RADIAL AND TANGENTIAL GROWTH OF CLOSE-TO-CONVEX FUNCTIONS

J. B. TWOMEY
Department of Mathematics, University College Cork, Cork, Ireland (twomeyjb@ucc.ie)

(Received 18 August 2003)

Abstract Some results are presented relating to questions raised in a recent paper by Anderson, Hayman and Pommerenke regarding the size of the set of boundary points of the unit disc at which a univalent function has a prescribed radial growth.

Keywords: radial growth; univalent functions; close-to-convex functions; exceptional sets
2000 Mathematics subject classification: Primary 30C55

1. Introduction

Let \mathcal{S} denote the class of functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\cdots \tag{1.1}
\end{equation*}
$$

analytic and univalent in the unit disc $U=\{z:|z|<1\}$. A familiar distortion theorem [5, p. 4] gives the sharp estimates

$$
\begin{equation*}
\frac{r}{(1+r)^{2}} \leqslant|f(z)| \leqslant \frac{r}{(1-r)^{2}}, \quad|z|=r<1, \tag{1.2}
\end{equation*}
$$

for such functions, and a theorem of Spencer implies that

$$
\begin{equation*}
\liminf _{r \rightarrow 1} \frac{\log \left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|}{\log (1 /(1-r))}>0 \tag{1.3}
\end{equation*}
$$

for at most countably many values of $\theta[\mathbf{5}$, p. 42]. In a recent paper, Anderson, Hayman and Pommerenke [1] considered the set

$$
S(f, \psi)=\left\{\theta \in[-\pi, \pi]: \limsup _{r \rightarrow 1} \frac{\left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|}{\psi(r)}>0\right\},
$$

where ψ is a continuous increasing function on $[0,1)$ for which $\psi(r) \rightarrow \infty$ as $r \rightarrow 1$ and

$$
\liminf _{r \rightarrow 1}(1-r)^{2} \psi(r)=0,
$$

and showed that there exists a function $f \in \mathcal{S}$ for which $S(f, \psi)$ is residual, and hence uncountably dense in every interval. (This result gives a strongly negative answer to a question of Makarov as to whether the set of θ for which (1.3) holds with 'lim inf' replaced by 'limsup' is also countable for functions in \mathcal{S}.) Anderson et al. showed further that if ψ satisfies

$$
\liminf _{r \rightarrow 1} \frac{\log \psi(r)}{\log (1 /(1-r))}=0
$$

then there exists a starlike function g for which $S(g, \psi)$ is residual. A function g is starlike if $g \in \mathcal{S}$ and $g(U)$ contains the line segment $[0, w]$ whenever it contains $w[7, \S 2.2]$. As noted in [1], if $f \in \mathcal{S}$, then a classical theorem of Beurling [3, p. 56] implies that

$$
f\left(\mathrm{e}^{\mathrm{i} \theta}\right)=\lim _{r \rightarrow 1} f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)
$$

exists as a finite limit outside a set of θ of logarithmic capacity zero, so $S(f, \psi)$ has logarithmic capacity zero for every $f \in \mathcal{S}$. The question is raised as to how the size of $S(f, \psi)$ depends on ψ, and whether, for instance, the size of $S(f, \psi)$ can be measured in terms of some generalized capacity. It is this question which we address here, although our focus is on the growth of $\log |f(z)|$ rather than $|f(z)|$, and we provide some answers for univalent functions which are close-to-convex. Recall that a function f analytic in U, and of the form (1.1), is close-to-convex $[\mathbf{7}, \S 2.3]$ if there is a starlike function g such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0, \quad z \in U \tag{1.4}
\end{equation*}
$$

This subclass of \mathcal{S} contains the starlike functions and also, for example, contains functions in \mathcal{S} that are convex in one direction, that is, functions f for which the intersection of $f(U)$ with each line of a fixed direction is connected or empty. The results we present deal with the radial growth of close-to-convex functions at $\mathrm{e}^{\mathrm{i} \theta} \in \partial U$ and also, more generally, with the growth of such functions as $z \rightarrow \mathrm{e}^{\mathrm{i} \theta}$ within certain regions that make tangential contact with ∂U at $\mathrm{e}^{\mathrm{i} \theta}$.

2. Statement of results

To state our results we need the classical notion of capacity [9, p. 194]. Let K be a kernel, that is, K is a non-negative, even and integrable function on $(-\pi, \pi)$, which is decreasing and unbounded on $(0, \pi)$ and is extended to \mathbb{R} by periodicity. A Borel set $E \subset[-\pi, \pi]$ is said to have positive K-capacity if there exists a positive measure μ of total mass 1 and supported on E for which

$$
\sup _{\theta} \int_{-\pi}^{\pi} K(\theta-t) \mathrm{d} \mu(t)<\infty
$$

Otherwise E is said to have zero K-capacity. When $K(t)=\left(\log |t|^{-1}\right)^{\alpha}, 0<|t|<\pi$, $0<\alpha \leqslant 1$, we call the associated capacity ' $\log _{\alpha}$-capacity', and note that the case $\alpha=1$ corresponds to logarithmic capacity. It is clear that if a set E has zero $\log _{\alpha}$-capacity, where $0<\alpha \leqslant 1$, then E also has zero $\log _{\beta}$-capacity for every $\beta \in(0, \alpha)$.

We also need the notion of a tangential approach region. Let λ be a decreasing, continuous function on $[0,1]$ with $\lambda(1)=0$, and, for $\theta \in[-\pi, \pi]$, set

$$
\Omega_{\lambda}(\theta)=\{z \in U:|\arg z-\theta| \leqslant \lambda(r)\}
$$

If $\lambda(r)=c(1-r)$ here, c any constant, we have angular regions; if $\lambda(r) /(1-r) \rightarrow \infty$ as $r \rightarrow 1$, then Ω_{λ} makes tangential contact with ∂U at $\mathrm{e}^{\mathrm{i} \theta}$.

Theorem 2.1. Suppose that f is close-to-convex in U. Let $\varphi:[0,1) \rightarrow \boldsymbol{R}$ be a positive, continuous function such that both $\varphi(r)$ and $\log (2 /(1-r)) / \varphi(r)$ increase to ∞ on $[0,1)$. Suppose also that λ and Ω_{λ} are defined as above and that the continuous, increasing function Φ defined on $[1, \infty)$ by

$$
\Phi\left(\frac{1}{1-r}\right)=\log \left(\frac{2}{1-r}\right) / \varphi(r), \quad 0 \leqslant r<1
$$

satisfies the condition

$$
\begin{equation*}
\Phi\left(\frac{1}{1-r}\right)=O\left(\Phi\left(\frac{1}{\lambda(r)}\right)\right), \quad r \rightarrow 1 \tag{2.1}
\end{equation*}
$$

Set

$$
E(f, \varphi, \lambda)=\left\{\theta \in[-\pi, \pi]: \limsup _{z \rightarrow \mathrm{e}^{\mathrm{i} \theta}} \frac{\log |f(z)|}{\varphi(r)}>0, z \in \Omega_{\lambda}(\theta)\right\}
$$

Then $E(f, \varphi, \lambda)$ has K_{Φ}-capacity zero, where

$$
K_{\Phi}(x)=\Phi\left(\frac{1}{\left|\sin \frac{1}{2} x\right|}\right), \quad 0<|x|<\pi
$$

If we set $\varphi(r)=(\log (2 /(1-r)))^{\alpha}, \alpha \in(0,1)$, so that $\Phi(r)=(\log (2 /(1-r)))^{1-\alpha}$, then we can take $\lambda(r)=(1-r)^{\gamma}$, where γ is any fixed number in $(0,1)$, and we obtain the following special case of Theorem 2.1.

Let f be close-to-convex, let $\alpha \in(0,1)$, and set

$$
\Delta_{\gamma}(\theta)=\left\{z \in U:|\arg z-\theta| \leqslant(1-r)^{\gamma}\right\}
$$

for $0<\gamma<1$. Then, for every γ in $(0,1)$,

$$
\log |f(z)|=o(\log (1 /(1-r)))^{\alpha}, \quad z \rightarrow \mathrm{e}^{\mathrm{i} \theta}, \quad z \in \Delta_{\gamma}(\theta)
$$

for all $\theta \in[-\pi, \pi]$, except possibly for a set of θ of $\log _{1-\alpha}$-capacity zero. In particular, we have the radial result

$$
\begin{equation*}
\log \left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|=o(\log (1 /(1-r)))^{\alpha}, \quad r \rightarrow 1 \tag{2.2}
\end{equation*}
$$

outside a set of θ of zero $\log _{1-\alpha}$-capacity.

We remark that it is known (see [8] and also [6]) that, if f is univalent, then $f(z) \rightarrow$ $f\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ as $z \rightarrow \mathrm{e}^{\mathrm{i} \theta}$ inside the approach regions $\Delta_{\gamma}(\theta)$, for every $\gamma \in(0,1)$, outside a set of θ of zero logarithmic capacity. This is a strengthening of the result of Beurling referred to in $\S 1$.

The question arises as to the sharpness of the conclusions of Theorem 2.1. In this context we prove a partial result which shows that we cannot replace α in (2.2) by any smaller positive constant, even for starlike functions.

Theorem 2.2. Suppose that $\alpha \in(0,1)$ and that $0<\beta<\alpha$. Then there is a set $F=F(\alpha, \beta) \subset[-\pi, \pi]$ of positive $\log _{1-\alpha}$-capacity and a starlike function h such that

$$
\begin{equation*}
\log \left|h\left(r e^{\mathrm{i} \theta}\right)\right| \neq o\left((\log (1 /(1-r)))^{\beta}\right), \quad r \rightarrow 1, \tag{2.3}
\end{equation*}
$$

for each $\theta \in F$.

3. Proof of Theorem 2.1

The proof of Theorem 2.1 is based on a number of lemmas.
Lemma 3.1. Suppose that K is a kernel and that F is an increasing function on \boldsymbol{R} for which $F(x+2 \pi)-F(x)=2 \pi, x \in \boldsymbol{R}$. If S_{K} denotes the set of $t \in[-\pi, \pi]$ for which

$$
\begin{equation*}
I_{K}(t)=\int_{-\pi}^{\pi} K(t-x) \mathrm{d} F(x)<\infty, \tag{3.1}
\end{equation*}
$$

then $[-\pi, \pi] \backslash S_{K}$ has zero K-capacity.
Proof of Lemma 3.1 (cf. the proof of Lemma 1 in [8]). Assume the result is false and that $S=[-\pi, \pi] \backslash S_{K}$ has positive K-capacity. Then, by the definition of K-capacity, there is a positive measure μ, supported on S, for which

$$
\sup _{x} \int_{-\pi}^{\pi} K(x-t) \mathrm{d} \mu(t)<\infty .
$$

Hence, by Fubini's theorem, we have

$$
\begin{aligned}
\int_{S} I_{K}(t) \mathrm{d} \mu(t) & =\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} K(x-t) \mathrm{d} F(x) \mathrm{d} \mu(t) \\
& =\int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} K(x-t) \mathrm{d} \mu(t)\right) \mathrm{d} F(x)<\infty
\end{aligned}
$$

which is impossible since $I_{K}(t)=\infty$ on S and μ is supported on S. Consequently, the set of $t \in[-\pi, \pi]$ for which (3.1) fails to hold has zero K-capacity.

Lemma 3.2. Let the analytic function

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}, \quad z \in U,
$$

have positive real part in U. Set

$$
P(z)=\int_{0}^{z} \frac{p(\zeta)-1}{\zeta} \mathrm{~d} \zeta, \quad z \in U
$$

and

$$
P^{*}\left(r \mathrm{e}^{\mathrm{i} \theta}\right) \equiv \sup _{0 \leqslant \rho \leqslant r}\left|P\left(\rho \mathrm{e}^{\mathrm{i} \theta}\right)\right|
$$

for $0<r<1$ and $\theta \in[-\pi, \pi]$. Then, with $\varphi, \Phi, K_{\Phi}, \lambda$ and Ω_{λ} defined as in Theorem 2.1,

$$
\begin{equation*}
P^{*}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)=o(\varphi(r)), \quad z \rightarrow \mathrm{e}^{\mathrm{i} \theta}, \quad z \in \Omega_{\lambda}(\theta) \tag{3.2}
\end{equation*}
$$

where $r=|z|$, for all $\theta \in[-\pi, \pi]$ except possibly for a set of θ of K_{Φ}-capacity zero.
Proof of Lemma 3.2. By a standard representation formula [7, p. 40], we have

$$
p(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1+\mathrm{e}^{-\mathrm{i} x} z}{1-\mathrm{e}^{-\mathrm{i} x} z} \mathrm{~d} F(x), \quad z \in U
$$

where F is an increasing function as defined in Lemma 3.1. Then, by a simple calculation,

$$
P(z)=\int_{0}^{z} \frac{p(\zeta)-1}{\zeta} \mathrm{~d} \zeta=\frac{1}{\pi} \int_{-\pi}^{\pi} \log \left(\frac{1}{1-\mathrm{e}^{-\mathrm{i} x} z}\right) \mathrm{d} F(x)
$$

We note next, since $r /\left|1-r \mathrm{e}^{\mathrm{i} t}\right|^{2}$ is an increasing function of r in $(0,1)$ for each fixed t, that

$$
\operatorname{Re} P(z)+\log r=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left(\frac{r}{\left|1-\mathrm{e}^{-\mathrm{i} x} z\right|^{2}}\right) \mathrm{d} F(x)
$$

increases with $r=|z|$ in $(0,1)$ for each fixed $\arg z$. As an easy consequence of this, and the boundedness of $\operatorname{Im} P(z)$ in U, we deduce that (3.2) holds if

$$
\begin{aligned}
u(z) & =\operatorname{Re} P(z)+2 \log 2 \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} \log \left(\frac{2}{\left|1-\mathrm{e}^{-\mathrm{i} x} z\right|}\right) \mathrm{d} F(x)=o(\varphi(r)), \quad r=|z|
\end{aligned}
$$

as $z \rightarrow \mathrm{e}^{\mathrm{i} \theta}, z \in \Omega_{\lambda}(\theta)$.
We next let S_{Φ} denote the set of $t \in[-\pi, \pi]$ for which

$$
\begin{equation*}
I_{\Phi}(t)=\int_{-\pi}^{\pi} \Phi\left(\frac{1}{|\sin ((t-x) / 2)|}\right) \mathrm{d} F(x)=\int_{-\pi}^{\pi} K_{\Phi}(t-x) \mathrm{d} F(x)<\infty \tag{3.3}
\end{equation*}
$$

and note that, by Lemma $3.1,[-\pi, \pi] \backslash S_{\Phi}$ has zero K_{Φ}-capacity. We complete the proof of Lemma 3.2 by showing that if $I_{\Phi}(\theta)<\infty$, then

$$
u(z)=o(\varphi(r)) \quad \text { as } z \rightarrow \mathrm{e}^{\mathrm{i} \theta}, z \in \Omega_{\lambda}(\theta) .
$$

Without loss of generality we take $\theta=0$, so that

$$
\begin{equation*}
\int_{-\pi}^{\pi} K_{\Phi}(x) \mathrm{d} F(x)<\infty \tag{3.4}
\end{equation*}
$$

and we need to show that

$$
\begin{equation*}
u\left(r \mathrm{e}^{\mathrm{i} \theta_{r}}\right)=o(\varphi(r)) \quad \text { as } r \rightarrow 1,\left|\theta_{r}\right| \leqslant \lambda(r) \tag{3.5}
\end{equation*}
$$

To this end, let $\varepsilon>0$ be given and choose $\delta \in(0,1)$ such that

$$
\begin{equation*}
\int_{|x| \leqslant \delta} K_{\Phi}(x) \mathrm{d} F(x) \leqslant \varepsilon . \tag{3.6}
\end{equation*}
$$

We also choose $r_{0} \in(0,1)$ such that $2\left|\theta_{r}\right| \leqslant \delta$ for $r_{0} \leqslant r<1$, and, for such r, we write

$$
\begin{aligned}
\pi u\left(r \mathrm{e}^{\mathrm{i} \theta_{r}}\right) & =\int_{-\pi}^{\pi} \log \left(\frac{2}{\mid 1-\mathrm{e}^{\mathrm{i}\left(\theta_{r}-x\right) \mid}}\right) \mathrm{d} F(x) \\
& =\int_{|x| \geqslant \delta}+\int_{2\left|\theta_{r}\right| \leqslant|x| \leqslant \delta}+\int_{|x| \leqslant 2\left|\theta_{r}\right|}=I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

First, if $|x| \geqslant \delta$, then $\left|x-\theta_{r}\right| \geqslant \frac{1}{2} \delta$, so

$$
\begin{equation*}
I_{1} \leqslant A \log \left(\frac{1}{\delta}\right) \tag{3.7}
\end{equation*}
$$

where (here and below) A is an absolute constant. Next we write

$$
G=G(x, r, \delta)=\left\{x: 2\left|\theta_{r}\right| \leqslant|x| \leqslant \delta,\left|1-r \mathrm{e}^{\mathrm{i}\left(\theta_{r}-x\right)}\right| \leqslant 1\right\}
$$

Then

$$
\begin{align*}
I_{2} & \leqslant A+\int_{G} \frac{\log \left(2 /\left(\left|1-r \mathrm{e}^{\mathrm{i}\left(\theta_{r}-x\right)}\right|\right)\right)}{\Phi\left(1 /\left|1-r \mathrm{e}^{\mathrm{i}\left(\theta_{r}-x\right)}\right|\right)} \Phi\left(\frac{1}{\left|1-r \mathrm{e}^{\mathrm{i}\left(\theta_{r}-x\right)}\right|}\right) \mathrm{d} F(x) \\
& \leqslant A+\varphi(r) \int_{G} \Phi\left(\frac{1}{\left|1-r \mathrm{e}^{\mathrm{i}\left(\theta_{r}-x\right)}\right|}\right) \mathrm{d} F(x) \\
& \leqslant A+\varphi(r) \int_{|x| \leqslant \delta} \Phi\left(\frac{1}{\sin (|x| / 2 \mid)}\right) \mathrm{d} F(x) \leqslant A+\varepsilon \varphi(r) \tag{3.8}
\end{align*}
$$

where we have used the monotonicity of ϕ and Φ, the inequalities $\left|1-r \mathrm{e}^{\mathrm{i}\left(\theta_{r}-x\right)}\right| \geqslant$ $\left|\sin \left(\theta_{r}-x\right)\right| \geqslant \sin (|x| / 2)$, and (3.6). Finally,

$$
I_{3} \leqslant \log \left(\frac{2}{1-r}\right) \int_{|x| \leqslant 2 \lambda(r)} \mathrm{d} F(x)
$$

and, since

$$
\Phi\left(\frac{1}{\lambda(r)}\right) \int_{|x| \leqslant 2 \lambda(r)} \mathrm{d} F(x) \leqslant \int_{|x| \leqslant 2 \lambda(r)} \Phi\left(\frac{1}{|\sin x / 2|}\right) \mathrm{d} F(x)=o(1)
$$

as $r \rightarrow 1$, by (3.4) and the monotonicity of Φ, it follows that

$$
\begin{equation*}
I_{3}=o\left(\log \left(\frac{2}{1-r}\right) / \Phi\left(\frac{1}{\lambda(r)}\right)\right)=o(\varphi(r)) \tag{3.9}
\end{equation*}
$$

where we have used (2.1). Combining (3.7), (3.8) and (3.9) we obtain (3.5), and the proof of Lemma 3.2 is complete.

Lemma 3.3 (cf. Theorem 1 in [1]). Suppose that f is close-to-convex in U, so that, by (1.4), $z f^{\prime}(z)=g(z) h(z)$, where g is starlike, h is analytic with positive real part in U, and $h(0)=1$. Set

$$
H(z)=\int_{0}^{z} \frac{h(\zeta)-1}{\zeta} \mathrm{~d} \zeta, \quad z \in U
$$

and let H^{*} be defined analogously to P^{*} in Lemma 3.2. Then, for $r \mathrm{e}^{\mathrm{i} \theta} \in U$ and $r>\frac{1}{2}$,

$$
\begin{equation*}
\left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right| \leqslant A\left|g\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|\left[H^{*}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)+1\right] . \tag{3.10}
\end{equation*}
$$

Proof of Lemma 3.3. For $z=r \mathrm{e}^{\mathrm{i} \theta} \in U$,

$$
\begin{align*}
f(z)=\int_{0}^{z} f^{\prime}(\zeta) \mathrm{d} \zeta & =\int_{0}^{z} \frac{g(\zeta) h(\zeta)}{\zeta} \mathrm{d} \zeta \\
& =\int_{0}^{z} g(\zeta) \frac{h(\zeta)-1}{\zeta} \mathrm{~d} \zeta+\int_{0}^{z} \frac{g(\zeta)}{\zeta} \mathrm{d} \zeta \tag{3.11}
\end{align*}
$$

Note that, by (1.2), $|g(\zeta) / \zeta| \leqslant 4$ for $|\zeta| \leqslant \frac{1}{2}$, and so, for $|z|=r>\frac{1}{2}$,

$$
\begin{align*}
\left|\int_{0}^{z} \frac{g(\zeta)}{\zeta} \mathrm{d} \zeta\right| & \leqslant \int_{0}^{r} \frac{\left|g\left(\rho \mathrm{e}^{\mathrm{i} \theta}\right)\right|}{\rho} \mathrm{d} \rho \\
& \leqslant 2+2 \int_{1 / 2}^{r}\left|g\left(\rho \mathrm{e}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \rho \\
& \leqslant 2+2\left|g\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right| \leqslant 18\left|g\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right| \tag{3.12}
\end{align*}
$$

since $\left|g\left(\rho \mathrm{e}^{\mathrm{i} \theta}\right)\right|$ increases with ρ for each fixed θ, as g is starlike, and, using (1.2) again, $\left|g\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right| \geqslant \frac{1}{4} r \geqslant \frac{1}{8}$ for $r \geqslant \frac{1}{2}$. Next,

$$
\begin{align*}
\left|\int_{0}^{z} g(\zeta) \frac{h(\zeta)-1}{\zeta} \mathrm{~d} \zeta\right| & =\left|g(z) H(z)-\int_{0}^{z} H(\zeta) g^{\prime}(\zeta) \mathrm{d} \zeta\right| \\
& \leqslant|g(z) H(z)|+\left|\int_{0}^{r} H\left(\rho \mathrm{e}^{\mathrm{i} \theta}\right) g^{\prime}\left(\rho \mathrm{e}^{\mathrm{i} \theta}\right) \mathrm{e}^{\mathrm{i} \theta} \mathrm{~d} \rho\right| \\
& \leqslant H^{*}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\left[\left|g\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|+\int_{0}^{r}\left|g^{\prime}\left(\rho \mathrm{e}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \rho\right] \\
& \leqslant 3 H^{*}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\left|g\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right| \tag{3.13}
\end{align*}
$$

where we have used the fact [4] that

$$
\int_{0}^{r}\left|g^{\prime}\left(\rho \mathrm{e}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \rho \leqslant 2\left|g\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|
$$

for starlike functions. Combining (3.11), (3.12) and (3.13), we obtain (3.10), and the proof of Lemma 3.3 is complete.

The proof of Theorem 2.1 is now easy. If f is close-to-convex, then, in the notation of Lemma 3.3, we have

$$
\log \left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right| \leqslant \log A+\log \left|g\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|+H^{*}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)
$$

for $r>\frac{1}{2}$, by (3.10). Next, since $z g^{\prime}(z)=g(z) p(z)$, where $p(0)=1$ and $\operatorname{Re} p(z)>0$ in U,

$$
P(z)=\int_{0}^{z} \frac{p(\zeta)-1}{\zeta} \mathrm{~d} \zeta=\int_{0}^{z}\left(\frac{g^{\prime}(\zeta)}{g(\zeta)}-\frac{1}{\zeta}\right) \mathrm{d} \zeta=\log \left(\frac{g(z)}{z}\right)
$$

and we thus have

$$
\log \left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right| \leqslant \log 2 A+P^{*}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)+H^{*}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)
$$

for $r>\frac{1}{2}$. Applying Lemma 3.2 to P^{*} and H^{*}, it is clear, since the union of two sets of zero K_{Φ}-capacity is again of zero K_{Φ}-capacity, that

$$
\log \left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|=o(\varphi(r)), \quad z \rightarrow \mathrm{e}^{\mathrm{i} \theta}, \quad z \in \Omega_{\lambda}(\theta)
$$

for all $\theta \in[-\pi, \pi]$ except possibly for a set of θ of K_{Φ}-capacity zero. This completes the proof of Theorem 2.1.

4. Examples

The examples we construct to prove Theorem 2.2 are similar to examples used by the author in $[8]$.

We begin with the definition of a standard Cantor-type set. Let $\left(\delta_{n}\right)$ denote a decreasing sequence of positive numbers for which $2 \pi=\delta_{0}>\delta_{1}>\delta_{2}>\cdots>\delta_{n}>\cdots$ and $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$. Set $F_{0}=[-\pi, \pi]$, and, for $n \geqslant 1$, let F_{n} be constructed so that F_{n} is the union of 2^{n} disjoint closed intervals, each of length $2^{-n} \delta_{n}$. Delete an open segment in the centre of each of these 2^{n} intervals, so that each of the remaining 2^{n+1} intervals has length $2^{-n-1} \delta_{n+1}$ and let F_{n+1} be the union of these 2^{n+1} intervals. We define

$$
F=\bigcap_{n=0}^{\infty} F_{n}
$$

and note, by a result of Carleson [2, p. 31], that if

$$
\sum_{n=1}^{\infty} \frac{\left(\log \left(2^{n} / \delta_{n}\right)\right)^{\gamma}}{2^{n}}<\infty
$$

then F has positive $\log _{\gamma}$-capacity, where $0 \leqslant \gamma<1$.
Suppose next that $0<\beta<\alpha<1$, set $\eta=\frac{1}{4}(\alpha-\beta)$, and let $\left(r_{n}\right)$ denote the increasing sequence of numbers in $(0,1)$ defined by

$$
\begin{equation*}
2^{n}=\left(\log \left(\frac{1}{1-r_{n}}\right)\right)^{1-\alpha+\eta}, \quad n \geqslant 1 \tag{4.1}
\end{equation*}
$$

Set

$$
\delta_{n}=\left(1-r_{n}\right)\left(\log \left(\frac{1}{1-r_{n}}\right)\right)^{1-\alpha+2 \eta}, \quad n \geqslant n_{0}
$$

where n_{0} is a positive integer chosen so that δ_{n} decreases for $n \geqslant n_{0}$. We assume that the definition of δ_{n} is completed in such a way that $\delta_{0}=2 \pi$ and $\left(\delta_{n}\right)_{n=0}^{\infty}$ is decreasing. We note that, by (4.1),

$$
\sum_{n=n_{0}}^{\infty} \frac{\left(\log \left(2^{n} / \delta_{n}\right)\right)^{1-\alpha}}{2^{n}} \leqslant \sum_{n=n_{0}}^{\infty}\left(\log \left(\frac{1}{1-r_{n}}\right)\right)^{-\eta}<\infty
$$

Hence, by the Carleson criterion stated above, the Cantor-type set F with the sequence $\left(\delta_{n}\right)$ as just defined has positive $\log _{1-\alpha}$-capacity.
We next define the starlike function h. We begin by partitioning each of the 2^{n} intervals of F_{n} of length

$$
\frac{\delta_{n}}{2^{n}}=\left(1-r_{n}\right)\left(\log \left(\frac{1}{1-r_{n}}\right)\right)^{\eta}, \quad n \geqslant n_{0}
$$

into k_{n} subintervals of equal length $\left(\delta_{n} / 2^{n}\right) / k_{n}$, where

$$
k_{n}=\left[\left(\log \left(\frac{1}{1-r_{n}}\right)\right)^{\eta}\right]
$$

This generates $2^{n}\left(k_{n}+1\right)=K_{n}$ partition points, and we denote the ordered sequence of these points by $\left(\theta_{m n}\right), 1 \leqslant m \leqslant K_{n}$. We now define the function h by

$$
h(z)=z \prod_{n=n_{0}}^{\infty} \prod_{m=1}^{K_{n}}\left(1-\bar{z}_{m n} z\right)^{-2 \mu_{n}}, \quad z \in U,
$$

where

$$
z_{m n}=r_{n} \mathrm{e}^{\mathrm{i} \theta_{m n}}, \quad 1 \leqslant m \leqslant K_{n}, n \geqslant n_{0}
$$

and

$$
\mu_{n}=c\left(\log \left(\frac{1}{1-r_{n}}\right)\right)^{-(1-\alpha)-4 \eta}
$$

with c chosen so that

$$
\sum_{n=n_{0}}^{\infty} K_{n} \mu_{n}=1
$$

The convergence of the last series is a consequence of (4.1) and the inequality

$$
K_{n} \mu_{n} \leqslant 2 c\left(\log \left(\frac{1}{1-r_{n}}\right)\right)^{-2 \eta} .
$$

Then

$$
\operatorname{Re} \frac{z h^{\prime}(z)}{h(z)}=\operatorname{Re} \sum_{n=n_{0}}^{\infty} \mu_{n} \sum_{m=1}^{K_{n}} \frac{1+\bar{z}_{m n} z}{1-\bar{z}_{m n} z}>0
$$

for $z \in U$, so h is starlike [7, p. 42]. Note that, for $n \geqslant n_{0}$,

$$
\begin{align*}
\log \left(\frac{4\left|h\left(z_{m n}\right)\right|}{r_{n}}\right) & \geqslant 2 \mu_{n} \log \left(\frac{1}{1-r_{n}}\right) \\
& =2 c\left(\log \left(\frac{1}{1-r_{n}}\right)\right)^{\alpha-4 \eta}=2 c\left(\log \left(\frac{1}{1-r_{n}}\right)\right)^{\beta} \tag{4.2}
\end{align*}
$$

Suppose now that $\theta \in F$. Then $\theta \in F_{n}$ for each $n \geqslant n_{0}$, and, by the definition of the sequence $\left(\theta_{m n}\right)$, there is an element $\theta_{p n}$, for some $p\left(1 \leqslant p \leqslant K_{n}\right)$ depending on n, such that

$$
\left|\theta-\theta_{p n}\right| \leqslant \frac{\delta_{n}}{2^{n} k_{n}} \leqslant 2\left(1-r_{n}\right)
$$

Hence, for the corresponding point $z_{p n}$, since $\left|z h^{\prime}(z) / h(z)\right| \leqslant(1+r) /(1-r)$,

$$
\begin{aligned}
\log \left(\frac{\left|h\left(z_{p n}\right)\right|}{r_{n}}\right)-\log \left(\frac{\left|h\left(r_{n} \mathrm{e}^{\mathrm{i} \theta}\right)\right|}{r_{n}}\right) & =\operatorname{Re} \int_{\theta}^{\theta_{p n}}\left(\frac{h^{\prime}(w)}{h(w)}-\frac{1}{w}\right) \mathrm{i}_{n} \mathrm{e}^{\mathrm{i} t} \mathrm{~d} t \quad\left(w=r_{n} \mathrm{e}^{\mathrm{i} t}\right) \\
& =O(1), \quad n \rightarrow \infty
\end{aligned}
$$

and it follows from (4.2) that

$$
\log \left(\frac{\left|h\left(r_{n} \mathrm{e}^{\mathrm{i} \theta}\right)\right|}{r_{n}}\right) \geqslant 2 c\left(\log \left(\frac{1}{1-r_{n}}\right)\right)^{\beta}+O(1), \quad n \rightarrow \infty
$$

This proves Theorem 2.2.

References

1. J. M. Anderson, W. K. Hayman and Ch. Pommerenke, The radial growth of univalent functions, J. Computat. Appl. Math. 171 (2004), 27-37.
2. L. Carleson, Selected problems on exceptional sets (van Nostrand, Princeton, NJ, 1967).
3. E. F. Collingwood and A. J. Lohwater, The theory of cluster sets (Cambridge Univerity Press, 1966).
4. R. R. Hall, The length of ray-images under starlike mappings, Mathematika 2 (1976), 147-150.
5. W. K. Hayman, Multivalent functions, 2nd edn (Cambridge University Press, 1994).
6. Y. Mizuta, On the boundary limits of harmonic functions with gradient in L^{p}, Annls Inst. Fourier 34 (1984), 99-109.
7. Ch. Pommerenke, Univalent functions (Vandenhoeckk and Ruprecht, Göttingen, 1975).
8. J. B. Twomey, Tangential boundary behaviour of harmonic and holomorphic functions, J. Lond. Math. Soc. 65 (2002), 68-84.
9. A. Zygmund, Trigonometric series, Vol. II, 2nd edn (Cambridge University Press, 1959).
