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1. Introduction

Let S denote the class of functions

f(z) = z + a2z
2 + · · · (1.1)

analytic and univalent in the unit disc U = {z : |z| < 1}. A familiar distortion theorem [5,
p. 4] gives the sharp estimates

r

(1 + r)2
� |f(z)| � r

(1 − r)2
, |z| = r < 1, (1.2)

for such functions, and a theorem of Spencer implies that

lim inf
r→1

log |f(reiθ)|
log(1/(1 − r))

> 0 (1.3)

for at most countably many values of θ [5, p. 42]. In a recent paper, Anderson, Hayman
and Pommerenke [1] considered the set

S(f, ψ) =
{

θ ∈ [−π, π] : lim sup
r→1

|f(reiθ)|
ψ(r)

> 0
}

,

where ψ is a continuous increasing function on [0, 1) for which ψ(r) → ∞ as r → 1 and

lim inf
r→1

(1 − r)2ψ(r) = 0,
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and showed that there exists a function f ∈ S for which S(f, ψ) is residual, and hence
uncountably dense in every interval. (This result gives a strongly negative answer to a
question of Makarov as to whether the set of θ for which (1.3) holds with ‘lim inf’ replaced
by ‘lim sup’ is also countable for functions in S.) Anderson et al . showed further that if
ψ satisfies

lim inf
r→1

log ψ(r)
log(1/(1 − r))

= 0,

then there exists a starlike function g for which S(g, ψ) is residual. A function g is starlike
if g ∈ S and g(U) contains the line segment [0, w] whenever it contains w [7, § 2.2]. As
noted in [1], if f ∈ S, then a classical theorem of Beurling [3, p. 56] implies that

f(eiθ) = lim
r→1

f(reiθ)

exists as a finite limit outside a set of θ of logarithmic capacity zero, so S(f, ψ) has
logarithmic capacity zero for every f ∈ S. The question is raised as to how the size of
S(f, ψ) depends on ψ, and whether, for instance, the size of S(f, ψ) can be measured in
terms of some generalized capacity. It is this question which we address here, although
our focus is on the growth of log |f(z)| rather than |f(z)|, and we provide some answers
for univalent functions which are close-to-convex. Recall that a function f analytic in U ,
and of the form (1.1), is close-to-convex [7, § 2.3] if there is a starlike function g such
that

Re
(

zf ′(z)
g(z)

)
> 0, z ∈ U. (1.4)

This subclass of S contains the starlike functions and also, for example, contains functions
in S that are convex in one direction, that is, functions f for which the intersection of
f(U) with each line of a fixed direction is connected or empty. The results we present deal
with the radial growth of close-to-convex functions at eiθ ∈ ∂U and also, more generally,
with the growth of such functions as z → eiθ within certain regions that make tangential
contact with ∂U at eiθ.

2. Statement of results

To state our results we need the classical notion of capacity [9, p. 194]. Let K be a kernel,
that is, K is a non-negative, even and integrable function on (−π, π), which is decreasing
and unbounded on (0, π) and is extended to R by periodicity. A Borel set E ⊂ [−π, π] is
said to have positive K-capacity if there exists a positive measure µ of total mass 1 and
supported on E for which

sup
θ

∫ π

−π

K(θ − t) dµ(t) < ∞.

Otherwise E is said to have zero K-capacity. When K(t) = (log |t|−1)α, 0 < |t| < π,
0 < α � 1, we call the associated capacity ‘logα-capacity’, and note that the case α = 1
corresponds to logarithmic capacity. It is clear that if a set E has zero logα-capacity,
where 0 < α � 1, then E also has zero logβ-capacity for every β ∈ (0, α).
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We also need the notion of a tangential approach region. Let λ be a decreasing, con-
tinuous function on [0, 1] with λ(1) = 0, and, for θ ∈ [−π, π], set

Ωλ(θ) = {z ∈ U : |arg z − θ| � λ(r)}.

If λ(r) = c(1 − r) here, c any constant, we have angular regions; if λ(r)/(1 − r) → ∞ as
r → 1, then Ωλ makes tangential contact with ∂U at eiθ.

Theorem 2.1. Suppose that f is close-to-convex in U . Let ϕ : [0, 1) → R be a positive,
continuous function such that both ϕ(r) and log(2/(1 − r))/ϕ(r) increase to ∞ on [0, 1).
Suppose also that λ and Ωλ are defined as above and that the continuous, increasing
function Φ defined on [1,∞) by

Φ

(
1

1 − r

)
= log

(
2

1 − r

)/
ϕ(r), 0 � r < 1,

satisfies the condition

Φ

(
1

1 − r

)
= O

(
Φ

(
1

λ(r)

))
, r → 1. (2.1)

Set

E(f, ϕ, λ) =
{

θ ∈ [−π, π] : lim sup
z→eiθ

log |f(z)|
ϕ(r)

> 0, z ∈ Ωλ(θ)
}

.

Then E(f, ϕ, λ) has KΦ-capacity zero, where

KΦ(x) = Φ

(
1

|sin 1
2x|

)
, 0 < |x| < π.

If we set ϕ(r) = (log(2/(1 − r)))α, α ∈ (0, 1), so that Φ(r) = (log(2/(1 − r)))1−α, then
we can take λ(r) = (1 − r)γ , where γ is any fixed number in (0, 1), and we obtain the
following special case of Theorem 2.1.

Let f be close-to-convex, let α ∈ (0, 1), and set

∆γ(θ) = {z ∈ U : |arg z − θ| � (1 − r)γ}

for 0 < γ < 1. Then, for every γ in (0, 1),

log |f(z)| = o(log(1/(1 − r)))α, z → eiθ, z ∈ ∆γ(θ),

for all θ ∈ [−π, π], except possibly for a set of θ of log1−α-capacity zero. In particular,
we have the radial result

log |f(reiθ)| = o(log(1/(1 − r)))α, r → 1, (2.2)

outside a set of θ of zero log1−α-capacity.
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We remark that it is known (see [8] and also [6]) that, if f is univalent, then f(z) →
f(eiθ) as z → eiθ inside the approach regions ∆γ(θ), for every γ ∈ (0, 1), outside a set of
θ of zero logarithmic capacity. This is a strengthening of the result of Beurling referred
to in § 1.

The question arises as to the sharpness of the conclusions of Theorem 2.1. In this
context we prove a partial result which shows that we cannot replace α in (2.2) by any
smaller positive constant, even for starlike functions.

Theorem 2.2. Suppose that α ∈ (0, 1) and that 0 < β < α. Then there is a set
F = F (α, β) ⊂ [−π, π] of positive log1−α-capacity and a starlike function h such that

log |h(reiθ)| �= o((log(1/(1 − r)))β), r → 1, (2.3)

for each θ ∈ F .

3. Proof of Theorem 2.1

The proof of Theorem 2.1 is based on a number of lemmas.

Lemma 3.1. Suppose that K is a kernel and that F is an increasing function on R

for which F (x + 2π) − F (x) = 2π, x ∈ R. If SK denotes the set of t ∈ [−π, π] for which

IK(t) =
∫ π

−π

K(t − x) dF (x) < ∞, (3.1)

then [−π, π] \ SK has zero K-capacity.

Proof of Lemma 3.1 (cf. the proof of Lemma 1 in [8]). Assume the result is false
and that S = [−π, π]\SK has positive K-capacity. Then, by the definition of K-capacity,
there is a positive measure µ, supported on S, for which

sup
x

∫ π

−π

K(x − t) dµ(t) < ∞.

Hence, by Fubini’s theorem, we have
∫

S

IK(t) dµ(t) =
∫ π

−π

∫ π

−π

K(x − t) dF (x) dµ(t)

=
∫ π

−π

(∫ π

−π

K(x − t) dµ(t)
)

dF (x) < ∞,

which is impossible since IK(t) = ∞ on S and µ is supported on S. Consequently, the
set of t ∈ [−π, π] for which (3.1) fails to hold has zero K-capacity. �

Lemma 3.2. Let the analytic function

p(z) = 1 +
∞∑

n=1

pnzn, z ∈ U,
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have positive real part in U . Set

P (z) =
∫ z

0

p(ζ) − 1
ζ

dζ, z ∈ U,

and
P ∗(reiθ) ≡ sup

0�ρ�r
|P (ρeiθ)|

for 0 < r < 1 and θ ∈ [−π, π]. Then, with ϕ, Φ, KΦ, λ and Ωλ defined as in Theorem 2.1,

P ∗(reiθ) = o(ϕ(r)), z → eiθ, z ∈ Ωλ(θ), (3.2)

where r = |z|, for all θ ∈ [−π, π] except possibly for a set of θ of KΦ-capacity zero.

Proof of Lemma 3.2. By a standard representation formula [7, p. 40], we have

p(z) =
1
2π

∫ π

−π

1 + e−ixz

1 − e−ixz
dF (x), z ∈ U,

where F is an increasing function as defined in Lemma 3.1. Then, by a simple calculation,

P (z) =
∫ z

0

p(ζ) − 1
ζ

dζ =
1
π

∫ π

−π

log
(

1
1 − e−ixz

)
dF (x).

We note next, since r/|1 − reit|2 is an increasing function of r in (0, 1) for each fixed t,
that

Re P (z) + log r =
1
2π

∫ π

−π

log
(

r

|1 − e−ixz|2

)
dF (x)

increases with r = |z| in (0, 1) for each fixed arg z. As an easy consequence of this, and
the boundedness of ImP (z) in U , we deduce that (3.2) holds if

u(z) = Re P (z) + 2 log 2

=
1
π

∫ π

−π

log
(

2
|1 − e−ixz|

)
dF (x) = o(ϕ(r)), r = |z|,

as z → eiθ, z ∈ Ωλ(θ).
We next let SΦ denote the set of t ∈ [−π, π] for which

IΦ(t) =
∫ π

−π

Φ

(
1

|sin((t − x)/2)|

)
dF (x) =

∫ π

−π

KΦ(t − x) dF (x) < ∞ (3.3)

and note that, by Lemma 3.1, [−π, π] \ SΦ has zero KΦ-capacity. We complete the proof
of Lemma 3.2 by showing that if IΦ(θ) < ∞, then

u(z) = o(ϕ(r)) as z → eiθ, z ∈ Ωλ(θ).

Without loss of generality we take θ = 0, so that∫ π

−π

KΦ(x) dF (x) < ∞, (3.4)
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and we need to show that

u(reiθr ) = o(ϕ(r)) as r → 1, |θr| � λ(r). (3.5)

To this end, let ε > 0 be given and choose δ ∈ (0, 1) such that∫
|x|�δ

KΦ(x) dF (x) � ε. (3.6)

We also choose r0 ∈ (0, 1) such that 2|θr| � δ for r0 � r < 1, and, for such r, we write

πu(reiθr ) =
∫ π

−π

log
(

2
|1 − ei(θr−x)|

)
dF (x)

=
∫

|x|�δ

+
∫

2|θr|�|x|�δ

+
∫

|x|�2|θr|
= I1 + I2 + I3.

First, if |x| � δ, then |x − θr| � 1
2δ, so

I1 � A log
(

1
δ

)
, (3.7)

where (here and below) A is an absolute constant. Next we write

G = G(x, r, δ) = {x : 2|θr| � |x| � δ, |1 − rei(θr−x)| � 1}.

Then

I2 � A +
∫

G

log(2/(|1 − rei(θr−x)|))
Φ(1/|1 − rei(θr−x)|) Φ

(
1

|1 − rei(θr−x)|

)
dF (x)

� A + ϕ(r)
∫

G

Φ

(
1

|1 − rei(θr−x)|

)
dF (x)

� A + ϕ(r)
∫

|x|�δ

Φ

(
1

sin(|x|/2|)

)
dF (x) � A + εϕ(r), (3.8)

where we have used the monotonicity of φ and Φ, the inequalities |1 − rei(θr−x)| �
|sin(θr − x)| � sin(|x|/2), and (3.6). Finally,

I3 � log
(

2
1 − r

) ∫
|x|�2λ(r)

dF (x)

and, since

Φ

(
1

λ(r)

) ∫
|x|�2λ(r)

dF (x) �
∫

|x|�2λ(r)
Φ

(
1

|sin x/2|

)
dF (x) = o(1)

as r → 1, by (3.4) and the monotonicity of Φ, it follows that

I3 = o

(
log

(
2

1 − r

)/
Φ

(
1

λ(r)

))
= o(ϕ(r)), (3.9)

where we have used (2.1). Combining (3.7), (3.8) and (3.9) we obtain (3.5), and the proof
of Lemma 3.2 is complete. �
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Lemma 3.3 (cf. Theorem 1 in [1]). Suppose that f is close-to-convex in U , so
that, by (1.4), zf ′(z) = g(z)h(z), where g is starlike, h is analytic with positive real part
in U , and h(0) = 1. Set

H(z) =
∫ z

0

h(ζ) − 1
ζ

dζ, z ∈ U,

and let H∗ be defined analogously to P ∗ in Lemma 3.2. Then, for reiθ ∈ U and r > 1
2 ,

|f(reiθ)| � A|g(reiθ)|[H∗(reiθ) + 1]. (3.10)

Proof of Lemma 3.3. For z = reiθ ∈ U ,

f(z) =
∫ z

0
f ′(ζ) dζ =

∫ z

0

g(ζ)h(ζ)
ζ

dζ

=
∫ z

0
g(ζ)

h(ζ) − 1
ζ

dζ +
∫ z

0

g(ζ)
ζ

dζ. (3.11)

Note that, by (1.2), |g(ζ)/ζ| � 4 for |ζ| � 1
2 , and so, for |z| = r > 1

2 ,

∣∣∣∣
∫ z

0

g(ζ)
ζ

dζ

∣∣∣∣ �
∫ r

0

|g(ρeiθ)|
ρ

dρ

� 2 + 2
∫ r

1/2
|g(ρeiθ)| dρ

� 2 + 2|g(reiθ)| � 18|g(reiθ)|, (3.12)

since |g(ρeiθ)| increases with ρ for each fixed θ, as g is starlike, and, using (1.2) again,
|g(reiθ)| � 1

4r � 1
8 for r � 1

2 . Next,
∣∣∣∣
∫ z

0
g(ζ)

h(ζ) − 1
ζ

dζ

∣∣∣∣ =
∣∣∣∣g(z)H(z) −

∫ z

0
H(ζ)g′(ζ) dζ

∣∣∣∣
� |g(z)H(z)| +

∣∣∣∣
∫ r

0
H(ρeiθ)g′(ρeiθ)eiθ dρ

∣∣∣∣
� H∗(reiθ)

[
|g(reiθ)| +

∫ r

0
|g′(ρeiθ)| dρ

]

� 3H∗(reiθ)|g(reiθ)|, (3.13)

where we have used the fact [4] that

∫ r

0
|g′(ρeiθ)| dρ � 2|g(reiθ)|

for starlike functions. Combining (3.11), (3.12) and (3.13), we obtain (3.10), and the
proof of Lemma 3.3 is complete. �
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The proof of Theorem 2.1 is now easy. If f is close-to-convex, then, in the notation of
Lemma 3.3, we have

log |f(reiθ)| � log A + log |g(reiθ)| + H∗(reiθ)

for r > 1
2 , by (3.10). Next, since zg′(z) = g(z)p(z), where p(0) = 1 and Re p(z) > 0 in U ,

P (z) =
∫ z

0

p(ζ) − 1
ζ

dζ =
∫ z

0

(
g′(ζ)
g(ζ)

− 1
ζ

)
dζ = log

(
g(z)
z

)
,

and we thus have
log |f(reiθ)| � log 2A + P ∗(reiθ) + H∗(reiθ)

for r > 1
2 . Applying Lemma 3.2 to P ∗ and H∗, it is clear, since the union of two sets of

zero KΦ-capacity is again of zero KΦ-capacity, that

log |f(reiθ)| = o(ϕ(r)), z → eiθ, z ∈ Ωλ(θ),

for all θ ∈ [−π, π] except possibly for a set of θ of KΦ-capacity zero. This completes the
proof of Theorem 2.1. �

4. Examples

The examples we construct to prove Theorem 2.2 are similar to examples used by the
author in [8].

We begin with the definition of a standard Cantor-type set. Let (δn) denote a decreasing
sequence of positive numbers for which 2π = δ0 > δ1 > δ2 > · · · > δn > · · · and δn → 0
as n → ∞. Set F0 = [−π, π], and, for n � 1, let Fn be constructed so that Fn is the
union of 2n disjoint closed intervals, each of length 2−nδn. Delete an open segment in
the centre of each of these 2n intervals, so that each of the remaining 2n+1 intervals has
length 2−n−1δn+1 and let Fn+1 be the union of these 2n+1 intervals. We define

F =
∞⋂

n=0

Fn,

and note, by a result of Carleson [2, p. 31], that if

∞∑
n=1

(log(2n/δn))γ

2n
< ∞,

then F has positive logγ-capacity, where 0 � γ < 1.
Suppose next that 0 < β < α < 1, set η = 1

4 (α − β), and let (rn) denote the increasing
sequence of numbers in (0, 1) defined by

2n =
(

log
(

1
1 − rn

))1−α+η

, n � 1. (4.1)
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Set

δn = (1 − rn)
(

log
(

1
1 − rn

))1−α+2η

, n � n0,

where n0 is a positive integer chosen so that δn decreases for n � n0. We assume that
the definition of δn is completed in such a way that δ0 = 2π and (δn)∞

n=0 is decreasing.
We note that, by (4.1),

∞∑
n=n0

(log(2n/δn))1−α

2n
�

∞∑
n=n0

(
log

(
1

1 − rn

))−η

< ∞.

Hence, by the Carleson criterion stated above, the Cantor-type set F with the sequence
(δn) as just defined has positive log1−α-capacity.

We next define the starlike function h. We begin by partitioning each of the 2n intervals
of Fn of length

δn

2n
= (1 − rn)

(
log

(
1

1 − rn

))η

, n � n0,

into kn subintervals of equal length (δn/2n)/kn, where

kn =
[(

log
(

1
1 − rn

))η ]
.

This generates 2n(kn + 1) = Kn partition points, and we denote the ordered sequence of
these points by (θmn), 1 � m � Kn. We now define the function h by

h(z) = z

∞∏
n=n0

Kn∏
m=1

(1 − z̄mnz)−2µn , z ∈ U,

where
zmn = rneiθmn , 1 � m � Kn, n � n0,

and

µn = c

(
log

(
1

1 − rn

))−(1−α)−4η

,

with c chosen so that
∞∑

n=n0

Knµn = 1.

The convergence of the last series is a consequence of (4.1) and the inequality

Knµn � 2c

(
log

(
1

1 − rn

))−2η

.

Then

Re
zh′(z)
h(z)

= Re
∞∑

n=n0

µn

Kn∑
m=1

1 + z̄mnz

1 − z̄mnz
> 0
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for z ∈ U , so h is starlike [7, p. 42]. Note that, for n � n0,

log
(

4|h(zmn)|
rn

)
� 2µn log

(
1

1 − rn

)

= 2c

(
log

(
1

1 − rn

))α−4η

= 2c

(
log

(
1

1 − rn

))β

. (4.2)

Suppose now that θ ∈ F . Then θ ∈ Fn for each n � n0, and, by the definition of the
sequence (θmn), there is an element θpn, for some p(1 � p � Kn) depending on n, such
that

|θ − θpn| � δn

2nkn
� 2(1 − rn).

Hence, for the corresponding point zpn, since |zh′(z)/h(z)| � (1 + r)/(1 − r),

log
(

|h(zpn)|
rn

)
− log

(
|h(rneiθ)|

rn

)
= Re

∫ θpn

θ

(
h′(w)
h(w)

− 1
w

)
irneit dt (w = rneit)

= O(1), n → ∞,

and it follows from (4.2) that

log
(

|h(rneiθ)|
rn

)
� 2c

(
log

(
1

1 − rn

))β

+ O(1), n → ∞.

This proves Theorem 2.2.

References

1. J. M. Anderson, W. K. Hayman and Ch. Pommerenke, The radial growth of univa-
lent functions, J. Computat. Appl. Math. 171 (2004), 27–37.

2. L. Carleson, Selected problems on exceptional sets (van Nostrand, Princeton, NJ, 1967).
3. E. F. Collingwood and A. J. Lohwater, The theory of cluster sets (Cambridge Uni-

verity Press, 1966).
4. R. R. Hall, The length of ray-images under starlike mappings, Mathematika 2 (1976),

147–150.
5. W. K. Hayman, Multivalent functions, 2nd edn (Cambridge University Press, 1994).
6. Y. Mizuta, On the boundary limits of harmonic functions with gradient in Lp, Annls

Inst. Fourier 34 (1984), 99–109.
7. Ch. Pommerenke, Univalent functions (Vandenhoeckk and Ruprecht, Göttingen, 1975).
8. J. B. Twomey, Tangential boundary behaviour of harmonic and holomorphic functions,

J. Lond. Math. Soc. 65 (2002), 68–84.
9. A. Zygmund, Trigonometric series, Vol. II, 2nd edn (Cambridge University Press, 1959).

https://doi.org/10.1017/S0013091503000737 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000737

