
1
Preliminaries

We begin by recalling some basic definitions and results, especially those
from functional analysis, partial differential equations (PDEs), probability, and
stability theories. We review basic notions and notations from deterministic
systems and recall important results from stochastic differential equations. We
introduce two notions of solutions, mild and strong, for infinite-dimensional
stochastic differential equations and consider the existence and uniqueness
of solutions under suitable assumptions. We introduce and clarify various
definitions of stochastic stability in Hilbert spaces, which are a natural
generalization of deterministic stability concepts. To present the proofs of all
the results here would require preparatory background material that would
significantly increase both the size and scope of this book. Therefore, we adopt
the approach of omitting those proofs, which are treated in detail in well-
known standard textbooks such as Da Prato and Zabczyk [53], Pazy [187], and
Yosida [224]. However, those proofs will be presented that are not available in
the existing books and are to be found scattered in the literature, or that discuss
ideas specially relevant to our purpose.

1.1 Linear Operators, Semigroups, and Examples

Throughout this book, the sets of nonnegative integers, positive integers, real
numbers, and complex numbers are denoted by N, N+, R, and C, respectively.
Also, R+ denotes the set of all nonnegative real numbers and R

n denotes
the n-dimensional real vector space equipped with the usual Euclidean norm
‖ · ‖Rn , n ≥ 1. For any λ ∈ C, the symbols Re λ and Im λ denote the real and
imaginary parts of λ, respectively. Given a set E, the symbol 1E denotes the
characteristic function of E, i.e., 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x /∈ E.
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2 Preliminaries

A Banach space (X,‖ · ‖X), real or complex, is a complete normed linear
space over R or C. If the norm ‖ · ‖X is induced by an inner product 〈·,·〉X,
then X is called a Hilbert space. In this book, we always take the inner product
〈·,·〉X of X to be linear in the first entry and conjugate-linear in the second.
We say that a sequence {xn}n≥1 ⊆ X (strongly) converges to x ∈ X if
limn→∞ ‖xn − x‖X = 0. If X contains n linearly independent vectors, but
every system of n + 1 vectors in X is linearly dependent, then X is called an
n-dimensional space, denoted by dim X = n. Otherwise, the space X is said to
be infinite dimensional. We say that X is separable if there exists a countable
set S ⊆ X such that S = X, where S is the closure of S in X. For a Hilbert
space X, a collection {ei}i≥1 of elements in X is called an orthonormal set if
〈ei,ei〉X = 1 for all i, and 〈ei,ej 〉X = 0 if i 
= j . If S is an orthonormal set
and no other orthonormal set contains S as a proper subset, then S is called an
orthonormal basis for X. A Hilbert space is separable if and only if it has a
countable orthonormal basis {ei}, i = 1, 2, . . .

A typical example of Banach spaces is the so-called Sobolev space, which
plays an important role in PDE theory. Let O be a nonempty domain of Rn,
and m be a positive integer. For 1 ≤ p < ∞ we denote by Wm,p(O;X) the
set of all elements y ∈ Lp(O;X) such that y and its distributional derivatives
∂αy of order |α| ≤ m are in Lp(O;X), where

∂α = ∂ |α|

∂x1
α1 · · · ∂xn

αn
and |α| =

n∑
i=1

αi .

Then Wm,p(O;X) is a Banach space under the norm

‖y‖m,p =
⎛
⎝∫

O

∑
|α|≤m

‖∂αy(x)‖p
Xdx

⎞
⎠

1/p

, y ∈ Wm,p(O;X).

On the other hand, we denote by Cm(O;X) the set of all m-times continuously
differentiable vectors in O, and by Cm

0 (O;X) the subspace of Cm(O;X)

consisting of those vectors that have compact supports in O. Another important
Banach space W

m,p

0 (O;X) is defined as the completion of C∞
0 (O;X) in the

metric of Wm,p(O;X).
In general, the spaces Wm,p(O;X) and W

m,p

0 (O;X) do not coincide for
bounded O. However, it is true that

Wm,p(Rn,R) = W
m,p

0 (Rn,R).

The case p = 2 is special since the spaces Wm,2(O;X), W
m,2
0 (O;X) (fre-

quently written as Hm(O;X), Hm
0 (O;X)) are Hilbert spaces if X is a Hilbert

space under the scalar product
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1.1 Linear Operators, Semigroups, and Examples 3

〈y,z〉m,2 =
∫

�

∑
|α|≤m

〈∂αy(x),∂αz(x)〉Xdx.

Let X and Y be two Banach spaces and D(A) a subspace of X. A map
A : D(A) ⊆ X → Y is called a linear operator if the following relation holds:

A(αx + βy) = αAx + βAy for any x, y ∈ D(A), α, β ∈ R or C.

The subspace D(A) is called the domain of A. If A maps any bounded subsets
of D(A) into bounded subsets of Y , we say that A is a bounded linear operator.
We denote by L (X,Y ) the set of all bounded linear operators A from X to Y

with D(A) = X. It may be shown that L (X,Y ) is a Banach space under the
operator norm ‖ · ‖L (X,Y ), or simply ‖ · ‖, given by

‖A‖ := sup
‖x‖X≤1

‖Ax‖Y = sup
‖x‖X=1

‖Ax‖Y for any A ∈ L (X,Y ).

For simplicity, we frequently write L (X) for L (X,X).
For any linear operator A : D(A) ⊆ X → Y , we define K (A) = {x ∈

D(A) : Ax = 0} and R(A) = {Ax : x ∈ D(A)}. They are called the kernel
and range spaces of A, respectively.

Theorem 1.1.1 Let X and Y be two Banach spaces. Then the following results
hold:

(i) (Open Mapping Theorem) A ∈ L (X,Y ) and R(A) = Y imply that for
any open set E ⊆ X, the set A(E) is open in Y .

(ii) (Inverse Mapping Theorem) A ∈ L (X,Y ) with R(A) = Y and
K (A) = {0} imply that the inverse operator A−1 exists and
A−1 ∈ L (Y,X).

(iii) (Principle of Uniform Boundedness) � ⊆ L (X,Y ) and
supA∈� ‖Ax‖Y < ∞ for each x ∈ X imply that supA∈� ‖A‖ < ∞.

Let Y = K where K = R or C. Any f ∈ L (X,K) is called a bounded
linear functional on X. In the sequel, we put X∗ = L (X,K), which is a
Banach space under the norm ‖ · ‖X∗ and call X∗ the dual space of X. Quite
often, we write f (x) for any f ∈ X∗, x ∈ X by 〈〈x,f 〉〉X,X∗ , and the symbol
〈〈·,·〉〉X,X∗ is referred to as the duality pair between X and X∗. The following
theorem assures the existence of nontrivial bounded linear functionals on any
Banach space.
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4 Preliminaries

Theorem 1.1.2 (Hahn–Banach Theorem) Let X be a Banach space and X0 a
subspace of X. Let f0 ∈ X∗

0 , then there exists an extension f ∈ X∗ of f0 such
that ‖f ‖X∗ = ‖f0‖X∗

0
.

Since X∗ is a Banach space, we may also talk about the dual space of X∗,
i.e., X∗∗ := (X∗)∗. It is known that for any x ∈ X, by defining

x∗∗(f ) = f (x) = 〈〈x,f 〉〉X,X∗ for any f ∈ X∗, (1.1.1)

we have x∗∗ ∈ X∗∗ and ‖x‖X = ‖x∗∗‖X∗∗ . Thus, the map x → x∗∗ from X

into X∗∗ is linear and injective and preserves the norm so that X is embeddable
into X∗∗. If we regard x exactly the same as x∗∗, then X ⊂ X∗∗. In general, the
strict inclusion may hold, a fact that naturally leads to the following definition.

Definition 1.1.3 A Banach space X is said to be reflexive if X = X∗∗.
Precisely, for any x∗∗ ∈ X∗∗, there exists an x ∈ X such that (1.1.1) holds.

The most important class of reflexive spaces are Hilbert spaces, a fact that
is justified by the following theorem.

Theorem 1.1.4 (Riesz Representation Theorem) Let X be a Hilbert space,
then X∗ = X. More precisely, for any f ∈ X∗, there exists a unique element
y ∈ X such that

f (x) = 〈x,y〉X for any x ∈ X, (1.1.2)

and conversely, for any y ∈ X, by defining f as in (1.1.2), one has f ∈ X∗. It
clearly makes sense to write 〈·,·〉X for 〈〈·,·〉〉X,X∗ on this occasion.

Closed linear operators, generally unbounded, frequently appear in applica-
tions, notably in connection with partial differential equations.

Definition 1.1.5 Let X and Y be two Banach spaces. A linear operator
A : D(A) ⊆ X → Y is said to be closed if whenever

xn ∈ D(A), n ≥ 1, and lim
n→∞ xn = x, lim

n→∞ Axn = y,

it follows that x ∈ D(A) and Ax = y.

For a closed linear operator A : D(A) ⊆ X → X, it can be shown that the
domain D(A) is a Banach space under the graph norm ‖x‖D(A) := ‖x‖X +
‖Ax‖X, x ∈ D(A). It is easy to see that any bounded linear operator having a
closed domain is closed. The converse statement can be true in the following
sense.

Theorem 1.1.6 (Closed Graph Theorem) Suppose that A : D(A) ⊆ X → Y is
a closed linear operator. If D(A) is closed in X, then operator A is bounded.
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1.1 Linear Operators, Semigroups, and Examples 5

In general, it is difficult to prove that an operator is closed. The next theorem
states that if this operator is the algebraic inverse of a bounded linear operator,
then it is closed.

Theorem 1.1.7 Assume that X and Y are Banach spaces and let A be a linear
operator from X to Y . If A is invertible with A−1 ∈ L (Y,X), then A is a
closed linear operator.

Let X and Y be two Banach spaces and a linear operator A : D(A) ⊆ X →
Y is called densely defined if D(A) = X. If A is densely defined, we may
define Banach space adjoint operator A′ : D(A′) ⊆ Y ∗ → X∗ of A in the
following manner. Let

D(A′) = {
y∗ ∈ Y ∗ : y∗A is continuous on D(A)

}
.

The linear operator A′ : D(A′) ⊆ Y ∗ → X∗ is defined by

〈〈x,A′y∗〉〉X,X∗ = 〈〈Ax,y∗〉〉Y,Y ∗ for any y∗ ∈ D(A′), x ∈ D(A).

It turns out that A′ is uniquely defined and closed and map A → A′ is linear.
Now let us consider the case where A is a densely defined linear operator on

a Hilbert space X. Then the Banach space adjoint A′ of A is a mapping from
X∗ into itself. Let ι : X → X∗ be the map that assigns, for each x ∈ X, the
bounded linear functional 〈·,x〉X in X∗. Then ι is a linear isometry, which is
surjective by the Riesz Representation Theorem. Now define a map A∗ : X →
X by

A∗ = ι−1A′ι.

Then A∗ : X → X satisfies

〈Ay,x〉X = (ιx)(Ay) = (A′ιx)(y) = 〈y,ι−1A′ιx〉X = 〈y,A∗x〉X
for any y ∈ D(A), x ∈ D(A∗), and A∗ is called the Hilbert space adjoint,
or simply adjoint, of A. In general, A∗ 
= A′. However, if X is a real Hilbert
space, then A∗ = A′.

Definition 1.1.8 Let X be a Hilbert space. A densely defined linear operator
A : D(A) ⊆ X → X is symmetric if for all x, y ∈ D(A), 〈Ax,y〉X =
〈x,Ay〉X. A symmetric operator A is called self-adjoint if D(A∗) = D(A).

All bounded and symmetric operators are self-adjoint. It may be shown that
the adjoint of a densely defined linear operator on a Hilbert space X is closed,
and so is every self-adjoint operator. A linear operator A on the Hilbert space
X is called nonnegative, denoted by A ≥ 0, if 〈Ax,x〉X ≥ 0 for all x ∈ D(A).
It is called positive if 〈Ax,x〉X > 0 for all non zero x ∈ D(A) and coercive if
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6 Preliminaries

〈Ax,x〉X ≥ c‖x‖2
X for some c > 0 and all x ∈ D(A). We denote the spaces

of all nonnegative, positive, and coercive operators by L +(X), L +
0 (X), and

L +
c (X), respectively. A linear operator B is called the square root of A if

B2 = A.

Theorem 1.1.9 Let A be a linear operator on the Hilbert space X. If A

is self-adjoint and nonnegative, then it has a unique square root, denoted
by A1/2, which is self-adjoint and nonnegative such that D(A)⊂ D(A1/2).
Furthermore, if A is positive, so is A1/2.

Theorem 1.1.10 Suppose that A is self-adjoint and nonnegative on the Hilbert
space X. Then A is coercive if and only if it has a bounded inverse A−1 ∈
L (X). In this case, A−1 is self-adjoint and nonnegative.

In the family of all bounded linear operators, there is a subclass, called
compact operators, which are in many ways analogous to linear operators in
finite-dimensional spaces.

Definition 1.1.11 Let X and Y be two Banach spaces. An operator
A ∈ L (X,Y ) is compact if for any bounded sequence {xn}n≥1 in X, the
sequence {Axn}n≥1 has a convergent subsequence in Y .

Let X be a separable Hilbert space and {ei}∞i=1 an orthonormal basis. Then
for any nonnegative operator A ∈ L (X), we define T r(A) = ∑∞

i=1〈ei,Aei〉X.
The number T r(A) is called the trace of A and is independent of the
orthonormal basis chosen. An operator A ∈ L (X) is called trace class if
T r(|A|) < ∞, where |A| = (A∗A)1/2. If we endow the trace norm ‖A‖1 :=
T r(|A|) for any trace class operator A, then the associated family L1(X)

of all trace class operators forms a Banach space. An operator A ∈ L (X)

is called Hilbert–Schmidt if T r(A∗A) < ∞. The norm corresponding to a
Hilbert–Schmidt inner product is ‖A‖2 := (T r(A∗A))1/2 under which all the
Hilbert–Schmidt operators form a Hilbert space L2(X). It is easy to show
that the following inclusions hold and they are all proper when X is infinite
dimensional:

{trace class} ⊂ {Hilbert–Schmidt} ⊂ {compact}.

An operator A ∈ L (X) is said to have finite trace if the series

∞∑
i=1

〈ei,Aei〉X < ∞ (1.1.3)
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1.1 Linear Operators, Semigroups, and Examples 7

for any orthonormal basis {ei}i≥1 in X. In general, it is not true that

∞∑
i=1

|〈ei,Aei〉X| < ∞ (1.1.4)

for some orthonormal basis implies that A ∈ L1(X). However, for a trace
class operator A the sum in (1.1.3) is absolutely convergent and independent
of the choice of the orthonormal basis. In particular, for a nonnegative operator
A ∈ L (X), the concept of a trace class operator coincides with that of an
operator having finite trace.

Let A : D(A) ⊆ X → X be a linear operator on a Banach space X. The
resolvent set ρ(A) of A is the set of all complex numbers λ ∈ C such that
(λI − A)−1 exists and (λI − A)−1 ∈ L (X), where I is the identity operator
on X. For λ ∈ ρ(A), we write R(λ,A) = (λI − A)−1 and call it the resolvent
operator of A. The spectrum of A is defined to be σ(A) = C \ ρ(A). It may
be shown that the resolvent set ρ(A) is open in C.

Definition 1.1.12 Let A be a linear operator on Banach space X. Define

(i) σp(A) = {λ ∈ C : λI − A is not injective}, and σp(A) is called the point
spectrum of A. Moreover, each λ ∈ σp(A) is called the eigenvalue, and
each nonzero x ∈ D(A) satisfying (λI − A)x = 0 is called the
eigenvector of A corresponding to λ.

(ii) σc(A) = {λ ∈ C : λI − A is injective, R(λI − A) 
= X and
R(λI − A) = X}, and σc(A) is called the continuous spectrum of A.

(iii) σr(A) = {λ ∈ C : λI − A is injective and R(λI − A) 
= X}, and σr(A)

is called the residual spectrum of A.

From this definition, it is immediate that σp(A), σc(A), and σr(A) are
mutually exclusive and their union is σ(A). If A is self-adjoint, we have
σr(A) = Ø. Note that if dim X < ∞, all the linear operators A on X are
compact and in this case σ(A) = σp(A), a fact that is extendable to any
compact operators in infinite-dimensional spaces.

Theorem 1.1.13 Let X be a Banach space with dim X = ∞. If A ∈ L (X) is
compact, then one and only one of the following cases holds:

(i) σ(A) = {0};
(ii) σ(A) = {0, λ1, . . . ,λn} where for each 1 ≤ k ≤ n, λk 
= 0 and λk is an

eigenvalue of A;
(iii) σ(A) = {0, λ1, λ2, . . .} where for each k ≥ 1, λk 
= 0 and λk is an

eigenvalue of A with limk→∞ λk = 0.
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8 Preliminaries

In this book, we shall employ the theory of linear semigroups, which
usually allows a uniform treatment of many systems such as some parabolic,
hyperbolic, and delay equations.

Definition 1.1.14 A strongly continuous or C0-semigroup S(t) ∈ L (X), t ≥
0, on a Banach space X is a family of bounded linear operators S(t) : X → X,
t ≥ 0, satisfying the following:

(i) S(0)x = x for all x ∈ X;
(ii) S(t + s) = S(t)S(s) for all t , s ≥ 0;

(iii) S(t) is strongly continuous, i.e., for any x ∈ X, S(·)x : [0,∞) → X is
continuous.

For any C0-semigroup S(t) on X, there exist constants M ≥ 1 and μ ∈ R

such that

‖S(t)‖ ≤ Meμt, t ≥ 0. (1.1.5)

In particular, the semigroup S(t) is called (uniformly) bounded if μ = 0 and
exponentially stable if μ < 0. The semigroup S(t), t ≥ 0, is called eventually
norm continuous if the map t → S(t) is continuous from (r,∞) to L (X) for
some r > 0. In particular, S(t), t ≥ 0, is simply called norm continuous if the
map t → S(t) is continuous from (0,∞) to L (X). If M = 1 in (1.1.5), the
semigroup S(t), t ≥ 0, is called a pseudo contraction C0-semigroup, and if
further μ = 0, it is called a contraction C0-semigroup.

In association with the C0-semigroup S(t), we may define a linear operator
A : D(A) ⊆ X → X by

D(A) =
{
x ∈ X : lim

t↓0

S(t)x − x

t
exists in X

}
,

Ax = lim
t↓0

S(t)x − x

t
, x ∈ D(A).

The operator A is called the infinitesimal generator, or simply generator, of the
semigroup {S(t)}t≥0, which is frequently written as etA, t ≥ 0, in this book. It
may be shown that A is densely defined and closed.

For an arbitrary C0-semigroup etA, t ≥ 0, the following theorem gives a
characterization of its generator A.

Theorem 1.1.15 (Hille–Yosida Theorem) Let X be a Banach space and
A : D(A) ⊆ X → X be a linear operator. Then the following are equivalent:

(i) A generates a C0-semigroup etA, t ≥ 0, on X such that (1.1.5) holds for
some M ≥ 1 and μ ∈ R.
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1.1 Linear Operators, Semigroups, and Examples 9

(ii) A is densely defined, closed, and there exist constants μ ∈ R, M ≥ 1
such that ρ(A) ⊃ {λ ∈ C : Re λ > μ} and

‖R(λ,A)n‖ ≤ M

(Re λ − μ)n
for any n ∈ N+, Re λ > μ. (1.1.6)

In general, it is not easy to verify (1.1.6) for each n ∈ N+. We can give,
however, a simple characterization of linear operators that generate pseudo
contraction C0-semigroups.

Definition 1.1.16 A linear operator A : D(A) ⊂ X → X on a Banach space
X is called dissipative if

‖(λI − A)x‖X ≥ λ‖x‖X for all x ∈ D(A) and λ > 0.

Theorem 1.1.17 (Lumer and Phillips Theorem) Let A : D(A) ⊂ X → X

be a linear operator defined on X. Then A is the generator of a contraction
C0-semigroup on X if and only if

(i) A is a closed linear operator with dense domain in X;
(ii) A and its adjoint operator A′ are dissipative.

If X is a Hilbert space, the conditions in Theorem 1.1.17 may be simplified.
In particular, we have the following proposition, which is a consequence of
Theorem 1.1.17.

Proposition 1.1.18 Let A be a closed, densely defined linear operator on a
Hilbert space X. There exists a real number α ∈ R such that

Re 〈x, Ax〉X ≤ α‖x‖2
X for all x ∈ D(A), (1.1.7)

and

Re 〈x, A∗x〉X ≤ α‖x‖2
X for all x ∈ D(A∗), (1.1.8)

if and only if A generates a pseudo contraction C0-semigroup etA, t ≥ 0,
satisfying

‖etA‖ ≤ eαt for all t ≥ 0. (1.1.9)

We state some properties of C0-semigroups and their generators.

Proposition 1.1.19 Let etA, t ≥ 0, be a C0-semigroup on a Banach space X

and An = nAR(n,A) ∈ L (X), n ∈ ρ(A), called the Yosida approximation
of A. Then
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10 Preliminaries

lim
n→∞ ‖Anx − Ax‖X = 0 for any x ∈ D(A),

and

lim
n→∞ sup

t∈[0,T ]
‖etAnx − etAx‖X = 0 for any x ∈ X, T ≥ 0.

Proposition 1.1.20 For the generator A of a C0-semigroup etA, t ≥ 0, on a
Banach space X,

(i) if x ∈ D(A), then etAx ∈ D(A) and

d

dt
etAx = etAAx = AetAx for all t ≥ 0;

(ii) for every t ≥ 0 and x ∈ X,∫ t

0
esAxds ∈ D(A) and A

∫ t

0
esAxds = etAx − x.

Let X be a Banach space and consider the following deterministic linear
Cauchy problem on X,⎧⎨

⎩
dy(t)

dt
= Ay(t), t ≥ 0,

y(0) = y0 ∈ X,

(1.1.10)

where A is a linear operator that generates a C0-semigroup etA, t ≥ 0, on X.
If y0 ∈ D(A), we have by Proposition 1.1.20 that etAy0 ∈ D(A) and

d

dt
(etAy0) = AetAy0, t ≥ 0. (1.1.11)

Hence, y(t) = etAy0, t ≥ 0, is a solution of the differential equation (1.1.10).
If y0 /∈ D(A), the equality (1.1.11) may not be meaningful. However, for any
y0 ∈ X it does make sense to define y(t) = etAy0, t ≥ 0, which is called
a mild solution of (1.1.10). Quite a few partial differential equations can be
formulated in the form (1.1.10).

Example 1.1.21 Let {λi} be a sequence of complex numbers and {ei}, i ∈ N+,
be an orthonormal basis in a separable Hilbert space H . We define on H an
operator A by

Ax =
∞∑
i=1

λi〈x,ei〉H ei, x ∈ D(A),

with its domain

D(A) =
{

x ∈ H :
∞∑
i=1

|λi〈x,ei〉H |2 < ∞
}

.
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1.1 Linear Operators, Semigroups, and Examples 11

It can be shown that A is a closed, densely defined linear operator and λI − A

is invertible if and only if infi≥1 |λi − λ| > 0. Moreover, it is true by virtue
of the Hille–Yosida Theorem that A generates a C0-semigroup etA, t ≥ 0, if
supi≥1{Re λi} < ∞, and in this case, we have

etAx =
∞∑
i=1

eλi t 〈x,ei〉H ei, x ∈ H, t ≥ 0.

Moreover, if λi ∈ R for each i ≥ 1, then A is a self-adjoint operator on H .
As a special case, we could take A to be the classical Laplace operator

� = ∂2/∂x2
1 + · · · + ∂2/∂x2

N on some open bounded set O ⊂ R
N with zero

boundary conditions on a smooth boundary ∂O such that

D(A) = H 2(O) ∩ H 1
0 (O).

In particular, if N = 1 and O = (0,1), we may have ei(x) = √
2 sin(iπx),

x ∈ (0,1), λi = −i2π2, i ≥ 1. As soon as locating the eigenfunctions and
eigenvalues of �, one can give in terms of semigroup et�, t ≥ 0, the solution
of the partial differential equation⎧⎨

⎩
∂y(t,x)

∂t
= �y(t,x) in O, t ≥ 0,

y(t,x)|∂O = 0, t ≥ 0; y(0,x) = y0(x) ∈ L2(O).

Example 1.1.22 Let A be a self-adjoint, nonnegative operator on a Hilbert
space H such that the coercive condition holds:

〈Ax,x〉H ≥ β‖x‖2
H, ∀x ∈ D(A), β > 0.

Then, by virtue of Theorem 1.1.10, A has a bounded inverse A−1 that is
self-adjoint and nonnegative. Moreover, we know by virtue of Theorem 1.1.9
that both the square root operators A1/2 and A−1/2 are well defined. Let
B ∈ L (D(A1/2),H) be a self-adjoint operator on H with D(A1/2) ⊂ D(B).
Assume that there exists a number α ∈ R such that

〈x,Bx〉H ≤ α‖x‖2
H, x ∈ D(B).

We are interested in the following abstract wave equation on H ,⎧⎪⎨
⎪⎩

d2u(t)

dt2
+ Au(t) = B

du(t)

dt
, t ≥ 0,

u(0) = u0 ∈ H,
du

dt
(0) = u1 ∈ H .

(1.1.12)

To formulate (1.1.12) as a first-order equation in the form (1.1.10), we
introduce a space H = D(A1/2) × H , equipped with a mapping 〈·,·〉H : H ×
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H → C,

〈y,ỹ〉H := 〈A1/2y1,A
1/2ỹ1〉H + 〈y2,ỹ2〉H,

where

y =
(

y1

y2

)
, ỹ =

(
ỹ1

ỹ2

)
∈ H.

It turns out that H is a Hilbert space under the inner product 〈·,·〉H. Define two
linear operators on H

A =
(

0 I

−A B

)
with domain D(A) = D(A) × D(A1/2),

and

B =
(

A−1B −A−1

I 0

)
,

then B is a bounded linear operator on H with the range R(B) = D(A) and B
is the inverse of operator A. This implies by Theorem 1.1.7 that A is a closed
operator. Hence, (1.1.12) may be rewritten as a first-order differential equation
on H, ⎧⎨

⎩
dy(t)

dt
= Ay(t), t ≥ 0,

y(0) = y0 ∈ H,

(1.1.13)

where

y(t) =
(

u(t)

du(t)/dt

)
, y0 =

(
u0

u1

)
.

On the other hand, it is straightforward to show that

Re 〈Ay,y〉H = Re 〈Ay1,y2〉H +Re 〈−Ay1+By2,y2〉H ≤ α‖y2‖2
H ≤ |α|‖y‖2

H

for any y ∈ D(A)×D(A1/2). Similarly, the adjoint of A is easily shown to be

A∗
(

y1

y2

)
=

(
0 −I

A B

)(
y1

y2

)
, D(A∗) = D(A),

which immediately yields Re 〈A∗y,y〉H ≤ |α|‖y‖2
A for any y ∈ D(A∗).

Therefore, by virtue of Proposition 1.1.18, it follows that A generates a
C0-semigroup etA, t ≥ 0, on H.

As a typical example, we define for t ≥ 0, x ∈ (0,1),

Au(t,x) = −u′′
xx(t,x), D(A) = H 2(0,1) ∩ H 1

0 (0,1),

and Bu(t,x) = αu′
x(t,x).
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1.1 Linear Operators, Semigroups, and Examples 13

It is easy to verify that all the preceding conditions are satisfied, and the partial
differential equation that gives the abstract version (1.1.13) is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2u(t,x)

∂t2
− ∂2u(t,x)

∂x2
= α

∂2u(t,x)

∂x∂t
, t ≥ 0, α ∈ R,

u(t,0) = u(t,1) = 0, u(0,x) = u0(x) ∈ H 2(0,1) ∩ H 1
0 (0,1), t ≥ 0,

∂u

∂t
(0,x) = u1(x) ∈ H 1

0 (0,1).

Example 1.1.23 Consider a retarded differential equation in C
n of the form{

dy(t) = A0y(t)dt + A1y(t − r)dt, t ≥ 0,

y(0) = φ0 ∈ C
n, y(t) = φ1(t) ∈ L2([−r,0];Cn), − r ≤ t ≤ 0,

(1.1.14)
where A0, A1 ∈ L (Cn).

We wish to formulate (1.1.14) into an abstract linear differential equation
on a proper Hilbert space. To this end, we introduce a product Hilbert space
H = C

n × L2([−r,0];Cn), equipped with the usual inner product, and
meanwhile a linear operator A on H by

A� =
(

A0φ0 + A1φ1(−r),
dφ1

dθ
(θ)

)
for φ = (φ0,φ1) ∈ D(A),

with its domain

D(A) =
{
φ = (φ0,φ1) ∈ H : φ1 ∈ W 1,2([−r,0];Cn), φ1(0) = φ0

}
.

It may be shown (see Appendix B) that A generates a C0-semigroup etA,
t ≥ 0, on H and the equation (1.1.14) becomes a Cauchy problem without
delay on H, {

dY (t) = AY (t)dt, t ≥ 0,

Y (0) = (φ0,φ1) ∈ H,
(1.1.15)

where Y (t) := (y(t),yt ), t ≥ 0, and yt (θ) := y(t + θ), θ ∈ [−r,0], is the
so-called lift-up system of (1.1.14).

Last, we review some specific types of C0-semigroups with delicate
properties.

Definition 1.1.24 Let etA, t ≥ 0, be a C0-semigroup on a Banach space X

with its generator A : D(A) ⊂ X → X.

(i) The semigroup etA, t ≥ 0, is called eventually compact if there exists
r > 0 such that etA ∈ L (X) is compact for any t ∈ (r,∞). Particularly,
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if etA is compact for all t ∈ (0,∞), this semigroup is simply called
compact.

(ii) The semigroup etA, t ≥ 0, is called analytic if it admits an extension ezA

on z ∈ �θ := {z ∈ C : |arg z| < θ} for some θ ∈ (0,π ], such that
z → ezA is analytic on �θ and satisfies the following:

(a) e(z1+z2)A = ez1Aez2A for any z1, z2 ∈ �θ ;
(b) lim�θ̄�z→0 ‖ezAx − x‖X = 0 for all x ∈ X and 0 < θ̄ < θ .

Theorem 1.1.25 Assume that A generates a C0-semigroup etA, t ≥ 0, on
a Banach space X. For some r ≥ 0, the semigroup etA is compact at any
t ∈ (r,∞) if and only if etA is norm continuous on (r,∞) and the operator
R(λ,A)erA is compact for some (thus, all) λ ∈ ρ(A).

Theorem 1.1.26 Assume that A generates a C0-semigroup etA, t ≥ 0, which
is eventually compact on a Banach space X, then the spectrum of A consists
of isolated eigenvalues, i.e., for any numbers m and M , there are only a finite
number of eigenvalues of A in the strip

{λ ∈ C : m ≤ Re λ ≤ M}.
For analytic semigroups, we have the following characterization.

Theorem 1.1.27 Let etA, t ≥ 0, be a C0-semigroup on a Banach space X with
generator A. The following statements are equivalent.

(i) The semigroup etA, t ≥ 0, is analytic.
(ii) There exist constants M > 0 and L ≥ 0 such that

‖AR(λ,A)n+1‖ ≤ M/nλn for all λ > nL, n = 1, 2, . . .

(iii) The semigroup etA is differentiable for t > 0, i.e., for every x ∈ X, the
mapping t → etAx is differentiable for t > 0, and there exist constants
M > 0 and μ > 0 such that

‖AetA‖ ≤ M

t
eμt for t > 0.

In general, it is hard to check (ii) for every n ∈ N+. The following theorem
is much more easily verified and thus quite useful in application.

Theorem 1.1.28 Let etA, t ≥ 0, be a C0-semigroup with generator A on X.
The semigroup etA, t ≥ 0, is analytic if and only if there exist M > 0 and
μ ∈ R such that

ρ(A) ⊃ {λ : Re λ ≥ μ} and ‖R(λ,A)‖ ≤ M

1 + |λ| for all Re λ ≥ μ.
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1.1 Linear Operators, Semigroups, and Examples 15

Assume that A generates an exponentially stable analytic semigroup etA,
t ≥ 0, on X. Then iR ⊂ ρ(A) and for any α ∈ (0,1), the integral

(−A)−α := sin απ

π

∫ ∞

0
t−αR(t,A)dt

is well defined, which is a bounded linear operator (−A)−α ∈ L (X). It may be
shown that this operator (−A)−α is injective, a fact that leads to the following
definition:

(−A)α :=
{

[(−A)−α]−1 if 0 < α < 1,

I if α = 0.

The operator (−A)α with domain D((−A)α), α ∈ [0,1), is called a fractional
power of −A. Further, we have a relation

D((−A)β) ⊂ D((−A)α) ⊂ X, 0 ≤ α ≤ β < 1,

and there exists a number Cα > 0 such that

‖(−A)αetA‖ ≤ Cαt−α for each t > 0.

In finite-dimensional spaces, it is well known that the spectrum relation
σ(etA)\{0} = etσ (A) holds for each t ≥ 0 between C0-semigroup etA, t ≥ 0,
and its generator A. A partial result remains valid in infinite dimensions, which
is the content of the following spectral mapping theorem.

Theorem 1.1.29 Let etA, t ≥ 0, be a C0-semigroup with generator A on a
Banach space X. Then

etσ (A) ⊂ σ(etA)\{0} for all t ≥ 0. (1.1.16)

In general, the strict inclusion in (1.1.16) may hold, although this is not the
case for norm continuous semigroups in which compact, differentiable, and
analytic semigroups are typical examples.

Theorem 1.1.30 Let etA, t ≥ 0, be a C0-semigroup that is (eventually) norm
continuous on the Banach space X. Then

σ(etA)\{0} = etσ (A) for each t ≥ 0.

For an arbitrary C0-semigroup etA, t ≥ 0, it is not generally true that the
adjoint of etA is a C0-semigroup since the mapping etA → (etA)′ does not
necessarily preserve the strong continuity of etA. But this could be true if the
underlying space X is a Hilbert space.
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16 Preliminaries

Proposition 1.1.31 Suppose that X is a Hilbert space and etA, t ≥ 0, is a
C0-semigroup on X. Then (etA)∗, t ≥ 0, is a C0-semigroup on X with its
infinitesimal generator A∗, i.e., (etA)∗ = etA∗

for t ≥ 0.

1.2 Stochastic Processes and Martingales

A measurable space is a pair (�,F ) where � is a set and F is a σ -field, also
called a σ -algebra, of subsets of �. This means that the family F contains
� and is closed under the operation of taking complements and countable
unions of its elements. If (�,F ) and (S,S ) are two measurable spaces, then
a mapping ξ from � into S such that the set {ω ∈ � : ξ(ω) ∈ A} = {ξ ∈ A}
belongs to F for arbitrary A ∈ S is called measurable from (�,F ) into
(S,S ). In this book, we shall only be concerned with the case where S is a
complete metric space. Thus, we always set S = B(S), the Borel σ -field
of S, which is the smallest σ -field containing all closed (or open) subsets of S.

A probability measure P on a measurable space (�,F ) is a σ -additive
function from F into [0,1] such that P(�) = 1. The triplet (�,F,P) is called
a probability space. If (�,F,P) is a probability space, we set

F = {A ⊂ � : ∃B,C ∈ F ; B ⊂ A ⊂ C, P(B) = P(C)}.

Then it may be shown that F is a σ -field, called the completion of F . If
F = F , the probability space (�,F,P) is said to be complete. Unless
otherwise stated, completeness of (�,F,P) will always be assumed in this
book.

Let (�,F,P) denote a complete probability space. A family {Ft }, t ≥ 0,
for which each Ft is a sub-σ -field of F and forms an increasing family of
σ -fields, is called a filtration of F . With this {Ft }t≥0, one can associate
another filtration by setting σ -fields Ft+ = ⋂

s>t Fs for t ≥ 0. We say that
the filtration {Ft }t≥0 is normal or satisfies the usual conditions if Ft+ = Ft

for each t ≥ 0 and F0 contains all P-null sets in F .
If ξ is a measurable mapping from (�,F ) into (S,B(S)) or an S-valued

random variable and P a probability measure on (�,F ), then we will denote
by Dξ (·) the image of P under the mapping ξ :

Dξ (A) = P{ω ∈ � : ξ(ω) ∈ A}, ∀A ∈ B(S).

This is a probability measure on (S,B(S)), which is called the distribution or
law of ξ .
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1.2 Stochastic Processes and Martingales 17

Definition 1.2.1 Let {Ft }t≥0 be a filtration of F . A mapping τ : � → [0, ∞]
is called the stopping time with respect to {Ft }, t ≥ 0, if {ω : τ(ω) ≤ t} ∈ Ft

for each t ≥ 0. The σ -field of events prior to τ , denoted by Fτ , is defined as

Fτ = {
A ∈ F : A ∩ {τ ≤ t} ∈ Ft for every t ≥ 0

}
.

Now assume that S = H , a separable Hilbert space with norm ‖·‖H , and ξ is
an H -valued random variable on (�,F,P). By a standard limit argument, we
can define the integral

∫
�

ξ(ω)P(dω) of ξ with respect to probability measure
P, often denote it by E(ξ). The integral defined in this way is a Bochner type of
integral, which is frequently called the expectation or mean of ξ in this book.
We denote by Lp(�,F,P;H), p ∈ [1,∞), the set of all equivalence classes of
H -valued random variables with respect to the equivalence relation of almost
sure equality. Then one can verify that Lp(�,F,P; H), p ∈ [1,∞), equipped
with the norm

‖ξ‖p = (E‖ξ‖p
H )1/p, p ∈ [1, ∞), ξ ∈ Lp(�,F,P;H),

is a Banach space. If � is an interval [0,T ], F = B([0,T ]), 0 ≤ T < ∞, and
P is the standard Lebesgue measure on [0,T ], we also write Lp([0,T ];H), or
more simply Lp(0,T ) when no confusion is possible.

Let K, H be two separable Hilbert spaces. A mapping �(·) from � into
L (K,H) is said to be measurable if for arbitrary k ∈ K , �(·)k is measurable
as a mapping from (�,F ) into (H,B(H)). Let F (L (K,H)) be the smallest
σ -field of subsets of L (K,H) containing all sets of the form

{� ∈ L (K,H) : �k ∈ A}, k ∈ K, A ∈ B(H),

then � : � → L (K,H) is a measurable mapping from (�,F ) into the
measurable space (L (K,H),F (L (K,H))). The mapping � is said to be
Bochner integrable with respect to measure P if for arbitrary k ∈ K , the
mapping �(·)k is Bochner integrable and there exists a bounded linear operator
� ∈ L (K,H) such that∫

�

�(ω)kP(dω) = �k, ∀ k ∈ K .

The operator � is then denoted by � =
∫

�

�(ω)P(dω) and called the Bochner

integral of �.
An arbitrary family M = {M(t)}, t ≥ 0, of H -valued random variables

defined on a probability space (�,F,P) is called a stochastic or random
process. Sometimes, we also write M(t,ω) or Mt in place of M(t) for all t ≥ 0.
In the study of stochastic processes, we usually need additional regularities of
M to proceed with our program. Specially, a process M is called measurable
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18 Preliminaries

if the mapping M(·,·) : R+ × � → H is B(R+) × F -measurable. Let {Ft },
t ≥ 0, be an increasing family of sub-σ -fields of F . The process M is called
{Ft }t≥0-adapted if each M(t) is measurable with respect to Ft , t ≥ 0. Clearly,
M is always {FM

t }t≥0-adapted, where FM
t := σ(M(s); 0 ≤ s ≤ t) is

the family of the σ -fields generated by M = {M(t)}t≥0. For any ω ∈ �,
the function M(·,ω) is called a path or trajectory of M . A stochastic process
N = {N(t)} is called a modification or version of M = {M(t)} if

P{ω ∈ � : M(t,ω) 
= N(t,ω)} = 0, ∀t ≥ 0.

Given an H -valued process M = {M(t)}, t ≥ 0, and a stopping time
τ : � → R+, it is desirable for many applications that the mapping
Mτ : � → H defined by Mτ(ω)(ω) = M(τ(ω),ω) is also measurable. This is
generally not the case if M is only a measurable process. However, this could
be true if we confine ourselves to a smaller class of stochastic processes, i.e.,
progressively measurable processes, defined as follows.

Definition 1.2.2 Suppose that M = {M(t)}, t ≥ 0, is an H -valued process
and {Ft }t≥0 is a filtration of F . The process M is said to be progressively
measurable with respect to {Ft }t≥0 if for every t ≥ 0, the mapping

[0,t] × � → H, (s,ω) → M(s,ω),

is B([0,t]) × Ft -measurable.

It is obvious that if M is progressively measurable with respect to {Ft }t≥0,
then it must be both measurable and {Ft }t≥0-adapted. The following theorem
provides the extent to which the converse is true.

Proposition 1.2.3 Suppose that stochastic process M = {M(t)}, t ≥ 0, is
measurable and adapted to the filtration {Ft }t≥0. Then it has a progressively
measurable modification.

Theorem 1.2.4 Let M = {M(t)}, t ≥ 0, be an H -valued progressively
measurable process with respect to {Ft }t≥0, and let τ be a finite stopping
time. Then the random variable Mτ is Fτ -measurable.

Let G be an arbitrary sub-σ -field of F . We use E(· | G ) to denote the
conditional expectation given G . Let M be a stochastic process with state
space H . Then it can be shown that there exists a function P(s, x, t, �)

(s < t, x ∈ H, � ∈ B(H)) associated with the process M such that

(a) for all (s, x, t), P(s, x, t, ·) is a probability measure on B(H);
(b) for each (s, t, �), P(s, · , t, �) is B(H)-measurable;
(c) E(1{M(t)∈�} | FM

s ) = P(s, x, t, �)|x=M(s) almost surely.
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1.2 Stochastic Processes and Martingales 19

An H -valued process M = M(t), t ≥ 0, defined on (�,F,P) and adapted
to the family {Ft }t≥0 is said to be a Markov process with respect to {Ft }t≥0 if
the following property is satisfied: for all t, s ≥ 0,

E(f (M(t + s)) | Ft ) = E(f (M(t + s)) | σ(M(t))) a.s. (1.2.1)

for every bounded real-valued Borel function f (·) on H . In particular, if a
relation of the form (1.2.1) continues to hold when the time t is replaced by a
stopping time τ , we say that M has strong Markov property or M is a strong
Markov process. If M is a Markov process with respect to FM

t , t ≥ 0, we
simply say that M is a Markov process. A function P(s, x, t, �) satisfying (a),
(b), and (c) is called the transition probability function of the Markov process
M if it further satisfies the following Chapman–Kolmogorov equation

P(s, x, t, �) =
∫

H

P(s, x, u, dy)P(u, y, t, �) (1.2.2)

for all x ∈ H , � ∈ B(H) and (s, u, t) such that s ≤ u ≤ t . The process M(t),
t ≥ 0, is said to have homogeneous transition probability function if

P(s,x,t,�) = P(0,x,t − s,�) for all x ∈ H, � ∈ B(H), s ≤ t .

In this case, we write P(x,t,�) for P(0,x,t,�) and the Chapman–Kolmogorov
equation (1.2.2) now reduces to

P(x, s + t, �) =
∫

H

P(x, s, dy)P(y, t, �) for every s, t ≥ 0. (1.2.3)

On the class of all bounded Borel-measurable functions Bb(H) on H , we can
define for any t ≥ 0 that

Pt f (x) =
∫

H

f (y)P(t,x,dy), ∀ f ∈ Bb(H). (1.2.4)

Then by virtue of (1.2.3), we can establish the following semigroup property
for the family Pt , t ≥ 0:

Pt+sf = PtPsf for any s, t ≥ 0, (1.2.5)

which is, in essence, a restatement of (1.2.3). Let Cb(H) be the class of all
real-valued, bounded continuous functions on H .

Definition 1.2.5 Semigroup Pt , t ≥ 0, is said to have the Feller property if for
arbitrary f ∈ Cb(H) and t ≥ 0, function Pt f (·) is continuous. Further, Pt is
said to have the strongly Feller property if for arbitrary f ∈ Bb(H) and t ≥ 0,
the function Pt f (·) is continuous.
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Let H be a Hilbert space and M = {M(t)}, t ≥ 0, be an H -valued stochastic
process defined on (�,F,{Ft }t≥0,P). If E‖M(t)‖H < ∞ for all t ≥ 0, then
M is called integrable. An integrable and adapted H -valued process M(t),
t ≥ 0, is said to be a martingale with respect to {Ft }t≥0 if

E(M(t) | Fs) = M(s) P − a.s. (1.2.6)

for arbitrary t ≥ s ≥ 0. By the definition of conditional expectations, relation
(1.2.6) is equivalent to the following statement∫

F

M(t)P(dω) =
∫

F

M(s)P(dω), ∀F ∈ Fs, s ≤ t .

We also recall that a real-valued integrable and adapted process M(t), t ≥ 0, is
said to be a submartingale (resp. supermartingale) with respect to {Ft }t≥0 if

E(M(t) | Fs) ≥ M(s), (resp. E(M(t) | Fs) ≤ M(s)), P − a.s.

for any 0 ≤ s ≤ t . An H -valued stochastic process M is a continuous
martingale if it is a martingale with almost surely continuous trajectories.
An adapted process M is called a local martingale if there exists a sequence
of stopping times τn such that τn ↑ ∞ and for each n, the stopped process
M(t ∧ τn), t ≥ 0, is a martingale.

If M(t), t ≥ 0, is an H -valued continuous martingale, then ‖M(t)‖2
H , t ≥ 0,

is a real-valued continuous submartingale. By the well-known Doob–Meyer
decomposition, there exists a unique real-valued, nondecreasing process,
denoted by [M](t), with [M](0)= 0 such that ‖M(t)‖2

H − [M](t) is an
Ft -martingale. Recall the following strong law of large numbers for martin-
gales, which is useful in stability analysis.

Proposition 1.2.6 Let M(t), t ≥ 0, be an H -valued, continuous local
martingale with M(0) = 0. If

lim
t→∞

[M](t)

t
< ∞ a.s.

then

lim
t→∞

M(t)

t
= 0 a.s.

Let [0,T ], 0 ≤ T <∞, be a subinterval of [0,∞). An H -valued stochastic
process M(t), t ∈ [0,T ], defined on (�,F,{Ft }t∈[0,T ],P), is a continuous
Lp-martingale, p ≥ 1, with respect to {Ft }t∈[0,T ] if it is a martingale
with almost surely continuous trajectories and satisfies, in addition,
E supt∈[0,T ] ‖M(t)‖p

H < ∞. Let us denote by Mp
T (H) the space of all
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H -valued continuous Lp-martingales on [0,T ]. By using Theorem 1.2.9 it is
possible to show the following result.

Theorem 1.2.7 For p ≥ 1, the space Mp
T (H), equipped with the norm

‖M‖Mp
T (H) =

(
E sup

t∈[0,T ]
‖M(t)‖p

H

)1/p

, ∀M ∈ Mp
T (H),

is a Banach space.

An L1(H)-valued process V is said to be nondecreasing if operator V (t),
t ∈ [0,T ], is nonnegative, so denote it by V (t) ≥ 0, i.e., for any x ∈ H and
t ∈ [0,T ], 〈V (t)x, x〉H ≥ 0 and V (t) − V (s) ≥ 0 if 0 ≤ s ≤ t ≤ T . For
any M ∈ M2

T (H), an L1(H)-valued continuous, adapted, and nondecreasing
process V (t) with V (0) = 0 is called a quadratic variation process of M if for
arbitrary a, b ∈ H , the process

〈M(t), a〉H 〈M(t), b〉H − 〈V (t)a, b〉H, t ∈ [0,T ],

is a continuous Ft -martingale, t ∈ [0,T ]. One can show that such a process
V (t), t ∈ [0,T ], is uniquely determined, thus denote it by 〈〈M〉〉(t), t ∈ [0,T ].

Theorem 1.2.8 For arbitrary M ∈ M2
T (H), there exists a unique nonnegative

symmetric process QM(t) ∈ L1(H), t ∈ [0,T ], such that

〈〈M〉〉(t) =
∫ t

0
QM(s)d[M](s) for all t ∈ [0,T ].

This process M(t), t ∈ [0,T ], is called a QM(t)-martingale process.

In a similar manner, one can define the so-called cross quadratic variation
for any M ∈ M2

T (H), N ∈ M2
T (H) as a unique continuous process 〈〈M,N〉〉

of operators on H such that for arbitrary a, b ∈ H , the process

〈M(t),a〉H 〈N(t),b〉H − 〈〈〈M,N〉〉(t)a, b〉H, t ∈ [0,T ],

is a continuous Ft -martingale, t ∈ [0,T ].
As an immediate consequence of the classic maximal inequalities for real-

valued submartingales, we have the following Doob’s type of inequalities in
Hilbert spaces.

Theorem 1.2.9 Let M(t), t ∈ [0,T ], be a continuous H -valued, Lp-
martingale, p ≥ 1. Then the following statements hold.

(i) For p ≥ 1 and any λ > 0,

P

{
sup

0≤t≤T

‖M(t)‖H ≥ λ

}
≤ λ−p sup

0≤t≤T

E(‖M(t)‖p
H ). (1.2.7)
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(ii) For p > 1,

E

(
sup

0≤t≤T

‖M(t)‖p
H

)
≤

(
p

p − 1

)p

sup
0≤t≤T

E(‖M(t)‖p
H ). (1.2.8)

(iii) For p = 1,

E

(
sup

0≤t≤T

‖M(t)‖H

)
≤ 3E{T r(〈〈M〉〉(t))}1/2. (1.2.9)

1.3 Wiener Processes and Stochastic Integration

Let K be a separable Hilbert space with inner product 〈·,·〉K . A probability
measure N on (K,B(K)) is called Gaussian if for arbitrary u ∈ K , there
exist numbers μ ∈ R, σ > 0, such that

N {x ∈ K : 〈u,x〉K ∈ A} = N(μ,σ)(A), A ∈ B(R),

where N(μ,σ) is the standard one-dimensional normal distribution with mean
μ and variance σ . It is true that if N is Gaussian, there exist an element m ∈ K

and a nonnegative self-adjoint operator Q ∈ L1(K) such that the characteristic
function of N is given by∫

K

ei〈λ, x〉KN (dx) = ei〈λ, m〉K− 1
2 〈Qλ, λ〉K, λ ∈ K .

Therefore, the measure N is uniquely determined by m and Q and denoted
thus by N (m,Q). In particular, we call m the mean and Q the covariance
operator of N (m,Q), respectively.

For a self-adjoint and nonnegative operator Q ∈ L (K), we assume,
without loss of generality, that there exists an orthonormal basis {ek}k≥1 in K ,
and a bounded sequence of positive numbers λk such that

Qek = λkek, k = 1,2, . . .

A stochastic process Wt or W(t), t ≥ 0, is called a Q-Wiener process in K if

(i) W(0) = 0;
(ii) W(t) has continuous trajectories;

(iii) W(t) has independent increments;
(iv) DW(t)−W(s) = N (0,(t − s)Q) for all t ≥ s ≥ 0.

If T r(Q) = ∑∞
k=1 λk < ∞, then W is a genuine Wiener process that has

continuous paths in K . It is possible that T r(Q) = ∞, e.g., Q = I , and in
this case, we call W a cylindrical Wiener process in K , which, in general, has
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continuous paths only in another Hilbert space larger than K . It is immediate
that the quadratic variation of a Q-Wiener process with T r(Q) < ∞ is given
by 〈〈W 〉〉(t) = tQ, t ≥ 0.

Assume that probability space (�,F,P) is equipped with a normal filtration
{Ft }t≥0. Let W(t), t ≥ 0, be a Q-Wiener process in K that is assumed to be
adapted to {Ft }t≥0, and for every t > s ≥ 0 the increments W(t) − W(s) are
independent of Fs . Then W(t), t ≥ 0, is a continuous martingale relative to
{Ft }t≥0, and W has the following representation:

W(t) =
∞∑
i=1

√
λiwi(t)ei, t ≥ 0, (1.3.1)

where (λi > 0, i ∈ N+) are the eigenvalues of Q with their corresponding
eigenvectors (ei, i ∈ N+), and (wi(t), i ∈ N+) is a group of independent
standard real-valued Brownian motions. We introduce a subspace KQ =
R(Q1/2) of K , which is a Hilbert space endowed with the inner product

〈u,v〉KQ
= 〈Q−1/2u,Q−1/2v〉K for any u, v ∈ KQ.

Let L2(KQ,H) denote the space of all Hilbert–Schmidt operators from KQ

into H . Then L2(KQ,H) turns out to be a separable Hilbert space under the
inner product

〈L,P 〉L2(KQ,H) = T r[LQ1/2(PQ1/2)∗] for any L, P ∈ L2(KQ,H).

For arbitrarily given T ≥ 0, let B(t,ω), t ∈ [0,T ], be an L2(KQ,H)-valued
process. We define the following norm for arbitrary t ∈ [0,T ],

|B|t :=
{
E

∫ t

0
T r

[
B(s)Q1/2(B(s)Q1/2)∗

]
ds

} 1
2

. (1.3.2)

In particular, we denote all L2(KQ,H)-valued measurable processes B,
adapted to the filtration {Ft }t∈[0,T ], satisfying |B|T < ∞ by U2

(
[0,T ] ×

�; L2(KQ,H)
)
. Recall (see Da Prato and Zabczyk [53]) that the stochastic

integral
∫ t

0
B(s)dW(s) ∈ H , t ≥ 0, may be defined for all B ∈ U2([0,T ] ×

�; L2(KQ,H)) by∫ t

0
B(s)dW(s) = L2 − lim

n→∞

n∑
i=1

∫ t

0

√
λiB(s)eidwi(s), t ∈ [0,T ].

(1.3.3)
It is worth mentioning that stochastic integral (1.3.3) may be generalized, as
in finite-dimensional cases, to any L2(KQ,H)-valued adapted process B(·)
satisfying
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P

{∫ T

0
‖B(s)‖2

L2(KQ,H)ds < ∞
}

= 1.

By employing the definition of stochastic integral and a standard limiting
procedure, we may establish some useful properties of stochastic integrals.

Proposition 1.3.1 For arbitrary T ≥ 0, assume that B(·) ∈ U2([0,T ] ×
�; L2(KQ,H)). Then

(i) the stochastic integral
∫ t

0
B(s)dW(s) is a continuous, square integrable

H -valued martingale on [0,T ]. Moreover,

E

∥∥∥∥
∫ t

0
B(s)dW(s)

∥∥∥∥
2

H

= |B|2t , t ∈ [0,T ]; (1.3.4)

(ii) the quadratic variation process of
∫ t

0
B(s)dW(s) has the form

〈〈 ∫ ·

0
B(s)dW(s)

〉〉
(t) =

∫ t

0
B(s)Q1/2(B(s)Q1/2)∗ds, t ∈ [0,T ].

Proposition 1.3.2 Assume that B1, B2 ∈ U2([0,T ] × �; L2(KQ,H)). Then
the covariance operators

V (s,t) = Cov

(∫ s

0
B1(u)dW(u),

∫ t

0
B2(u)dW(u)

)
, s, t ∈ [0,T ],

are given by

V (s,t) = E

∫ s∧t

0
B1(u)Q1/2(B2(u)Q1/2)∗du s, t ∈ [0,T ].

Moreover, for any s, t ∈ [0,T ],

E

〈∫ s

0
B1(u)dW(u),

∫ t

0
B2(u)dW(u)

〉
H

= E

∫ s∧t

0
Tr

[
B1(u)Q1/2(B2(u)Q1/2)∗

]
du.

Assume that etA, t ≥ 0, is a C0-semigroup with its infinitesimal generator
A on H . Suppose that B ∈ U2([0,T ] × �; L2(KQ,H)) is such a process that
the stochastic integral∫ t

0
e(t−s)AB(s)dW(s) =: WB

A (t), t ∈ [0,T ], (1.3.5)

is well defined. This process WB
A (t) is called the stochastic convolution of B.

In general, WB
A (t), t ∈ [0,T ], is no longer a martingale, a fact that makes
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WB
A fail to have decent properties. However, one can still expect some useful

results to be valid for this process. For instance, we have a useful version of the
following Burkholder–Davis–Gundy type of inequality for WB

A (t), t ∈ [0,T ].

Theorem 1.3.3 Let p > 2, T ≥ 0 and assume that process B ∈ U2([0,T ] ×
�;L2(KQ,H)) satisfies

E

(∫ T

0
‖B(s)‖p

L2(KQ,H)
ds

)
< ∞.

Then there exists a number Cp,T > 0, depending on p and T , such that

E sup
t∈[0,T ]

∥∥∥∥
∫ t

0
e(t−s)AB(s)dW(s)

∥∥∥∥
p

H

≤ Cp,T · E
(∫ T

0
‖B(s)‖p

L2(KQ,H)
ds

)
.

(1.3.6)

Note that in Theorem 1.3.3, there is a weak point on the condition p > 2
to secure the validness of (1.3.6) for any C0-semigroup etA, t ≥ 0, on H .
An alternative version of this theorem is possible to cover the case p = 2,
although we have to restrict at this moment the C0-semigroup etA, t ≥ 0, to a
pseudocontraction one.

Theorem 1.3.4 Let p ≥ 2 and T ≥ 0. Assume that A generates a pseudocon-
traction C0-semigroup etA, t ≥ 0, and B ∈ U2([0,T ]×�; L2(KQ,H)). Then
there exists a number Cp,T > 0, depending only on p and T , such that

E

(
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
e(t−s)AB(s)dW(s)

∥∥∥∥
p

H

)
≤ Cp,T ·E

(∫ T

0
‖B(s)‖2

L2(KQ,H) ds

)p/2

.

Moreover, if A generates a contraction C0-semigroup, number Cp,T > 0 may
be chosen to depend on p only.

The following stochastic version of the well-known Fubini theorem will be
frequently used in this book.

Proposition 1.3.5 Let T ≥ 0 and

B : [0,T ] × [0,T ] × � → L2(KQ,H)

be measurable such that for each s ∈ [0,T ], B(s,t) is {Ft }-adapted, t ∈ [0,T ],
and satisfies ∫ T

0

∫ T

0
E‖B(s,t)‖2

L2(KQ,H)dsdt < ∞.
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Then∫ T

0

∫ T

0
B(s,t)dW(t)ds =

∫ T

0

∫ T

0
B(s,t)dsdW(t) a.s. (1.3.7)

Assume that B ∈ U2([0,T ]×�; L2(KQ,H)), and F is an H -valued, {Ft }-
adapted, Bochner integrable process on [0,T ]. Then the following process

y(t) = y0 +
∫ t

0
F(s)ds +

∫ t

0
B(s)dW(s), t ∈ [0,T ], y0 ∈ H,

(1.3.8)
is well defined. A function �(t,x) : [0,T ]×H → R is called an Itô functional
if � and its Fréchet partial derivatives �′

t , �′
x , �′′

xx are continuous and
bounded on any bounded subsets of [0,T ] × H .

Theorem 1.3.6 (Itô’s formula) Assume that � : [0,T ] × H → R is an Itô
functional. Then for all t ∈ [0,T ], �(t,y(t)) satisfies the following equality:

d�(t,y(t)) =
{
�′

t (t,y(t)) + 〈�′
x(t,y(t)),F (t)〉H

+ 1

2
T r

[
�′′

xx(t,y(t))B(t)Q1/2(B(t)Q1/2)∗
]}

dt

+ 〈�′
x(t,y(t)),B(t)dW(t)〉H .

(1.3.9)

1.4 Stochastic Differential Equations

The theory of stochastic differential equations in Hilbert spaces is a natural
generalization of finite-dimensional stochastic differential equations intro-
duced by Itô and in a slightly different form by Gihman in the 1940s. The
reader is referred to Da Prato and Zabczyk [53] for a systematic statement
about this topic. On this occasion, we content ourselves with a presentation of
how it is possible to formulate a standard stochastic partial differential equation
as a stochastic differential equation in Hilbert spaces.

Let O be a bounded domain in R
n, n ∈ N+, with smooth boundary

∂O. Consider the following initial-boundary value problem for the randomly
perturbed heat equation⎧⎪⎨

⎪⎩
∂y

∂t
(t,x) =

n∑
i=1

∂2y

∂x2
i

(t,x) + ∂

∂t
W(t,x), t ≥ 0, x ∈ O,

y(0,x) = y0(x), x ∈ O; y(t,x) = 0, t ≥ 0, x ∈ ∂O,

(1.4.1)

where W(t,x) is a standard Wiener random field (see, e.g., [41]).
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By analogy with partial differential equations, this stochastic partial differ-
ential equation (1.4.1) can be viewed in two different ways. One natural way is
to consider its solution as a real-valued random field indexed by temporal and
spatial variables t and x. In general, this approach uses complicated probability
and calculus, and it will not be developed in this book. On the other hand, one
can consider a solution of this equation as a stochastic process indexed by t

with values in a proper space of functions of x, say, L2(O;R). In this manner,
we can use advanced analysis to develop a stochastic process theory in an
infinite-dimensional setting. For instance, we can write

∑n
i=1 ∂2/∂x2

i in (1.4.1)
as an abstract operator, say A, from Sobolev space H 2(O;R) ∩ H 1

0 (O;R)

into L2(O;R) or from H 1
0 (O;R) into H−1(O;R), the dual of H 1(O;R), and

let W(t), t ≥ 0, be a Wiener process in L2(O;R). Note that the Dirichlet
boundary condition here is implicit in the fact that we look for solutions in
H 1

0 (O;R). In other words, given an initial datum y0 ∈ L2(O;R), we may
reformulate (1.4.1) as a system in L2(O;R) or H−1(O;R) with the following
form: {

dy(t) = Ay(t)dt + dW(t), t ≥ 0,

y(0) = y0 ∈ L2(O;R).

In this book, we mainly adopt the latter viewpoint to establish a stochastic
stability theory. We develop two formulations, i.e., semigroup and variational
methods, to give a rigorous meaning to the solutions of abstract stochastic
differential equations.

1.4.1 Semigroup Approach and Mild Solutions

Let T ≥ 0 and consider the following semilinear stochastic system on a Hilbert
space H ,{

dy(t) = [
Ay(t) + F(t,y(t))

]
dt + B(t,y(t))dW(t), t ∈ [0,T ],

y(0) = y0 ∈ H,

(1.4.2)
where A is the infinitesimal generator of a C0-semigroup etA, t ≥ 0, of
bounded linear operators on H . The coefficients F(·,·) and B(·,·) are two
nonlinear measurable mappings from [0,T ] × H into H and L2(KQ,H),
respectively.

Definition 1.4.1 Let T ≥ 0. An {Ft }t≥0-adapted stochastic process y(t) ∈ H ,
t ∈ [0,T ], defined on probability space (�,F,{Ft }t≥0,P) is called a mild
solution of (1.4.2) if it satisfies that
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P

{∫ T

0
‖y(t)‖2

H dt < ∞
}

= 1, (1.4.3)

P

{∫ T

0

(
‖F(t,y(t))‖H + ‖B(t,y(t))‖2

L2(KQ,H)

)
dt < ∞

}
= 1, (1.4.4)

and

y(t) = etAy0 +
∫ t

0
e(t−s)AF (s,y(s))ds

+
∫ t

0
e(t−s)AB(s,y(s))dW(s), t ∈ [0,T ], (1.4.5)

for y0 ∈ H almost surely.

By the standard Picard iteration procedure or a probabilistic fixed-point
theorem type of argument, one can establish an existence and uniqueness
theorem of mild solutions to (1.4.2) in the case that for any y, z ∈ H and
t ∈ [0,T ],

‖F(t,y) − F(t,z)‖H + ‖B(t,y) − B(t,z)‖L2(KQ,H)

≤ α(T )‖y − z‖H, α(T ) > 0,

‖F(t,y)‖H + ‖B(t,y)‖L2(KQ,H) ≤ β(T )(1 + ‖y‖H ), β(T ) > 0.

(1.4.6)

Theorem 1.4.2 Let T ≥ 0, p ≥ 2 and assume that condition (1.4.6) holds.
Then there exists a unique mild solution y ∈ C([0,T ]; Lp(�;H)) to (1.4.2).
If, in addition, E‖y0‖p

H < ∞, p > 2, then the solution y satisfies

E

(
sup

0≤t≤T

‖y(t,y0)‖p
H

)
< ∞, p > 2.

As a direct application of semigroup theory, we have the following result
straightaway.

Proposition 1.4.3 For arbitrary y0 ∈ D(A), assume that y(t) ∈ D(A), t ∈
[0,T ], is an {Ft }t≥0-adapted stochastic process satisfying (1.4.3), (1.4.4), and
the equation

y(t) = y0 +
∫ t

0
(Ay(s)+F(s,y(s)))ds+

∫ t

0
B(s,y(s))dW(s), t ∈ [0,T ],

(1.4.7)
then it is a mild solution of equation (1.4.2).

The process y satisfying (1.4.7) is called a solution of (1.4.2) in the strong
sense, and a mild solution of (1.4.2) is not necessarily a solution in the strong
sense. On the other hand, it is known that the stochastic convolution in (1.4.5)
is no longer a martingale, implying that one cannot apply Itô’s formula directly
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to mild solutions of (1.4.2), although it is possible to apply it to solutions of
(1.4.2) in the strong sense. This consideration just suggests the usefulness of
finding conditions under which a mild solution to (1.4.2) becomes a strong
one.

Proposition 1.4.4 Suppose that the following conditions hold:

(1) y0 ∈ D(A), e(t−s)AF (s,y) ∈ D(A), e(t−s)AB(s,y)z ∈ D(A) for each
y ∈ H , z ∈ K , and t ≥ s;

(2)
∥∥Ae(t−s)AF (s,y)

∥∥
H

≤ f (t − s)‖y‖H, y ∈ H, for some f ∈
L1([0,T ]; R+);

(3)
∥∥Ae(t−s)AB(s,y)

∥∥
L2(KQ,H)

≤ g(t − s)‖y‖H, y ∈ H, for some g ∈
L2([0,T ]; R+).

Then for any mild solution y(t), t ∈ [0,T ], of (1.4.2), it is also a solution of
(1.4.2) in the strong sense.

Proof By the conditions (1), (2), and (3), it is easy to see that

∫ T

0

∫ t

0
‖Ae(t−r)AF (r,y(r))‖H drdt < ∞ a.s.

∫ T

0

∫ t

0
‖Ae(t−r)AB(r,y(r))‖2

L2(KQ,H)drdt < ∞ a.s.

Thus by the classic Fubini’s theorem and Proposition 1.1.20, we have

∫ t

0

∫ s

0
Ae(s−r)AF (r,y(r))drds =

∫ t

0

∫ t

r

Ae(s−r)AF (r,y(r))dsdr

=
∫ t

0
e(t−r)AF (r,y(r))dr−

∫ t

0
F(r,y(r))dr .

(1.4.8)
Meanwhile, by virtue of Proposition 1.3.5,

∫ t

0

∫ s

0
Ae(s−r)AB(r,y(r))dW(r)ds =

∫ t

0

∫ t

r

Ae(s−r)AB(r,y(r))dsdW(r)

=
∫ t

0
e(t−r)AB(r,y(r))dW(r)

−
∫ t

0
B(r,y(r))dW(r).

(1.4.9)
Hence, by the closedness of A, (1.4.8), and (1.4.9), it follows that Ay(t) ∈ H ,
t ∈ [0,T ], which is integrable almost surely and
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∫ t

0
Ay(s)ds = etAy0 − y0 +

∫ t

0
e(t−r)AF (r,y(r))dr −

∫ t

0
F(r,y(r))dr

+
∫ t

0
e(t−r)AB(r,y(r))dW(r) −

∫ t

0
B(r,y(r))dW(r)

= y(t) − y0 −
∫ t

0
F(r,y(r))dr −

∫ t

0
B(r,y(r))dW(r).

That is, y is also a solution of (1.4.2) in the strong sense. The proof is now
complete. �

To employ Itô’s formula in handling the mild solutions of (1.4.2), we
introduce a Yosida approximating system of (1.4.2) in the following form:{

dy(t) = Ay(t)dt + R(n)F (t,y(t))dt + R(n)B(t,y(t))dW(t),

y(0) = R(n)y0 ∈ D(A),
(1.4.10)

where n ∈ ρ(A), the resolvent set of A, R(n) := nR(n,A) and R(n,A) =
(nI − A)−1 is the resolvent of A.

Proposition 1.4.5 Let T ≥ 0 and p ≥ 2. Suppose that the nonlinear terms
F(·,·), B(·,·) in (1.4.10) satisfy condition (1.4.6). Then, for each n ∈ ρ(A),
the equation (1.4.10) has a unique solution yn(t) ∈ D(A) in the strong sense,
which lies in Lp(�;C([0,T ];H)). In addition, if E‖y0‖p

H < ∞, p > 2, and
we let y be the mild solution of (1.4.2), then we have

lim
n→∞E

(
sup

0≤t≤T

‖yn(t) − y(t)‖p
H

)
= 0, p > 2. (1.4.11)

Proof The existence of a unique mild solution yn ∈ C([0,T ];Lp(�;H)),
n ∈ ρ(A), of (1.4.10) is an immediate consequence of Theorem 1.4.2 through
a probabilistic fixed-point theorem type of argument. The fact that yn ∈
Lp(�;C([0,T ];H)) and yn is also a solution of (1.4.10) in the strong sense
follows from Proposition 1.4.4 and the relation

AR(n) = nAR(n,A) = n − n2R(n,A) ∈ L (H), n ∈ ρ(A).

To prove the remainder of the proposition, let us suppose that E‖y0‖p
H <

∞, p > 2, and consider for any t ∈ [0,T ],

y(t) − yn(t) = etA(y0 − R(n)y0)

+
∫ t

0
e(t−s)A[F(s,y(s)) − R(n)F (s,yn(s))]ds

+
∫ t

0
e(t−s)A[B(s,y(s)) − R(n)B(s,yn(s))]dW(s).

(1.4.12)
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Since |a + b + c|p ≤ 3p(|a|p + |b|p + |c|p) for any real numbers a, b, c, this
yields, in addition to (1.4.12), that for any T ≥ 0, p > 2,

E sup
0≤t≤T

‖y(t) − yn(t)‖p
H

≤ 3p
E sup

0≤t≤T

∥∥∥∥
∫ t

0
e(t−s)AR(n)[F(s,y(s)) − F(s,yn(s))]ds

∥∥∥∥
p

H

+ 3p
E sup

0≤t≤T

∥∥∥∥
∫ t

0
e(t−s)AR(n)[B(s,y(s)) − B(s,yn(s))]dW(s)

∥∥∥∥
p

H

+ 3p

{
E sup

0≤t≤T

∥∥∥∥etA(y0 − R(n)y0) +
∫ t

0
e(t−s)A[I − R(n)]F(s,y(s))ds

+
∫ t

0
e(t−s)A[I − R(n)]B(s,y(s))dW(s)

∥∥∥∥
p

H

}

:= 3pI1 + 3pI2 + 3pI3.
(1.4.13)

Note that by the Hille–Yosida theorem, ‖R(n)‖ ≤ 2M for an n ∈ N+ large
enough where M ≥ 1 is the number given in (1.1.5). Condition (1.4.6) and
Hölder’s inequality imply that

I1 ≤ E sup
0≤t≤T

(∫ t

0

∥∥∥e(t−s)AR(n)
[
F(s,y(s)) − F(s,yn(s))

]∥∥∥
H

ds
)p

≤ C1(T )E sup
0≤t≤T

{∫ t

0

∥∥F(s,y(s)) − F(s,yn(s))
∥∥p

H
ds

}

≤ C2(T )E

∫ T

0
sup

0≤r≤s

‖y(r) − yn(r)‖p
H ds,

(1.4.14)

where C1(T ), C2(T ) are positive numbers, dependent on T ≥ 0. In a similar
way, by virtue of Theorem 1.3.3, for n ∈ N+ large enough there exists a real
number C3(T ) > 0 such that

I2 ≤ E sup
0≤t≤T

∥∥∥∥
∫ t

0
e(t−s)AR(n)[B(s,y(s)) − B(s,yn(s))]dW(s)

∥∥∥∥
p

H

≤ C3(T )E

∫ T

0
sup

0≤r≤s

‖y(r) − yn(r)‖p
H ds.

(1.4.15)
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For the term I3, it is easy to see that

I3 ≤ 3p

{
E sup

0≤t≤T

‖etA(y0 − R(n)y0)‖p
H

+ E sup
0≤t≤T

∥∥∥∥
∫ t

0
e(t−s)A[I − R(n)]F(s,y(s))ds

∥∥∥∥
p

H

+ E sup
0≤t≤T

∥∥∥∥
∫ t

0
e(t−s)A[I − R(n)]B(s,y(s))dW(s)

∥∥∥∥
p

H

}
.

(1.4.16)

We now estimate each term at the right-hand side of (1.4.16). By the
Dominated Convergence Theorem and the fact that R(n) → I strongly as
n → ∞, it is easy to see that

E sup
0≤t≤T

‖etA(y0 − R(n)y0)‖p
H ≤ C4(T ) ·E‖y0 − R(n)y0‖p

H → 0, n → ∞,

where C4(T ) > 0 is some positive number. On the other hand, by using the
Hölder inequality and Dominated Convergence Theorem, we get for some
C5(T ) > 0 that

E sup
0≤t≤T

∥∥∥ ∫ t

0
e(t−s)A[I − R(n)]F(s,y(s))ds

∥∥∥p

H

≤ C5(T )

∫ T

0
E‖[I − R(n)]F(s,y(s))‖p

H ds

→ 0 as n → ∞.

(1.4.17)

In a similar manner, by using Theorem 1.3.3 and the Dominated Convergence
Theorem again, we have that for some C6(T ) > 0,

E sup
0≤t≤T

∥∥∥ ∫ t

0
e(t−s)A[I − R(n)]B(s,y(s))dW(s)

∥∥∥p

H

≤ C6(T )

∫ T

0
E‖[I − R(n)]B(s,y(s))‖p

L2(KQ,H)
ds → 0 as n → ∞.

(1.4.18)
Combining (1.4.13) through (1.4.18), we thus have that there exist numbers
C(T ) > 0 and ε(n) > 0 such that

E sup
0≤t≤T

‖y(t) − yn(t)‖p
H ≤ C(T )

∫ T

0
E sup

0≤r≤s

‖y(r) − yn(r)‖p
H ds + ε(n),

where limn→∞ ε(n) = 0. By the well-known Gronwall’s inequality, we further
deduce that

E sup
0≤t≤T

‖y(t) − yn(t)‖p
H ≤ ε(n)eC(T )T → 0, as n → ∞. (1.4.19)

The proof is thus complete. �
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Corollary 1.4.6 Let y0 ∈ H be an arbitrarily given nonrandom vector.
Suppose that the nonlinear terms F(·,·), B(·,·) in (1.4.2) and (1.4.10) satisfy
condition (1.4.6) for any T ≥ 0. Then there exists a sequence yn(t) ∈ D(A)

of solutions to (1.4.10) in the strong sense, which lies in Lp(�;C([0,T ];H)),
p > 2, such that yn(t) → y(t) almost surely as n → ∞, uniformly on any
compact set of [0,∞).

Proof We may construct the desired sequence by a diagonal sequence trick.
Indeed, by virtue of (1.4.11) there exists a positive integer sequence {n1(i)}
in ρ(A) such that yn1(i)(t) → y(t) almost surely as i → ∞, uniformly
with respect to t ∈ [0,1]. Now consider the sequence yn1(i)(t). We can find
a subsequence yn2(i)(t) of yn1(i)(t) such that yn2(i)(t) → y(t) almost surely
as i → ∞, uniformly with respect to t ∈ [0,2]. Proceeding inductively, we
find successive subsequences ynm(i)(t) such that (a) ynm(i)(t) is a subsequence
of ynm−1(i)(t) and (b) ynm(i) → y(t) almost surely as i → ∞, uniformly
with respect to t ∈ [0,m]. To get a sequence converging for each m, one
may take the diagonal sequence n̂(m) := {nm(m)}. Then the sequence
yn̂(m)(t), yn̂(m+1)(t), . . . is a subsequence of ynm(i)(t) so that yn̂(i)(t) → y(t)

almost surely as i → ∞, uniformly with respect to t ∈ [0,m] for each
m ∈ N+. �

Remark 1.4.7 In general, it is not immediate to know from Theorem 1.4.2
that the mild solution of (1.4.2) has almost surely continuous paths. However,
Corollary 1.4.6 permits a modification of any mild solution of (1.4.2) with
continuous sample paths. Unless otherwise stated, we always assume that
the mild solution of this kind of equation under investigation has continuous
sample paths in the sequel.

1.4.2 Variational Approach and Strong Solutions

Let V be a reflexive Banach space which is densely and continuously embed-
ded in a Hilbert space H . We identity H with its dual space H ∗ according to
Theorem 1.1.4. Then we have the following relations:

V ↪→ H ∼= H ∗ ↪→ V ∗

where ↪→ denotes the injection. We denote the duality pair between V and V ∗

by 〈〈·,·〉〉V,V ∗ . Let K be a separable Hilbert space and assume that W(t), t ≥ 0,
is a Q-Wiener process in K defined on some probability space (�,F,P),
equipped with a normal filtration {Ft }t≥0 with respect to which {W(t)}t≥0

is a continuous martingale.
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Let T ≥ 0 and consider the following nonlinear stochastic differential
equation on V ∗:⎧⎨
⎩y(t) = y(0) +

∫ t

0
A(s,y(s))ds +

∫ t

0
B(s,y(s))dW(s), t ∈ [0,T ],

y(0) = y0 ∈ H,

(1.4.20)
where A : [0,T ] × V → V ∗ and B : [0,T ] × V → L2(KQ,H) are two
families of nonlinear measurable functions (they may be random as well in an
appropriate setting). For any y0 ∈ H , an {Ft }t≥0-adapted, V -valued process y

is said to be a strong solution of the equation (1.4.20) if y ∈ Lp([0,T ]×�;V )

for some p ≥ 1 and the equation (1.4.20) holds in V ∗ almost surely. In contrast
with system (1.4.2), one remarkable feature of (1.4.20) is that both mappings
A and B could be nonlinear here.

To obtain the existence and uniqueness of solutions to (1.4.20), we impose
the following conditions on A(·,·) and B(·,·).
(a) (Coercivity) There exist numbers p > 1, α > 0, λ ∈ R and function

γ ∈ L1(0,T ) such that for all y ∈ V and t ∈ [0,T ],

2〈〈y,A(t,y)〉〉V,V ∗ + ‖B(t,y)‖2
L2(KQ,H) ≤ −α‖y‖p

V + λ‖y‖2
H + γ (t),

(1.4.21)

(b) (Boundedness) and there exists a function θ ∈ L
p

p−1 (0,T ) such that for all
y ∈ V , t ∈ [0,T ],

‖A(t,y)‖V ∗ ≤ θ(t) + c‖y‖p−1
V (1.4.22)

for some number c > 0.
(c) (Continuity) The map s ∈ R → 〈〈x, A(t,y + sz)〉〉V,V ∗ is continuous for

arbitrary y, z, x ∈ V and 0 ≤ t ≤ T .
(d) (Monotonicity) There exists a number μ ∈ R such that for any y, z ∈ V ,

and t ∈ [0,T ],

2〈〈y − z,A(t,y) − A(t,z)〉〉V,V ∗ + ‖B(t,y) − B(t,z)‖2
L2(KQ,H)

≤ μ‖y − z‖2
H .

(1.4.23)

Theorem 1.4.8 Assume that y0 ∈ L2(�,F0,P;H). Under the assumptions
(a)–(d), equation (1.4.20) has a unique {Ft }t≥0-progressively measurable
strong solution

y ∈ L2(�;C([0,T ];H)) ∩ L2([0,T ] × �;V ) for any T ≥ 0,

which has strong Markov property and satisfies the following energy equation:
for all t ∈ [0,T ],
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‖y(t)‖2
H = ‖y0‖2

H + 2
∫ t

0
〈〈y(s),A(s,y(s))〉〉V,V ∗ds

+ 2
∫ t

0
〈y(s),B(s,y(s))dW(s)〉H +

∫ t

0
‖B(s,y(s))‖2

L2(KQ,H)ds.

(1.4.24)

Equality (1.4.24) is the usual Itô’s formula for quadratic function �(·) =
‖ · ‖2

H . To extend this formula to more general function �, one need impose
stronger conditions on �. A function � : [0,T ] × H → R is called an Itô type
of functional if it satisfies:

(i) � has locally bounded partial derivatives ∂t�, ∂x� and ∂2
xx� on

[0,T ] × H ;
(ii) ∂t� and ∂x� are continuous in [0,T ] × H ;

(iii) for any trace class operator P , the map (t,x) → T r[∂2
xx�(t,x)P ] is

continuous on [0,T ] × H ;
(iv) if x ∈ V , then ∂x�(t,x) ∈ V for any t ∈ [0,T ] and 〈〈∂x�(t,x),v∗〉〉V,V ∗

is continuous in t ∈ [0,T ] for any v∗ ∈ V ∗. Moreover, there exists a
number M > 0 such that

‖∂x�(t,x)‖V ≤ M(1 + ‖x‖V ), (t,x) ∈ [0,T ] × V . (1.4.25)

Theorem 1.4.9 Let y ∈ L2(�;C([0,T ];H)) ∩ L2([0,T ] × �;V ), T ≥ 0, be
the strong solution of (1.4.20) with y0 ∈ L2(�,F0,P;H). For any Itô type of
functional � satisfying (i), (ii), (iii) and (iv) on [0,T ] × H , the following Itô’s
formula holds: for t ∈ [0,T ],

�(t,y(t)) = �(0,y0) +
∫ t

0
(L�)(s,y(s))ds

+
∫ t

0
〈∂x�(s,y(s)),B(s,y(s))dW(s)〉H,

where

(L�)(s,y(s)) = ∂s�(s,y(s)) + 〈〈∂x�(s,y(s)),A(s,y(s))〉〉V,V ∗

+ 1

2
T r

[
∂2
xx�(s,y(s))B(s,y(s))Q1/2(B(s,y(s))Q1/2)∗

]
.

(1.4.26)

1.5 Definitions and Methods of Stochastic Stability

The term stability is one that has a variety of different meanings within
mathematics. One often says that a system is stable if it is “continuous” with
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respect to initial conditions. Precisely, suppose that y(t) = y(t,y0), t ≥ 0, is a
solution to some differential equation on a Hilbert space H ,{

dy(t) = f (t,y(t))dt, t ≥ 0,

y(0) = y0 ∈ H,
(1.5.1)

where f (·,·) is a properly given function. Let ỹ(t), t ≥ 0, be a particular
solution to (1.5.1) and the corresponding system is thought of as describing a
process without perturbations. Those systems associated with other solutions
y(t) are regarded as perturbed ones. When we talk about stability of the
solution ỹ(t), t ≥ 0, it means that the norm ‖y(t) − ỹ(t)‖H , t ≥ 0, could
be made smaller and smaller if the initial perturbation scale ‖y(0)− ỹ(0)‖H is
sufficiently small.

Another notion of stability is that of asymptotic stability. Here we say an
equation is stable if all of its solutions get close to some nice solution ỹ, e.g.,
equilibrium solution, as time goes to infinity. In most situations, it is enough
to consider asymptotic stability of the null solution for some relevant system.
Indeed, let z(t) = y(t) − ỹ(t) in (1.5.1), then the equation (1.5.1) could be
rewritten as

dz(t) = dy(t) − dỹ(t)

= [f (t,z(t) + ỹ(t)) − f (t,ỹ(t))]dt

=: F(t,z(t))dt, t ≥ 0,

(1.5.2)

where F(t,0) = 0, t ≥ 0. Note that if z(0) = z0 = 0, it is immediate that
the null is the unique solution to system (1.5.2). Hence, this treatment could be
thought of as considering asymptotic stability of this null solution.

Definition 1.5.1 The null solution of (1.5.2) is said to be stable if for arbitrarily
given ε > 0, there exists δ = δ(ε) > 0 such that the relation ‖z0‖H < δ

implies

‖z(t,z0)‖H < ε for all t ≥ 0. (1.5.3)

Definition 1.5.2 The null solution of (1.5.2) is said to be asymptotically stable
if it is stable and there exists δ > 0 such that the relation ‖z0‖H < δ implies

lim
t→∞ ‖z(t,z0)‖H = 0. (1.5.4)

For any z0 ∈ H , if there exists T (z0) ≥ 0 such that (1.5.3) or (1.5.4)
remains valid for all t ≥ T (z0), then the null solution of (1.5.2) is said to
have global stability. In addition to asymptotic stability, one might also want
to know the rate of convergence, which leads to the following notion.
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Definition 1.5.3 The null solution of (1.5.2) is said to be (asymptotic)
exponentially stable if it is asymptotically stable and there exist numbers
M > 0 and μ > 0 such that

‖z(t,z0)‖H ≤ M‖z0‖H e−μt for all t ≥ 0. (1.5.5)

There are at least three times as many definitions for the stability of stochas-
tic systems as there are for deterministic ones. This is certainly because in a
stochastic setting, there exist three basic types of convergence: convergence
in probability, convergence in mean, and convergence in sample paths. The
preceding deterministic stability definitions can be translated into a stochastic
setting by properly interpreting the notion of convergence.

Consider the following stochastic differential equation on the Hilbert
space H ,{

dy(t) = A(t,y(t))dt + B(t,y(t))dW(t), t ≥ 0,

y(0) = y0 ∈ H,
(1.5.6)

where y0 ∈ H is a nonrandom vector; W is an infinite-dimensional Q-Wiener
process; and A, B are families of measurable mappings with A(t,0) = 0,
B(t,0) = 0 for any t ≥ 0.

Definition 1.5.4 (Stability in Probability) The null solution of (1.5.6) is said
to be stable or strongly stable in probability if for arbitrarily given ε1, ε2 > 0,
there exists δ = δ(ε1,ε2) > 0 such that the relation ‖y0‖H < δ implies

P
{‖y(t,y0)‖H > ε1

}
< ε2 for all t ≥ 0, (1.5.7)

or

P

{
sup
t≥0

‖y(t,y0)‖H > ε1

}
< ε2.

Definition 1.5.5 (Asymptotic Stability in Probability) The null solution of
(1.5.6) is said to have asymptotic stability or strongly asymptotic stability in
probability if it is stable or strongly stable in probability and for each ε > 0,
there exists δ = δ(ε) > 0 such that the relation ‖y0‖H < δ implies

lim
t→∞P

{‖y(t,y0)‖H > ε
} = 0, (1.5.8)

or

lim
T →∞

P

{
sup
t≥T

‖y(t,y0)‖H > ε

}
= 0.

Definition 1.5.6 (Stability in the pth Moment) The null solution of (1.5.6) is
said to be stable or strongly stable in the pth moment, p > 0, if for arbitrarily

https://doi.org/10.1017/9781108653039.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108653039.002


38 Preliminaries

given ε > 0, there exists δ = δ(ε) > 0 such that the relation ‖y0‖H < δ

implies

E‖y(t,y0)‖p
H < ε for all t ≥ 0, (1.5.9)

or

E

{
sup
t≥0

‖y(t,y0)‖p
H

}
< ε.

Definition 1.5.7 (Asymptotic Stability in the pth Moment) The null solution
of (1.5.6) is said to have asymptotic stability or strongly asymptotic stability in
the pth moment, p > 0, if it is stable or strongly stable in the pth moment and
there exists δ > 0 such that the relation ‖y0‖H < δ implies

lim
t→∞E‖y(t,y0)‖p

H = 0, (1.5.10)

or

lim
T →∞

E

{
sup
t≥T

‖y(t,y0)‖p
H

}
= 0.

Definition 1.5.8 (Pathwise Stability) The null solution of (1.5.6) is said to
be stable or strongly stable in sample paths if for any ε > 0, there exists
δ = δ(ε) > 0 such that the relation ‖y0‖H < δ implies

P
{‖y(t,y0)‖H > ε

} = 0 for all t ≥ 0,

or

P

{
sup
t≥0

‖y(t,y0)‖H > ε

}
= 0,

which means with probability one, all the paths of solutions are stable or
strongly stable.

Definition 1.5.9 (Pathwise Asymptotic Stability) The null solution of (1.5.6)
is said to have asymptotic stability or strongly asymptotic stability in sample
paths if it is stable or strongly stable in probability and there exists δ > 0 such
that the relation ‖y0‖H < δ implies

P

{
lim

t→∞ ‖y(t,y0)‖H = 0

}
= 1,

or

P

{
lim

T →∞
sup
t≥T

‖y(t,y0)‖H = 0

}
= 1.

For any y0 ∈ H , if there exists T (y0) ≥ 0 such that the claims in Definitions
1.5.4 through 1.5.9 remain valid for all t ≥ T (y0), then the system (1.5.6) is
said to have its global stability, respectively.
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In application, there exist various versions of stochastic stability that show
explicitly the decay rate of systems. Most noteworthy is the pth moment
or pathwise exponential stability. Let λ : [0,∞) → (0,∞) be a continuous
function with limt→∞ λ(t) = 0.

Definition 1.5.10 For p > 0, the null solution of (1.5.6) is said to be pth mom-
ently stable with rate λ if for each y0 ∈ H , there exists a number M(y0) > 0
such that

E‖y(t,y0)‖p
H ≤ M(y0)λ(t) for all t ≥ 0. (1.5.11)

Definition 1.5.11 The null solution of (1.5.6) is said to have almost sure
stability with rate λ if for each y0 ∈ H , there exists a random variable
M(y0) > 0 such that

‖y(t,y0)‖H ≤ M(y0)λ(t) for all t ≥ 0 almost surely. (1.5.12)

In Definitions 1.5.10 and 1.5.11, if λ(t) = e−γ t , (1+ t)−γ or (ln(1+ t))−γ ,
t ≥ 0, for some constant γ > 0, the system (1.5.6) is said to have exponential,
polynomial, or logarithmic stability, respectively. In general, if λ : [0,∞) →
(0,∞) is a continuous function such that limt→∞ λ(t) < ∞ and (1.5.11)
or (1.5.12) holds, the system (1.5.6) is called ultimately bounded in the pth
moment or almost sure sense.

Remark 1.5.12 The definition of the almost sure stability with rate λ(t) can
be equivalently stated in the following way: for each y0 ∈ H , there exist a
number M(y0) > 0 and random time T = T (y0) ≥ 0 such that

‖y(t,y0)‖H ≤ M(y0)λ(t) for all t ≥ T (y0) almost surely.

Remark 1.5.13 All the preceding stability definitions remain meaningful if
we remove the condition A(t,0) = 0, B(t,0) = 0 in (1.5.6). This fact leads to
a natural generalization of all the stability concepts. That is, we say in this case
that the solution of system (1.5.6) has a decay, e.g., exponential decay.

Remark 1.5.14 For stochastic stability, it is enough in most cases to consider
a nonrandom initial y0 ∈ H . To illustrate this, suppose for the moment that
y0 is random and the null solution of (1.5.6) with nonrandom initial x ∈ H

is stable in probability, i.e., for arbitrarily given ε1, ε2 > 0, there exist δ =
δ(ε1,ε2) > 0, T = T (ε1,ε2) ≥ 0 such that if ‖x‖H < δ, then

P
{
ω : ‖y(t,x)‖H > ε1

}
< ε2 for all t ≥ T .

Now suppose that ‖y0(ω)‖H < δ almost surely. Let Bδ = {x ∈ H : ‖x‖H < δ}
and define the law of y0(ω) by

Dy0(A) = P{ω ∈ � : y0(ω) ∈ A}, ∀A ∈ B(H).
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Then we have

P{ω : ‖y(t,y0)‖H > ε1} =
∫

{x∈H : ‖x‖H <δ}
P{‖y(t,x)‖H > ε1}Dy0(dx)

≤
∫

{x∈H : ‖x‖H <δ}
ε2Dy0(dx)

≤ ε2 for all t ≥ T .

Unless otherwise stated, we always assume in the sequel that the initial data of
the system under consideration are nonrandom.

Remark 1.5.15 (Also see Example 6.7, pp. 225–226 in [103]) It is clear
that strong stability of a stochastic system implies its stability. The converse
statement is not true in general. To see this, let us consider a stochastic process
on the circle with one unit radius,⎧⎪⎨
⎪⎩

dy(t) =
[
− 2 sin2 y(t)

2
+ sin3 y(t)

2
cos

y(t)

2

]
dt−2 sin2 y(t)

2
dw(t), t ≥ 0,

y(0) = y0 < 0,

where y(t) is the angle coordinate of a point on the circle and w(t), t ≥ 0, is a
standard real Brownian motion.

It may be computed that the solution of this system is the process

y(t) = 2arccot
(
t + w(t) + cot

y0

2

)
, t ≥ 0.

Since t + w(t) → ∞ almost surely as t → ∞, it is easy to see that the null
solution is strongly unstable in sample paths. However, by a direct calculation
one can show that the null solution is stable in the almost sure sense.

It is clear that (strong) stability in the pth moment of the null solution of
(1.5.6) for any value of p > 0 implies its (strong) moment stability for every
smaller value than p and (strong) stability in probability. On the other hand,
one can easily show that the null solution could be the pth moment (strongly)
stable for some p > 0 but not the qth moment (strongly) stable for q > p. The
case most frequently discussed in the literature is (strong) moment stability
with p = 2. We shall also refer to this case as (strong) stability in mean square.

Although some stability, for instance, Definition 1.5.7 or 1.5.10, does not
appear to be as strong a restriction on systems as that given in Definition 1.5.4
or 1.5.5, there are significant implications in Definitions 1.5.7 and 1.5.10 for
sample stability behavior. However, it is worth pointing out that stability of
the moment alone does not always provide a satisfactory intuitive basis upon
which to judge the stability characteristics of the systems of interest.
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Example 1.5.16 Consider a simple one-dimensional linear Itô equation

dy(t) = ay(t)dt + by(t)dw(t), t ≥ 0, (1.5.13)

where w(t), t ≥ 0, is a standard one-dimensional Brownian motion, y(0) =
y0 ∈ R, and a, b are real numbers.

A direct computation shows that the solution process y(t), t ≥ 0, is given
by

y(t) = exp
{
bw(t) + (a − b2/2)t

}
y0, t ≥ 0. (1.5.14)

Hence, by using the law of iterated logarithm for Brownian motion (cf. Revuz
and Yor [197]), it is easy to deduce that the asymptotically exponential growth
rate of solution y is given by

lim
t→∞

log |y(t)|
t

= a − b2

2
a.s. (1.5.15)

We then conclude that the null solution has global exponential stability in the
almost sure sense if and only if a < b2/2. On the other hand, using the standard
exponential martingale properties for Brownian motion, it is also easy to see
for any n ∈ N+ that

Ey(t)n = yn
0 · exp

{
(a − b2/2)nt + b2n2

2
t

}
.

Hence, we conclude that the null solution has the global nth moment exponen-
tial stability if and only if a < b2(1 − n)/2. Therefore, unlike deterministic
systems, for a < 0, the first moment is exponentially stable, but higher
moments are probably unstable. For a < −b2/2, the first and second moments
are exponentially stable, and higher moments are probably unstable, etc. It
seems difficult to associate a physical meaning to the behavior of a system,
knowing only that the first nth moments are stable and all higher moments
are unstable. On the other hand, it is clear from (1.5.15) that the stability of
sample trajectories are determined by the algebraic sign of a − b2/2 only. It
is interesting to note that for a < b2/2, the sample path possesses almost
surely asymptotic stability, but it is possible that all moments will diverge
exponentially. Hence, we see in this example that unlike deterministic systems,
even though stability in mean square implies almost sure stability, almost sure
stability need not imply the moment stability.

Remark 1.5.17 If a system is almost surely (strong) asymptotically stable,
then it is also (strong) asymptotically stable in probability. From the analogy of
deterministic stability, it seems reasonable to assume in Definition 1.5.9 almost
sure (strong) stability rather than (strong) stability in probability. However, it
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is worth pointing out this requirement is actually too strong. In fact, let us
consider Example 1.5.16 again. By (1.5.14) and the properties of Brownian
motion, it is easy to see that for no positive constant ε > 0 does there exist
a number δ > 0 such that almost all the sample trajectories of the solutions
originating at y0 
= 0, |y0| < δ, remain in an ε-neighborhood of zero (i.e., not
almost surely stable) even if the unperturbed term is very stable (i.e., a < 0)
and |b| is very small.

It is not always possible to get an explicit solution for a stochastic differ-
ential equation. Therefore, it is generally unrealistic to deal with stochastic
stability problems in such a way as we did in Example 1.5.16. In the history of
stability study, one of the most effective approaches is the so-called Lyapunov
function method or Lyapunov’s second (direct) method. To gain some insight
into the main ideas of this method, let us analyze a simple situation.

Consider a nonnegative continuous function � on R
n with �(0) = 0 and

�(x) > 0 for x 
= 0. Suppose that for some δ > 0, the set Dδ = {x ∈
R

n : �(x) < δ} is bounded and �(x) has continuous first-order derivatives in
Dδ . Let y(t) = y(t,y0) be the unique solution of the initial value problem:{

dy(t) = f (y(t))dt, t ≥ 0,

y(0) = y0 ∈ Dδ ⊂ R
n,

(1.5.16)

for a given function f (·) ∈ R
n with f (0) = 0. Since �(x) is continuous, the

open set Dδ contains the origin and monotonically decreases to the singleton
set {0} as δ ↓ 0. If the total derivative �̇(y(t)) of �, along the solution
trajectory y(t), satisfies

�̇(y(t)) = f (y(t)) · d�(x)

dx

∣∣∣∣
x=y(t)

= −k(y(t)) ≤ 0, t ≥ 0, (1.5.17)

where k(·) is some nonnegative continuous function, then �(y(t)) is a
nonincreasing function of t , i.e., �(y0) < δ implies �(y(t)) < δ for all t ≥ 0.
In other words, y0 ∈ Dδ implies that y(t) ∈ Dδ for all t ≥ 0. This establishes
the stability of the null solution to (1.5.16) in the sense of Lyapunov, and �(x)

is thus called a Lyapunov function of equation (1.5.16). If we further assume
that k(x) > 0 for x ∈ Dδ\ {0}, then �(y(t)), as a function of t , is strictly
monotone decreasing. Moreover, we have from (1.5.17) that

0 < �(y0) − �(y(t)) =
∫ t

0
k(y(s))ds < ∞ for all t ∈ [0,∞).

(1.5.18)
In this case, �(y(t)) → 0 as t → ∞ from (1.5.18) for sufficiently small δ > 0
(otherwise, �(y(t)) ≥ �(y0) for some sufficiently large t > 0). This further
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implies that y(t) → 0 as t → ∞, i.e., the null solution of system (1.5.16) is
asymptotically stable.

It is possible to generalize the preceding Lyapunov function method to
stochastic systems. For instance, let us consider a stochastic process y(t) ∈ R

n,
t ≥ 0, on some probability space (�,F,P). At present, it is not realistic to
require that �̇(y(t,ω)) ≤ 0 for all ω ∈ �. What one can expect for stability
is that the time derivative of the expectation of �(y(t)), denote it by L�(·), is
nonpositive, where

L�(y0) := lim
t→0+

E(�(y(t))) − E�(y0)

t
, y0 ∈ R

n. (1.5.19)

Here, the domain of L is defined as a family of those functions � for which
(1.5.19) is well defined. This is a natural analogue of the total derivative of �

along the process trajectory y(t) to the deterministic case. Now suppose that
there exists a Lyapunov function � satisfying the aforementioned conditions or

L�(y0) ≤ 0, y0 ∈ R
n,

then it is possible to show, usually under additional conditions such as a strong
Markov property of y, that for any t ≥ s ≥ 0,

E(�(y(t,y0)) | F
y
s ) ≤ �(y(s,y0)) a.s.

This means that �(y(t,y0)) is a nonnegative supermartingale, and by the well-
known martingale convergence theorem, we may show that �(y(t,y0)) → 0,
which further implies y(t,y0) → 0, almost surely as t → ∞ and ‖y0‖Rn → 0.

The Lyapunov function �(·) may be regarded as a generalized energy
function of the system under investigation. The preceding argument illustrates
the physical intuition that if the energy of a physical system is always
decreasing near an equilibrium state, then the equilibrium state is stable.

Since Lyapunov’s original work [159], the Lyapunov function method for
stability has been extensively developed. The advantage of this method is that
one can obtain considerable information about stability properties of a given
system without being required to solve the system equation explicitly. The
main drawback of this method is that there does not exist a general method
to construct appropriate Lyapunov functions, especially for nonlinear systems.
A stability criterion obtained in this manner, which usually provides only a
sufficient condition, depends sensitively on the chosen Lyapunov function. In
the remainder of this book, we shall mainly explore the Lyapunov function
approach to establish a stochastic stability theory for infinite-dimensional
stochastic differential equations.
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1.6 Notes and Comments

All the material in Section 1.1 is standard, and the statement there is mainly
based on Curtain and Zwart [49], Engel and Nagel [70], Kreyszig [112], Pazy
[187], and Yosida [224]. The proof of Theorem 1.1.10 is sketched in Example
A.4.2 in Curtain and Zwart [49]. A systematic presentation of the material in
Sections 1.2 and 1.3 is given in Da Prato and Zabczyk [53]. Theorem 1.3.3
is presented in Da Prato and Zabczyk [53], and its version, Theorem 1.3.4, is
established in Tubaro [212].

A systematic statement of the variational method for infinite-dimensional
stochastic systems is presented by many authors such as Krylov and Rozovskii
[113], Pardoux [184], and Prévôt and Röckner [190]. As for applications of
semigroup approaches to infinite-dimensional stochastic systems, a compre-
hensive statement can be found in the existing literature such as Chow [41], Da
Prato and Zabczyk [53], and Métivier [171]. Much material in Section 1.4.1 is
taken from Ichikawa [91].

The stability of a real system is the ability of the system to resist an influence
or disturbance unknown beforehand. The system is said to be stable if such a
disturbance does not essentially change it. Indeed, an individual predictable
process can be physically realized only if it is stable in the corresponding
natural sense. For instance, we know from classical control theory that, before
we can consider the design of a regulatory or tracking control system, we need
to make sure that such a system is stable from input to output. For stability
and the relevant Lyapunov function method of finite-dimensional deterministic
systems, some systematic statements can be found in the literature, e.g.,
Hahn [82].

For a finite-dimensional stochastic system, there are two main techniques
dealing with its stability properties. The first significantly extends Lyapunov’s
direct method for deterministic systems to a stochastic setting. The main
ingredient here is a Lyapunov function, and as in the deterministic theory,
a major difficulty in this method is to construct a suitable Lyapunov func-
tion to find the optimal stability condition for nonlinear stochastic systems.
The earliest attempt to generalize the classic Lyapunov function method to
stochastic stability goes back at least to Kats and Krasovskii [101]. During the
initial development of the Lyapunov theory and method of stochastic stability,
some confusion about the formulation of Lyapunov functions, their usefulness
in application, and the relationship among the different concepts of stability
existed. Kozin’s survey [109] clarified some of the confusion and provided a
good foundation for further development. Shortly, quite a few important works
appeared, e.g., Kushner [114, 115] used martingale convergence techniques

https://doi.org/10.1017/9781108653039.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108653039.002


1.6 Notes and Comments 45

to develop a Lyapunov function theory for strong Markov processes and
study related control problems, and Pinsky [188] introduced specific Lyapunov
functions to handle stochastic stability of some Dirichlet problems in two
dimensions. In the meanwhile, a comprehensive statement on stochastic
stability theory was presented in Has’minskii [86] for diffusion processes
given as the solutions of Itô’s stochastic differential equations. For subsequent
developments of this topic over the last several decades, the reader is referred
to some informative monographs in this field such as Arnold [3], Khas’minskii
[103], Kolmanovskii and Nosov [107], and Mao [165, 167], among others.

The other important development in finite-dimensional stochastic stability
is the application of the so-called Lyapunov exponent method to stochastic
systems. This is the stochastic counterpart of the notion of characteristic
exponents introduced in Lyapunov’s work on asymptotically exponential
stability. Although the Lyapunov exponent method provides necessary and
sufficient conditions for asymptotic (exponential) stability, this method needs
to use sophisticated mathematical techniques, especially for nonlinear systems,
and significant computational problems must be solved. Important studies of
the Lyapunov exponent method, when applied to stochastic systems, have
been made in such work as Arnold, Kliemann, and Oeljeklaus [7]; Arnold
and Wihstutz [9]; Furstenberg [77, 78]; Khas’minskii [103]; Mohammed and
Scheutzow [177, 178]; and Oseledec [182], among others.

Last, we mention some monographs that include chapters dealing with
stability problems for finite-dimensional deterministic or stochastic systems
with time delay: Hale [84], Kolmanovskii and Nosov [107], and Mao [165],
among others.
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