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Squarefree values of trinomial discriminants

David W. Boyd, Greg Martin and Mark Thom

Abstract
The discriminant of a trinomial of the form xn ± xm ± 1 has the form ±nn ± (n−m)n−mmm

if n and m are relatively prime. We investigate when these discriminants have nontrivial square
factors. We explain various unlikely-seeming parametric families of square factors of these
discriminant values: for example, when n is congruent to 2 (mod 6) we have that ((n2−n+1)/3)2

always divides nn − (n − 1)n−1. In addition, we discover many other square factors of these
discriminants that do not fit into these parametric families. The set of primes whose squares can
divide these sporadic values as n varies seems to be independent of m, and this set can be seen as
a generalization of the Wieferich primes, those primes p such that 2p is congruent to 2 (mod p2).
We provide heuristics for the density of these sporadic primes and the density of squarefree
values of these trinomial discriminants.

1. Introduction

The prime factorization of the discriminant of a polynomial with integer coefficients encodes
important arithmetic information about the polynomial, starting with distinguishing those
finite fields in which the polynomial has repeated roots. One important datum, when the
monic irreducible polynomial f(x) has the algebraic root θ, is that the discriminant of f(x) is
a multiple of the discriminant of the number field Q(θ), and in fact their quotient is the square
of the index of Z[θ] in the full ring of integersO of Q(θ). In particular, if the discriminant of f(x)
is squarefree, then O = Z[θ] is generated by the powers of the single element θ (see [2, solution
to Exercise 4.2.8, p. 210]) and is thus said to be ‘monogenic’. (Of course the discriminant being
squarefree is not necessary for the ring of integers to be monogenic; it is simply a convenient
sufficient condition.) The rings of integers O in such fields are well suited to computation, all
the more so when the polynomial f(x) is particularly simple.

These considerations motivated us to consider trinomials such as xn−x−1, the discriminant
of which (see Lemma 2.2) is nn+(−1)n(n−1)n−1. Indeed, xn−x−1 is always irreducible (see
Lemma 4.1), and its Galois group is always Sn [13, Theorem 1]. Lagarias [8] asked whether,
for each positive integer n, there is an irreducible polynomial of degree n with Galois group
Sn for which the ring of integers of the field generated by one of its roots is monogenic. By the
above discussion, we can answer Lagarias’s question in the affirmative for any integer n > 2 for
which nn+(−1)n(n−1)n−1 is squarefree. (As it happens, his question was answered positively
for all n by Kedlaya [7], but by then our investigation into the squarefreeness of these values
had yielded mathematics that was of independent interest.)

Most of the integers nn + (−1)n(n − 1)n−1 seem squarefree, but there are a few sporadic
exceptions, the first being 130130 + 129129 which is divisible by 832; the other exceptions for
n 6 1000 are n ∈ {257, 487, 528, 815, 897}, each of which has nn + (−1)n(n − 1)n−1 divisible
by 592. We remark that it is easy to test the other 994 values for divisibility by the squares
of specific primes (and we have done so for the first 10 000 primes), making it extremely likely
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that they are indeed squarefree; but this sequence of integers grows so quickly that only the
first few dozen values are verifiably squarefree. Nevertheless, we believe that the squarefree
values in this sequence have a limiting density which we can calculate extremely accurately,
despite the very limited data.

Conjecture 1.1. The set of positive integers n such that nn+(−1)n(n−1)n−1 is squarefree
has density 0.993 446 6 . . . , correct to that many decimal places.

In Proposition 6.3 we obtain the rigorous upper bound 0.993 446 74 for this density, and the
rest of § 6 contains our reasoning for the conjecture as stated.

We can show that only certain primes have the property that their squares can divide an
integer of the form nn + (−1)n(n− 1)n−1; indeed, 59, 79, and 83 are the smallest primes with
this property. It turns out that the theoretical investigation of primes with this property is
even tidier if we widen slightly the class of primes. Given ε ∈ {−1, 1} and positive integers
n > m, define

Dε(n,m) = nn + ε(n−m)n−mmm. (1)

These quantities are closely related to discriminants of trinomials of the form xn±xm±1. We
note for future use that if a prime p divides Dε(n,m), then p divides either all of n, m, and
n−m or none of them.

Now define

Pε = {p prime: there exist positive integers n,m with p - m such that p2 | Dε(n,m)}, (2)

the restriction p - m being present to avoid high powers of p dividing Dε(n,m) for trivial
reasons. (We will also write P+ for P1 and P− for P−1, and similarly for D+(n,m) and
D−(n,m).) We saw earlier, for example, that 83 ∈ D+(n,m) and 59 ∈ Dε(n,m) for both
ε ∈ {−1, 1}. The smallest prime in both P+ and P− turns out to be 7, as witnessed by 49
dividing both D+(5, 1) = 55 + 44 and D−(10, 2) = 1010 − 8822.

A set of primes with a different definition will also be relevant to this story: define

Pcons = {p prime: there exist consecutive nonzero pth powers modulo p2}. (3)

One way to look at Pcons is as a vast generalization of Wieferich primes, that is, primes p
for which 2p−1 ≡ 1 (mod p2). Indeed, if p is a Wieferich prime, then 1p ≡ 1 (mod p2) and
2p ≡ 2 (mod p2) are consecutive nonzero pth powers modulo p2. The smallest prime in Pcons

turns out to be 7, as witnessed by 27 ≡ 30 (mod 49) and 37 ≡ 31 (mod 49).
The introduction of Pcons might seem unmotivated from our discussion of trinomial

discriminants; in fact, it is extremely relevant, as the following surprising theorem (established
in § 3) demonstrates.

Theorem 1.2. We have P+ = P− = Pcons.

Our proof that each of P± is equal to Pcons is explicit and constructive, in that we provide
an algorithm (see the bijections treated in Theorem 3.6) for starting with integers n and m for
which p2 divides D±(n,m) and constructing consecutive pth powers modulo p2, and vice versa.
Indeed, these bijections are very important to the computations we have done to determine
the density asserted in Conjecture 1.1.

We remark that we have prohibited certain trivial divisibilities in the definitions of these sets
of primes, namely, p dividing m (and hence n) in the definition of P±, and the consecutive pth
powers (−1)p, 0p, 1p modulo p2; these trivialities correspond to each other under our bijections.
It turns out that there is another patterned way for primes to be included in P± and Pcons
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that is related to sixth roots of unity; we show in Theorem 4.6 that the bijections remain valid
for the more restrictive sets of primes formed by prohibiting these further ‘trivialities’. As a
lagniappe, these divisibilities are interesting and unexpected in their own right; for example,
we can prove that for any nonnegative integer k,

(12k2 + 6k + 1)2 divides (6k + 2)6k+2 − (6k + 1)6k+1. (4)

We find this divisibility statement (which is equivalent to Proposition 4.3) to be unlike anything
we have encountered prior to this work. In Proposition 4.8, we show how this divisibility can
be leveraged into the construction of ‘abc triples’ whose quality is on par with the best known
elementary constructions.

The set Pcons has a reasonably natural definition, and as is our custom we can ask
quantitative questions about it, such as how likely it is for a prime to appear in Pcons. Recall
that the relative density of any set P of primes is defined to be

lim
x→∞

#{p 6 x : p ∈ P}
#{p 6 x : p prime}

= lim
x→∞

#{p 6 x : p ∈ P}
π(x)

,

where as usual π(x) denotes the number of primes not exceeding x. We believe the following
assertion to be true.

Conjecture 1.3. The relative density of Pcons within the primes equals 1 − 1
2e
−1/6 ≈

57.68%.

We defend this belief in § 5. It is easy to see that the family of polynomials

fp(x) =
(x+ 1)p − xp − 1

p
(5)

detects consecutive pth powers modulo p2 (see Lemma 2.5); these polynomials have appeared
in similar contexts, as we remark at the end of § 5, and go all the way back to Cauchy’s work.
As it happens, the roots of each of these polynomials come in sets of six (except for a few
explicit exceptions; see Proposition 5.3), which we have dubbed ‘six-packs’. This structure
is crucial to our justification of Conjecture 1.3; in fact, it allows us to make a more refined
assertion (Conjecture 5.4) about the distribution of the number of pairs of consecutive pth
powers modulo p2, rather than simply the presence or absence of such.

After setting out some preliminary lemmas in § 2, we provide in § 3 the details of the bijections
that underlie our proof of Theorem 1.2. Section 4 contains results concerning cyclotomic
factors of trinomials (and corresponding ‘trivial’ memberships in P±) and the presence of
sixth roots of unity in Pcons, as well as the material that relates to the abc conjecture. We
recall the symmetries among the roots of the polynomials fp in § 5 and use them to formulate
Conjecture 1.3 and its refinement. Finally, we return to the density of squarefree values of
nn + (−1)n(n− 1)n−1 in § 6, describing the computations we performed to arrive at the value
given in Conjecture 1.1.

2. Preliminary lemmas

In this section we record several simple statements that will be useful to us during the proofs
of our main results. We begin by discussing discriminants and resultants of polynomials of one
variable. Let Disc g denote the discriminant of the polynomial g(x), and let Res(g, h) denote
the resultant of g(x) and h(x). The following formula for the discriminant of the product of
two polynomials is classical [4, Chapter 12, equation (1.32)].
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Lemma 2.1. For any two polynomials g and h,

Disc(gh) = (−1)deg(g) deg(h) Disc(g) Disc(h) Res(g, h)2.

The formula for the discriminant of a trinomial is also classical; the following lemma
is a special case of [4, Chapter 12, equation (1.38)]. Recall that Dε(n,m) was defined in
equation (1).

Lemma 2.2. Let n > m be positive integers with (n,m) = 1, and let a, b ∈ {−1, 1}. Then
|Disc(xn + axm + b)| = Dε(n,m), where ε = (−1)n−1anbn−m.

We remark that a formula for the discriminant of the trinomial xn + axm + b is known
even when n and m are not relatively prime [19, Theorem 2]. Only the values D±(m,n) with
(n,m) = 1 are directly relevant to discriminants of these trinomials; nevertheless, for most of
this paper we shall investigate all the values D±(m,n) without the coprimality restriction.

We continue by proving a few basic facts from elementary number theory to be used later.
An integer x is a pth power modulo p2 if x ≡ ap (mod p2) for some integer a; if in addition
x 6≡ 0 (mod p), we call x a nonzero pth power modulo p2. Two pth powers x and y modulo p2

are consecutive modulo p2 if y − x ≡ ±1 (mod p2).

Lemma 2.3. Let p be a prime, and let x be an integer.
(a) x is a nonzero pth power modulo p2 if and only if xp−1 ≡ 1 (mod p2).
(b) There exists a unique pth power modulo p2 that is congruent to x modulo p.
(c) When p - x, the order of x modulo p is the same as the order of xp modulo p2.

Proof. Part (a) follows directly from the fact that (Z/p2Z)× is cyclic of order p(p− 1). The
existence in part (b) comes from setting y = xp, so that y is a pth power modulo p2 and
y ≡ x (mod p) by Fermat’s little theorem. As for uniqueness, suppose that z is any pth power
modulo p2 with z ≡ x (mod p). Since z ≡ y (mod p), write z = y + kp for some integer k.
Then

z ≡ z · zp−1 = zp = (y + kp)p ≡ yp = y · yp−1 ≡ y (mod p2),

where the first and last congruences follow from part (a) and the middle congruence follows
from the binomial expansion of (y + kp)p. (We should not have invoked part (a) when
x ≡ 0 (mod p), but the assertion of part (b) is trivial in that case.)

As for part (c), if (xp)t ≡ 1 (mod p2), then certainly xt ≡ (xp)t ≡ 1 (mod p) as well by
Fermat’s little theorem. Conversely, if xt ≡ 1 (mod p), then (xp)t ≡ xt ≡ 1 (mod p) as well.
But then (xp)t = (xt)p is a pth power modulo p2 that is congruent to 1 modulo p; but 1 itself
is also a pth power congruent to 1 modulo p2. Therefore (xp)t ≡ 1 (mod p2) by part (b). In
particular, the orders of x (mod p) and xp (mod p2) coincide.

Lemma 2.4. For any prime p, consecutive pth powers modulo p2 must be pth powers of
consecutive residue classes modulo p.

Proof. If x ≡ ap (mod p2) and y ≡ bp (mod p2) are consecutive pth powers modulo p2, then
±1 ≡ y − x ≡ bp − ap (mod p2). Hence certainly ±1 ≡ bp − ap ≡ b − a (mod p) by Fermat’s
little theorem, which establishes the lemma.

We can now understand why the polynomial fp defined in equation (5) is relevant to the
study of consecutive pth powers modulo p2.

Lemma 2.5. For any prime p, the roots of fp are in one-to-one correspondence with pairs
of consecutive pth powers modulo p2. Moreover, 0 and −1 are always roots of fp, and any
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remaining roots are in one-to-one correspondence with pairs of consecutive nonzero pth powers
modulo p2.

Proof. By Lemma 2.3(a), we see that if x and x+1 are pth powers modulo p2, then (x+1)p−
xp− 1 ≡ (x+ 1)−x− 1 ≡ 0 (mod p2), or fp(x) ≡ 0 (mod p). Conversely, if fp(a) ≡ 0 (mod p)
then (a+ 1)p − ap − 1 ≡ 0 (mod p2), showing that ap and (a+ 1)p are consecutive pth powers
modulo p2. Therefore the roots of fp are in one-to-one correspondence with residue classes
a (mod p) such that ap and (a + 1)p are consecutive (mod p2); and Lemma 2.4 tells us that
such pairs are the only possible consecutive pth powers modulo p2. The roots 0 and −1 of fp
obviously correspond to the pairs 0, 1 and −1, 0 of consecutive pth powers modulo p2.

We conclude this section with two specific results that will keep later proofs from becoming
mired in elementary details.

Lemma 2.6. Let p be an odd prime and x a pth power modulo p2. Suppose that y is an
integer such that xk ≡ ±ym (mod p2) for some integers k and m with p - m. Then y is a pth
power modulo p2.

Proof. We know that xp−1 ≡ 1 (mod p2) from Lemma 2.3(a), and so

1 ≡ xk(p−1) ≡ (±ym)p−1 = (ym)p−1 (mod p2)

since p is odd. The order of y modulo p2 thus divides m(p − 1); but this order also divides
φ(p2) = p(p − 1). Since p - m, the greatest common divisor of m(p − 1) and p(p − 1) equals
p− 1, and so the order of y modulo p2 divides p− 1. In other words, yp−1 ≡ 1 (mod p2), and
so y is a pth power modulo p2 by Lemma 2.3(a) again.

Lemma 2.7. Let p be a prime. For any integers x, y, and z with x+ pz > 0,

(x+ py)x+pz ≡ xx+pz(1 + py) (mod p2).

Moreover, if x is a pth power modulo p2, then

(x+ py)x+pz ≡ xx+z(1 + py) (mod p2).

Proof. Using the binomial theorem and discarding multiples of p2,

(x+ py)x+pz =

x+pz∑
j=0

(
x+ pz

j

)
xx+pz−j(py)j

≡
(
x+ pz

0

)
xx+pz +

(
x+ pz

1

)
xx+pz−1py

= xx+pz + (x+ pz)xx+pz−1py ≡ xx+pz(1 + py) (mod p2),

establishing the first claim. If x is a pth power modulo p2, then xpz = (xp−1)zxz ≡ xz (mod p2)
by Lemma 2.3(a), establishing the second claim.

3. Correspondence between roots of fp and pairs (n,m)

The main goal of this section is to establish Theorem 1.2, which asserts that the sets P+ and
P− defined in equation (2) are both equal to the set Pcons defined in equation (3). While the
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proofs in this section are all elementary, it is not particularly straightforward to come up with
the precise formulations of the statements that will lead to the final bijections.

First we give two lemmas showing that certain divisibilities by square factors depend only
upon the residue classes of the variables to particular moduli.

Lemma 3.1. Let p be a prime, and let m and n be integers not divisible by p. Suppose that
m′ and n′ are integers satisfying m′ ≡ m (mod p(p− 1)) and n′ ≡ n (mod p(p− 1)). Then
p2 | D±(n,m) if and only if p2 | D±(n′,m′).

Remark. We have defined D±(n,m) only when n > m are positive integers. However, this
lemma tells us that the property p2 | D±(n,m) depends only upon the residue classes of n
and m modulo p(p − 1). Therefore, if we ever write p2 | D±(n,m) when m 6 0 or m > n,
what we mean is that p2 | D±(n′,m′) for positive m′ ≡ m (mod p(p− 1)) and sufficiently
large n′ ≡ n (mod p(p− 1)).

Proof of Lemma 3.1. Write n′ = n+ kp(p− 1) for some integer k. Then by Lemma 2.7 with
y = k(p− 1),

D±(n′,m) = (n+ kp(p− 1))n+kp(p−1) ± (n−m+ kp(p− 1))n−m+kp(p−1)mm

≡ nn+kp(p−1)(1 + kp(p− 1))± (n−m)n−m+kp(p−1)(1 + kp(p− 1))mm (mod p2).

If p2 | D±(n,m), then p cannot divide n−m (or else it would divide n, contrary to assumption).
Thus np(p−1) and (n−m)p(p−1) are congruent to 1 (mod p2) by Euler’s theorem, and so

D±(n′,m) ≡ nn(1 + kp(p− 1))± (n−m)n−m(1 + kp(p− 1))mm

≡ (1 + kp(p− 1))D±(n,m) (mod p2);

in particular, p2 | D±(n,m) implies p2 | D±(n′,m). The roles of n and n′ are symmetric, and
so we conclude that p2 | D±(n,m) if and only if p2 | D±(n′,m). Finally, a similar argument
shows that p2 | D±(n′,m) if and only if p2 | D±(n′,m′), which completes the proof of the
lemma.

Lemma 3.2. Let p be a prime, and let m, n, and ` be integers. Let r be any integer congruent
to n modulo p. Then p2 divides rn + `(r−m)n−m if and only if p2 divides nn + `(n−m)n−m.

Remark. One must avoid the pitfall of changing the occurrences of n in the exponents to r:
it would be false to claim that p2 | (rr+`(r−m)r−m) is equivalent to p2 | (nn+`(n−m)n−m).

Proof. Writing r = n+ kp for some integer k, we have, by Lemma 2.7,

rn + `(r −m)n−m = (n+ kp)n + `(n+ kp−m)n−m

≡ nn(1 + kp) + `(n−m)n−m(1 + kp)

≡ (1 + kp)(nn + `(n−m)n−m) (mod p2).

Since 1 + kp is invertible modulo p2, we conclude that rn + `(r −m)n−m ≡ 0 (mod p2) if and
only if nn + `(n−m)n−m ≡ 0 (mod p2), as desired.

Our next goal is the construction of a bijection (Theorem 3.6) between Ap,m,ε, a set defined
in equation (8) that indicates membership in Pε, and Bp,m,ε, a set defined in equation (9) that
is related to Pcons.
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Proposition 3.3. Let p be prime, let m be a positive integer not divisible by p, and fix
ε ∈ {1,−1}. Given any residue class n (mod p(p− 1)) such that p2 | Dε(n,m), set k ≡
m − n (mod p(p− 1)), and let x be any integer satisfying x ≡ 1 − mn−1 (mod p). Then
xk ≡ −ε(1− x)m (mod p2).

Proof. Note that the congruence x ≡ 1 −mn−1 (mod p) is well defined because p cannot
divide n; also, 1 − x 6≡ 0 (mod p) because p cannot divide m, and so 1 − x is invertible
modulo p2. Set r ≡ m(1 − x)−1 (mod p2), so that x ≡ 1 − mr−1 (mod p2). Also note that
x ≡ (n−m)n−1 (mod p2) is invertible modulo p2 because p cannot divide n−m; in particular,
xp(p−1) ≡ 1 (mod p2) and hence xk ≡ xm−n (mod p2). Consequently, r −m ≡ xr (mod p2) is
invertible. Therefore we can factor out powers of r and r −m to obtain

xk + ε(1− x)m ≡ (1−mr−1)m−n + ε(mr−1)m

≡ r−m(r −m)m−n(rn + ε(r −m)n−mmm) (mod p2). (6)

Since p2 | Dε(n,m) by assumption, we have nn + ε(n −m)n−mmm ≡ 0 (mod p2); therefore
rn + ε(r −m)n−mmm ≡ 0 (mod p2) by Lemma 3.2, and hence xk + ε(1 − x)m ≡ 0 (mod p2)
by the congruence (6).

Corollary 3.4. Let p be an odd prime, let m be a positive integer not divisible by p,
and let ε ∈ {1,−1}. Given any residue class n (mod p(p− 1)) such that p2 | Dε(n,m), set
k ≡ m − n (mod p(p− 1)), and define x to be the unique pth power modulo p2 such that
x ≡ 1 −mn−1 (mod p). Then xk ≡ −ε(1 − x)m (mod p2). In particular, x − 1 is also a pth
power modulo p2.

Remark. In the statement of the corollary, k is determined modulo p(p− 1); however, any
integer k′ ≡ k (mod p− 1) also satisfies xk

′ ≡ −ε(1 − x)m (mod p2), by Lemma 2.3(a). We
also remark that x 6≡ 1 (mod p) since p - n.

Proof. Proposition 3.3 tells us that the congruence xk ≡ −ε(1−x)m (mod p2) holds for any
integer x such that x ≡ 1−mn−1 (mod p). When we add the condition that x be a pth power
modulo p2, Lemma 2.3(b) implies that x is unique (mod p2). Finally, since x is a pth power
modulo p2 and xk ≡ ((−1)m+1ε)(x− 1)m (mod p2), we conclude from Lemma 2.6 that x− 1
is also a pth power modulo p2.

Proposition 3.5. Let p be an odd prime, let ε ∈ {1,−1}, and let k and m be integers.
Suppose that x is a pth power modulo p2 that satisfies xk ≡ −ε(1 − x)m (mod p2). Set
n = (m−k)p−m(1−x)−1(p− 1), where (1−x)−1 is any integer satisfying (1−x)−1(1−x) ≡
1 (mod p2). Then p2 | Dε(n,m).

Remark. Notice that the congruence xk ≡ −ε(1−x)m (mod p2) implies that neither x nor
1− x can be divisible by p. The fact that (1− x)−1 is determined modulo p2 implies that the
definition of n is determined as a single residue class modulo p2(p − 1); however, Lemma 3.1
implies that any integer n′ that is congruent to n modulo p(p− 1) also satisfies p2 | Dε(n

′,m).
Note also that the hypotheses determine k only modulo p − 1; this is again fine, as changing
n by a multiple of p(p− 1) does not affect whether p2 | Dε(n,m).

Proof of Proposition 3.5. Write n = m(1−x)−1 + p((m− k)−m(1−x)−1). By Lemma 2.7,

nn ≡ (m(1− x)−1)n(1 + p((m− k)−m(1− x)−1))

≡ mn(1− x)−n(1 + n−m(1− x)−1) (mod p2).
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Similarly, n−m = (m(1− x)−1 −m) + p((m− k)−m(1− x)−1), and so

(n−m)n−mmm ≡ (m(1− x)−1 −m)n−m(1 + p((m− k)−m(1− x)−1))mm

≡ mn((1− x)−1 − 1)n−m(1 + n−m(1− x)−1) (mod p2).

Consequently,

Dε(n,m) = nn + ε(n−m)n−mmm

≡ mn(1 + n−m(1− x)−1)((1− x)−n + ε((1− x)−1 − 1)n−m) (mod p2). (7)

Since x is a nonzero pth power modulo p2 and n−m+k ≡ (m−k)−m+k ≡ 0 (mod p− 1),
Lemma 2.3(a) tells us that xn−m+k ≡ 1 (mod p2). By hypothesis, this can be written as

xn−m(−ε(1− x)m) ≡ 1 (mod p2),

which we rearrange into the more complicated

1 + ε(1− (1− x))n−m(1− x)m ≡ 0 (mod p2).

Dividing through by (1−x)n, we obtain (1−x)−n+ ε((1−x)−1−1)n−m ≡ 0 (mod p2), which
together with equation (7) shows that Dε(n,m) ≡ 0 (mod p2) as desired.

Given an odd prime p, an integer m not divisible by p, and ε ∈ {1,−1}, define a set of
residue classes

Ap,m,ε = {n (mod p(p− 1)) : p2 | Dε(n,m)} (8)

and a set of ordered pairs of residue classes

Bp,m,ε = {(x (mod p2), k (mod p− 1)) :

x is a nonzero pth power modulo p2 and xk ≡ −ε(1− x)m (mod p2)}. (9)

For any (x, k) in the latter set, note that x and x−1 are consecutive nonzero pth powers modulo
p2, by the argument in the proof of Corollary 3.4. Also define functions αp,m,ε : Ap,m,ε → Bp,m,ε
and βp,m,ε : Bp,m,ε → Ap,m,ε by

αp,m,ε(n (mod p(p− 1)))

= (the pth power x (mod p2) such that x ≡ 1−mn−1 (mod p), m− n (mod p− 1))

and

βp,m,ε(x (mod p2), k (mod p− 1)) = (m− k)p−m(1− x)−1(p− 1) (mod p(p− 1)).

Lemma 2.3(b), Corollary 3.4, and Proposition 3.5 (and the remarks following their statements)
ensure that these functions are well defined.

Theorem 3.6. Let p be an odd prime, let m be an integer not divisible by p, and let
ε ∈ {1,−1}. There is a one-to-one correspondence between Ap,m,ε and Bp,m,ε, given by the
bijections αp,m,ε and βp,m,ε which are inverses of each other.

Remark. The exact correspondence is important computationally, but the underlying
qualitative statement alone is simple and surprising.
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Proof. It remains only to check the assertion that αp,m,ε and βp,m,ε are inverses of each
other. For example, note that

βp,m,ε(x, k) ≡ (m− k)1−m(1− x)−10 = m− k (mod p− 1)

βp,m,ε(x, k) ≡ (m− k)0−m(1− x)−1(−1) = m(1− x)−1 (mod p).

Therefore for any n ∈ Ap,m,ε,

βp,m,ε ◦ αp,m,ε(n) ≡ m− (m− n) = n (mod p− 1)

βp,m,ε ◦ αp,m,ε(n) ≡ m(1− (1−mn−1))−1 = n (mod p),

and so βp,m,ε ◦αp,m,ε(n) ≡ n (mod p(p− 1)) as required. Verifying that αp,m,ε ◦βp,m,ε(x, k) =
(x, k) for every (x, k) ∈ Bp,m,ε is similarly straightforward.

With this bijection in hand, we need only one more lemma before being able to fully establish
Theorem 1.2.

Lemma 3.7. Suppose that p ∈ Pcons. Then there exists an integer x such that x and 1− x
are nonzero pth powers modulo p2 and 1− x has even order (mod p2).

Proof. By Lemma 2.5, the fact that p ∈ Pcons implies that there exists y 6≡ 0 (mod p) such
that fp(y) ≡ 0 (mod p). Set z ≡ y−1 (mod p); Lemma 5.1 confirms that fp(z) ≡ 0 (mod p) as
well. In other words, we have both (y+ 1)p ≡ yp + 1 (mod p2) and (z+ 1)p ≡ zp + 1 (mod p2).

Lemma 2.3(c) tells us that for any integer a 6≡ 0 (mod p), the order of ap (mod p2) is the
same as the order of a (mod p). Hence if y+1 has even order modulo p, set x ≡ (−y)p (mod p2).
If −y has even order modulo p, then set x ≡ (y+ 1)p (mod p2). If both y+ 1 and −y have odd
order modulo p, then their quotient −(y + 1)z = −(1 + z) also has odd order modulo p; but
then 1 + z has even order modulo p, whence we set x ≡ (−z)p (mod p2).

Proof of Theorem 1.2. It is easy to see from the definitions of Pcons and Pε that the prime 2
is not in any of these sets; henceforth we may assume that p is odd.

Given ε ∈ {1,−1}, suppose that p ∈ Pε, so that there exist positive integers n,m with p - m
such that p2 | Dε(n,m). By Corollary 3.4, there exists a nonzero pth power x (mod p2) such
that x− 1 is also a nonzero pth power modulo p2; therefore p ∈ Pcons as well.

Conversely, suppose that p ∈ Pcons. By Lemma 3.7, we can choose x such that x and
1 − x are both nonzero pth powers modulo p2 and 1 − x has even order modulo p2. Fix a
primitive root g (mod p2), and choose integers 1 6 j, k 6 p − 2 such that x ≡ gpj (mod p2)
and 1 − x ≡ gpk (mod p2). We know that the order of 1 − x ≡ gpk is even, so let 2t denote
that order, noting that 1 6 t 6 (p− 1)/2 by Lemma 2.3(a). Then ((gpk)t)2 ≡ 1 (mod p2) but
(gpk)t 6≡ 1 (mod p2), and hence we must have gpkt ≡ −1 (mod p2).
• If ε = −1, then setting m = j yields xk ≡ (gpm)k = −ε(gpk)m ≡ −ε(1− x)m (mod p2).

• If ε = 1, then setting m = j − t yields xk ≡ (gpm+pt)k = (gptk)ε(gpk)m ≡ −ε(1 − x)m

(mod p2). Note that |m| 6 p− 2; if m = 0, then by Lemma 2.3(a) we can replace m by
p− 1.

In either case, Proposition 3.5 tells us that p2 | Dε(n,m), and in all cases we know that p - m.
Therefore, p ∈ Pε as desired.

In the introduction we saw that 59 ∈ P±, and so by Theorem 1.2 we must have 59 ∈ Pcons

as well; the consecutive residue classes 359 ≡ 298 (mod 592) and 459 ≡ 299 (mod 592) witness
this membership (in fact there are 14 pairs of consecutive 59th powers modulo 592). On the
other hand, Wieferich primes are obviously in Pcons, and so they must be in each of P± as
well. One can work through the bijections in this section to see that if p is a Wieferich prime,
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then p2 divides D+(2p − 1, 1) = (2p − 1)2p−1 + (2p − 2)2p−2, for example. (Once discovered,
this divisibility can also be proved more straightforwardly using Lemma 2.7.)

4. Reducible trinomials

We continue to investigate the parallels between square divisors of D±(n,m) and pairs of
consecutive pth powers modulo p2. We have already ruled out trivial occurrences of both
objects: when p divides n and m we trivially have p2 | D±(n,m), while −1, 0, 1 are trivial
consecutive pth powers for any prime. As it happens, however, there are more subtle examples
of ‘trivial’ occurrences of both objects, which turn out to correspond to each other. In the
first instance, we find predictable square divisors of D±(n,m) when a corresponding trinomial
xn ± xm ± 1 is reducible with cyclotomic factors; in the second instance, we find that sixth
roots of unity are predictable consecutive pth powers modulo p2. Once these predictable
occurrences are excluded, we see (Theorem 4.6) that the ‘sporadic’ occurrences are again
in perfect correspondence.

Ljunggren [10, Theorem 3] established that trinomials of the form xn ± xm ± 1 are
irreducible, except for certain explicit situations when they have known cyclotomic factors.
Since the statement below requires both greatest common divisors and ordered pairs, we shall
temporarily write gcd(m,n) explicitly.

Lemma 4.1 (Ljunggren). Let n > m be positive integers, and let ε, ε′ ∈ {−1, 1}.
(a) Suppose that gcd(n,m) = 1. The trinomial xn + εxm + ε′ is irreducible except in the

following situations:
(i) if (n,m) ≡ (1, 5) (mod 6) or (n,m) ≡ (5, 1) (mod 6), and ε = 1, then xn + εxm +

ε′ = g(x)h(x) where g(x) = x2 + ε′x+ 1 and h(x) is irreducible;
(ii) if (n,m) ≡ (2, 1) (mod 6) or (n,m) ≡ (4, 5) (mod 6), and ε′ = 1, then xn + εxm +

ε′ = g(x)h(x) where g(x) = x2 + εx+ 1 and h(x) is irreducible;
(iii) if (n,m) ≡ (1, 2) (mod 6) or (n,m) ≡ (5, 4) (mod 6), and ε = ε′, then xn + εxm +

ε′ = g(x)h(x) where g(x) = x2 + εx+ 1 and h(x) is irreducible.
(b) Suppose that gcd(n,m) = d > 1. If the trinomial xn/d + εxm/d + ε′ factors as g(x)h(x)

according to one of the situations in part (a), then xn + εxm + ε′ factors as g(xd)h(xd)
and h(xd) is irreducible; otherwise, xn + εxm + ε′ is irreducible.

Remark. In part (b), the other factor g(xd) might not be irreducible; but since g(x) is a
cyclotomic polynomial, g(xd) will be a product of cyclotomic polynomials (of order dividing 6d)
that is easy to work out.

Lemma 4.2. Let m and n be positive integers and set gcd(n,m) = d, and let ε, ε′ ∈ {−1, 1}.
Suppose that xn + εxm + ε′ is reducible, and let g(x) and h(x) be the polynomials described
in Lemma 4.1, so that xn + εxm + ε′ = g(xd)h(xd). Then

Res(g(xd), h(xd)) =

(
n2 −mn+m2

3d2

)d
.

Proof. We include only the proof of a single representative case, since the full proof contains
no new ideas but a lot of repetition. Suppose that n ≡ 1 (mod 6) and m ≡ 5 (mod 6), that
(n,m) = 1, and that ε = ε′ = 1, so that xn + xm + 1 = (x2 + x + 1)h(x) by Lemma 4.1; we
need to show that Res(x2 +x+ 1, h(x)) = (n2−mn+m2)/3. Let ζ = e2πi/3, so that the roots
of x2 + x+ 1 are ζ and ζ̄; then by the definition of the resultant,

Res(x2 + x+ 1, h(x)) = h(ζ)h(ζ̄).
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By L’Hôpital’s rule, we have

h(ζ) = lim
z→ζ

f(z)

g(z)
= lim
z→ζ

f ′(z)

g′(z)
=
f ′(ζ)

g′(ζ)
=
nζn−1 +mζm−1

2ζ + 1
=
n+mζ

i
√

3

by the congruence conditions on n and m. Consequently,

h(ζ)h(ζ̄) = h(ζ)h(ζ) =
n+mζ

i
√

3

n+mζ̄

−i
√

3
=
n2 +mn(ζ + ζ̄) +m2ζζ̄

3
=
n2 −mn+m2

3
,

as claimed.

As a concrete application, we are now able to describe a parametric family of square divisors
of D−(n, 1).

Proposition 4.3. If n ≡ 2 (mod 6), then(
n2 − n+ 1

3

)2

divides nn − (n− 1)n−1. (10)

Remark. Setting n = 6k + 2 shows that this result is equivalent to equation (4). Once
discovered, that divisibility can be proved directly using the easily-verified congruences

−(6k + 2)3 ≡ 1− (18k + 9)(12k2 + 6k + 1) (mod (12k2 + 6k + 1)2),

(6k + 1)3 ≡ 1 + 18k(12k2 + 6k + 1) (mod (12k2 + 6k + 1)2),

which hint at the connection to sixth roots of unity. Of course, this elementary proof sheds
little light upon the true reason for the existence of the divisibility.

Proof of Proposition 4.3. When n ≡ 2 (mod 6), Lemma 2.2 (with m = ε = ε′ = 1) tells
us that |Disc(xn + x + 1)| = D−(n, 1) = nn − (n − 1)n−1. On the other hand, we see from
Lemma 4.1 that xn +x+ 1 = (x2 +x+ 1)h(x) for some polynomial h(x). Therefore the square
of the resultant of x2 +x+ 1 and h(x) divides nn− (n− 1)n−1 by Lemma 2.1; and Lemma 4.2
tells us that this resultant is exactly (n2 − n+ 1)/3.

Remark. Many divisibility statements similar to (10) can be established using the same
method, starting with special cases of Lemma 4.1 other than n ≡ 2 (mod 6), m = 1, and
ε = ε′ = 1.

We now show that these particular divisibilities are intimately related to the primitive sixth
roots of unity modulo p2, when they exist. This relationship will allow us to classify certain
square divisors of D±(m,n), and certain consecutive nonzero pth powers modulo p2, as ‘trivial’
and to give an equivalence (Theorem 4.6) between the modified versions of P± and Pcons defined
in equations (11) and (12) below.

Lemma 4.4. Let p ≡ 1 (mod 6) be a prime, and let x be a primitive sixth root of unity
modulo p2. Then x− 1 is a primitive cube root of unity modulo p2. In particular, x− 1 and x
are consecutive pth powers modulo p2.

Proof. The primitive sixth root of unity x is a root of the polynomial congruence x2−x+1 ≡
0 (mod p), which means that x− 1 ≡ x2 (mod p); since x2 has order 3 when x has order 6, we
conclude that x−1 is a primitive cube root of unity modulo p2. Since 3 | 6 | (p−1), both xp−1

and (x− 1)p−1 are congruent to 1 (mod p2), and so both x and x− 1 are pth powers modulo
p2 by Lemma 2.3(a).
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Lemma 4.5. Let n and m be relatively prime integers, and let p be a prime not dividing n.
Set x ≡ 1−mn−1 (mod p). Then x is a primitive sixth root of unity modulo p2 if and only if
p2 | (n2 −mn+ n2).

Remark. It is easy to derive the fact that the lemma is still valid if (n,m) > 1, provided
that the expression n2 −mn+m2 is replaced by (n2 −mn+m2)/(n,m)2.

Proof. We begin by noting that x being a primitive sixth root of unity modulo p2 is equivalent
to x2 − x + 1 ≡ 0 (mod p2), which in turn is equivalent to x(1 − x) ≡ 1 (mod p2). By the
definition of x,

x(1− x) ≡ (1−mn−1)mn−1 = (mn−m2)n−2 = 1− (n2 −mn+m2)n−2 (mod p2).

This congruence shows that x(1− x) ≡ 1 (mod p2) if and only if n2−mn+m2 ≡ 0 (mod p2),
which is equivalent to the statement of the lemma (in light of the first sentence of this proof).

For ε ∈ {−1, 1}, define

P̃ε =

{
p prime: there exist positive integers n,m with p - m such that

p2 | Dε(n,m) but p2 -
n2 −mn+m2

(m,n)2

}
(11)

and

P̃cons = {p prime: there exist consecutive nonzero pth powers modulo p2,

other than (x− 1, x) where x is a primitive sixth root of unity}. (12)

For example, Pcons contains every prime congruent to 1 (mod 6) by Lemma 4.4; however, the
smallest two primes in P̃cons are 59 and 79. Note that 79 ≡ 1 (mod 6) is still in P̃cons: even
though we have ruled out the sixth roots of unity, there are still other pairs of consecutive
nonzero 79th powers modulo 792. The intuition is that once all trivial square divisibilities
(including those arising from cyclotomic factors) and trivial consecutive pth powers modulo
p2 (including those arising from primitive sixth roots of unity) have been accounted for, the
sets P̃ε and P̃cons record only ‘sporadic’ square factors and consecutive pth powers.

The techniques of § 3, together with the additional results in this section, allow us to establish
the following variant of Theorem 1.2; we omit the mostly redundant details.

Theorem 4.6. We have P̃+ = P̃− = P̃cons.

The relationship between primitive sixth roots of unity and certain nonsquarefree values of
D±(n,m) is not only an interesting and unexpected pattern, it also reduces the amount of
explicit computation we have to do in subsequent sections.

We conclude this section by applying the strange divisibility in Proposition 4.3 to the
construction of a new family of ‘abc triples’. Let R(n) denote the radical of n, that is,
the product of all the distinct primes dividing n, without multiplicity. Recall that the abc
conjecture states that if a, b, c are relatively prime positive integers satisfying a+ b = c, then
c �ε R(abc)1+ε for every ε > 0, or equivalently R(abc) �ε c

1−ε for every ε > 0. It is known
that the more wishful inequality R(abc) > ηc is false for every constant η > 0, and it is useful
to have simple families of examples that demonstrate its falsity. It turns out that we can
construct such examples out of the divisibility exhibited in Proposition 4.3.
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Lemma 4.7. 7k+1 divides 87
k − 1 for any nonnegative integer k.

Proof. We proceed by induction on k; the case k = 0 is trivial. When k > 1, we can write

87
k

− 1 = (87
k−1

− 1)(86·7
k−1

+ 85·7
k−1

+ . . .+ 87
k−1

+ 1).

The first factor on the right-hand side is divisible by 7k by the induction hypothesis, while the
second factor is congruent to 1 + 1 + 1 + 1 + 1 + 1 + 1 (mod 7) and hence is divisible by 7.

Note that simply setting (a, b, c) = (1, 87
k − 1, 87

k

) yields

R(abc) = R(a)R(b)R(c) = 2R(b) 6 2b/7k < 2c/7k = (2 log 8)c/log c, (13)

which (taking k large enough in terms of η) is enough to falsify any wishful inequality R(abc) >
ηc. The similar example (a, b, c) = (1, 32

k − 1, 32
k

), attributed to Jastrzebowski and Spielman
(see [9, pp. 40–41]), yields the inequality R(abc) < ( 3

2 log 3)c/log c that has a slightly better
leading constant. We now give a new construction, different from the ones currently appearing
in the literature, that results in an inequality of the same order of magnitude as these examples,
but with a slightly worse leading constant. The specific form for n in the following construction
was suggested by Carl Pomerance.

Proposition 4.8. Given any positive integer k, define n = 87
k

and

a = (n− 1)n−1, b = nn − (n− 1)n−1, c = nn,

so that a, b, and c are pairwise relatively prime and a + b = c. Then R(abc) < 6b/7kn. In
particular,

R(abc) < 6 log 8
c

log c
. (14)

Proof. It suffices to establish the first inequality, since the second one follows upon noting
that b < c and log c = n log n = n · 7k log 8. Obviously R(c) = 2; also, R(a) = R(n − 1),
but 7k+1 | (n − 1) by Lemma 4.7, and so R(n − 1) 6 (n − 1)/7k. Equation (10) tells us that
((n2 − n + 1)/3)2 divides b (note that n ≡ 2 (mod 6) because 7k is odd), and so R(b) is at
most b/((n2 − n+ 1)/3). Since a, b, and c are pairwise relatively prime, we conclude that

R(abc) = R(a)R(b)R(c) 6
n− 1

7k
b

(n2 − n+ 1)/3
· 2 < 6b

7kn

as claimed.

There do exist constructions of abc triples with noticeably smaller radicals (see the seminal
paper [18] in this regard), although the methods to produce such triples are far more
complicated than the elementary arguments given above.

5. Orbits of roots

In this section, we recall that a certain small group of automorphisms preserves the roots of
the polynomial fp(x) = ((x+1)p−xp−1)/p defined in equation (5). We then use this structure
to justify a significant refinement of Conjecture 1.3, which we compare to data obtained from
calculation.

Lemma 5.1. Let p be an odd prime, and let x be an integer such that fp(x) ≡ 0 (mod p).
Then fp(−x − 1) ≡ 0 (mod p). Furthermore, if p - x then fp(x

−1) ≡ 0 (mod p), where x−1 is
any integer satisfying xx−1 ≡ 1 (mod p).

https://doi.org/10.1112/S1461157014000436 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000436


squarefree values of trinomial discriminants 161

Proof. Both assertions follow from the rational function identities

fp(−x− 1) =
((−x− 1) + 1)p − (−x− 1)p − 1

p
=

(−x)p + (x+ 1)p − 1

p
= fp(x)

and

xpfp(x
−1) = xp

(x−1 + 1)p − (x−1)p − 1

p
=

(1 + x)p − 1− xp

p
= fp(x).

Each map x 7→ −x − 1 and x 7→ 1/x is an involution of Z(x), and it turns out that their
composition has order 3. They therefore generate a group of six automorphisms of Z(x),
characterized by their images of x:

x 7→ x, x 7→ −x− 1, x 7→ − 1

x+ 1
, x 7→ − x

x+ 1
, x 7→ −x+ 1

x
, x 7→ 1

x
.

One can also consider these as automorphisms of Z/pZ ∪ {∞}; the following proposition
characterizes when some of the corresponding six images coincide. These observations have
been made before, see for example [14, Lecture VIII, equation (1.3)].

Lemma 5.2. Let p be an odd prime, and let x ∈ Z/pZ ∪ {∞}. The orbit{
x,−x− 1,− 1

x+ 1
,− x

x+ 1
,−x+ 1

x
,

1

x

}
⊂ Z/pZ ∪ {∞}

consists of six distinct values except in the following cases:
• every prime p has the orbit {0,−1,−1, 0,∞,∞};
• every prime p has the orbit {1,−2,−2−1,−2−1,−2, 1};
• every prime p ≡ 1 (mod 6) has the orbit {ζ, ζ−1, ζ, ζ−1, ζ, ζ−1}, where ζ is a primitive

cube root of unity modulo p.
These orbits are called the trivial orbit, the Wieferich orbit, and the cyclotomic orbit,
respectively.

Proof. The lemma is easy to verify by setting the various pairs of images equal and solving
for x, recalling that primitive cube roots of unity are precisely roots of the polynomial
x2 + x+ 1.

Given an odd prime p, define a six-pack to be a set of six distinct elements of Fp, of the form
{x,−x−1,−1/(x+ 1),−x/(x+ 1),−(x+ 1)/x, 1/x} all of which are roots of fp(x). Also recall
that a Wieferich prime is a prime p for which p2 | (2p− 2). To date, exhaustive computational
search [1] up to 6.7× 1015 has yielded only two Wieferich primes, namely 1093 and 3511. (An
ongoing computational project [17] has extended this range to nearly 1.5× 1017 as of August
2014.)

Proposition 5.3. When p ≡ 1 (mod 6), the set of roots of fp(x) modulo p consists of
{0,−1, ζ, ζ−1} together with zero or more disjoint six-packs, where ζ is a primitive cube root
of unity; when p ≡ 5 (mod 6), the set of roots of fp(x) modulo p consists of {0,−1} together
with zero or more disjoint six-packs. The only exceptions are Wieferich primes, for which fp(x)
also has the roots {1,−2,−2−1} in addition to those described above.

Proof. First, it is easy to check that 0, −1, and ζ and ζ−1 (when they exist) are indeed
roots of fp(x); for the latter pair, it is useful to note that the converse of Lemma 4.4 also
holds, namely that ζ + 1 and ζ−1 + 1 are primitive sixth roots of unity. Moreover, p divides
fp(1) = (2p − 2)/p if and only if p is a Wieferich prime. Therefore fp(x) has {1,−2,−2−1} as
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roots if and only if p if a Wieferich prime; here we use Lemmas 5.1 and 5.2 to justify that 1,
−2, and −2−1 are either all roots or all nonroots of fp(x). Finally, by the same two lemmas,
all remaining roots of fp(x) must come in six-packs.

By Lemma 5.2, depending on whether p ≡ 1 (mod 6) or p ≡ 5 (mod 6), there are exactly
(p− 7)/6 or (p− 5)/6 orbits in Fp other than the trivial, Wieferich, and cyclotomic orbits.
For each such orbit, the values of fp at the six elements of the orbit are all determined by
any one of those values; in particular, the six values are simultaneously zero or simultaneously
nonzero. Seeing no reason to think otherwise, we adopt the heuristic that each value has a 1/p
probability of equaling any given element of Fp, including 0.

What does this heuristic predict for the probability that fp will have no six-packs of roots?
Each of the (p− 7)/6 or (p− 5)/6 orbits has a 1−1/p probability of containing no roots of fp.
Under the further heuristic that these events are independent, we predict that the probability
of fp having no six-packs should be{(

1− 1

p

)(p−7)/6

or

(
1− 1

p

)(p−5)/6}
≈ e−1/6

when p is large. Indeed, a straightforward elaboration of this heuristic predicts that the number
of six-packs for fp should be given by a Poisson distribution with parameter 1

6 , that is, the

probability of fp having exactly k six-packs is ( 1
6 )ke−1/6/k!.

Furthermore, we predict that the number of six-packs for fp is completely independent of
whether p is congruent to 1 or 5 (mod 6). We additionally invoke the known heuristic that the
Wieferich primes have density 0 within the primes. (Indeed, the number of Wieferich primes is
suspected to go to infinity extremely slowly. Note, however, that we cannot even prove at this
point that infinitely many primes are not Wieferich primes! See, for example, [15, Chapter 5,
§ III] and [16].) Together, these heuristics support the following conjecture.

Conjecture 5.4. Define ρ(m) to be the relative density of the set of primes p for which
fp has exactly m roots (equivalently, for which there are exactly m pairs of consecutive pth
powers modulo p2). Then for every k > 0,

ρ(6k + 2) =
1

2e−1/6k!6k
and ρ(6k + 4) =

1

2e−1/6k!6k
,

while ρ(m) = 0 for all m 6≡ 2, 4 (mod 6).

In particular, the relative density of P̃cons within the primes is 1− e−1/6 ≈ 0.153 518, while
the relative density of Pcons within the primes is 1− 1

2e
−1/6 ≈ 0.576 759.

As we see from its last assertion, Conjecture 5.4 is a significant refinement of Conjecture 1.3.
Very little has been proved about the number of roots of fp; the best that is known is that the
number of roots is at most 2p2/3 + 2 (see [12, Theorem 1], and check that the L(x) therein
equals our fp(−x); see also [5, Lemma 4]).

Table 1 shows that Conjecture 5.4 compares favorably with a calculation of all the roots
of fp for all odd primes p up to 1 million. (Note that the two known Wieferich primes 1093
and 3511 have 2 and 0 six-packs, respectively, as indicated by the single primes shown with
m = 19 and m = 7.) This calculation of the roots of fp(x) was done simply by brute force,
testing each of the p possibilities; each test can be done by raising both x + 1 and x to the
pth power modulo p2, using fast modular exponentiation, and seeing whether (x+ 1)p − xp is
congruent to 1 (mod p2).

We remark here on the importance of six-packs to the formulation of our conjecture. We
started with the natural assumption that every x (mod p) has its own 1/p chance of being a
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Table 1. Empirical evidence supporting Conjecture 5.4.

Number of Number of Predicted frequency Predicted number of Actual number of
six-packs roots of fp of fp having m roots primes 3 6 p < 106 primes 3 6 p < 106

(k) (m) (ρ(m)) with fp having m roots with fp having m roots

0
2 1

2
e−1/6 ≈ 42.3% 33 223.1 33 316

4 1
2
e−1/6 ≈ 42.3% 33 223.1 33 387

7 0 0 1

1
8 1

12
e−1/6 ≈ 7.1% 5 537.2 5 477

10 1
12
e−1/6 ≈ 7.1% 5 537.2 5 356

2
14 1

144
e−1/6 ≈ 0.59% 461.4 444

16 1
144

e−1/6 ≈ 0.59% 461.4 465

19 0 0 1

3
20 1

2592
e−1/6 ≈ 0.033% 25.6 29

22 1
2592

e−1/6 ≈ 0.033% 25.6 19

>4 >26 ≈0.0028% 2.2 2

root of fp(x). This led to the prediction that the relative density of P̃cons within the primes
would be 1−e−1 ≈ 63.21% rather than the figure 15.35% given in Conjecture 5.4. However, our
initial computations of the zeros of fp(x) for primes less than 3000 showed that this prediction
was badly off the mark. We noticed from this computation that the zeros of fp(x) generally
occur in blocks of size six, and it was then easy to identify these as orbits of the little six-
element group (abstractly S3) described in Lemma 5.2. This naturally led to a revision of the
probabilistic heuristic and to the revised Conjecture 5.4. Now that we have a conjecture that
is empirically supported, it is amusing to reflect that our initially conjectured density was no
more accurate than a random number chosen uniformly between 0 and 1.

The fact that the zeros of fp(x) generally occur in blocks of six has been known for some
time. The polynomials fp(x) occur naturally in the study of the so-called ‘first case’ of Fermat’s
last theorem. In this connection, they were studied by Mirimanoff [11] who described explicitly
the action of S3 on the zeros. Helou [6] defined the Cauchy–Mirimanoff polynomial En(x) to
be the nontrivial factor of (x+ 1)n − xn − 1 that remains after removing any divisors among
x, x + 1, and x2 + x + 1; he studied the question of whether En(x) is irreducible over Q, as
have others (see, for example, [21]). Here n > 2 can be any integer, not necessarily prime.
Helou gives a thorough discussion of the action of S3 on the zeros of En(x) when n is odd.
These polynomials En(x) themselves had already been defined for odd n by Cauchy in 1839
(see the references in [6]), but in those papers Cauchy did not discuss the action of S3 on
their zeros.

6. Estimating the density of squarefree nn + (−1)n(n− 1)n−1

In this section we concentrate on the quantity D(−1)n(n, 1) = nn + (−1)n(n− 1)n−1, which as
we have seen is the discriminant of the trinomial xn−x− 1. There are sporadic nonsquarefree
values in this sequence, as noted in the introduction, the first being 130130 + 129129 which is
divisible by 832. Of course, by Lemma 3.1, any such example generates an entire residue class
of examples (in this case, 832 | (nn + (n− 1)n−1) for all n ≡ 130 (mod 83 · 82)); in particular,
a positive proportion of these values nn + (−1)n(n − 1)n−1 are not squarefree. Our goal for
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this section is to justify Conjecture 1.1, that the proportion of these values that are squarefree
is 0.993 446 6 . . . .

Definition 6.1. Define S to be the set of integers n > 2 for which nn + (−1)n(n − 1)n−1

is squarefree. For any real number x > 2, define S(x) to be the set of integers n > 2 for which
nn + (−1)n(n− 1)n−1 is not divisible by the square of any prime less than x.

Let δ(A) denote the (natural) density of a set A of positive integers. We certainly have
S ⊆ S(x) for any x > 2, and thus δ(S) 6 δ(S(x)) for any x. We can rigorously bound δ(S(x))
using a finite computation and inclusion–exclusion, as we now describe.

For any distinct primes p and q, define the finite sets

Cp = {a ∈ Z/p(p− 1)Z : aa + (−1)a(a− 1)a−1 ≡ 0 (mod p2)} (15)

(note that Cp is well defined by Lemma 3.1; the (−1)a factor causes no trouble since p(p− 1)
is even) and

Dp,q = {(a, b) ∈ Cp × Cq : gcd(p(p− 1), q(q − 1)) | (a− b)}. (16)

The set Cp is similar to the sets Ap,1,ε defined in equation (8), although the factor (−1)a in
the definition of Cp keeps the two objects from being identical; however, we certainly have
Cp ⊆ Ap,1,+ ∪ Ap,1,−.

Proposition 6.2. For any x > 2,

1−
∑
p<x

#Cp
p(p− 1)

+
∑

p<q<x

#Dp,q
lcm[p(p− 1), q(q − 1)]

−
∑

p<q<r<x

#Dp,q#Cr
lcm[p(p− 1), q(q − 1), r(r − 1)]

6 δ(S(x)) 6 1−
∑
p<x

#Cp
p(p− 1)

+
∑

p<q<x

#Dp,q
lcm[p(p− 1), q(q − 1)]

,

where the variables p, q, and r run over primes satisfying the indicated inequalities.

Proof. For any integer d, define the set

Md = {n > 2 : d2 | (nn + (−1)n(n− 1)n−1)}.

Then by inclusion–exclusion,

δ(S(x)) = 1−
∑
p<x

δ(Mp) +
∑

p<q<x

δ(Mpq)−
∑

p<q<r<x

δ(Mpqr) + . . .+ (−1)π(x)δ(M∏
p<x p

).

(Inclusion–exclusion is most safely applied to finite counting problems rather than densities of
infinite sets, but there are only finitely many sets in the above equation, so applying inclusion–
exclusion to the densities is valid. In fact, every set in the above equation is a union of
arithmetic progressions modulo

∏
p<x p(p − 1) by Lemma 3.1, and so their densities reduce

to counting finitely many residue classes anyway.) More saliently, the Bonferroni inequalities
[3, Chapter IV, § 5] provide the upper and lower bounds

1−
∑
p<x

δ(Mp) +
∑

p<q<x

δ(Mpq)−
∑

p<q<r<x

δ(Mpqr)

6 δ(S(x)) 6 1−
∑
p<x

δ(Mp) +
∑

p<q<x

δ(Mpq). (17)
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BecauseMp is a union of #Cp residue classes modulo p(p−1) by Lemma 3.1, the density ofMp

equals δ(Mp) = #Cp/p(p− 1). SinceMpq =Mp ∩Mq when p and q are distinct primes, each
pair of residue classes a (mod p(p− 1)) and b (mod q(q − 1)) either intersects in an arithmetic
progression modulo lcm[p(p−1), q(q−1)] or else not at all; the former happens precisely when
a − b is divisible by gcd(p(p − 1), q(q − 1)), which is exactly the condition for membership
in Dp,q. Consequently, the density of Mpq equals δ(Mp) = #Dp,q/ lcm[p(p − 1), q(q − 1)] as
well. We now see that the upper bound in equation (17) is equal to the upper bound in the
statement of the proposition; also, all but the last sums in the lower bounds have also been
evaluated.

Finally, a similar argument shows that Mpqr, for distinct primes p, q, r, is the union of
certain residue classes modulo lcm[p(p − 1), q(q − 1), r(r − 1)]; a given residue class in Dp,q
combines with a given residue class in Cr to yield either one or zero such residue classes modulo
lcm[p(p− 1), q(q− 1), r(r− 1)]. We obtain the upper bound #Dp,q#Cr for the number of such
residue classes simply by forgetting to check whether the residue classes in Dp,q and Cr are
compatible. Thus we obtain the upper bound

δ(Mpqr) 6
#Dp,q#Cr

lcm[p(p− 1), q(q − 1), r(r − 1)]
,

which shows that the lower bound in equation (17) does imply the lower bound asserted in
the proposition.

We turn now to a description of how we calculated the sets Cp and Dp,q defined in
equations (15) and (16). Calculating Cp directly from its definition would require testing p(p−1)
elements for every prime p; this quadratic growth would severely limit how many primes p we
could calculate Cp for. Instead we use the bijections given in Theorem 3.6 to reduce the amount
of computation necessary.

We begin by calculating, for a given prime p, all of the roots of fp(x), by brute force as
described near the end of § 5. For each such root x, we replace x and x − 1 with their pth
powers modulo p2, which will remain consecutive. We then test whether x is an element
of Bp,1,+ ∪ Bp,1,−; that is, we check whether there exist integers 1 6 k 6 p − 1 for which

xk ≡ ±(1−x) (mod p)
2
. Again we do this by brute force, checking each integer k in turn until

we come to the order of x modulo p2, which is a divisor of p− 1. Once we have listed all the
elements of Bp,1,+ ∪ Bp,1,−, we use the bijections of Theorem 3.6 to find all the elements of
Ap,1,+ ∪Ap,1,−, and finally we check each resulting element a individually to see whether the
parity is appropriate—namely, whether aa + (−1)a(a− 1)a−1 ≡ 0 (mod p2).

This calculation of Cp uses p (computationally easy) tests, followed by at most p−1 tests per
root of fp. Indeed, we may discard the trivial and cyclotomic roots of fp, since we know from the
earlier theory that these roots will never lead to prime squares dividing nn+ (−1)n(n− 1)n−1;
we need investigate only the sporadic roots. The number of sporadic roots of fp is always small
in practice: about 1 on average, and never more than 30 during our calculations.

Once the sets Cp had been calculated, we simply tested each element of every Cp×Cq directly
to see whether it qualified for inclusion in Dp,q. We carried out the above computations for
all odd primes p and q less than 1 million; there are slightly fewer than 80 000 such primes,
leading to the need to investigate a little over 3 billion pairs {p, q}.

With this information in hand, we calculate that

1−
∑
p<106

#Cp
p(p− 1)

+
∑

p<q<106

#Dp,q
lcm[p(p− 1), q(q − 1)]

= 0.993 446 73 . . .
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while ∑
p<q<r<106

#Dp,q#Cr
lcm[p(p− 1), q(q − 1), r(r − 1)]

< 5× 10−9.

In particular, the following inequalities follow from Proposition 6.2 and the fact that S ⊆
S(106).

Proposition 6.3. The density δ(S(106)) of the set of positive integers n such that nn +
(−1)n(n− 1)n−1 is not divisible by the square of any prime less than 1 million satisfies

0.993 446 68 < δ(S(106)) < 0.993 446 74.

In particular, the density δ(S) of the set of positive integers n such that nn + (−1)n(n− 1)n−1

is squarefree satisfies
δ(S) < 0.993 446 74.

We cannot rigorously establish any nontrivial lower bound for δ(S); indeed, we cannot even
prove that nn + (−1)n(n − 1)n−1 is squarefree infinitely often. Moreover, since the numbers
nn+(−1)n(n−1)n−1 grow so quickly that we cannot determine by direct factorization whether
they are actually squarefree, direct numerical evidence on the density of squarefree values in
this sequence is not available. However, we now present a heuristic that suggests that the
upper bound for δ(S) in Proposition 6.3 is rather close to the truth.

Conjecture 6.4. The set Cp has one element on average over the primes, that is,∑
p<x #Cp ∼ π(x).

Before justifying this last conjecture, we work out its implication for the density of S. An
argument similar to the proof of Proposition 6.2 convinces us that

1−
∑
p>106

#Cp
p(p− 1)

.
δ(S)

δ(S(106))
. 1−

∑
p>106

#Cp
p(p− 1)

+
∑

q>p>106

#Dp,q
lcm[p(p− 1), q(q − 1)]

.

Of course there will be some interaction between the specific residue classes in Cp for p > 106

and the residue classes modulo smaller primes that we have already sieved out, just as for
the intersection of two residue classes to any moduli s and t: most of the time they will not
intersect at all, but 1/(s, t) of the time they will intersect in a total of (s, t) residue classes
modulo st, so there is one residue class modulo st on average in the intersection. Therefore
we find it a reasonable approximation to assume that the residue classes in Cp for these larger
primes p are independent, on average, of the structure of S(106). By similar reasoning, we can
simplify the last sum by postulating the same independence:

1−
∑
p>106

#Cp
p(p− 1)

.
δ(S)

δ(S(106))
. 1−

∑
p>106

#Cp
p(p− 1)

+
∑

q>p>106

#Cp#Cq
p(p− 1)q(q − 1)

< 1−
∑

106<p<109

#Cp
p(p− 1)

+
1

2

( ∑
p>106

#Cp
p(p− 1)

)2

.

Moreover, Conjecture 6.4 suggests that we can replace #Cp by 1 on average, and so our
estimates become

1−
∑
p>106

1

p(p− 1)
.

δ(S)

δ(S(106))
. 1−

∑
106<p<109

1

p(p− 1)
+

1

2

( ∑
p>106

1

p(p− 1)

)2

.
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A short computation yields

∑
106<p<109

1

p(p− 1)
≈ 6.773 06× 10−8,

while ∑
p>109

1

p(p− 1)
<
∑
n>109

1

n(n− 1)
=

1

109
.

We therefore estimate that

1− 7× 10−8 .
δ(S)

δ(S(106))
. 1− 6× 10−8 +

1

2
(7× 10−8)2.

Multiplying through by δ(S(106)) and using the bounds from Proposition 6.3, we conclude
that

0.993 446 61 . δ(S) . 0.993 446 69,

which is the source of our belief in Conjecture 1.1.

Justification of Conjecture 6.4. By Theorem 3.6, the number of residue classes in Ap,1,± is
the same as the number of ordered pairs (x (mod p2), k (mod p− 1)), where x is a nonzero
pth power modulo p2 and xk ≡ ±(x − 1) (mod p2). We expect the set Cp to comprise half
of Ap,1,± on average, since there is one parity condition that must be checked. Since our
heuristic will give the same answer for each choice of ± sign, we concentrate on the congruence
xk ≡ x− 1 (mod p2) for the purposes of exposition; we expect the number of such pairs (x, k)
to be equal to the cardinality of Cp on average.

The congruence xk ≡ x − 1 (mod p2) implies that x − 1 is also a pth power modulo p2,
by Lemma 2.6. Also, since xn − x − 1 is always irreducible by Lemma 4.1(a), we never have
cyclotomic factors and thus (by Theorem 4.6) can ignore sixth roots of unity among our pairs
of consecutive pth powers modulo p2. Therefore, the discussion leading up to Conjecture 5.4,
where we posit that the probability of fp having exactly k six-packs of nontrivial roots is
( 1
6 )ke−1/6/k!, implies that the expected number of pairs of nontrivial consecutive pth powers

modulo p2 is
∞∑
k=1

1

6ke1/6k!
· 6k =

1

e1/6

∞∑
k=1

1

6k−1(k − 1)!
= 1.

Given a pth power x (mod p2) such that x − 1 is also a pth power, it remains to investigate
the expected number of k (mod p− 1) such that xk ≡ x− 1 (mod p2).

Note that the set of nonzero pth powers modulo p2 is a cyclic subgroup of (Z/p2Z)× of order
p− 1. In any given isomorphism between this subgroup and Z/(p− 1)Z, we have no reason to
believe that the images (discrete logarithms) of x and x−1 are correlated. Therefore, we assume
that the expected number of such k is equal to the expected number of k (mod p− 1) such
that ky ≡ z (mod p− 1), where y and z are chosen independently uniformly from Z/(p− 1)Z.
Indeed, the remainder of our analysis does not depend upon the fact that the modulus is
one less than a prime, and so we determine the expected number of k (mod N) such that
ky ≡ z (mod N), where y and z are chosen independently uniformly from Z/NZ.

Given y and z, the congruence ky ≡ z (mod N) has no solutions k unless (y,N) divides z,
in which case it has (y,N) solutions modulo N . For every divisor d of N , exactly φ(d) of the N
residue classes y (mod N) satisfy (y,N) = d; given d, the probability that d | z is exactly 1/d.
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Therefore the expected number of solutions to the congruence is

∑
d|N

φ(d)

N
· 1

d
· d =

1

N

∑
d|N

φ(d) = 1.

Combining this calculation with our heuristic that there is one pair of consecutive nonzero pth
powers modulo p2 on average completes our justification of Conjecture 6.4.

We conclude by remarking that similar methods can be applied to the problem of estimating
how often D±(n,m) is squarefree, as both n and m vary. Since D±(n,m) is trivially not
squarefree when m and n share a common factor, the natural quantity to investigate is the
limiting proportion of relatively prime pairs (n,m) for which D±(n,m) is squarefree. The third
author [20] has carried out calculations and heuristics, similar to those presented in this section,
suggesting that this proportion is between 92% and 94%. However, the two-dimensional nature
of the problem constrained the amount of computation that could be done directly, thereby
limiting the precision of the estimates for the proportion.
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