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RAMANUJAN'S REMARKABLE SUMMATION FORMULA
AND AN INTERESTING CONVOLUTION IDENTITY

S. BHARGAVA, CHANDRASHEKAR ADIGA AND D.D. SOMASHEKARA

In this note we obtain a convolution identity for the coefficients Bn(a, 0, q) defined
by

nr(i+wcosg+*y) ^
» cos 0 +

using Ramanujan's i $% summation. The identity contains as special cases convo-
lution identities of Kung-Wei Yang and a few more interesting analogue.

1. INTRODUCTION

In this note we apply Ramanujan's i^i summation [17, p.196, Entry 17] and
obtain a new convolution identity which contains as special cases the identities of Kung-
Wei Yang [20] and a few more interesting analogous. Connections with the generalised
Frobenius partition functions of some of our identities are also pointed out.

Ramanujan's i^i summation can be stated as

where

(1.1) contains Jacobi's triple product identity [16]

(1.2) (-^;92)0O(-«?A;92)0O(92;92)
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and the g-binomial theorem [18]

(1.3)
(«gz;g)c n=0

as special cases (In (1.1) put a = 0 = /? and z = ~zl\fq a n ( l then change q to g2

to obtain (1.2); put j3 = 1 to obtain (1.3)). There are several proofs of (1.1) in the
literature [2, 3, 6, 7, 13, 14, 15] including direct proofs (see for example [1, 19]) which
do not presuppose Jacobi's triple product identity (1.2) or the (/-binomial theorem (1.3).
There are many interesting applications of (1.1), see for instance [7, 8, 9, 10 and 11].

In Section 2 below we obtain by a simple application of (1.1) a convolution identity
for the coefficients Bn(a, 9, q) defined by

( ' ' 9 ) '

Indeed, we show

, 6, q)Bm+n{a, 6, q)

(1.5)
/a; q)m(l3q; q)l(aq; q))L

gm/a,

. "g.

Here as usual

(1.6)
\a, b;

Le, d;

In Section 3, we obtain special cases of (1.5) and in this context we shall need the
following evaluation of 2^2 [12, p.305].

2 * 2 q; -aq/bc
.aq/b, aq/c ;

(1.7)
c; q)OB(aq/b;
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Indeed, in Section 3 we show that (1-5) yields as special cases, convolution identities of
Yang [20] for the coefficients An defined by

(1.8)
n = l

and a convolution identity for the coefficients Cn defined by

(1.9) Cnx».
n = l

Also we deduce from (1.5) convolution identities analogous to those of Yang which seem
new. In fact, we obtain convolution identities

n=—oo

oo
and

where the coefficients Dn are defined by

(1.10)

(9; 9)oo(9; 92)c

9; 92)o

n = l

2. THE MAIN THEOREM

THEOREM 2 . 1 . If Bn(a, 6, q) is as defined by (1.4) then

(2.1)

q-nBn{p, 6, q)Bm+n{a, 0, q)

m q; q)l(aq;

\qm/a, 1/0;
q;at3qe2it>
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PROOF: By (1.4)

f £ ) Bn(a, 0, q)xA f f ) Bn(0, 0, q)q-nx~A
J {.n= — oo J

^Li (* + 2xgn cos 6 + xV") (1 + 2x-1gn~1 cos B + x - y t "
i.n=—oo

^Li (1 + 2axg" cos9 + a2x2q2n)(l + 20x~1qn~1 cos9 + 0*x~*

-axe^g; q)00{~Pe~ie/x; «)o o(-axe-"9 ;

/oo L*=—oo

J=-OO

, on using (1.1).

Now, comparing the coefficients of xm we get

q-nBn{P, 9, q)Bm+n(", 0, q)

( - l ) m (e-°ag)m(l/a;

; g)m(g; g)L("/3g; g)L

This completes the proof of the Theorem 2.1.

3. SOME SPECIAL CASES

Let Bn(a, q) be defined by

(3.1)
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so that, by (1.4)

(3.2) Bn(a, q) = Bn(a;n/2,q).

Putting 8 = w/2 in (2.1) and then using (3.2) and (1.7) we have the following Theorem.

THEOREM 3 . 1 . If ~Bn(a, q) is as defined by (3.1), then

J q-
nBn(f3,q)Bm+n(a,q)

n = —oo

( 3 3 ) = (-»

«; 9)L(a^9; 9)0

Changing m to 2m in (2.1) and putting 0 = T / 3 , a = 0 = /? and noting from
(1.4) and (1.8) that An = An(q) = Bn(0, w/3, q) we obtain

(3.4) f ) q~nAnA2m+n = ^ ^ f ) ,C-+->V-+->
n=—00 V"i V/oo n = —00

where w = e2icxlz. Employing (1.2) (with z = u>) in the right side of (3.4) and then
using the easily verified Euler's identity

we at once have the following Theorem of Yang [20].

THEOREM 3 . 2 . (K.W. Yang)

(6.5)

Similarly on changing m to 2m — 1 in (2.1) and then proceeding as above, we
obtain another result of Yang [20].

THEOREM 3 . 3 . (K.W.Yang).

f3 6) V . - A A( ' J^J AnA2

https://doi.org/10.1017/S0004972700012351 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012351


160 S. Bhargava, C. Adiga and D.D. Somashekara [6]

Changing m to 2m in (2.1) and then putting 8 = ir/2, a = 0 = /? and noting
from (1.4) and (1.9) that B2n+i = 0 and B2 n(0, TT/2, ^/q) = Cn, we get

(3.7) f; q-*"cn(q>)cm+n(q>) = £ ^ £ f; (- ir+v-+ n ) 3 .
n=—oo \*» "loo n=—oo

Employing (1.2) (with z = — 1) in the right side of (3.7) and then changing q to
we have the following theorem equivalent to an identity of Cauchy [4, p.22].

THEOREM 3 . 4 .

(3-8) £ *-n

n = —oo * " ™

We may remark that (3.8) can of course be obtained from (3.3) by changing m to
2m and then putting a = 0 = /3. To see the equivalence of (3.8) with the aforemen-
tioned identity of Cauchy [4, p.22], first put a = 0 and z = — x in (1.3) to get

on(n+l)/2_n

n=l n=0 " ' " o

which is nothing but an identity of Euler [4]. Comparing this with (1.9), we have

using which in (3.8) we have
n(n+m)

^0(9;q)n{q;q)n+m (9:9)00'
the required identity.

Changing m to 2m in (2.1) and then putting 0 = 0, a = 0 = (3 and noting from
(1.4) and (1.10) that Dn = Dn(q) = Bn(0, 0, q) we obtain

(3.9) f; ^
n=—oo \9i "ico n=—oo

Using (1.2) (with z = 1) in (3.9) we have the following Theorem.

THEOREM 3 . 5 .

( }

Similarly, on changing m to 2m—1 in (2.1) and then proceeding as in the derivation

of (3.10) we have the following Theorem:

T H E O R E M 3 . 6 .
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4. SOME PARTITION THEORETIC INTERPRETATIONS AND OPEN QUESTIONS

In this section we bring about connections of some results of Section 3 with the
generalised Frobenius partition functions and raise some questions.

1. An application of the g-binomial theorem to the left side of (3.1) at once yields the
finite product representation of Bn(a, q) namely

(a a)

and I?2n+i(<*;9) = 0- Consequently, Theorem 3.1 must be an instance of one of the
2$i summations. Which one?

2. Considering the right side of (3.5) we have

qm(.m+l)

9; <?1 2U91 0;

n = 0

by Corollary 5.1 of [5], where fain) is the number of generalised Frobenius partitions of
n that allow up to 2 repetitions of an integer in any row [5, p.6]. Thus we have proved

OO j

that YJ q~n~m ~mAnA2m+n is the generating function for 4>i(n). Thus Theorem
n=—oo

3.2 takes on combinatorial significance. Is there a direct arithmetic proof of this fact?

3. Similarly, in Theorem 3.5, considering the right side of (3.10) and using Corollary
OO j

5.2 of [5] we can show that £) q~n~m ~mDnD2m+n is the generating function for
n=—oo

cfain), the number of 3-coloured generalised Frobenius partitions of n [5, p.7]. Is there
a direct arithmetic proof of this fact also?

4. Are there any combinatorial facts in the analogous Theorems 3.3 and 3.6? Unlike
in Theorems 3.2 and 3.5 the infinite products in the right sides of (3.6) and (3.11) do
not seem to generate any partition functions.
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