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Abstract

A multiplicative Schwarz iteration algorithm is presented for solving the finite-dimensional nonlinear
complementarity problem with an M-function. The monotone convergence of the iteration algorithm
is obtained with special choices of initial values. Moreover, by applying the concept of weak regular
splitting, the weighted max-norm bound is derived for the iteration errors.
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1. Introduction

We begin this section with the definitions of the M-matrix (see [3]) and M-function
(see [17]).

DEFINITION 1.1. A matrix A ∈ Rn×n is called an M-matrix if it is nonsingular with
nonpositive off-diagonals and nonnegative inverse A−1

≥ 0.

DEFINITION 1.2. Let F be a mapping from a closed convex set K to Rn . F is called
an M-function if it satisfies the following conditions.

(1) Inverse isotone. For any y, z ∈ K , y ≥ z if F(y)≥ F(z).
(2) Off-diagonal antitone. For every pair of indices i 6= j and for every y ∈ K , the

one-dimensional function fi j : X i → R, defined by

fi j (t)≡ F j (y1, . . . , yi−1, t, yi+1, . . . , yn), (1.1)

is nonincreasing, where X i = {t ∈ R | (y1, . . . , yi−1, t, yi+1, . . . , yn)
T
∈ K }.
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We concern ourselves with the nonlinear complementarity problem (NCP): find
x ∈ K such that

x ≥ φ, F(x)≥ 0 and (x − φ)T F(x)= 0, (1.2)

where φ ∈ Rn is a given vector, and F is a continuous M-function from K = {x ∈ Rn
|

x ≥ φ} to Rn . (If F(y)= Ay + b, where A is an M-matrix and b ∈ Rn is a constant
vector, the NCP (1.2) degenerates into a linear complementarity problem (LCP).)

Problem (1.2) can be obtained from the discretizations of some variational
inequalities related to nonlinear elliptic operators and to nonlinear parabolic operators.
For example, consider the following nonlinear elliptic variational inequalities: find
u ∈ K ⊂ H1

0 (�) such that

a(u, v − u)≥ ( f (u), v − u), ∀v ∈ K , (1.3)

where K = {v ≥8} (for8 ∈W 2,s(�)) is a closed subset of H1
0 (�),�⊂ R2 is a boun-

ded convex polygon, (·, ·) is the inner product of L2(�), a(u, v)=
∫
�
∇u · ∇v dx ,

and f (v) ∈W 2,∞(R) such that ∂ f (v)/∂v ≥ 0. By using the lumped mass finite
element method (see [21]) to discretize the problem above, we obtain a finite-
dimensional problem (1.2) as long as any angle of any triangle element in the
triangulation is not larger than π/2.

In this paper we apply a multiplicative Schwarz iteration algorithm to solve the
NCP (1.2). Schwarz algorithms are well-known iterative methods for solving partial
differential equations (see, for example, [14, 20] and the references therein). Since
the calculation of Schwarz algorithms can easily be implemented in parallel, the
algorithms have been widely used to solve finite-dimensional variational inequalities
and complementarity problems (see, for example, [1, 4, 9–13, 19, 22, 25]) for some of
which the monotone convergent results are derived with special choices of the initial
values (see, for example, [24, 25]). In this paper, the monotone convergence of the
multiplicative Schwarz iteration algorithm is obtained with special choices of initial
values. In addition, by applying the concept of weak regular splitting, the weighted
max-norm bound is derived for the iteration errors.

The monotone results of our algorithm which we will obtain are based on the
concepts of super-solution set and of lower-solution set. The super-solution set of
the LCP (see [5]) is the set

S = {y ∈ Rn
| y ≥ φ, Ay + b ≥ 0}. (1.4)

This set is also called the feasible set in the LCP literature (see, for example, [7]). It
is well known that, if A is an M-matrix, the super-solution set has a minimal element
which is just the unique solution of the LCP mentioned above.

For problem (1.2), its super-solution set and lower-solution set are respectively

S = {y ∈ Rn
| y ≥ φ, F(y)≥ 0} (1.5)

and
S = {y ∈ Rn

| y ≥ φ, Fi (y)≤ 0 or yi = φi for 1≤ i ≤ n}. (1.6)
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The following two properties of F are useful for our results.

LEMMA 1.3. If F : K 7→ Rn is an M-function, then for any y ∈ K , fi i (t) (t ≥ φi ; 1≤
i ≤ n) is strictly monotone increasing, where fi i (t) is defined by (1.1).

PROOF. Suppose that fi i (t) is not strictly monotone increasing for some y ∈ K and
some i . Then there exist t1, t2 such that t2 > t1 ≥ φi and fi i (t2)≤ fi i (t1). By the
off-diagonal antitone property of F , we have fi j (t2)≤ fi j (t1) for j 6= i . Therefore
F(y1, . . . , yi−1, t2, yi+1, . . . , yn)≤ F(y1, . . . , yi−1, t1, yi+1, . . . , yn). We have
t2 ≤ t1 by the inverse isotone property of F . This is a contradiction, so the lemma
holds. 2

LEMMA 1.4. Let F : K → Rn be an M-function and let I and J be sets satisfying
I ∪ J = N = {1, 2, . . . , n} and I ∩ J = ∅. If vectors y, z ∈ K satisfy yJ ≤ z J and
FI (y)≤ FI (z), then y ≤ z.

PROOF. Let J ′ = {i ∈ N | yi ≤ zi }, I ′ = N\J ′ (without loss of generality, we assume
that I ′ = {1, 2, . . . , k} and J ′ = {k + 1, . . . , n}). Suppose that I ′ is not empty. By
the definition of J ′, we know that J ⊂ J ′ and I ′ ⊂ I . To be more precise,

FI ′(y)≤ FI ′(z), yI ′ > z I ′, yJ ′ ≤ z J ′ . (1.7)

Combining (1.7) with the off-diagonal antitone property of F leads to

FI ′(yI ′, z J ′)≤ FI ′(yI ′, yJ ′)≤ FI ′(z I ′, z J ′). (1.8)

Since yI ′ > z I ′ by (1.7), we have, by the off-diagonal antitone property of F ,

FJ ′(yI ′, z J ′)≤ FJ ′(z I ′, z J ′). (1.9)

Combining (1.9) with (1.8), we have

F(yI ′, z J ′)≤ F(z I ′, z J ′). (1.10)

By the inverse isotone property of F , we have yI ′ ≤ z I ′ . This contradicts (1.7).
Therefore I ′ = ∅ and J ′ = N , which means that y ≤ z. 2

In this paper, our statements assume that problem (1.2) has a unique solution. The
rest of the paper is organized as follows: in Section 2 we propose a multiplicative
Schwarz iteration algorithm for solving problem (1.2) and give some basic properties
of the proposed algorithm; in Section 3 we obtain the monotone convergence of the
iteration algorithm; and in Section 4 we estimate the weighted max-norm error bound
for the iteration algorithm.

2. Multiplicative Schwarz iteration algorithm

In the rest of this paper, we assume that there exists an M-matrix A such that, for
any y, z ∈ K and y ≥ z,

F(y)− F(z)≤ A(y − z). (2.1)
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Based on (2.1), we propose a multiplicative Schwarz iteration algorithm for solving
problem (1.2). To be specific, let Vi ⊂ Rn , i = 1, 2, . . . , m, be subspaces such that

m∑
i=1

Vi ≡ {v ∈ V : v = v1 + · · · + vm, vi ∈ Vi (i = 1, . . . , m)} = Rn. (2.2)

That is, the bases of the subspaces Vi together span the whole space. Let ni = dim(Vi )

be the dimensions of subspaces Vi , i = 1, 2, . . . , m. We consider both overlapping
and nonoverlapping subdomains which correspond to the cases

∑m
i=1 ni > n and∑m

i=1 ni = n, respectively. For simplicity, we identify Vi with Rni . Let Ri : Rn
→ Rni

be the restriction operator. In our context, Ri is an ni × n matrix with rank(Ri )= ni .
Its transpose RT

i : R
ni → Rn is a prolongation operator. Moreover, we choose

the bases of Vi appropriately such that the images of the bases of Vi , under the
prolongation operator RT

i , are linearly independent unit elements in Rn . In other
words, the columns of RT

i consist of columns of the n × n identity matrix. Formally,
such a matrix Ri can be expressed as

Ri = [Ii 0]πi ≥ 0, (2.3)

where Ii is the ni × ni identity matrix and πi is some n × n permutation matrix. In
this case, matrix Ai is an ni × ni principal submatrix of A, which is also an M-matrix.

Given an initial value x0
≥ φ, xk

≥ φ is the approximation to the solution of (1.2) at
the kth step. The multiplicative Schwarz algorithm consists of the following substeps.

ALGORITHM MSA (Multiplicative Schwarz algorithm). For i = 1, 2, . . . , m, do the
following.

(Restriction): restrict the matrix A and the vector φ − xk+(i−1)/m so that

Ai = Ri ART
i , (2.4)

φk,i
= Ri (φ − xk+(i−1)/m). (2.5)

Solve the local problem of finding xk,i
∈ Rni such that

xk,i
≥ φk,i , Ai xk,i

+ Ri F(xk+(i−1)/m)≥ 0,

(xk,i
− φk,i )T (Ai xk,i

+ Ri F(xk+(i−1)/m))= 0.
(2.6)

xk+i/m
= xk+(i−1)/m

+ RT
i xk,i , i = 1, 2, . . . , m. (2.7)

REMARK 2.1. Since A is an M-matrix, Ai , the ni × ni principal submatrix of A, is
also an M-matrix.

It will be convenient to denote

Ei = RT
i Ri , E =

m∑
j=1

E j , i = 1, 2, . . . , m, (2.8)

where for each i , Ri is defined by (2.3). It is easy to verify that

0≤ Ei ≤ I (2.9)
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and E is a diagonal matrix with positive diagonal elements, with I denoting the
identify matrix.

We conclude this section by giving some notation that will be used in the analysis of
the convergence of the algorithm. We denote the matrix (|ai j |) and the vector (|xi |) by
|A| and |x |, respectively. Similarly, the matrix inequalities A ≥ B and A > B, and the
vector inequalities x ≥ y and x > y are understood to be elementwise. Let π ∈ Rn×n

be a permutation matrix. We set Aπ = π AπT , xπ = πx , Fπ = πF , and φπ = πφ. For
i = 1, . . . , m, since

Ai = Ri ART
i =

[
Ii 0

]
Aπi

[
Ii
0

]
is the ni × ni submatrix of Aπi , we can represent the matrix Aπi in the form

Aπi =

[
Ai Gi
Hi Aic

]
. (2.10)

It will also be found convenient to represent vectors xπi and φπi as

xπi =

[
ui
uic

]
, φπi =

[
ϕi
ϕic

]
,

where ui = Ri x ∈ Rni and ϕi = Riφ ∈ Rni .

3. Monotone convergence

In this section we show the monotone convergence of algorithm MSA. First, we
prove some useful properties for the algorithm.

LEMMA 3.1. Let xk,i be the solution of problem (2.6). If xk+(i−1)/m
∈ S for i ∈

{1, 2, . . . , m}, then xk,i
≤ 0.

PROOF. We have xk+(i−1)/m
∈ S; that is, F(xk+(i−1)/m)≥ 0 and xk+(i−1)/m

≥ φ. It
follows from (2.3) and (2.5) that φk,i

≤ 0. Then it is easy to verify that 0 ∈ Rni is a
super-solution of problem (2.6). Since, for each i = 1, . . . , m, Ai is also an M-matrix,
xk,i is the minimal element of the super-solution set of LCP (2.6). Thus xk,i

≤ 0. 2

LEMMA 3.2. Let {xk
} be generated by algorithm MSA. If xk

∈ S, then xk+i/m
∈ S (for

i = 1, 2, . . . , m) and therefore xk+1
∈ S.

PROOF. It suffices to show that xk+i/m
∈ S, i ∈ {1, 2 . . . , m}, if xk+(i−1)/m

∈ S.
Assume that xk+(i−1)/m

∈ S. Let Ri , Ei be defined by (2.3) and (2.8), respectively.
By (2.5) and (2.6), xk,i

≥ Ri (φ − xk+(i−1)/m). Then

xk+i/m
= xk+(i−1)/m

+ RT
i xk,i

≥ xk+(i−1)/m
+ RT

i Ri (φ − xk+(i−1)/m)

= φ + (I − Ei )(x
k+(i−1)/m

− φ)

≥ φ,

(3.1)
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where I is the identity matrix. The last inequality is obtained by (2.9) and xk+(i−1)/m
∈

S. By Lemma 3.1, we know that xk,i
≤ 0. Therefore, by (2.1),

F(xk+i/m)− F(xk+(i−1)/m) = F(xk+(i−1)/m
+ RT

i xk,i )− F(xk+(i−1)/m)

≥ A(RT
i xk,i ).

Since the equalities πTπ = ππT
= I hold for any permutation matrix π ,

F(xk+i/m) ≥ F(xk+(i−1)/m)+ ART
i xk,i

= F(xk+(i−1)/m)+ AπT
i

[
Ii
0

]
xk,i

= F(xk+(i−1)/m)+ πT
i Aπi

[
Ii
0

]
xk,i

= F(xk+(i−1)/m)+ πT
i

[
Ai
Hi

]
xk,i ,

(3.2)

where the last equality follows from (2.10). Obviously, Aπi is an M-matrix. This
implies that Hi ≤ 0. It follows from (3.2) and xk,i

≤ 0 that

F(xk+i/m) ≥ F(xk+(i−1)/m)+ πT
i

[
Ai
0

]
xk,i

= F(xk+(i−1)/m)+ πT
i

[
Ii
0

]
Ai x

k,i

= F(xk+(i−1)/m)+ RT
i Ai x

k,i

≥ F(xk+(i−1)/m)− RT
i Ri F(xk+(i−1)/m)

= (I − Ei )F(x
k+(i−1)/m)

≥ 0,

(3.3)

where the second equality is obtained by (2.3), the second inequality by (2.6) and the
last inequality by (2.9) and F(xk+(i−1)/m)≥ 0. 2

The following theorem shows the monotone convergence of algorithm MSA.

THEOREM 3.3. Let {xk
} be generated by algorithm MSA. If x0

∈ S, then {xk
}

converges to the solution x∗ of problem (1.2). Moreover, for any k ≥ 0,

xk
∈ S and x∗ ≤ xk+1

≤ xk .

PROOF. Since x0
∈ S, xk

∈ S holds for any k by Lemma 3.2 (to be more precise,
xk+i/m

∈ S for i ∈ {1, 2, . . . , m}). Moreover, by (2.7) and Lemma 3.1, xk+1
≤ · · · ≤

xk+i/m
≤ xk+(i−1)/m

≤ · · · ≤ xk holds for any k. So {xk
} is bounded below by φ and

convergent. Let xk
→ x̄ . Clearly, x̄ ≤ xk for all k and xk+i/m

→ x̄ . Taking limits on

https://doi.org/10.1017/S0004972710000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000389


[7] A multiplicative Schwarz algorithm 359

both sides of (2.7) yields xk,i
→ 0 as k→∞ by rank(RT

i )= ni . Therefore, taking
limits in (2.6), we deduce that

−Ri (φ − x̄)≥ 0, Ri F(x̄)≥ 0

and
(−Ri (φ − x̄))T Ri F(x̄)= 0.

It then follows that, for each i = 1, 2, . . . , m,

RT
i Ri (x̄ − φ)≥ 0, RT

i Ri F(x̄)≥ 0 (3.4)

and
(x̄ − φ)T RT

i Ri F(x̄)= 0. (3.5)

Let E =
∑m

i=1 Ei =
∑m

i=1 RT
i Ri . Summing (3.4) and (3.5) over i = 1, 2, . . . , m,

respectively, we get
E(x̄ − φ)≥ 0, EF(x̄)≥ 0 (3.6)

and
(x̄ − φ)T EF(x̄)= 0. (3.7)

Since E is a diagonal matrix with positive diagonals, (3.6) and (3.7) are equivalent to

x̄ − φ ≥ 0, F(x̄)≥ 0, (x̄ − φ)T F(x̄)= 0.

This shows that x̄ is the solution of (1.2), and the lemma follows from the uniqueness
of problem (1.2). 2

Similarly, we can obtain the following theorem.

THEOREM 3.4. Let {xk
} be generated by algorithm MSA and x∗ be the solution of

problem (1.2). If x0
∈ S, then {xk

} converges to the solution of (1.2). Moreover, for
any k ≥ 0,

xk
∈ S and x∗ ≥ xk+1

≥ xk .

4. Weighted max-norm bound

In this section we assume that there exists an M-matrix Ȧ such that for any
y, z ∈ K (y ≥ z),

Ȧ(y − z)≤ F(y)− F(z). (4.1)

We will obtain the weighted max-norm bound for the iteration errors of algorithm
MSA. We first introduce the concepts of the weighted max-norm (see [6]) and
weak regular splitting of a matrix (see, for example, [18, 23]) and some relevant
results.

Let w ∈ Rn be a positive vector. For a vector y ∈ Rn , the weighted max-norm is
defined by

‖y‖w = max
1≤ j≤n

∣∣∣∣ y j

w j

∣∣∣∣.
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For a matrix A ∈ Rn×n , the weighted max-norm is defined by

‖A‖w = sup
‖y‖w=1

{‖Ay‖w | y ∈ Rn
}.

Obviously, if w = (1, . . . , 1)T , the weighted max-norm reduces to the usual
maximum norm of matrices.

LEMMA 4.1 [2]. Let P be a matrix, w a positive vector and γ a positive scalar such
that

|P|w ≤ γw. (4.2)

Then ‖P‖w ≤ γ . In particular, ‖Px‖w ≤ γ ‖x‖w for all x. Moreover, if strict
inequality holds in (4.2), then ‖P‖w < γ .

DEFINITION 4.2. For a matrix A ∈ Rn×n , we call A = M − N a weak regular
splitting of A if M−1

≥ 0 and M−1 N ≥ 0.

The concept of weak regular splitting has been widely used to analyze the convergence
of various splitting algorithms [15, 16]. We will use this concept later in the
estimation of the weighted max-norm error bound for the proposed multiplicative
Schwarz algorithm.

LEMMA 4.3 [2]. Let A = Mi − Ni (i = 1, . . . , m) be weak regular splittings of an
M-matrix A, Ei (i = 1, . . . , m) be defined as in (2.8) and

T = (I − Em M−1
m A)(I − Em−1 M−1

m−1 A) · · · (I − E1 M−1
1 A)

where I is the unit matrix. For any vector Rn
3 e > 0, w = A−1e > 0, there exists a

positive γ ∈ (0, 1) such that ρ(T )≤ ‖T ‖w < γ .

For algorithm MSA, we have the following lemmas.

LEMMA 4.4. Let x∗ be the solution of (1.2) and xk,i be the solution of problem (2.6).
If xk+(i−1)/m

= x∗ for i ∈ {1, . . . , m}, then xk,i
= 0.

PROOF. Since x∗ − φ ≥ 0, F(x∗)≥ 0 and (x∗ − φ)T F(x∗)= 0, it follows from the
nonnegativity of Ri that {

0− φk,i
= Ri (x∗ − φ)≥ 0,

Ai 0+ Ri F(x∗)= Ri F(x∗)≥ 0.
(4.3)

Multiplying these two inequalities and noting (2.8) and (2.9), we have

0 ≤ (0− φk,i )T (Ai 0+ Ri F(x∗))

= (x∗ − φ)T RT
i Ri F(x∗)

≤ (x∗ − φ)T F(x∗)

= 0,

https://doi.org/10.1017/S0004972710000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000389


[9] A multiplicative Schwarz algorithm 361

and hence
(0− φk,i )T (Ai 0+ Ri F(x∗))= 0. (4.4)

It follows from (4.3) and (4.4) that xk,i
= 0 is a solution of (2.6), which is unique

since Ai is an M-matrix. The proof is complete. 2

LEMMA 4.5. Let xk,i be the solution of problem (2.6) and xk+(i−1)/m
πi =

[
uk,i

uk,ic

]
with

uk,i
= Ri xk+(i−1)/m

∈ Rni . Let yk,i
∈ Rni be given by yk,i

= xk,i
+ uk,i . Then yk,i is

the solution of the following LCP on Rni :

y ≥ ϕi ,

Ai y + Ri F(xk+(i−1)/m)− Ai uk,i
≥ 0,

(y − ϕi )T (Ai y + Ri F(xk+(i−1)/m)− Ai uk,i )= 0,

(4.5)

where ϕi
= Riφ.

PROOF. The lemma is obvious by (2.6). 2

Lemmas 4.4 and 4.5 imply the following useful corollary.

COROLLARY 4.6. Let x∗ be the solution of problem (1.2). Then u∗,i = Ri x∗ is the
unique solution of the following NCP in Rni :

y ≥ ϕi , Ai y + Ri F(x∗)− Ai u∗,i ≥ 0,

(y − ϕi )T (Ai y + Ri F(x∗)− Ai u∗,i )= 0,
(4.6)

where ϕi
= Riφ.

LEMMA 4.7. Let {xk
} and {x̄k

} be generated by algorithm MSA. If xk
≥ x̄k at step k,

then xk+i/m
≥ x̄k+i/m for any 1≤ i ≤ m. Therefore xk+1

≥ x̄k+1.

PROOF. It suffices to show that xk+i/m
≥ x̄k+i/m , i ∈ {1, 2, . . . , m}, if xk+(i−1)/m

≥

x̄k+(i−1)/m . Suppose that xk+(i−1)/m
≥ x̄k+(i−1)/m for i ∈ {1, 2, . . . , m}. Let

xk+(i−1)/m
πi =

[
uk,i

uk,ic

]
and x̄k+(i−1)/m

πi =
[

ūk,i

ūk,ic

]
. Let yk,i and ȳk,i be defined in the

same way as yk,i in Lemma 4.5. Since ȳk,i
≥ ϕi (ϕi defined in Lemma 4.5), the

components of ȳk,i can be divided into the following two parts: I = { j | ȳk,i
j = ϕ

i
j }

and J = { j | ȳk,i
j > ϕi

j }. Obviously yk,i
I ≥ ȳk,i

I . By Lemma 4.5, for j ∈ J ,

(Ai ȳk,i
+ Ri F(x̄k+(i−1)/m)− Ai ū

k,i ) j = 0 (4.7)

and
(Ai yk,i

+ Ri F(xk+(i−1)/m)− Ai u
k,i ) j ≥ 0. (4.8)

By (2.1) and the condition xk+(i−1)/m
≥ x̄k+(i−1)/m , we have F(xk+(i−1)/m)−

F(x̄k+(i−1)/m)≤ A(xk+(i−1)/m
− x̄k+(i−1)/m). It follows from the subtraction of (4.7)
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and (4.8) that

0 ≤ (Ai (yk,i
− ȳk,i )+ Ri (F(xk+(i−1)/m)− F(x̄k+(i−1)/m))− Ai (uk,i

− ūk,i )) j

≤ (Ai (yk,i
− ȳk,i )+ Ri A(xk+(i−1)/m

− x̄k+(i−1)/m)− Ai (uk,i
− ūk,i )) j

= (Ai (yk,i
− ȳk,i )+ Gi (uk,ic − ūk,ic)) j

≤ (Ai (yk,i
− ȳk,i )) j ,

(4.9)

where Gi is defined by (2.10), the last inequality by xk+(i−1)/m
≥ x̄k+(i−1)/m and

Gi ≤ 0. Therefore

0 ≤ (Ai (y
k,i
− ȳk,i ))J

= (Ai )J,J (y
k,i
J − ȳk,i

J )+ (Ai )J,I (y
k,i
I − ȳk,i

I )

≤ (Ai )J,J (y
k,i
J − ȳk,i

J ),

where the second inequality is obtained from (Ai )J,I ≤ 0 and yk,i
I ≥ ȳk,i

I . Since
(Ai )J,J is an M-matrix, we have yk,i

J − ȳk,i
J ≥ 0. That is, yk,i

≥ ȳk,i . Therefore,
xk+i/m

≥ x̄k+i/m . 2

Let x∗ be the solution of problem (1.2). By Lemma 4.4, we know that if xk
= x∗,

then xk+i/m
= x∗ for i ∈ {1, 2, . . . , m}. So Lemma 4.7 has the following two

corollaries.

COROLLARY 4.8. Let {xk
} be generated by algorithm MSA. If xk

≥ x∗ at step k, then
xk+i/m

≥ x̄∗ for any 1≤ i ≤ m; therefore xk+1
≥ x∗.

COROLLARY 4.9. Let {xk
} be generated by algorithm MSA. If xk

≤ x∗ at step k, then
xk+i/m

≤ x̄∗ for any 1≤ i ≤ m; therefore xk+1
≤ x∗.

LEMMA 4.10. Let x∗ be the unique solution of (1.2) and let {xk
} be generated by

algorithm MSA. Let x∗πi
=
[

u∗,i

u∗,ic

]
, i = 1, . . . , m and uk,i , uk,ic be as in Lemma 4.5.

Let yk,i
= xk,i

+ uk,i and y∗,i = u∗,i = Ri x∗. If xk
≥ x∗(or xk

≤ x∗), then

Ai |y
k,i
− y∗,i | ≤ −( Ȧi − Ai )|u

k,i
− u∗,i | − Ġi |u

k,ic − u∗,ic |, (4.10)

where the submatrices Ȧi , Ġi of Ȧ are defined in the same way as Ai , Gi in (2.10).

PROOF. We show that (4.10) holds elementwise. Because of the similarity of the
proofs, we only consider the case xk

≥ x∗. By Lemma 4.7, we know that yk,i
≥ y∗,i .

We consider the following two cases.

Case I: (yk,i ) j = (y∗,i ) j . Here, Ai is a matrix with nonpositive off-diagonal
elements, Ġi ≤ 0 and Ȧi − Ai ≤ 0 (this can be easily verified by (2.1) and (4.1)).
Inequality (4.10) follows from the fact that its left-hand side is nonpositive while its
right-hand side is nonnegative.
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Case II: (yk,i ) j > (y∗,i ) j . Since (y∗,i ) j ≥ (ϕ
i ) j , it is obvious that (yk,i ) j >

(ϕi ) j , where ϕi
= Riφ. By Lemma 4.5 and Corollary 4.6,

(Ai yk,i
+ Ri F(xk+(i−1)/m)− Ai u

k,i ) j = 0

and
(Ai y∗,i + Ri F(x∗)− Ai u

∗.i ) j ≥ 0.

It then follows that

(Ai (y
k,i
− y∗,i )+ Ri (F(x

k+(i−1)/m)− F(x∗))− Ai (u
k,i
− u∗,i )) j ≤ 0. (4.11)

Since xk+(i−1)/m
≥ x∗ for any k and i ∈ {1, 2, . . . , m} by Corollary 4.8, we have

F(xk+(i−1)/m)− F(x∗)≥ Ȧ(xk+(i−1)/m
− x∗) by (4.1). Then by (4.11),

0 ≥ (Ai (y
k,i
− y∗,i )+ Ri Ȧ(xk+(i−1)/m

− x∗)− Ai (u
k,i
− u∗,i )) j

= (Ai (y
k,i
− y∗,i )+ ( Ȧi − Ai )(u

k,i
− u∗,i )+ Ġi (u

k,ic − u∗,ic)) j .

Therefore

(Ai (y
k,i
− y∗,i )) j ≤ (−( Ȧi − Ai )(u

k,i
− u∗,i )− Ġi (u

k,ic − u∗,ic)) j . (4.12)

Since yk,i
− y∗,i ≥ 0, −( Ȧi − Ai )≥ 0, and −Ġi ≥ 0, we obtain (4.10). 2

LEMMA 4.11. Let {xk
} be generated by algorithm MSA, let x∗ be the solution of

problem (1.2) and suppose that εk+i/m
= xk+i/m

− x∗. If xk
≥ x∗(or xk

≤ x∗), then,
for any 1≤ i ≤ m,

|εk+i/m
| ≤ (I − Ei M−1

i Ȧ)|εk+(i−1)/m
|, (4.13)

where

Mi = π
T
i

[
Ai 0
0 Aic

]
πi , i = 1, . . . , m. (4.14)

PROOF. By (2.7),

0 ≤ |εk+i/m
| = |εk+(i−1)/m

+ RT
i xk,i
|

=

∣∣∣∣πT
i

[
yk,i
− y∗,i

uk,ic − u∗,ic

]∣∣∣∣
≤ πT

i

[
|yk,i
− y∗,i |

|uk,ic − u∗,ic |

]
≤ πT

i

[
−A−1

i (( Ȧi − Ai )|uk,i
− u∗,i | + Ġi |uk,ic − u∗,ic |)

|uk
ic
− u∗ic
|

]
,
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where Ȧi , Ġi , uk,i , yk,i , u∗,i and y∗,i are as in Lemma 4.10, and the last inequality
follows from Lemma 4.10 and A−1

i ≥ 0. Therefore,

0 ≤ |εk+i/m
|

≤ πT
i

[
Ii − A−1

i Ȧi −A−1
i Ġi

0 Iic

]
|εk+(i−1)/m
πi

|

= |εk+(i−1)/m
| − πT

i |ε
k+(i−1)/m
πi

| + πT
i

[
Ii − A−1

i Ȧi −A−1
i Ġi

0 Iic

]
|εk+(i−1)/m
πi

|

= |εk+(i−1)/m
| + πT

i

[
−A−1

i Ȧi −A−1
i Ġi

0 0

]
|εk+(i−1)/m
πi

|

= |εk+(i−1)/m
| − RT

i A−1
i [ Ȧi Ġi ]|ε

k+(i−1)/m
πi

|

= |εk+(i−1)/m
| − RT

i A−1
i [Ii 0] Ȧπi |ε

k+(i−1)/m
πi

|

= |εk+(i−1)/m
| − RT

i A−1
i [Ii 0]πi ȦπT

i πi |ε
k+(i−1)/m

|

= |εk+(i−1)/m
| − RT

i A−1
i Ri Ȧ|εk+(i−1)/m

|

= (I − Ei M−1
i Ȧ)|εk

|,

where the third and the sixth equalities follow from (2.3), the fourth equality from
(2.10), and the last equality from the relation RT

i A−1
i Ri = Ei M−1

i . Therefore, when
xk
≥ φ (or xk

≤ φ),

|εk+i/m
| ≤ (I − Ei M−1

i Ȧ)|εk+(i−1)/m
|. 2

THEOREM 4.12. Let x∗ be the solution of (1.2), {xk
} be generated by algorithm MSA,

and εk 4
= xk

− x∗ be the iteration error. Then there is a positive γ < 1 such that

‖εk+1
‖w ≤ γ ‖ε

k
‖w. (4.15)

PROOF. Let Ei be defined by (2.8) and Mi be defined by (4.14). It is easy to verify
that Mi , Ni = Ȧ − Mi , i = 1, 2, . . . , m, are weak regular splittings of Ȧ. Then by
Lemma 4.3, there exists a positive scalar γ < 1 such that ‖Ṫ ‖w ≤ γ , where

Ṫ = (I − Em M−1
m Ȧ)(I − Em−1 M−1

m−1 Ȧ) · · · (I − E1 M−1
1 Ȧ).

On the other hand, we known from Lemma 4.11 that when xk
≥ x∗(or xk

≤ x∗),

0 ≤ |εk+1
| = |εk+m/m

|

≤ (I − Em M−1
m Ȧ)|εk+(m−1)/m

|

≤ · · ·

≤ (I − Em M−1
m Ȧ)(I − Em−1 M−1

m−1 Ȧ) · · · (I − E1 M−1
1 Ȧ)|εk

|

= Ṫ |εk
|.
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Therefore, when xk
≥ x∗(or xk

≤ x∗),

‖εk+1
‖w = ‖|ε

k+1
|‖w ≤ ‖Tθ |ε

k
|‖w ≤ γ ‖|ε

k
|‖w = γ ‖ε

k
‖w.

For any initial value x0
≥ φ, xk

≥ φ holds for any k by algorithm MSA. Let
xk
=max(xk, x∗) and xk

=min(xk, x∗), where for y, z ∈ Rn , max(y, z),min(y, z) ∈
Rn are defined by (max(y, z))i =max(yi , zi ) and (min(y, z))i =min(yi , zi ), i =
1, 2, . . . , n. Then xk

≥ xk
≥ xk and xk

≥ x∗ ≥ xk . Let xk+1 and xk+1 be generated
by algorithm MSA with xk , xk as the approximation of the solution of problem (1.2) at
step k, respectively. Then by Lemma 4.7, xk+1

≥ xk+1
≥ xk+1, and by Corollaries 4.8

and 4.9, xk+1
≥ x∗ ≥ xk+1. From the above proof, we know that ‖εk+1

‖w ≤ γ ‖ε
k
‖w

and ‖εk+1
‖w ≤ γ ‖ε

k
‖w, where εk

= xk
− x∗ and εk

= xk
− x∗. Therefore,

‖εk+1
‖w ≤ max(‖εk+1

‖w, ‖ε
k+1
‖w)≤ γ max(‖εk

‖w, ‖ε
k
‖w)= ‖ε

k
‖w.

The proof is complete. 2
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