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Abstract

We present the definition of crossed products of Hilbert C*-bimodules by Hilbert bundles with commuting
finite group actions and finite dimensional fibers. This is a general construction containing the bundle
construction and crossed products of Hilbert C-bimodule by finite groups. We also study the structure of
endomorphism algebras of the tensor products of bimodules. We also define the multiple crossed products
using three bimodules containing more than 2 bundles and show the associativity law. Moreover, we
present some examples of crossed product bimodules easily computed by our method.

1991 Mathematics subject classification (Amer. Math. Soc): primary 46L35,46L55.

1. Introduction

Jones [J] initiated the index theory of subfactors. The notion of bimodules in subfactor
theory was introduced by Ocneanu [O], and is a very powerful tool for studying index
theory of W*-algebras. Following Ocneanu, Yamagami developed the study of the
categorical structure of W*-bimodules ([Yl, Y2, Y3]). The notion of Hilbert bundle
over a countable discrete group with two-sided commuting finite group actions and
finite dimensional fibers was introduced by Kosaki and Yamagami [KoY], and is a
very convenient tool for constructing many examples of bimodules of finite index with
various combinatorial structures. In [KaY], the first named author and Yamagami
extended this construction to the case of compact group actions on von Neumann
algebras.

On the other hand, the second named author [W] initiated index theory in C*-
algebras. In [KW1], we define the notion of Hilbert C*-bimodules of finite type for
studying C*-index theory using bimodules and K-theory. Hilbert C*-bimodules of
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120 Tsuyoshi Kajiwara and Yasuo Watatani [2]

finite type are considered the C*-version of W*-bimodules with finite index.
We also give in [KW1] the bundle construction of a Hilbert C*-bimodule corres-

ponding to the W* situation [KoY]. In [KW2], we give the crossed product construction
of Hilbert C*-bimodules by countable discrete groups, and present some examples.
This is also considered to be a generalization of the notion of crossed product imprim-
itivity bimodules given by [CMW, Co, K].

In this paper, we give a construction simultaneously generalizing the above two
ones. We give the crossed product construction of a Hilbert C*-bimodule by a bundle
with commuting finite groups, and present some examples which are computed easily
using our method of multiple crossed products.

In Section 2, we record the definitions and fundamental matters concerning Hilbert
C*-bimodule of finite type, and define the crossed products of Hilbert C*-bimodules
by bundles. We also study categorical structures of crossed product bimodules.

In Section 3, we define the crossed products of bundles by a bundle by the method
similar to that of Section 2. We also define a crossed product construction for three
objects, and show the associativity law of crossed products. It is natural to call this
construction 'multiple crossed products'. Using this associativity law, we may make
computations for many bimodules in the simplest settings.

In Section 4, we present some examples for which we may use the technique in
Section 3 for the computation. In Example 2, we consider a generalization of duality
between type A and type D presented in [KW2] and calculate generators of bimodules
appearing in each floor and their inclusions explicitly. In Example 3, we present a
construction of bimodules which generate Kac algebras naturally using our method.

The authors express their hearty thanks to S. Yamagami for several discussions and
sending us new preprints about these matters, and the referee for careful reading and
many valuable comments.

2. Crossed products by bundles

We review the definition of Hilbert C*-bimodules of finite type following [KW1].
We refer to [B] for the definition of Hilbert C*-module. Let A and B be unital
C*-algebras. Let X be a C-vector space.

DEFINITION 1 ([KW1]). X is called a Hilbert C*-bimodule (or Hilbert A-B bimod-
ule) if the following conditions hold.

(1) X is a left Hilbert ,4-module.
(2) X is a right Hilbert B-module.
(3) Left A action and right B action commute with each other.
(4) Let k(a)x = ax, p(b)x = xb for a e A, b e B and x e X. Then X(a) is

bounded and has an adjoint with respect to ( , ) B , and p(b) is bounded and has an
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adjoint with respect to A (, ).
( 5 ) T h e t w o n o r m s o n X g i v e n b y A \ \ x | | = \ \ A { x , x ) \ \ ' l 2 a n d \ \ x \ \ B = \ \ { x , x ) B \ ^ 2

are equivalent (Pimsner-Popa type inequality).

DEFINITION 2 ([KW1]). A Hilbert A-B bimodule X is said to be offinite type if the

following two conditions hold.

(1) There exists a finite subset {M,}, in X such that ]TV «,•{«,-, x)B = x for all x e X.
(2) There exists a finite subset [vj}j in X such that ^ ^ (x, uy-)uy- = x for all x € X.

We call this finite subset {M,}, a r/gto B-basis of X and {i>7}; a left A-basis of X.
Moreover we denote the right index and left index of X by r-Ind[X] = J^; A(ut, w,}

and l-Ind[X] = £ ; (« ; , «,•)«•
The following lemma is convenient for verifying the axioms of Hilbert C*-bimod-

ules, because analytic properties follow from purely algebraic properties under the
existence of bases.

LEMMA 3 ([KW1]). Let a complex vector space X satisfy the following (l)-(10).

(1) X is a left A-module.
(2) X h a s a left self-adjoint (not n e c e s s a r i l y p o s i t i v e ) A - i n n e r p r o d u c t A{-, •).
( 3 ) A{ax,y) =aA(x,y).
(4) X is a right B-module.
(5) X has a right self-adjoint (not necessarily positive) B-inner product (•, -}B.

(6) {x,yb)B = {x,y)Bb.
(7) The left A action and right B action commute with each other.
(8) {ax,y)B = (x,a*y)B and A{x,yb) = A{xb*,y).
(9) There exists a finite subset {«,}, inXsuchthatJ2,ui(ui<x)B =xforallx e X.

(10) There exists a finite subset {Vj}j in X such that ]T. A(x, Vj)Vj = x for all x e X.

Then the other properties in Definition 1.1 are automatically satisfied, and X
becomes a Hilbert C*-bimodule of finite type.

We denote by A EndB(X) the elements in c Endc(X) which commute with left A,
right B actions. When X is of finite type T € A EndB(X) has adjoints with respect to
both inner products and is bounded [KW1].

Let G be a countable discrete group, H and K finite subgroups of G. We recall the
definition of H-K bundle from [KoY].

DEFINITION 4 ([KoY]). A finite-dimensional Hilbert space V admitting a left H-
right K action is called an H-K bundle over G if the following are satisfied.

(1) V = 0 eG VR, where Vg is also a finite dimensional Hilbert space.
(2) F o r h e H a n d k e K , (h • x , h • y ) — ( x , y ) a n d (x • k , y • k) = ( x , y ) f o r x ,

y e V.
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(3) For h e H,h- Vg C Vhg and for k € K, Vg • k c Vgk.

We call {g e G : Vg ^ 0} the support of V. We denote by EndV(K) (more
precisely w EndV^(V)) the elements in c End^V) which commute with left H, right
K actions and the diagonal representation of C(G).

DEFINITION 5 ([KoY]). The conjugate bundle V of V is defined as follows.

(1) As a space, V is the direct sum of finite-dimensional Hilbert spaces Vg-i, where
each Vg-< is the conjugate Hilbert space of Vg. We use the notation vg-i when vg is
considered as an element of Vg->.
(2) V is a left A"-right H bundle, where the two actions are defined as follows:

v • h = h~x • v,k -v = v • k~l, where v is v considered as an element in V.

Let X be a Hilbert A-B bimodule of finite type, a be an action of G on A, f$ be an
action of G on B and y be a homomorphism from G to the isometry group of X.

DEFINITION 6 ([KW2]). The system (X, A, B, y, a, ft, G) is called a G-equivariant
system of bimodules if the following are satisfied for each g e G.

Yg(ax) = ag(a)yg(x),

PHi(x, y)B) = (y^x), yg(y))B, yg(xb) = yg(x)Pg(b),

for x, y e X,a e A,b e B.

DEFINITION 7. Let V be an H-K bundle over V. (X, V) is called a covariant
system of bimodules if (X, A, B, y, a, fi, T) is a F-equivariant system of bimodules.

We denote by V the tensor product X <8> V considered as only a vector space. We
write a monomial element of V in the form x <E> u?A? (x e X, vg € V^), where As is
only a symbol representing the position of i>? in V. When X = AAA and V = GC(G)G,
we denote a 0 \Xg by aA?, adapting to the convention of crossed product C*-algebras.

We define two-sided actions of A xff H and B Xp K on V as follows.

? ? u^A^, /i(JC ® v^A,,) = yA(x) (g) h(vg)khg,

(x <g> vskg)b = xPf,{b) <S> VgXg, (x ® u?A?)A: = .v ® (DA,)^^i .

We remark that A{X ® Vg)B is isomorphic todim(Vg)A(Xg)B where Xg is the
bimodule twisting the right B action by /}„.

We define two-sided inner products as follows.
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A»OH(X <8> Vgkg, x ® v'^kgi)

= L ( x , Yh(x'))(vg, h{v'g,))kh x i g g ' - ' = h € H

1 0 o t h e r w i s e ;

(JC <8> v g k g , x <8> v',y

10 otherwise.

When X = A = B = £, these formulas give left C*(//)-right C*(K) inner
products.

PROPOSITION 8. This system satisfies the conditions (l)-(8) in Lemma 3.

PROOF. We prove only (2), (3), (6) and (8).
We show (2). The range of the inner product is clearly total in A. We assume

gg'~l =h € H.

(A»,H(X ® vgkg, x ® Vg.kg.))* = (A(x, Yh(x'))(vg, h(v'g,)kh)*

= kh-,A(yh(x'),x){vg,h(v'g,))

= A(X', Yh->(x))(v' /J"1 (vg))kh->

We show (3). We assume g~lg' = h € H.

Ay>aH{a(x (8) Vgkg), x' <g> v'g.kg.) = A(ax, yh{x')){vg, h(v'g,))kh

= aA{x ® vgkg, x % v'g.kg.)

AXI.H \h'(x ® Vgkg), x' <S> v'g.kg.) — AxaH(Yh'(x) <8> h'(vg)kh.g,x' (8) v'g

= A(Yh'(x), yh'h{x')){h\vg), h'h(v's,

= ah-(A(x, Yh(x'))){vg, h(v'g,))kh.h

— **'Ct»„//(•* <8> vgkg,x' ® v'g,kg')).

We show (6). We assume g~lg' = k e K.

(x <gi Vgkg, (x' (8) v'^kg^k^BHeK = (x <8> u ^ ? , JC' <8> {v'^k'k^^B^^

= Pg-,((x,x')B)(vg,(v'g,)k-i)kkkk,g-,((x,x)B)(vg,(vg

v',kg.)BX/)Ku , ^ , x ® v',kg.)BX/)K)kk'
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We assume g~lg' = k € K.

(x <g> vgkg, (x' <g> v'g,Xgl)b)B>,fK = {x <g> i^A,,, x'pg.(b) <g> u ^ ) ^ *

= (x <g> vgkg, * ' (8) v'^kf) BKpKb

when g~'g' = /t e AT and is otherwise zero.
We show (8). We assume g~lg' = k e K.

{a(x ® vgkg), x' ® v ; ,V) B > < ^ = 0g-, ({ax, x')B)({vx, (v'g,)k-l)kk

= Pr>({x,a'x')B)(vg,(v'll.)k-l)h

= (x (g) u^A.^ a*(.v' ® ^ - ^ ) ) B > < , ^

We assume (hg)~lg' = k e K:

(h(x (g» vsA.s), JT' (g) W^A?.)BX,^A: = ( n ( ^ ) ® h(vg)khg, x' (g» ^ - V ) B X ^

= Pg-< ((x, n- . ( ;
= (jf (g) U ^ , Yh-'(X') ®h~Hv'g,)kh <g-)Bx^K

= (x <g> UyA.j, A""'(jf' ® ^ ^ O J B X . A -

and is otherwise equal to 0.
Other properties are proved similarly.

Let £ be the support of V, [am}m be a subset of £ which meets each AT-orbit
only once, and {u/

m}/ be a complete orthonormal system (CONS) in Vam. We put
qml = v"kOm. Similarly, let {%„}„ be a similar subset concerning //-action on X, and
{v"k}kM be a CONS in V,,,. We put pnM = v"kkZn.

Let {Uj}i be a right B-basis of X and {u,}; be a left A-basis of X.

PROPOSITION 9. The family {M, <g> qmj]j.mj constitutes a right B xp K -basis for V

and {Vj <S> pn.k}j.n.k constitutes a left A xia H-basis for V.

PROOF. Let om< = g', with g' in the same right K coset as g, and let k be g'~lg.
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i.m.l

i.i

We have used the properties of bases and CONS in Hilbert spaces.
The proof is similar for the left basis.

PROPOSITION 10. V is made into a Hilbert C*-bimodule of finite type, and we have
r-Ind[V] = r-Ind[X] ( £ m dim(Voj), l-Ind[V] = l-Ind[X] (j^m dim(Vr,,)). Moreover,
we have Ind[X xy V] = Ind[X] ( ^ dim(Vam)) ( £ „ dim(VT,)).

PROOF. The first statement follows from Proposition 9 and Lemma 3.
We prove the second statement only for the right index. We take a right basis

{Uj <g> <?„,./},.„,./ as in Proposition 9.

r-Ind[X ~Ay V] = V \ *„«(«,• ® qm.h «/ <8> qm.i)

i.mj

i.m.l

(

= r-Ind[X](j]dim(V(7JAfj.

The second statement follows similarly.

We denote by X x x V the bimodule V. We call this the crossed product bimodule
by bundle V.

As in the case of actions on algebras, we need the definition of free actions on
bimodules.
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DEFINITION 11 ([KW2]). Let (A", A, B, y, a, 6, G) be a G-equivariant system of
bimodules. The action y is called free if for g e G, g ^ e, the following holds:
ForT e c End c (X) , i f

T(ax) = aT(x), T(xb) = T(x)Bg(b)

for all x € X, a € A and b € B, then 7 = 0.

We remark that an action y is free if and only if A XB and A (Xg)B have no intertwiner
for g ^ e.

PROPOSITION 12. We assume that the action y of G is free. Then AyiaH EndB><()/f

(X Xy V) is isomorphic to elements in A EndB(X) <g> ( 0 ? < E G C Endc(V^)) satisfying
h-T{x®v,,Xg) = T(h(x®vf,X>t))and(T(x®vf,X!,))-k = T ((x <g> vg)k) for h e H,
ZceK,xeX,geG and vg e Vg.

Moreover, ifX is irreducible as an A-B bimodule, the above fixed point subalgebras
are isomorphic to H EndV/c( V); ifV~ GC{G)G, the above algebra is isomorphic to
End(X)c ; and ifV = {e]C{G)a, isomorphic to End(X).

PROOF. For g e G, let {uf}, be a CONS in Vg. We take the base such that
(vf)g' = vf. Let T be in „„.„ E n d B , ^ ( X xK V). We define T*f e c End c (X) as
follows.

T(x ® u*A.x) = ^ T*f{x) ® vf\g-
g'-i

for x e X and g e G. By the A-B intertwining property of T, we have

T?f{ax) = aT«f(x), T*f Wg(b)) = T*f\x)fa{b).
Since y is free, if g ^ g', we have 7]sj* = 0. For g e G, we have 7)*j* e A EndB(X).
This shows that T e A EndB(X) ® ( 0 ^ c Endc(V,)).

When X is irreducible A EndB(X) is isomorphic to C, and T can be considered as
an element in HEndVK(V). When V = | p )C(G)c , each V? is 1-dimensional. We
denote T* by Tff. By r(jc (8) ^ ) = (T(x ® ^ ) ) g , we have 7 s = Tf for all g e G.
Then 7* is considered as an element in A End(X)B. When V = GC{G)G, by the left
intertwining property under G of T,T is contained in A EndB(X)c.

We state the following categorical structure.

PROPOSITION 13. Let H, K and L be finite subgroups of G, and V = HVK, W =

KWL be bundles over G. Let X = AXB and Y = BYC be two Hilbert C*-bimodules
of finite type. Moreover, let (X, A, B, yx, a, B, G) and (Y, B, C, yr, 8, 8, G) be
G-equivariant systems of bimodules. Then we have

(X > v V) ®BX.K (Y xyr W) ~ (X <8B Y) xYi,.r (V ®K W)
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PROOF. The map <p from (X xi V) ®B^fK (Y X W) to (X ®B Y) >v« ' (V ®K W)
given by

<p((x ® vgkg) ®(y® Wg'iig,)) = (x® yg
Y(y)) ® (vgkg <g> 1 % / v )

gives the desired isomorphism. Left and right actions are shown to be conserved by
computations.

We only show that the left inner products coincide. We compute the left in-
ner product of the left-hand side as follows. We assume g2g'2~

1 = k € K and

2~
xg\~x =h e H.

aHi(x ® ^ ? A , ) ®(y® Wg2ixn), (x' ® v\X.g't)® (y' ® wg'2fig'2))

= A*aH((x ® Vg^e^Kiy ® wg2ix^ y' ® w'g,2fig2),x' ® v'g,kg')

= A»aH{(x®v!ttkgl)B{y, Yt (y'))(wgl, k(w'g,2))kk, x' ® v'g.kg't)

= (wg2,k(w'g.))AMaH{xpgl(B{y, Yk(y'))) ® (.v

otherwise this is equal to zero.
We compute the left inner product of the right-hand side:

^ (vg,kgl ® wft/*fi), (*' ® Yg*{y\)) ® (.v'g,kg- ® w'^O)-

We compute the bimodule parts and the bundle parts separately.
At first we compute the bundle part. If g2g'2~

l is not contained in K the above is
zero. We assume g2g'2~

l = k e K.

H{(Vgtkgl) ® (Wg2fMg2), (V\kg't)® (W'^flg,)) = Hiiv^k^Kiw^k,,,, w'gi>Hg2), v'g,kg[))

= (w,2,k(w'g,i))((Vgl)k,h(v'g,))kh.

Next, we compute the bimodule part. We put h = g\g2(g\g'2)"'• If h & H,
the above is zero. We assume that h € H. When g2g'2~

x — k e K, we have
g;lhg\=keK.

A(X ® yliy), y™Y{x' ® yg\(y'))) = A{x ® yg\(y), yh
x(x') ® yY

hg,{y')))

= A(xpgl(B(y,yf,;>hg-(y'))),yh
x(x')).

If gig2
X e ^ . ^1^2(^1 '#2')"' e H, both sides coincide by the above calculation;

otherwise both sides are zero.
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LEMMA 14. The conjugate bundle X xY V ofX xY V is isomorphic to X xv V as

Hilbert B Xp K-A xa H bimodule, where the conjugate action Y of y is defined by

Y<.(*) = Yg(x)forx € X.

PROOF. We define a map f from X xY K to X x^

fix <S> vsXg) = j / ? _ , (x) <g> vg i XK i.

Then the two bimodules are isomorphic by f.

3. Multiple crossed products

In this section, we consider a 'crossed product construction' using more than three
objects. Let F be a finite group, H and K be two subgroups of F. Let V be an H-K
bundle over F, and G be another finite group.

DEFINITION 15. The pair (V, G) is called a G-equivariant system of bundles if the
following hold.

(1) (V, G) is a G-equivariant system of bimodules when V is considered only as a
Hilbert C*iH)-C*iK) bimodule.

(2) G acts on F as an automorphism group and preserves H and K globally.
(3) The following hold.

(a) g • ih • v) = ig • h) • ig • v), for g e G, h e H, k e K and i; € V, and

g • iv • k) = ig • v) • ig • k).

(b) g • VY C Vg.Y for g G G and y e F.

The G action is automatically unitary from (1).
Let P, Q be two finite subgroups of G, and W be a P-Q bundle over G.

DEFINITION 16. (V, W) is called a covariant system of bundles if (V, G) is a G-
equivariant system of bundles.

Let H, K be subgroups of F, let P , g be subgroups of G, V an H-K bundle over
F, and W be a f-<2 bundle over G. Let (V, W) be a covariant system of bundles. We
define the crossed product bundle V x W.

We view V only as a Hilbert C*iH)-C*iK) bimodule and construct the crossed
product bimodule V x W. We introduce the bundle structure as follows. The
base space is the semi-direct product group F x G. The fiber space of iy, g) is
given by (V x W\y,g) = VY ® Wg. Left (// x P)-nght (K x Q) actions are
defined by tensor product actions, that is, hivYkY <g> w^Xg) = HhvY)XhY ® wsA.s) and
pivYkY <g> Wgkg) = pvYkPY ® pwgkpl,. Right actions are defined similarly. We have
proven the following lemma.
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LEMMA 17. In this way, V x y W is made into an H x P-K x Q bundle over F x G .

Let U = V x W, where V is an H-K bundle over F and W is a P-Q bundle over G.
Let T e HxpEndVKx0(U). Since T commutes with the diagonal algebra /°°(r x G),
T is expressed as T = LKer.s£G / O ^ g)> w h e r e / ( y , g ) e cEndc(VV)®cEndc(Ws).
EndV(C/) is the set of such 7"s which are H x P-K x /f invariant. We only list the
simple cases for the use in Section 4 without proof.

LEMMA 18. (1) Let (V,G) be a G-equivariant system of bundles. Then
EndV(V x G ) ~ E n d V ( V ) G .
(2) / / V = r V w and W = {e]C(G)G, or V = {e]Vr and W = GC(G)le], then

EndV(V xi W) ~EndV(V).
(3) Let £ be a G-orbit in T. We take y0 € E, and Gn to be the stabilizer group at

y0. Let V = (<.)C(X;)(f), W = CWG. We define the unitary representation n of G on
We by 7z(g)we = gweg-\ Then EndV(V x W) ~ Jt(Gn)'.

PROPOSITION 19. Let H, K, L be subgroups ofT and P, Q and R be subgroups of
G, Vibe an H-K bundle overY, V2bea K-L bundle over Y,W\bea P-Q bundle over
G and W2 be a Q-R bundle over G such that (V1; Wt) and (V2, W2) be two covariant
pairs. Then the two bundles (V, x Wx) <g> (V2 x W2) and (V, ® V2) xi (Wx ® W2) are
isomorphic.

PROOF. This is the bundle version of Proposition 13. This is already proved at the
level of Hilbert C*(//)x/3-C*(/i:)x(2-bimodules. Theflberof (y, g) in the right-hand
side is the direct sum of (V^ <g> V£)<8>(Wg

1
i®Wg

2
i) such that yxy2 = yandgig 2 = §• The

fiberof(y,g)intheleft-handsideisthedirectsumof((V'(giW')(8)((V2_, )<8>^2)'s.
Y\ Si g^ -Yi 82

They are combined by the map which gives the isomorphism in Proposition 13.

Let X = AXB be a Hilbert C*-bimodule of finite type, V be a bundle over F,
and let (X, V) be a covariant system of bimodules, where (X, A, B, s, a, /3, F) is the
associated F-equivariant system of bimodules.

DEFINITION 20. We say that G conserves the covariant system (X, V) of bimodules
if the following are satisfied.

(1) There exists an action 8 of G on X, an action K of G on A and an action coon B
such that (X, A, B, 8, K, CO, G) is a G-equivariant system of bimodules.
(2) (V, G) is a G-equivariant system of bundles.
(3) G actions on X and V satisfy the following: 8g(ey(x)) = sgY8g(x) for g e G,

y e F and x e X, and KH{aY{a)) = agY(Kg(a)) for g e G, y e F and a € A and
a)g(By(a)) = BgY(cog(a)) for g e G, y € F and ft e B.
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PROPOSITION 21. Suppose W is a P-Q bundle over G such that G consents the
covariant system (X, V) of bimodules. Then there exist actions rj, f andt; ofG on the
crossed-product bimodule X xK V such that (X xy V, A xa H, B Xp K, rj, £, £, G)
is also a G-equivahant system of bimodules. There exists an action (y, rj)ofFxG
on X such that (X xK V) x,, W and X x(K,,, (V x,, W) are isomorphic as Hilbert
(A x a F) x t P- (B xB F) x? Q-bimodules. Moreover, if the action ofY x G on X is

free, the action ofGonXxV is also free.

PROOF. The first assertion is proved by formal calculations.

(X (g) Vyky) <g) Wg/JLg - > X (8) (VyXy (g) W ̂  /J. g) .

The second assertion is proved as follows. If the action of F x G is free,
X(y, g) and X(y',g') have no intertwiner y =̂  y' or g / g'. Since A((X x
V ) g ) B ~ E y e r d [ m ( V y ) A ( X ( ( y , g ) ) ) B , i f g ? e, A((X x V)g)B a n d A(X x V)B

have no intertwiner. Then AXaH(X x V)B><tlK and AXaH((X x V)g)BXttK have no
intertwiner. This shows that the action of G on X x V is free.

This proposition can be considered as the associativity law of crossed products of
a bimodule and two bundles.

REMARK. We may state the similar associativity law of crossed products of three
bundles.

Let (X, A, B, y, a, fi, F) be a F-equivariant system of bimodules, and suppose G
conserves this system. Let V be an H-K bundle over F. We assume that the action
of F x G on X is free, and X is irreducible. We may construct the crossed product
bimodule (A" x V) x G. Since G acts on V, G also acts on End(V) by adjoining y.

LEMMA 22. End((X x y V) x,, G) is isomorphic to EndV(V/)G.

PROOF. (X x V) x G and X x (V x G) are isomorphic as bimodules. Since X is
irreducible, End(X x (V x G)) and EndV(V x G) are isomorphic. By Lemma 18,
EndV(V x G) is isomorphic to EndV(V)c.

4. Examples

EXAMPLE 1. Let G be a finite group, and (A, X, B, G, a, y, fi, G) a G-equivariant
system of bimodules. Let V be a finite-dimensional Hilbert space, and n a unitary
representation of G on V. We make two Hilbert C*-bimodules from this data using
different methods.
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Let V <g> C(G) ~ 0 s e f . V be a G-G bundle given as follows.

This definition is given in [KoY], Here X <g> V means an A-B bimodule given from
the outer tensor product of AXB and c Vc [KW1]. Then we may construct the crossed
product bimodule (X <g> V) ~AY®n G by a group and the crossed product bimodule
X x a (V <g> C(G)) by a bundle. The former is defined in [KW2], and the latter is
defined in this paper.

PROPOSITION 23. (X <g> V) xym G and X xir (V 0 C{G)) are isomorphic as
A yia G-B Xp G bimodules.

PROOF. V can be considered as the bundle over the trivial group, and X <g> V
is a trivial example of a crossed product by a bundle. Moreover, G conserves the
{^}-equivariant system (X, A, B, id, id, id, {e}). V <8> C(G) can be considered as the
crossed product bundle of V by C(G) over G. Then X x y (V <g> C(G)) is the crossed
product bimodule by a bundle. These are isomorphic by Proposition 21.

EXAMPLE 2. Let P = V xi G be a semi-direct product group, where F and G are
finite groups. Let A be a unital simple C*-algebra and a a properly outer action of F
on A. Put V = | p )C(F) r . We construct a crossed product bundle V x G, which is
a G-P bundle over P. This is the bundle given by the inclusion G C P. We may
compute the structure of the tensor powers ofX = A x i ( V x i G ) and X easily using
the theory in Section 3.

PROPOSITION 24. The X ® X <g> X <g> • • • 's are isomorphic fo(Axi(V<g)V<g)V<g)
• • •)) xi G. Moreover the endomorphism algebras End(X), End(X <8> X), End(X (g)
X ® X) and_End(X <g> X <g> X <g> X) are isomorphic to EndV(V)G, EndV(V ® V)G,
EndV( V <g> V7 ® V)G and EndV( V <g> V <g) V ® V7)0 respectively.

PROOF. This follows from Proposition 21 and Lemma 22.

The above action of G on A xi V is strongly outer in the sense of [CK, KW2].
Forg e G we define a unitary operator n(g) on /2(F) by (n(g)$)(y) = %(g~l • y).

n is a unitary representation of G on /2(F). Let {H, = {e}, S 2 , . . -, Sp} be the family
of G-orbits in F, {CT, = e, o2,..., ap] be a representative set of each G-orbit, Ga. be
the stabilizing subgroup at CT, and nOi be the restriction of n to GCT,. Let m be the first
integer such that nfm does not generate any new representation for each i.
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LEMMA 25. The bimodule X is of depth 2m.

PROOF. We compute the action of G on the end-algebras of the tensor powers
V <g) V, V <g> V ® V, ... etcetera explicitly. For / e C(T) and for an integer n, we
define operators M"f by

M"%{y\, y2,..., Yn) = / ( / 1 / 2 • • • Yn)HYu Y2, • • •, Yn)

for£ e / 2 ( D ® \
We have {e]iy ®r V){e] ~ © y e r Cky, EndV(,,,(V <8>r V)le]) ~ / ~ ( r ) . We have

also {e](V <g>r V ®{e] V)r ~ , f | (C(r) ®le) C ( r ) ) r . The Endomorphism algebra of this
bimodule consists of operators on B(12(F) <g>/2(r)) which commute with all M^'s and
right translations on the right component. This shows that EndV((f( V <g>r V <8>{f) Vr) ~
B(12(F)) <S> //2(G). The isomorphism is given by the Kac-Takesaki operator.

Put / = 2k. For the /-th tensor power V <g)r V ® . . . ®r V, we have

EndV(w(V ®r V ® . . . Or V),,,) ~ fl(

Put / = 2k + 1. For the /-th tensor power V <g>r V <g>... ® w V, we have

EndV(w(V ® r 7 ® . . . ® w V)r) ~ B(/-(D)®*.

These isomorphisms are given by the following n -times Kac-Takesaki operators W:

Y 2 , - - - , Yn) = S ( Y u Y \ Y I , •••,

The tensor power of n commute with the n -times Kac-Takesaki operator. For / =
2k + 1, we have

EndV(,,|(V ® r . . . <8>w V)r)
G ~ (fi(/2(G))8*)ad<jr€<).

The right-hand side is decomposed by the irreducible decomposition of n®k. For
/ = 2k, we have

EndV(w(V ®r ® . . . ® r V")|,))ad(7r®') -

This algebra is decomposed by the irreducible decompositions of the ad(7r ®*) 's. Since
CT] = e, the depth of this bimodule is necessarily even.

In the simplest case, we can write down the inclusions of bimodules more explicitly.
We denote by S3 the symmetric group of order 3. This is a semi-direct product of
F = Z3 by G = T2. Put X = A x ( , , ,C(r) r x G). Then the depth of X is 4 by
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Lemma 25. Then the endomorphism algebras End(X), End(X <g> X), End(X <g> X <g> X)
and End(X ® X <g> X <g> X) are C, C © C, C © M 2 (Q and C © M 2 (Q © M3(C).

We describe the embeddings. We denote 8g by the Dirac delta function at g e F in
C(F). The generator is V = | f )C(F)r. The Oth floor consists only of C. The 1st floor
is<C<g>w V = w C ( F ) r . The 2nd floor is as follows. C ( r ) < g ) r F ~ O e f f i ( O a © O a 2 ) .
The right-hand side is the G -irreducible decomposition. The 3rd floor is as follows.
(C8a © C8ai) <g>w V ~ (8a + Sai) <g> C(F) r © (8ai - Sa) <g> C ( r ) r The first term is
isomorphic to V. The second term in the right-hand side appears for the first time at
this floor. We call such an irreducible component 'new stuff' ([GDJ]). The 4th floor is
asfollows. V<g) r 7~ O ( , © ( O f l © O a 2 ) . On the other hand, C(Sa-<5a2)C(F)<g>r V ~
<t(8a - 8ai) ® 8e © (C(<5a - 8ai) <g> 8a © C(5a2 - <5a) ® 5fl2) The first term is new stuff.
The second term C(<5a: — 8a) ® 6a:) is identical to the second term ( O a © <C8ai) in
V (gir V. All irreducible representations of Z2 have appeared. We may draw the graph
of derived tower from the above information.

On the other hand the derived tower of the crossed product inclusion A c A x F
is known to be of depth 2. The graph of this inclusion is of type A. This is the crossed
product duality stated in [KW2].

EXAMPLE 3. We compute the special case of the Kac algebra construction by bundle
([KoY, Y2]) using our theory. Let P, G and T be as in Example 2. Let V = [e]rr and
W = CG|, | . Let A be a simple C*-algebra and a be a properly outer action of P on A.
We put X = (A xi V) xi W. This is a non-trivial example of the crossed product of a
bimodule by a bundle. We construct a crossed product bundle U = V xi W. This U is
actually r PG and is shown to be irreducible in [KoY]. By Proposition 21 X ~ A xi U.
X is an A xa V-A x a G bimodule.

PROPOSITION 26. The bimodule X is of depth 2.

PROOF. By Proposition 13, X 0 X is isomorphic to A x ((V 0 V) x (W 0 W7)),
X (8) X 0 X is isomorphic to A x ((V 0 V 0 V) x (W 0 W ® M7)). V <g> V7 0 V
is isomorphic to 0 e r {<|(A.)/V

7)r ~ |F | • {e|Vr, and W ® W ® IV is isomorphic to
IGl-cWV,. Then((V®V7(8)V/)x(W®W<2)W))isoftheform|G|-0,.) /6S(A),V)xM7.
Since W = GC(G)(f ) , by Lemma 18, © r e E (A.y V) x W is isomorphic to the direct
sum 11,-1 • (V x W). This shows that X <g> X ® X is isomorphic to |F|-times V x W.

Since V x W is irreducible, X is of depth 2.

The Kac algebra appears at 2nd floor. We compute (V ® V) x (W <g) W) and
(v7 <g> v ) x (W ® vy).
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V <g> V = © y e r C A r On the other hand, W ® W = 0 a € c . , < y ^ W?, where
Wf = ©!</<</„ C<G> ^S€G 5T7te)(^« ® A.,). From these, we have

(V <g> V) xi (W

The bundle © K € Z (O.,, xi Wy
CT) is decomposed according to the decomposition of

the restriction of a to Ga by Lemma 18. The equivalences are described by the

representation theory of groups.

On the other hand,

( V ® V) xi (W ® W)

\7rer,l<j<d,

Two bimodules V? » kg and V" » k'g are isomorphic if and only if n = n' and g — g'.

If F is not commutative, these Kac algebras are neither commutative nor cocom-

mutative.
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