree p.

Case 1: L/K finite separable. We have W, Q] =W, (L) ®w, (k) WaQ% [22, I, Propo-
sition 1.14]. By the projection formula and Lemma 7.7(2), we have f. = Try /g ®id. Let
K*°P be a separable closure of K. Note that W, (K) — W,,(K*°P) is faithfully flat (since it
is ind-étale and SpecW,,(K) is one point). Hence by étale base change and fppf descent,
the natural map W,Q} — W,,QL.., is injective. Thus it suffices to check the equality in
WnQkeep. Let 01,...,0, : L < K*P be all K-embeddings; then by the foregoing we have
in WnQ}(Sep

f«dloglu] = Zai (dlog[u]) = dlog lH g (U)l = dlog[Nmy, /5 (u)].

Case 2: L/ K purely inseparable of degree p. We have Nmy,/x(u) = uP € K. Since the map
lift-and-multiply-by-p, p: W, Q% — W, 1QL | is injective by [22, I, Proposition 3.4] and

commutes with f,, the statement follows from the following equality in W,,;1Q%:

p(fedloglul,) = fedloglu?],p1 = fu(1) - dlog[u’],41 = pdlog[Nmp g (u)]n.
This completes the proof of the lemma. O

7.9. Let A be a ring of characteristic p and set B := A[[t]] [+]. Recall from [29, §2.2,
Proposition 3] and [43, Proposition 2.12] that there is a residue map

Res; : W,,Q5 — Wnﬁz_l, (7.9.1)

which is W, Q% -linear (where we consider the left-module structures), commutes with R,

F, V, and d, is zero on Wy{¥ ., and satisfies the equality Rest(adlog[t]) = a(0), for
a€ Wan‘[[t”.

Let K be a function field over k and C be a regular projective connected curve over K

with function field E = K(C'). Recall from [44, Definition-Proposition 1] that the residue
map

Resc/k,z : Wallp — WnQ}_l

at a closed point x € C' is defined as follows: by a result of Hiibl and Kunz we find an
integer mg > 0 such that for all m > my, the curve C,, := Spec (Oc NK (Epm)) is smooth
over K and, if z,, denotes the image of x under the finite homeomorphism C — C,,
then the residue field K,, := K(z,,) is separable over K. Hence (’)gmmm has a unique
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coefficient field containing K, which we identify with K,,. Set E,, := K(Cy,,) = K (Epm).
The choice of a local parameter ¢t € O¢,, 4,, yields a canonical inclusion E,, — K,,((t)).
We define Resc i, as the composition

E/Em formula (7.9.1) Tre,, /K

Tr
WSy —2% Wl = Wale, () W, Q% Wit

(Here we should observe that if 7 : Spec L — Spec K is a finite extension, then the trace
Try k- W] — W, QY from [43, Theorem 2.6] is equal to the push-forward =, from
Section 7.6. Indeed, in the case ¢ = 0 this follows from Lemmas 7.7(2) and 7.2; by
transitivity, the general case is reduced to a simple extension L = K[a], in which case
it follows from the facts that both maps commute with V', F'| d and satisfy a projection
formula, and from the equality [a]'~'d[a] =iy ' F¢d[a]%, where i = p®iy > 1 with (ig,p) = 1.)

Remark 7.10. In [43, 2.] and [44], where the trace and the residue symbol mentioned
earlier are constructed, it is always assumed that the characteristic is not 2. The reason
for this that the structure theorem by Hesselholt and Madsen on which those sources
rely was only known for Z,)-algebras, with p odd, at that time. This theorem is used in
a proposition and a lemma from those sources which are needed to define the trace and
the formal residue symbol, respectively. However, the Hesselholt—-Madsen theorem is also
available for Z,)-algebras by [9, 4.2], hence all the results from [44, 43] extend to the case
p=2.

Lemma 7.11. Let C/K and x € C be as in Section 7.9. Then the corresponding local
symbol of W,Q1 (see Section 4.3/) is given by

(a,f)c K, = Rescyk o (a-dlog[f]), aec Wan{(C), fe K,

where [f] = (£,0,...,0) € W, (K(C)).

In particular, if L € & with coefficient field o : K — Op and local parameter t € Op,
then the local symbol (—,—)r,o : W, Qf x L* — W,Q% (see Section /.37) is given by the
composition

WHQ% % L 6Adlogo[—]o& Wnﬁgj&t)) Res; Wan(,
where we denote by & : L — K((t)) the canonical inclusion.
Proof. We have to show that the family of maps {Res¢k »(—-dlog[—])}, with x running
through all the closed points of C satisfies properties (LS1)—(L.S4) from Section 4.34. (LS1)
(linearity) is clear, and since we can choose the modulus D for (LS3) as large as we want,

this condition too is clear, from Lemma 7.13. (LS4) (the reciprocity law) holds by [44,
Theorem 2] (see also Remark 7.10). It remains to show (LS2) — that is,

Resc) o (adlog(f)) = v2(f) Trge o)/ (), 0 € WRQE .

To this end, choose m as in Section 7.9. Then K(z)/K(z,,) is purely inseparable of
degree, say, p°, and we can write

[E: E,]=p"",
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where p® is the ramification index of x/x,,. Denote by p*: W, Q¢ — W, Q7 the map
lift-and-multiply-by-p®; it is injective, by [22, I, Proposition 3.4]. Denote by o : K,
K(xm) = Of < Of , the inclusion of the coefficient field. By [44, Theorem 2.6(iii)],

msT

there exists a § € W, Q% mapping to p*a(z) € Wnﬂﬂg((m) and we have
TI“K(E)/KM(O[(,T)) :Rs(ﬁ). (7.11.1)
By the choice of 3, we have
p(a) — o(B) € Ker (Wnﬂggg’x = WWQ';((%)) . (7.11.2)
Since the kernel is the differential graded ideal generated by W, . s(m,), we obtain in
‘/Vn+sQ
p° Rescy ko (adlog[f]) = Resc i o (p° (dlog[f]))
= Resc/k,»(0(8)dlog[f]), formula (7.11.2),
=Resc,, /k,2,, (Tre/E,, (0(B)dlog[f]))), defn.,
=Res¢,, /K2, (BdlogNmpg, g [f]), Section 7.8,
=z, (Nmg,g, (f))) - Trg, /x(B), defn.,

=[K(2): K(zn)] va(f) Trk,, /5 (B)
=v2(f) p" Tr,,. x (R°(B))
=v2(f)-P° Trg (2 (()), equation (7.11.1).

Here the first equality follows from the fact that Resc/k,, commutes with the restriction
R. (This follows from the definition and the fact that Res; from formula (7.9.1) and Tr
commute with R; for the latter, see, for example, Lemma 7.7(1).) The statement follows
from the injectivity of p°. O

7.12. Let A be a Z,)-algebra. For an A-algebra B we denote by WanB/A the relative
de Rham-Witt complex of Langer and Zink [36]. It is equipped with R, F, V, d as usual.
If B[z] is the polynomial ring with coefficients in B, we denote by I, C W"Q;B’[m] /A the
differential graded ideal generated by W, (z"Blz]). We define the x-adic completion of
W”Q;B[z]/A to be

Wl ((oy /4 = M Wappg) 4/ 1
Note that W, Q;B[w /A/I =W, QEB[:E]/(IT))/ (see [14, Lemma 2.4]). In particular,

W, Q Bl 4 is @ Wa(Bl[[2]]) = lim W, w(Blx]/(z"))-module.

Lemma 7.13. The following equality holds in W, Q}

Zi [[2])/Zp)
n—1
—dlog[l —a] = [a)'d[z]+ > Y LaVv*([z]).
i>0 s=1 (j,p)=1
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Proof. We prove this by induction over n. The case where n =1 is clear. Assume n > 2.
By [36, Corollary 2.13] we find unique elements a; € W, (Z(p)) and b, ; € Wi, (Z(p))
such that

—dlog[l —2] = a;[]’ x}—i—z_: > AV (b))

i>0 s=1 (j,p)=1

Applying F"~", we obtain in Q% 0

—dlog(1—1x) Zxkdx

k>0
0 W) S P B
i>0 s=1(j,p)=

By the induction hypothesis, we have (for all 4, j, and for s=1,...,n—2)
ai=1+V"" ey,  byy=++V" TN (),
with e;, fs j € Z,). Comparing coefficients, we obtain in Z )
1=F"Ya) =1+p" e,
and for s=1,...,n—2,
L pr=s=1(p, ;) = 7+pn s=lf

hence e; = fs ; = 0. Further, we find b,,_1; =1/j € W) (Z(p)). O

7.14. Let K be a field and Res; : WnSj () = WnQ*Kf(%t)) be the residue map (7.9.1).
Then for all r,s >0, 4,j €Z, a € W,_.(K) and be W, _s(K), the following equality holds
in Wy, (K):
Res; (V" ([a][t]") aV* ([b][t])’)) =
sen()ged(i.g) V7 ([l Bl 7) it p +ip* =0,
0 otherwise,

where sgn(j) :=j/|j| if j #0, and sgn(0) := 0 and ¢ = min{r,s} [43, Proposition 2.12].

Lemma 7.15. Set L € ® and let 0: K < Of, be a coefficient field. Let t € Op be a local
parameter, and set c € K.

(1) Let r > 1 and write r = p°rq, with (ro,p) =1, € > 0. Then
({71 =t"c)p,o = —1o VE([e]), in Wesr(K).

(2) Let r > 1 with (r,p) =1 and m = p“myg, with (me,p) =1, u>1. Assume r > my.
Then for alln > 1,

(7™ 1=t"¢)r,o =0, in W,(K).
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Proof. (1). By Lemmas 7.11 and 7.13, we have
([t]7"™,1—t"¢)r,o =Res([t] " dlog[ —t"c])

:—ZReSt J [t o d [t ])

i>0
72 > IRes, ([t]0d V([ [tP7)).
s=1(j,p)=1
Now the claim follows from Section 7.14. The proof of (2) is similar. O

Lemma 7.16. Set L € ® and lett € O, be a local parameter. Let K — Oy, be a coefficient
field. Then for r > 1, any element a € i1:°5W,, (L) /W, (O1) can be written uniquely as

a= > +Z SV (b)),

0>74'pn—12 r s= 10>Jpn 1—s> —_r

(4,p)=1
where a; € W, (K) and b, j € W, _s(K).
Proof. We can assume L is complete, and hence we have L = K((t)). By [21, Lemma

4.1.1] (see also [43, Lemma 2.9]), we can write any element a in W, (K ((t)))/W,(K][[t])
uniquely in the form

o= Y ald + X YV (bu).

0>i s=1 0>j
(J,p)=1

with a; € W,,(K) and b, j € W,,_s(K). Now, a € ill°6W,,(L)/W,,(Oy) is equivalent to the
following equality in W, (K((t)))/ W, (K][[t]):

0= P = P a4 S SV )

0>4 s=1 0>j
(4,p)=1

This yields the statement. O

Corollary 7.17. Let r = p®rg > 1 with ¢ > 0 and (ro,p) = 1. Let L € ® have local
parameter t € Op and let 0 : K < Op be a coefficient field. Set gri°eW, (L) :=
fill8 W, (L) /fill°8, W, (L), n> 1.

(1) Assume e € [0,n—1]. Then there is a group isomorphism
Wer1(K) = gri8Wo (L), b V' 74(b[t] ™) mod f1,%%, W, (L).

(2) Assume e >n. Then there is a group isomorphism

~

W, (K) = grl°ew,, (L), b b[t] 7P

—n+1

"0 mod fill%, W, (L).
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Proof. This follows directly from Lemma 7.16. O

Corollary 7.18. Let r =p®ro > 1 withe >0 and (ro,p) = 1. Let L € ® have local parameter
teOyp andlet o: K — Oy, be a coefficient field. Set gr, W, (L) :=fil, W,,(L)/fil,_1W,,(L),
n>1.

(1) Assume e =0. Write r —1 = p°ry with eg >0 and (r1,p) =1. Then gr,W, (L) =0
if e1 > n, and if ey € [0,n—1], then there is a group isomorphism
K S gr, Wo(L), b V" 17 ([0t7"1]) mod fil,_, W, (L).
(2) Assume e € [1,n—1]. Then there is a group isomorphism

KaW.(K) = gr,W,(L),

(b,c) s V! (bt—<"—1>) + V" (c[t]7™P) mod fil,_1 Wy, (L).
(3) Assume e >mn. Then there is a group isomorphism

e—n+

(b,c) s V1 (bt*(’"*l)) et T mod fil,_ Wi (L).

Proof. Define ¢/ := min{e,n} and recall
A1, W, (L) = 618, W, (L) + V"¢ f1°¢W,, (L).

Thus (2) and (3) follow directly from Lemma 7.16. (For the injectivity in (2), we use
the fact that V"~ ¢(c[t]"P) = V"¢~ 1(V(c)[t]~"°).) Furthermore, it is immediate from
Lemma 7.16 that there is an injective map as in (1) and that any element in the target
has a representative of the form V"~'~¢(3[t]~"1) with 3 € W,, (K). Thus the statement
follows if we show V"1~ (V(3)[t]~"™) € fil,_; W, (L). But by Lemma 7.16 the element
VrTIme (V(B)[E] ) = VIO (B [t] 7P lies in VPO AL, W, (L) C fil,_ W, (L). Hence
the statement. O

Proposition 7.19. Let L € ® have residue field kK, and local parameter t € Op,. Let
21y.-y2m C O be a lift of some p-basis of k/k. Let o : Ko < O, be the unique coefficient
field with z; € Ko, i=1,...,m. Let x be an indeterminate and set L, := Frac ((’)L[x]?t))
Denote also by oo : Ko(x) — L, the canonical extension of og. Let r > 1 and set a €
ﬁlan(L). Assume one of the following:

(1) (mp)=1orr=p=2 orm=0, and (a,l—xtr_l) =0

Ly,00
(2) r>2,plr,m>1 and (a,l —xtr_l) =0, for 7 =0,1, where o1 : K1 — O is the

LI,O']‘

unique coefficient field with z;/ (1+zfet) € K for all i, with e = ordy(r), and we

denote also by o1 : K1(z) < OL, the canonical extension.

Then a € il W, (L).
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Proof. Since k is perfect, a p-basis over k is the same as a separating transcendence basis
over k (see, for example, [18, Théoréme 0.21.4.5]), hence there are unique coefficient fields
Ky and K as in the statement [4, IX, §3, No. 2]. By Proposition 7.5 and Corollary 4.24,
we know ﬁlflen(L) c W, ((’)L,mgrﬂ); furthermore, for all b€ W, ((’)L,mZ”l) we have
(b, 1— xt’“‘l)LmU =0 for all coefficient fields o (by Corollary 4.40). Thus in the following

we may replace a by a+b with b e filY | W, (L). We will use oq to identify L = Ko((t)).
Write r = p®rg with e > 0 and (rg,p) = 1. We distinguish four cases.
Case 1: e =0. Write r — 1 = p®1ry with (r1,p) =1 and e; > 0. By Corollary 7.18(1) we
have gr, W, (L) =0 if e; > n, and there is nothing to show; if e; € [0,n — 1], we have

a= Z Fhvr=t=er([p,][t] ™) mod filX_, W, (L),
h>0

with by, € Ko. We compute in W, (Ko(x))

0:<ZFh(V"—1—6l<[bhnt]“))J—xt”) . by (1),
h

Ly,00

= z:FhV"_l_e1 ([bh] ([ —mtr_l)LIVUO), by Lemma 7.11,
h

=-" ZFh Ve (b Ve ([])), by Lemma 7.15(1),
h

o ().
h

Hence b, =0 for all A > 0, which completes the proof of the first case.
Case 2: r =p=2. By Corollary 7.18(2) and (3) we have

a=>» F"V" ! (bt +cut™2) mod W, (OL),
h

with by,c, € Ky. Note that
Res; (t"dlog(1 —zt)) =z, Res; (t"2dlog(1 —xt)) = 2%
Hence by (1),

0= (a,1 —xt)p, 5o =V"! (Zbih:ﬁh —&-cihszl) .
h

‘We obtain
bo=0 and chzbiﬂ, all h > 0.

Thus reshuffling the sum defining a, we obtain

a=Y F'V'" (bpt '+ F (bt ™)) =2 F"V* (bt ) =0.
h h
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Case 3:1<e<n—1 and r > 2. By Corollary 7.18(2) we have

a=Y F" (V"—1 (bh [t]—<’"—1>) LV [t]—mp)) mod filf_, W, (L),
h>0

where by, € Ky and ¢, € W.(Kp). By a similar computation as in the first case, the
vanishing (a,l—xt”"_l)L 5o = 0 together with 7 —1>7¢ and Lemma 7.15(1) and (2)
imply by, = 0, for all A > 0. Thus

a= Z FM (V"=¢(ep[t]7"°P)) mod fil}_, W, (L).
h>0

It suffices to show
cyp € FW.(Kyp), all h>0. (7.19.1)

Indeed, then V"™~ ¢(¢y[t]"0P) = FV™ ¢ (c},[t] ™), for some ¢}, € W.(Kj), which lies in
Fﬁll:)/iWn(L) C Ffill°%, W, (L) (use r > 3 for the last inclusion).

If m = trdeg(x/k) =0, then Ky is perfect and formula (7.19.1) holds. This completes
the proof of the implication: (1) = a € fil,_; W,,Oy.

Now assume m > 1. We prove formula (7.19.1) by contradiction using (a,l — xtr’l) Loy
=0 with 01 : K1(x) — O, as in (2). Thus, assume that not all ¢, are in FW,(Kj). Let
ho be the minimal h with ¢;, € FW,(Kj). Hence, modulo ﬁlf_lVVn(L), we can write a as
FMo(Vr=¢(a')), with o' = > h>ho Fh=ho(cp,[t=m0P]). Since F : W, (K;(x)) = W, (K;(z))
and V"¢ W, (K;(z)) = W, (K;(z)), j = 0,1, are injective, the element a’ also satisfies
(a’,lfftrfl)Lm,gj =0, j =0,1. Thus we can assume n = e and hg = 0 — that is, ¢o &
FW,.(Ky) — and we want to find a contradiction. Since the elements z1,...,2,, € Ky from
the statement form a p-basis, we can write cg as

e—1
co=>» VI > a P,
=0 IC[0,p—1]™

where a; ; € Ko and [2]f = [21]% -+ [2,]", for T = (i1,...,iy,). Therefore, co & FW.(Ko)
translates into

dj€[0,e—1],I€[0,p—1]"\{(0,...,0)} such that ay;#0. (7.19.2)

Since we want to compute the local symbol with respect to the coefficient field oy :
Ky(z) — Op,, we have to rewrite ¢g as an element in W, (K1[[t]]). Define

2 .
Yi Ky, +1=1,...,m.

.:7‘56
120t

Then

cozez_:lvj Z lar, ;1" [y(l—i—zpﬁt)]l ,

IC[o,p—1]™
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where [y (1+zpﬁt)]l =11, {yh <1+zﬁet)] ". Note that ar,j,zn € Ko C K1[[t] are not
constant. The composition F*~'d : W,(—) — Q' is a morphism of reciprocity sheaves
(see Lemma 7.7). Hence F*~!d commutes with the local symbol, which on Q' is given
by (e, f)r.,00 = Resg, () (e Adlog f) (see Lemma 7.11). Using F*~"dF =0 on W, we
obtain the following equah‘meb in QL K1 (2)°

0=Fld(al-at""),

= (Fe_l d(CO [t] _Top)7 1- "I;tr—l)Lm,Ul

:Z_:Z (F 1- ﬂd(am]” {y(1+zpet>}l[t}r°pj+l) ,1xt”)LM
Rs S Res; (a’;j el ]d({y(H—z”et”I)dlog(l—xtr1)).

=0 1T

Q

Write
arj=ar,;+tbr;, ar,; € Kq,br; € Kq[[t]].
Denote by
5, K; =k, j=01,

the isomorphisms induced by o, : K; — Op. Then &1 (as ;) = o (ar,;); in particular,

ar,j :0<:>dj,j =0. (7.19.3)

For j € [0,e — 1], we have afej_] = d]I”Ej_J mod ¢2, and thus we obtain from the previous
computation
e—1

0=-3 3 Res, (a{jjt_’"Fe_l_j d ( [y (1+27°t)] I) d (xt’“—l)) S (7.19.4)

j=01IcC[0,p—1]™

We have
re i afy (1°0)] T _ zm:ih (u(1 +Zpet))“’€_1_j dlog (y (1+2471)). (7195)
h=1
Note that

zn = yn +tCp, ChEKl[[tH,h:L...,m

Thus, zﬁe = yﬁe mod ¢, Hence the coefficient of F~' 7 d [y (1—|—z7"etﬂl in K; in front
of dt is equal to
e—1—j

, with gr = inyn; (7.19.6)
h=1

fri=aj y"
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the coefficient of F¢~1774 ly (1 —|—zpet)} "in Qf, in front of ¢ is equal to dfy ;. (This is 0
if j € [0,e —2].) Thus by equation (7.19.4) we have

e—1 e—1
_pe—i =TI
0= (@) oo ) = (S5
j=0 I j=0 I
Hence the element in the brackets has to be a pth power — that is, by definition (7.19.6),
e—1—j
o2 i\ P ! J 1\ P
J e
K3 Y (asd) ) e Y (wend ) e
j=0 \IC[0,p—1]™ 1C0,p—1]m
170
Note that
qr=0<=1=0.
Since y1,...,Ym and z form a p-basis of K;(x) over k, we obtain
dI,eflzoa for aHIC[ 7p_” \{( >}
and
e—1—j
_ i\ P e—2—j
S5 faar)” w0
J=01C[0,p—1]"
Since y1,...,Ym € K; form a p-basis over k, we obtain, similarly as before, a7 .—2 =0 for

all I # 0. We may proceed in this way and obtain
ar; =0, forall I#0,j>0.

By formula (7.19.3), this contradicts formula (7.19.2) and proves the statement in this
case.
Case 4: ¢ >n and r > 2. By Corollary 7.18(3), we have

a=S F" (ch [t " o oyt (bh [t]‘“"”)) mod 1Y, W, (L),
h>0
where ¢, € W, (Ky) and b, € K. As before, it follows from (a,l fxtr’l)L/ oo = 0 and
Lemma 7.15 that b, =0 for all A > 0. Thus 7
a= ZFh (ch[t]_pk"HTO) mod fil¥ | W, (L).
h>0
Applying Ve " we obtain
Ve a) =Y T FMV (ch[t]770P) mod Al Wi (L),
h>0

where ¢}, = V¢ "(cp) € We(Kp). Since Ve " (a) € fil,W.11(L), we can apply the
third case, in particular formula (7.19.1), to conclude ¢, € FW, (Kj), and then also
a€ ﬁlfﬁlwn(L). This completes the proof of the proposition. O
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Theorem 7.20. Set L€ ® and r > 0. Then
R1I5W,, (L) = W, (Op,m™);
that is, the Brylinski—Kato-Matsuda—Russell conductor is motivic.

Proof. We have fil” W,, (L) C W,,(Or,m™"), by Proposition 7.5 and Theorem 4.15(4), and
we know this is an equality for 7 =0. Let t € O, be a local parameter. By Corollary 4.40,
we have

a€ Wn(OL,m_T) = (a,1—at™)r, =0, forall m>r and all o,

where L, = Frac (OL[SCV&)) and o runs through all coefficient fields o : K — Of.

Furthermore, we know that for any a € WH(OL,m’T) there exists some m > r such that
a € filX W, (L). Hence the statement follows from Proposition 7.19. O
8. Lisse sheaves of rank 1 and the Artin conductor

In this section k is a perfect field of characteristic p > 0.

8.1. The case of finite monodromy

8.1. Consider the constant presheaf with transfers Q/Z — that is, an elementary corre-
spondence V € Cor(X,Y), with X,Y smooth and connected, that acts by multiplication
with [V : X]. By [39, Lemma 6.23],

X = HY(X) := H}(X,Q/Z) = Homeon (m1(X)**,Q/Z)
is a presheaf with transfers, which we denote by H! in the following.
Note that H! € NST, as follows from the following lemma:

Lemma 8.2. Let A be an abelian group. It defines a constant étale sheaf on Sm. Then
the presheaf X — H}, (X, A) is a Nisnevich sheaf on Sm.

Proof. Let H* be the Nisnevich sheafification of X — H{ (X,A). Then for any X € Sm,
we have an exact sequence

Hlilis (Xvﬂo) - Hgt(XaA) - HI(\)Iis (XalHl) — Hl%is (XvHO) .

But H° = A is constant, and hence by [49, Theorem 3.1.12] we have Hi, (X,H°) =
Hj, (X, H%) =0 for all i > 1. Thus the presheaf from the statement is equal to H'. O

Zar
Lemma 8.3. The Artin—-Schreier—Witt sequence

0= Z/p"Z — Wn =5 W, =0 (8.3.1)

is an exract sequence of étale sheaves with transfers on Sm, where F : W, — W,, is the
base change over Speck of the Frobenius on the Fp-group scheme W,.
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Proof. The exactness of sequence (8.3.1) on Xy is classical. The map F—1:W,, — W, is
a morphism of k-group schemes, and hence is compatible with transfers; for the inclusion
Z/p"“Z — W,, this follows directly from Lemma 7.2. O

8.4. We denote by §,, the composition
S Wa(L) = Wy (L)/(F =)Wy (L) = Hi (L,Z/p"Z) := H (L),

which is the connecting homomorphism stemming from the Artin—Schreier—Witt
sequence (8.3.1). Then we set

il HY (L) =6, (B, W, (L)) = 6, (ﬁlf Wn(L)) .

For j > 0, we set

T Hl Hl L T
fil, H (L) := m(H(Or) = HY(L)) ifj =0, B41)
Hl (L){p/}GBUnZl ﬁl]H;n (L) ].f] 2 ]_7
with H'(L){p'} = Dy H} (L,Qg/Zy) the prime-to-p part of H'(L).
For x € HY(L), we define
Artz(x) =min{j > 0| x € fil; H'(L)}. (8.4.2)

Proposition 8.5. The collection
Art={Art;: H'(L) = No | L € @}
is a semicontinuous conductor on H', as is its restriction ArtSt.

Proof. By Proposition 7.5 and Lemma 4.28, Art satisfies (c1)—(c6) except possibly
for (c4). (For (c5), note that W,(Y) — H}.(Y) is surjective for any affine scheme over
k.) Tt remains to show that Art=? satisfies (c4). Let X be a smooth k-scheme and set
ac H! (Aﬁ() with

A]rt,lc(w)00 (pra) <1, for all closed points z € X g, (8.5.1)
where p, : Speck(z)(t)so = SpecFrac ((’)1@1 Oo) — AL is the natural map. We want to
show : a € H'(X). Since H' = H'{p'} ®lim H,, with H'{p'} the A'l-invariant subsheaf
of prime-to-p torsion, we can assume a € H;n (Ak) Furthermore, the question is local

on X, so we can assume X = SpecA affine. We consider first the case where n = 1.
Condition (8.5.1) implies

pta€lm (H; (ol’gw) = H;(k(x)(t)oo)) . (8.5.2)
Denote by a(z) the restriction of a to AL. Since H; is a Nisnevich sheaf, we conclude

a(x) € H; (Pl) = H;(x)
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Thus we find a polynomial a = ag+ a1t +- -+ a,t™ € Alt] mapping to a such that for all
closed points = € X, there exist b, € k(x) and g, € k(z)[t] with

a(x) =by+ g2 — gy, 1in k(z)[t]. (8.5.3)
Assume n > 1. Then n = p-ny for some n; > 1. We claim
a, =c, some ¢y € AP. (8.5.4)

Indeed, write n = p®m with e > 1 and (p,m) =1, and for a fixed closed point = € X write
e—1
gz = CoFcit+---+cpe-1,,tP " then equation (8.5.3) implies

— Cpimyi € [Le—1], am () = —Cpp.

an(x) :cie—lmv apim(x) =c

pi—lm

Hence for all maximal ideals m C A, we have

=

e—

an

(fapjm)pe_j mod m.
7=0

e—j—1\ P
It follows that a,, = (Zj;(l) (—apjm)p ) € AP, which yields equation (8.5.4).

Now a) = a— (c1t™ )P +¢;1t™ also has property (8.5.3), and its degree is strictly smaller
than n. We can replace a by (") in the foregoing discussion and go on in this way until
we reach a polynomial a(") € Alt] whose degree is strictly smaller than p, in which case
equation (8.5.3) forces it to be constant = ¢, € A. We obtain

r—1
a=cr+ Z(Cit"i P —cit™,
i=1

whence a € H) (X).
Let n>1.1f a € H}. (Ak) satisfies formula (8.5.1), then so does p"~ta € H} (A% ). In
the case where n =1, by the exact sequence

n—1,
0— Hpy 1 (X) = Hpu(X) 2—5 Hy(X) =0

(X is affine) we find an element b € H}.(X) such that p"~!(a—b) = 0. Since a—b also
satisfies formula (8.5.1), we obtain a —b € H;n,l(X ) by induction. This completes the
proof. O

Lemma 8.6. Let K be a field of positive characteristic, x an indeterminate and g €
W, (K (x)). Assume F(g)—g=V""(bz) for some b e K. Then g € Z/p"Z — that is,

F(g)—g=0.
Proof. If n =1, then gP — g = bx forces g to be constant and hence g? —g =0 —that is, g €

F,.If n > 2, then F(g)—gis 0 when restricted to W,,_1 (K (z)). Hence g =m-[1]+ V"' (f)
with f € K(x), m € Z. Thus F(f)— f =bx, and we conclude with the case wheren=1. O

https://doi.org/10.1017/51474748021000074 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000074

132 K. Riilling and S. Saito

Proposition 8.7. Let L, t € Op andoj: Kj — Or, j=0,1, be as in Proposition 7.19. We
also denote by o : Kj(x) = O, the canonical extension. Set r>1 and a € fil, H}. (L).
Assume one of the following:

(1) (mp)=1orr=p=2orm=0, and (a,l—mtr_l) =0.

Ly,00
(2) r>2, plr, m>1 and (a,l—xtr’l) =0, for j=0,1.
J

Ly,o

Then a € fil, 1 H}. (L).

=0, for some j € {0,1}, then

Proof. Let a € fil, W, (L) be a lift of a. If (a,1—at""),

we find g; € W, (K;(x)) such that
(a71—xtr—1)wj =F(gj) —g;- (8.7.1)

It suffices to show @ € filX_ |, W,,(L). Write r = p°rq with e >0 and (rq,p) = 1.
Case 1: e =0. Write r — 1 = p®ry with e; >0 and (p,r1) = 0. If e; > n, then by
Corollary 7.18(1) we have fil, H}. (L) = fil,_ H}. (L); otherwise we have

a=vV" e ([b)[t] ™) mod fil,_ W, (L)
for some b € K. Thus
F(go)—goz (&al_xtril)Lw’mﬁ by (1)’
=ynl-a ([b] (11 —xtr_l)Lz7UO> , by Lemma 7.11,
= V' (b”el x), by Lemma 7.15(1).

Lemma 8.6 implies F(go) — go = 0. Hence @ € filY’_ W, (L), by Proposition 7.19(1).
Case 2: r =p =2. As in the proof of Proposition 7.19 (case 2), we have a =
VT (bt~ 4 et 72) mod W, (Oy), with b,c € Ko, and

g —go= (a1 —at)p, 5o =V""! (bx+cx2) .

This implies ¢ = b*; hence a € H).(Or) = fil H}. (L).
Case 3: 1 <e<n-—1 and r > 2. By Corollary 7.18(2) we have

6=V (B0 ) 4 VI ([ 77) mod 61, Wa(L),

where b; € K; and ¢; € W.(Kj), j =0,1. By Lemma 7.15(1) we have

(V) et ) = )V )
and by Lemma 7.15(2) we have
(V"¢ (¢;[t]7°P) ,1— xtT'_l)Lwoj =0.
Thus by (2),
F(g;)—g;=(a,1— xtr_l)ngj =—(r—1) V" (bz).
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By Lemma 8.6 we have F(g;)—g; =0, for j = 0,1. Hence a € fil’_ W, (L), by
Proposition 7.19.
Case 4: e >n and r > 2. By Corollary 7.18(3) we have

_e—n+l

a= ]P0yl (bj[t]*@“*l)) mod filf_, W, (L),

where ¢; € W), (K;) and b; € K, for j =0,1. As in the third case, the following equality
follows from Lemma 7.15 for j =0,1:

F(gj)—g; = (d,l—xt”_l)L .= —(7“—1)V”_1 (bjx).

z,0j

Hence @ € fil’’_ W, (L) as before. This completes the proof. O

Theorem 8.8. Set L€ ® and r > 0. Then

fil, H*(L) = HY(Op,m™");

<1

that is, the Artin conductor is motivic, Art = cH' Furthermore, (CH ) is a conductor
of level 1.

Proof. The last statement follows from the first and Proposition 8.5. By Corollary 4.29 it
suffices to show the corresponding statement on the subsheaf of p™-torsion, for all n > 1.
Here the proof is the same as in Theorem 7.20, if we replace W, everywhere by H;n, fil”
by fil, the reference to Proposition 7.5 by a reference to Proposition 8.5 and the reference
to Proposition 7.19 by a reference to Proposition 8.7. O

8.2. Lisse sheaves of rank 1

In this subsection we fix a prime number ¢ # p, an algebraic closure Q, of Q, and a
compatible system of primitive roots of unity {¢,} C Q.

8.9. We denote by Lisse' (X) the group of isomorphism classes of lisse Q-sheaves on X
of rank 1, with group structure given by ®. Note that

Lisse! (X) 2 lim H}, (X,0%) := lim lim H}, (X, (OE/mg)X>, (8.9.1)
E/Qe E/Q¢ n

where E runs over subextensions of Q,/Q,; which are finite over Qy, and Og and
mg denote the ring of integers and the maximal ideal, respectively. Indeed, a sheaf
M € Lisse'(X) corresponds uniquely to a continuous morphism 73P(X) — @; , which
in particular implies that it factors as a continuous morphism 7 (X) — E*, with some
E as before (see, for example, [11, 1.1]). Since any representation of a profinite group in a
finite-dimensional E-vector space has an Og-lattice, we see that such a morphism factors
via a continuous map

7 (X) — Auto,, (mg’ (’)E) — 05
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The isomorphism classes of such maps correspond uniquely to elements in @n Hgt
(X, (OE/m%)X) By Section 8.1 and Lemma 8.2, the isomorphism (8.9.1) induces the

structure of a Nisnevich sheaf with transfers on X — Lisse' (X) — that is,
Lisse! € NST.
Write
|Og/mg|=("", (' —1=p°% . hg, with (hg,p)=1,s5 > 0.

Then ppre 1 (@4) C O} and the roots of unity fixed at the beginning of this subsection
induce a canonical isomorphism

OF 2 Z/p*" x L/hg x UL,
Since U S) is a pro-£ group, this yields the decomposition
Lisse' = Lisse"” @ H'. in NST,
where

X  Lisse"” (X) := lim l&nH;t (sz/hE' X Uf(zl)/Ul(;n))v
E/Q¢

X o HL(X) 1= limy HY (X, Z/p") = Hb (X).
E/Qe
Set L € ®. For j >0, we define

fil; Lisse' (L) :

{Im (Lisse' (O1) — Lisse' (L)) if j =0, (8.9.2)

Lisse"? (L) @ fil; H (L) if j>1,
where fil; H}« (L) = Upfil; H ). (L) is defined in Section 8.4.
Corollary 8.10. Let the notation be as in Section 8.9. Then the following are true:
(1) Lisse’ € RSChis;
(2) the motivic conductor is given by
criissel (M)=min{j > 0| M € fil;Lisse' (L)},
which furthermore restricts to a level 1 conductor;
(3) if X € Sm is proper over k and U C X is dense open, then
h: (Lisse!) (U) = Lisse"” (U) @ Hl (X)
(see Section /.30 for notation).

Proof. Note that Lisse"? € HIy;,. Hence (1) and (2) follow directly from Theorem 8.8
together with Corollary 4.29 and Lemma 4.20. For (3), observe that by Theorem 8.8 and
the definition of the Artin conductor, we have H ) (Op,m;') = H}(OL); hence the
statement follows from Corollary 4.33. O
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Remark 8.11. Set U € Sm and denote by 7*>*(U/k) the abelian tame fundamental
group in the sense of [31, 7]; it is a quotient of 73" (U). Denote by Tame' (U) the subgroup
of Lisse! (U) consisting of those lisse sheaves of rank 1 whose corresponding representation
factors via 72>*(U/k). Then

h9 (Lisse') (U) = Tame' ().

Indeed, we classically have Tame'(C) = Lisse”’ (C)® H}w (C), in the case where C' € Sm
is a curve over k with smooth compactification C. Hence this C inclusion follows from
Corollary 8.10(3) and the description of 72>*(U/k) via curve-tameness [26]. The other
1

inclusion follows from the Al-invariance of Tame®.

9. Torsors under finite group schemes over a perfect field

In this section, k is a perfect field of positive characteristic p. We fix an algebraic closure
k of k. The term k-group is short for commutative group scheme of finite type over k.

Lemma 9.1. Let G be a finite k-group. Then there exists an exact sequence of sheaves
on (Sch/k)eppe, the fopf site on k-schemes,

0—-G— Hy— Hy—0, (9.1.1)

with H;, i = 1,2, smooth k-groups. Furthermore, if we denote by w : (Sch/k)wppr —
(Sch/k)e the morphism from the fppf site to the étale site, then the sequence induces
a canonical isomorphism

in the derived category of abelian sheaves on (Sch/k)s,. In particular, for all n >0 the
presheaf on Sm

Sm>X+— H" (Xfppf,G) an(Xét,Hl —)Hg) (913)

admits the structure of a presheaf with transfers. This transfer structure does not depend
on the choice of sequence (9.1.1) (up to isomorphism,).

Proof. By a result of Raynaud (see [3, 3.1.1]), there exists a closed immersion G — A,
with A an abelian variety. By [13, Exp V14, Théoreme 3.2], the fppf-quotient sheaf
(A/G)gppt is representable by a k-group A/G and the quotient map A — A/G is finite
and faithfully flat. Hence A/G is reduced and hence a smooth k-group. This shows the
existence of a sequence (9.1.1). By [19, Théoreme (11.7)], a smooth k-group is acyclic for
the direct image functor

Uy + Shv ((Sch/k)ppr) — Shv((Sch/k)at)-

Hence sequence (9.1.1) is a wuy-acyclic resolution of the fppf sheaf G, which yields the
canonical isomorphism (9.1.2). Since H; — Hj is a complex of étale sheaves with transfers,
the presheaf (9.1.3) has transfers, by [39, Lemma 6.23]. Finally, we have to show that
this transfer structure does not depend on the resolution (9.1.1). Assume 0 - G — Ly —
Ls — 0 is a second such exact sequence. We obtain a commutative diagram with exact
rows in (Sch/k)ppe:
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0*>G*>L1XH1*>(L1XH1)/G*>O

| |

0 G H, H, 0,

where the vertical arrows are induced by projection and the top horizontal arrow on the
left is the diagonal embedding of G; we also have such a sequence with H replaced by
L in the lower line. This yields the isomorphism [Hy — Hy] = [L; — Lo] in the derived
category of étale sheaves with transfers, proving the final statement. O

Notation 9.2. Let G be a finite k-group. Then we denote by H'(G) € PST the presheaf
with transfers from Lemma 9.1,

X = HYG)(X) == H' (Xtppt, G) -

Lemma 9.3. Let Gal (I_C/k) be the absolute Galois group of k and G an étale k-group.
Then the functor

Sm> X — H" (Gal (k/k),G(X3)) (9.3.1)
defined by the Galois cohomology groups is a proper sheaf in RSCyjs in the sense of
Definition /.26.

Proof. The composition
Cor(X,Y) — Cory(X;,Yz) = Homap(G(Y3),G(XE))

factors through the homomorphism of Galois modules; hence formula (9.3.1) € PST. Since

G is étale, we have G(X3) =G (/::)WO(X’;’). It follows that formula (9.3.1) is Al-invariant
and that restrictions to dense open subsets are isomorphisms. Hence it is a Nisnevich
sheaf and proper. O

Lemma 9.4. Let G be an étale k-group. Then the exact sequence
E(X):0— H"(Gal(k/k),G(Xz)) = H'(G)(X) = K'(X) =0,
with

Gal(k/k)

K'(X):=Ker <H1 (X7.6-Gr) — H? (Gal (k/k) ,G(X,Q)) ,

coming from the FEs-page of the Hochschild—Serre spectral sequence defines an exact
sequence X — FE(X) in PST.

Proof. First note that by Grothendieck’s theorem (see Lemma 9.1) we have H(G)(X) =
H'(Xe,G), so that the sequence E(X) is indeed induced by the Hochschild-Serre
spectral sequence. We show that transfers act on the whole spectral sequence. By a
limit argument, it suffices to consider finite Galois extensions L/k and the corresponding
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spectral sequence. Let G — I®* be an injective resolution in Shg;(Cory), the category of
étale sheaves with transfers. Then

Hi(Xer,G) = HI(I*(X)) = H (r(xL)Gal(L/k)) , i>0, (9.4.1)

for all X € Sm (see [39, Lemma 6.23]). Moreover, H* (X[ ¢,I") =0 = H*(Xe,I™) for
i>1 and n >0 (see again [40]). Hence

HY(Gal(L/k),I"(X1)) =0. (9.4.2)

Let C*(Gal(L/k),M) be the complex of cochains computing the cohomology of the
Gal(L/k)-module M. By equations (9.4.1) and (9.4.2), the cohomology groups HZ (X,G)
are the cohomology groups of the total complex associated to the double complex
C*(Gal(L/k),I*(X1)). The Hochschild—Serre spectral sequence arises from a filtration of
this complex. Furthermore, the canonical map Cory(X,Y) x Gal(L/k) — Cory(X1,Y1),
(o,0) = (@ ®k L) o (idxx,y x o) induces the structure of a complex of presheaves with
Gal(L/k)-equivariant transfers on X — I*(Xp). Hence X — C*(Gal(L/k),I*(XL)) is a
double complex in PST. This proves the lemma. O

Lemma 9.5. Let G be an étale k-group of order prime to p. Then H'(G) € Hlyjs (see
Notation 9.2 for notation).

Proof. In this case Gy, is a constant finite k-group of order prime to p. By [48, Cor 5.29],
the presheaf X — K!'(X) from Lemma 9.4 is Al-invariant, and by Lemmas 8.2 and 9.3
it is a Nisnevich sheaf. Thus the claim follows from Lemmas 9.4 and 9.3. O

Lemma 9.6. Let G be an étale k-group of p-primary order. Then H'(G) € RSChyis and
1
the motivic conductor ¢ (%) is given by
max; {cfj (Gg) }

cfl(c) tHY(G)(L) — @Hét(SPeCLiaGE) — Mo,

where L@y k=[], L; and (@R is computed in Theorem 8.8 (note that Gy, = ®,;Z/p™ ).
<1

HY(G))~
c

In particular, ( is a conductor. Moreover, if X is smooth proper and U C X is

dense open, then h, (H*(G)) (U) = H*(G)(X) (see Section 4.30 for notation).

Proof. Note in this case that H? (Gal (k/k),G(X})) =0 (see, for example, 2, Exp X,
Théoreme 5.1]). Thus the first statement follows from Lemmas 9.4, 9.3, 8.2 and 4.27,
Propositions 4.19 and 4.21 and Theorem 8.8. For the final statement, observe that

H'(G) (Or,m; ) = HY(G)(Ox).

This follows directly from the explicit description of the motivic conductor on H'(G}) in
Theorem 8.8. Hence the final statement follows from Corollary 4.33. O
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Lemma 9.7. Let G be an infinitesimal finite k-group. Then

HY (Xipps G) 2 H' (X 100:G) S ) for all X € Sm.
Furthermore, this isomorphism induces an isomorphism in NST (compare Proposi-
tion 4.21 for notation):
H'(G) = (Ryp H' (Gg)) ** ().

Proof. There is also a Hochschild-Serre spectral sequence for the fppf cohomology (see, for
example, [40, ITI, Remark 2.21]). Since G is infinitesimal, we have G(Y) =0 for all reduced
schemes Y over k. Thus the fppf version of the exact sequence F(X) from Lemma 9.4
yields the first isomorphism. By Lemma 9.1, this isomorphism is compatible with the
transfer structure. It remains to show that H'(G) is a Nisnevich sheaf. By the remark
from the beginning of this proof, any sequence (9.1.1) yields an injection H; < Hy when
restricted to Sm. Thus isomorphism (9.1.2) implies

Ru,G = (Hy/Hy)e[—1]

in the derived category of étale sheaves on Sm, where (Hz/Hj)e denotes the étale
sheafification of the presheaf X — Ho(X)/H1(X). Hence

HY(G)(X) = H*(X,(Ha/Hy)s).
It follows that H!(G) is even an étale sheaf. O
Lemma 9.8. Assume G is an infinitesimal finite k-group of multiplicative type. Then
HI(G) € HlIys.

Proof. By Lemma 9.7 we may assume k = k. In this case G is diagonalisable and we find
an exact sequence (9.1.1) with H; = G, some n; > 1 (see [12, IV, §1, 1.5 Corollary]). The
statement follows from the Al-invariance of X + H*(Xzar,Gp), i = 0,1, and Hilbert 90.

O

9.9. We denote

ap :=Ker(F: G, = Gy),

where F' is the absolute Frobenius on the additive group. Then ¢y, is a unipotent
infinitesimal finite k-group. Set L € ® and let t € Of, be a local parameter. Recall from
Section 7.3 that fil; G, (L) := fil; W7 (L) is given by

Or it j =0,
f,Gu(L) = { e -0 if (jp) =1, (0.9.1)
We denote by
fil, H* (ap) (L) (9.9.2)
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the image of fil;G, (L) under the connecting homomorphism
§:Gu(L) = H" (ap) (L) = H' (Spec Leypt, ) -

Note that fil; H! (o) (L) is also equal to the image of the Frobenius saturated filtration
15 W1 (L).

Proposition 9.10. We have H' (a,) € RSChis, and the motivic conductor cH' (@) op
H' (a,) is given by

e (b) = min {5 > 0| b € il H' (o) (L)} (9-10.1)

1
In particular, either b€ H' (o) (OL) or cf (%)(b) > 2. Furthermore, it restricts to a level
2 conductor.

Proof. Denote the collection of maps H' () (L) — Ny defined by the right-hand side of
equation (9.10.1) by ¢. By Proposition 7.5 and Lemma 4.28, ¢ satisfies (c1)—(c6) except
possibly for (c4). (For (c5), note that G4 (Y) — H' () (Y) is surjective for any affine
scheme Y over k.) We claim that ¢=? satisfies (c4). Let X be a smooth k-scheme and set
be H' (o) (AX) with

Ch(a) (Ppb) <1, for all x € X with trdeg(k(x)/k) <1, (9.10.2)

where p, : Speck(x)(t)so = SpecFrac (O’Pﬁl Oo) — A is the natural map. We want to

show b € H' (a,) (X). This is equivalent to b=7*i*b in H' (o) (A% ); by the definition
of ¢ and Lemma 9.7, we can therefore assume k is algebraically closed. Furthermore, the
question is local on X, hence we can assume X = Spec A affine. Note that for a general
BeH (a,) (L)\H" (o) (O1), we have ¢, () > 2, as follows directly from equation (9.9.1).
Hence condition (9.10.2) implies

prbetm (H' (ap) (Opy ) = H' (0) (k(2) (D)) ) -
Denote by b(x) the restriction of b to AL. Since H' (c,) is a Nisnevich sheaf, we conclude
b(x) € H' (o) (Py) = H' (ap) ()

Thus we find a polynomial b = by + b1t + -+ b,t™ € Al[t] mapping to b such that for all
points x € X with trdeg(k(x)/k) <1, there exist ¢, € k(x) and g, € k(z)[t] with

b(z)=c.+gP, in k(z)[]. (9.10.3)

It follows immediately that b € A[tP], and it remains to show b; € AP for all ¢ > 1, since
then b=bg in H' () (A}X) Thus we are reduced to showing the following: let X =
Spec A — A = Speck[z1,...,74) be an étale map and set a € A\ AP. Then there exists
a smooth connected curve i : C' < X such that i*a € O(C)\ O(C)P. If a ¢ AP, we find a
variable, say x1, such that a = ap+a1x1 + -+ a,z?l, where a; € AP[zs,...,x4] := B and
a ¢ B[z}]. A tuple A = (X\z,...,\q) € k%! induces a closed immersion iy : Al — A? given
by x1 — x1, x; — A;, i =2,...,d. Denote by C) the pullback of X along iy. Since k is
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algebraically closed, we find a tuple A such that a;c, & O(C\)?. This proves the claim;
hence c=? satisfies (c4).

Corollary 4.24 yields ¢ Hap) < ¢. To show the other inequality it suffices by Corol-
lary 4.40 to show the following: set L € ® and t € O, alocal parameter, and let 0 : K — O,
be some coefficient field; extend it in the canonical way to o : K(z) — O, where
L, = Frac (OL [x]?t)) Assume b € fil, H! (a;,) (L), 7 > 1. Then the following implication
holds:

(b1—wzt""), =0 forallo=befil,_1H"(ap)(L), (9.10.4)

where the local symbol on the left-hand side is the one from Section 4.37 for H* (v,) and
o runs through all coefficient fields of Op,. By (LS6), the local symbol on H! (c,) is given
by

(b,l — xt“l)Lwo_ =9 (Rest,g (l;dlog (1 —o:t’“*l))) ,

where b € fil,G,(L) is a lift of b, § : Gu(K(x)) — H' () (K(z)) is the connecting
homomorphism and we use the isomorphism L, = K (z)((t)) defined by o and ¢ to compute
the residue symbol on the right. To prove implication (9.10.4), it suffices to consider b
modulo fil,. Fix o : K — Oyp,.

Case 1: (r,p) =1= (r—1,p). In this case, b= ¢/t"! mod fil,_1 G4(L) for some ¢ € K.
Hence

Res;, » (Z;dlog (1 —mt”l)) =—(r—1)cz.

Since §(—(r —1)cz) =0 if and only if cx € K (x)P, this is only possible if ¢ = 0.

Case 2: p|r—1. In this case, fil, H (o) (L) = fil,_1 H' (o) (L), and there is nothing
to show.

Case 3: p|r. In this case, b = ¢/t" ' +e/t" mod fil,_, G, (L) for some c,e € K. By the
same argument as in the first case, we obtain the implication

(b1 fxtrfl)Lm ,=0= (l~),1 7“7’71) =0 in G.(K(x)).

L.,o

Since this hold for all &, Proposition 7.19 (in the case where n = 1) yields b € fil¥’ | G4(L),
hence b € fil,_1 H' (a;,) (L). This completes the proof. O

Proposition 9.11. Let G be a finite unipotent infinitesimal k-group. Then the following
are true:

(1) H'(G) € RSCis.
(2) The motivic conductor HNE) pestricts to a level 2 conductor.

(3) If X is a proper smooth k-scheme and U C X is open dense, then Ky, (H'(G)) (U) =
HY(G)(X) (see Section .30 for notation,).

Proof. (1). We find an exact sequence in the category of k-groups

0—-G—Hy— Hy—0
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with H; smooth unipotent k-groups. Indeed, by [12, V, §1, 4.2, 4.7], we find a closed
immersion G < W := H; for some n, N, and by [12, IV, §2, 2.3] the quotient Hy := H; /G
is again unipotent, and it is automatically reduced, hence smooth. As in the proof of
Lemma 9.7, we find H'(G) = (Ha/H1)st, where (Ha/Hi)g is the étale sheaf associated to
the presheaf Sm > X — H(X)/H;(X). Let v: Smg — Smy;s be the natural morphism of
sites. Since H; is smooth unipotent, it is a successive extension of Gs, hence R'v,. H; = 0.
We obtain an isomorphism in NST":

H'(G) = (Hy/Hi)nis,

where (Hz/H1)nis is the Nisnevich sheaf associated to the presheaf X — Hy(X)/H(X).
Thus H'(G) € RSCxis follows from H; € RSCyjs and [45, Theorem 0.1], which states
that Nisnevich sheafification preserves SC-reciprocity.

(2). By [12, IV, 5.8], G admits a descending sequence

0=G,CGp1C---CGy=G (9.11.1)

with successive quotients G,_1/G, = a,. In particular, H? (X¢ypr,G) = 0, for all affine
smooth k-schemes X. Note that this induces for all r € [1,n] an exact sequence in NST

0— HY(G,) = H (G,—1) = H" (a) — 0. (9.11.2)

Indeed, by Lemma 9.7 this sequence is in NST; hence it suffices to check its exactness
on any smooth affine k-scheme X, in which case it follows from H°(Xgyps,ap) = 0=
H? (Xtppt,Gr). By Proposition 9.10, the motivic conductor of H!(ay,) restricts to a
level 2 conductor, and by induction we may assume that so does the motivic conductor
of HY(G,_1). We deduce that the motivic conductor of H!(G,) restricts to a level 2
conductor from sequence (9.11.2) and a similar argument as at the end of the proof of
Proposition 8.5.

(3). We claim

HY(G) (O, m7t) = HY(G)(Oy). (9.11.3)

The claim is true for G = ay,, by the explicit formula of the motivic conductor in
Proposition 9.10. Consider sequence (9.11.1) and assume the claim is proven for G,.

P

Set be HY(G,-1) ((’)L,m_l). By the exact sequence (9.11.2) and the claim for «,, we find
ac€ HYG,_1)(Or) such that b—c is in the image of H'(G,)(L). By Proposition 4.19
we find

—_~—

b—ce H(G,) (OL,mil) = Hl(GT)(OL)v
which proves equation (9.11.3). Hence (3) follows from Corollary 4.33. O

In summary:
Theorem 9.12. Let G be a finite k-group. Then the following are true:
(1) H(G) € RSCxis-

(2) The motivic conductor of H'(G) restricts to conductor of level 2, and if G has no
infinitesimal unipotent factor, to a conductor of level 1.
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(3) Write G =G’ X Gunip with Gunip unipotent and G' without any unipotent subgroup,
and let X be smooth proper over k and U C X be dense open. Then

s (HY(G)) (U) = HY(G')(U) & H' (Gunip) (X).
Proof. By [12, IV, §3, 5.9] we can decompose G uniquely into a product
G = Gem X Gey X Gy X Gy,

where G, is étale multiplicative — that is, it is an étale k-group without p-torsion;
Gy 1s étale unipotent — that is, it is an étale k-group with p-primary torsion; G, is
infinitesimal and of multiplicative type; and G, is an infinitesimal unipotent k-group.
Hence the statement follows from Lemmas 9.5, 9.6 and 9.8 and Proposition 9.11. O

Remark 9.13. Let G be a finite unipotent k-group. Note that by Theorem 9.12(3), the
functor X + H' (Xg,pr,G) is a birational invariant for smooth proper k-schemes. This
gives a new proof of this (probably) well-known result (it also follows, for example, from

[6])-
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