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This note stems from the following theorem of T. Husain [11:

THEOREM H (Theorem 4 of [1]). Let E be a metric Baire
space and f a real valued function on E. Then the set of points of
almost continuity in E is dense (everywhere) in E.

Our purpose is to set this result in its most natural context,
relax some very restricted hypotheses, and to supply a direct proof.
More precisely, we shall prove that the metrizability of E in Theorem
H may be removed, and that the range space may be generalized from
the (Euclidean) space of real numbers to any topological space
satisfying the second axiom of countability [2].

Definition. Let X and Y be topological spaces, a mapping
f:X =Y is said to be almost continuous at x ¢ X if and only if for

-1
each neighbourhood V of f{x), Int Cl £ (V) is a neighbourhood of
x; f is almost continuous if it is almost continuous at each of x ¢ X.

A subset A of a topological space X is dense (in X) if
ClA=X; asubsetof X is called a set of the second category if it is
not the union of a countable family of sets En such that each

Int Cl En =0 (the empty set). A topological space is said to be a

Baire space (or to satisfy the condition of Baire) provided the
intersection of each countable family of open dense subsets is dense.
Every nonempty Baire space is a set of the second category, but the
converse is not true.

THEOREM 1. If f:X = Y is a mapping from a Baire space X
to a topological space Y which satisfies the second axiom of countability,
then the mapping f is almost continuous on a dense subset of X.

Proof. Let {Bn :n=1, 2, 3, ...} be acountable basis for

the open sets in Y. For each n, denote En = gf-1(Bn) \ Int Cl f-i(Bn),

then _]';n_g_gEn=Dfor each n; and thus, the set E = \J wi n
n=
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is a set of the first category. But, if f is not almost continuous at
X, then there exists a B such that f(x) ¢ B and that x is notin
n n

-1
Int Clf (Bn) so that x must be in E. Hence, f is almost
continuous on X \E, which, as a complement of a first category
subset of a Baire space, ig dense in X.
A Moore space is a topological space that has a sequence ‘9
n

(n=1, 2, 3, ...) of collections of basic open sets (called regions)
satisfying 1, 2, 3, and 4 of Axiom 1 of {3]. The following lemma
might have been known, but we are unable to cite a source of print.

LEMMA. Every Moore space is a Baire space.

Proof. Let D (n=1, 2, 3, ...) be a sequence of open dense
—_— n

sets in a Moore space X, let x be an arbitrary point in X, and let

G be an open set containing x. It must be shown that G\ (@ ® Dn)
n=1

is not empty. Since D1 is dense and G is a nonempty open set,
D1 NG+ . Consequently, by (2) and (3) of Moore's Axiom 1, there
exists a G1 € Lgi such that

[+ G, ca G1CD1OG.

Since G1ﬂ D2 # [, by the same argument above, there exists a
GZ € ‘92 such that

[+ G,CcClG, chﬂGi.

Continuing this process inductively, a descending sequence
Gn (n=1, 2, 3, ...) of nonempty regions is constructed which

satisfies G_ ¢ xg and Cl G cGg Nb for all n. Thus, by
n n — n n n+1

+1
(4) of Moore's Axiom 1, the sequence an (n=1, 2, 3, ...) has

. . - ﬂ
a common point, say y. Finally, _C_lGn CGn Dn+1 for all n

+1
imply that the point y must be in G N (ﬁ nioi Dn), as was to be

proven,

THEOREM 2. If X is a Moore space and if Y is a topological

space satisfying the second axiom of countability, then every mapping
from X to Y is almost continuous on a dense subset of X.
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