Composition operators

R.K. Singh and B.S. Komal

Abstract

A study of centered composition operators on z^{2} is made in this paper. Also the spectrum of surjective composition operators is computed. A necessary and sufficient condition is obtained for the closed unit disc to be the spectrum of a surjective composition operator.

1. Preliminaries

Let $L^{2}(\lambda)$ be the Hilbert space of all square integrable functions on a σ-finite measure space (X, S, λ) and let ϕ be a non-singular measurable transformation from X into itself. Then the equation $C_{\phi} f=f \circ \phi$ for every $f \in L^{2}(\lambda)$ defines a linear transformation. If C_{ϕ} happens to be a bounded operator on $L^{2}(\lambda)$, then we call it a composition operator. If $X=N$, the set of all non-zero positive integers and λ is the counting measure on the family of all subsets of N, then $L^{2}(\lambda)=\tau^{2}$, the Hilbert space of all square summable sequences.

In this note we have studied composition operators on t^{2}. The second section characterises centered composition operators while the third section is devoted to the study of the spectrum of a surjective composition operator. If H is a Hilbert space, then $B(H)$ denotes the Banach algebra of all bounded linear operators on H.
2. Centered composition operators on τ^{2}

Let H be a complex Hilbert space, $T \in B(H)$, and let
Received 15 March 1978.
$s_{T}=\left\{\left(T^{*}\right)^{k_{2} k}: k \in N\right\} \cup\left\{T^{k}\left(T^{*}\right)^{k}: k \in N\right\}$. Then T is defined to be a centered operator if any two elements of s_{T} commute. These operators have been studied by Morrel and Muhly [4] in detail. We give a necessary and sufficient condition for a composition operator to be centered.

THEOREM 2.1. Let ϕ be a mapping from N into itself such that $C_{\phi} \in B\left(Z^{2}\right)$. Then C_{ϕ} is centered if and only if f_{0}^{k} is constant on $\left(\phi^{p}\right)^{-1}(\{n\})$ for every $n \in N$ and $p \in N$, where f_{0}^{k} is the Radon-Nikodym derivative of the measure $\lambda\left(\phi^{k}\right)^{-1}$ with respect to the measure λ.

For the proof of the theorem we need the following lemma.
LEMMA 2.2. If ϕ is a measurable transformation from a measure space (X, S, λ) into itself such that $C_{\phi} \in B\left(L^{2}(\lambda)\right)$, then

$$
\left(c_{\phi}^{*}\right)^{k} c_{\phi}^{k}=M_{f_{0}^{k}} \text { for every } k \in N
$$

where ${ }_{f_{0}^{k}}$ is the multiplication operator induced by f_{0}^{k}.
Proof. Since $C_{\phi} \in B\left(L^{2}(\lambda)\right)$, it is easy to show that $C_{\phi}^{k}=C_{\phi}^{k} \in B\left(L^{2}(\lambda)\right)$, where ϕ^{k} is obtained by composing ϕ-times. If f and g are any two elements in $L^{2}(\lambda)$ and $k \in N$, then

$$
\begin{aligned}
\left\langle\left(C_{\phi}^{*}\right){ }^{k} C_{\phi}^{k_{f}}, g\right\rangle & =\left\langle c_{\phi}^{k_{f}}, c_{\phi}^{k}\right\rangle \\
& =\left\langle C_{\phi^{k}} f, C_{\phi^{k}}^{g}\right\rangle \\
& =\int_{X} f \circ \phi^{k} \cdot \overline{q \circ \phi^{k}} d \lambda \\
& =\int_{X}(f \cdot \bar{g}) \circ \phi^{k} d \lambda \\
& =\int_{X} f \cdot \bar{g} d \lambda\left(\phi^{k}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{X} f \cdot \bar{g} \cdot f_{0}^{k} d \lambda \\
& =\left(M{ }_{f_{0}^{k}} f, g\right\rangle .
\end{aligned}
$$

This shows that $\left(C_{\phi}^{*}\right)^{k} C_{\phi}^{k}=M_{f_{0}^{k}}$. Hence the proof of the lerma is complete.
Proof of theorem. Suppose that the condition of the theorem holds.
Let $A, B \in{ }^{s} C_{\phi}$. Then $A=C_{\phi}^{*} C_{\phi}^{k}$ or $A=C_{\phi}^{l} C_{\phi}^{\star}{ }^{2}$ and $B=C_{\phi}^{\star P_{C}^{P}}{ }_{\phi}^{p}$ or $B=C_{\phi}^{m} C_{\phi}^{\star^{m}}$ for some k, τ, p, and m in N. If $A=C_{\phi}^{*^{k}} C_{\phi}^{k}$ and $B=C_{\phi}^{* p} C_{\phi}^{p}$, then from the above lemma it follows that $A B=M f_{0}^{k_{0}^{M}} f_{0}^{p}=B A$. If $A=C_{\phi}^{*^{k} C_{\phi}^{k}}$ and $B=C_{\phi_{\phi}^{C^{*}}}^{m}$ and if $e^{(n)}$ is the nth basis vector defined by $e^{(n)}(q)=\delta_{n q}$ (the Kronecker delta), then

$$
\begin{align*}
(A B) e^{(n)} & =C_{\phi}^{\star_{k}^{k}} C_{\phi}^{k} C_{\phi}^{m} C_{\phi}^{*} m e^{(n)} \\
& =M{ }_{f_{0}^{k} C_{\phi}^{m} e^{\left(\phi^{m}(n)\right)} \quad \text { by definition of } C_{\phi}^{*}} \tag{8}\\
& =f_{0}^{k}(n) X \\
& \left\{\left(\phi^{m}\right)^{-1}\left(\left\{\phi^{m}(n)\right\}\right)\right\}
\end{align*}
$$

where X_{E} denotes the characteristic function of the set E. A similar computation shows that $B A e^{(n)}=f_{0}^{k}(n) X\left\{\left(\phi^{m}\right)^{-1}\left(\left\{\phi^{m}(n)\right\}\right)\right\}$. Thus $A B=B A$. Suppose now that $A=C_{\phi}^{Z} C_{\phi}^{\lambda^{2}}$ and $B=C_{\phi}^{m} C_{\phi}^{\lambda^{m}}$ and without loss of generality assume $m \leq 2$. Then

$$
\begin{aligned}
& A B e^{(n)}=C_{\phi}^{2} C_{\phi}^{2} C_{\phi}^{m} C_{\phi}^{*} e^{(n)} \\
& =C_{\phi}^{Z} C_{\phi}^{*} Z-m_{M} f_{0}^{m^{X}}\left\{\phi^{m}(n)\right\} \\
& =f_{0}^{m}\left\{\phi^{m}(n)\right){C_{\phi}^{Z} C_{\phi}^{\star-m} X}_{\left\{\phi^{m}(n)\right\}} \\
& =f_{0}^{m}\left(\phi^{m}(n)\right) X\left\{\left(\phi^{2}\right)^{-1}\left(\left\{\phi^{2}(n)\right\}\right)\right\} .
\end{aligned}
$$

Also

$$
\begin{aligned}
& B A e^{(n)}=C_{\phi}^{m} C_{\phi}^{\star} C_{\phi}^{Z} C_{\phi}^{*} e^{(n)} \\
& =C_{\phi}^{m}{ }_{f_{0}^{m}}^{C_{\phi}^{Z-m} C_{\phi}^{\star}} e^{(n)} \\
& =C_{\phi^{M}}^{m} f_{0}^{m^{X}}\left\{\left(\phi^{z-m}\right)^{-1}\left(\left\{\phi^{Z}(n)\right\}\right)\right\} \\
& =f_{0}^{m}\left(\phi^{m}(n)\right) X\left\{\left(\phi^{Z}\right)^{-1}\left(\left\{\phi^{Z}(n)\right\}\right)\right\} .
\end{aligned}
$$

This shows that $A B=B A$.
On the other hand, suppose the condition of the theorem is not true. Then there exist $n_{1}, n_{2} \in\left(\phi^{p}\right)^{-1}(\{n\})$ such that $f_{0}^{k}\left(n_{1}\right) \neq f_{0}^{k}\left(n_{2}\right)$ for some $p, k, n \in N$. If $A=C_{\phi}^{* k} C_{\phi}^{k}$ and $B=C_{\phi}^{p} C_{\phi}^{* p}$, then $A B e^{\left(n_{1}\right)}=f_{0}^{k} \cdot X_{\left\{\left(\phi^{p}\right)^{-1}\left(\left\{\phi^{p}\left(n_{1}\right)\right\}\right)\right\}}$ and $B A e^{\left(n_{1}\right)}=f_{0}^{k}\left(n_{1}\right) X_{\left\{\left(\phi^{p}\right)^{-1}(\{n\})\right\}}$ Since $f_{0}^{k}\left(n_{1}\right) \neq f_{0}^{k}\left(n_{2}\right)$, we can conclude that $A B \neq B A$. Hence C_{ϕ} is not centered. This completes the proof of the theorem.

3. Spectrum of a composition operator on ℓ^{2}

This section is devoted to the study of the spectrum of a composition operator on Z^{2}. The set of all complex numbers will be denoted by C and the set D defined by $D=\{\lambda: \lambda \in C$ and $|\lambda| \leq 1\}$ is called the closed unit disc. The symbol $\sigma(T)$ stands for the spectrum of T. The
unit circle will be denoted by c.
THEOREM 3.1. If $\phi: N \rightarrow N$ is an injection which is not a surjection, then $\sigma\left(C_{\phi}\right)=D$.

Proof. Since ϕ is not a surjection, there is an $n_{\perp} \in N$ such that $\lambda\left\{\phi^{-1}\left(\left\{n_{1}\right\}\right)\right\}=0$. Let $\phi^{m}\left(n_{1}\right)=n_{m+1}$ for $m \in N$ and let $M=\operatorname{span}\left\{e^{\left(n_{m}\right)}: m \in N\right\}$. Then M is a closed subspace of τ^{2}. By the projection theorem $Z^{2}=M \oplus M^{\perp}$. Since M is a reducing subspace of $C_{\phi}, \quad C_{\phi}=\left.\left.C_{\phi}\right|_{M} \oplus C_{\phi}\right|_{M^{\perp}}$, where $\left.C_{\phi}\right|_{E}$ denotes the restriction of C_{ϕ} to the subspace E. Define the transformation S from τ^{2} into M by

$$
S e^{(m)}=e^{\left(n_{m}\right)} \quad \text { for every } \quad m \in N
$$

Then S is a bounded linear transformation. Also S is invertible and $\left.C_{\phi}\right|_{M}=S U^{*} S^{-1}$, where U^{*} is the adjoint of the unilateral shift U. Since similar operators have the same spectrum [3, Problem 60], we have $\sigma\left(\left.C_{\phi}\right|_{M}\right)=\sigma\left(U^{*}\right)$. Thus $\sigma\left(\left.C_{\phi}\right|_{M}\right)=D$ by the solution to Problem 67 of [3]. Since $\sigma\left(C_{\phi}\right)=\sigma\left(\left.C_{\phi}\right|_{M}\right) \cup\left(\left.C_{\phi}\right|_{M}\right), D \subset \sigma\left(C_{\phi}\right)$. From a corollary to Theorem 2.1 of $[8],\left\|C_{\phi}\right\|=1$ and hence $\sigma\left(C_{\phi}\right) \subset D$. Thus $\sigma\left(C_{\phi}\right)=D$.

The following two theorems compute the spectrum of invertible composition operators. We know that C_{ϕ} is invertible if and only if ϕ is invertible [8, Theorem 2.2].

THEOREM 3.2. Let $C_{\phi} \in B\left(Z^{2}\right)$ be invertible, and assume for every $n \in N$ there exists an $m \in N$ such that $\phi^{m}(n)=n$. Let $m_{n}=\inf \left\{m: \phi^{m}(n)=n\right\}$ and $Q=\left\{m_{n}: n \in N\right\}$. Then $\phi\left(C_{\phi}\right)=\underset{q \in Q}{\cup}\left\{\lambda: \lambda^{q}=1\right\}$.

Proof. For $q \in Q$, let $E_{q}=\left\{n: n \in N\right.$ and $\left.\phi^{q}(n)=n\right\}$. Then $M_{q}=\operatorname{span}\left\{e^{(p)}: p \in E_{q}\right\}$ is a reducing subspace of C_{ϕ}. Since ϕ is
invertible, the family $\left\{M_{q} \mid q \in Q\right\}$ is a disjoint orthogonal family of subspaces which spans z^{2}. Thus z^{2} can be written as $z^{2}=\sum_{q \in Q} \oplus M_{q}$. Since $\phi^{q}=I$ on E_{q}, it follows that $I=\left.\sum_{q \in Q} \oplus I\right|_{M_{q}}=\left.\sum_{q \in Q} \oplus c_{\phi}^{q}\right|_{M_{q}}$. From this we can conclude that

$$
\begin{aligned}
\sigma(I) & =\overline{\bigcup_{q \in Q} \sigma\left(\left.C_{\phi}^{q}\right|_{M}\right]},[3, \text { p. 80] } \\
& =\bar{\bigcup} \underset{q \in Q}{U}\left(\left.C_{\phi}\right|_{M}\right)_{q}^{q}
\end{aligned} \text { (by the spectral mapping theorem). }
$$

This shows that $\sigma\left(\left.C_{\phi}\right|_{M}\right)=1$ for every $q \in Q$. Hence
$\sigma\left(\left.C_{\phi}\right|_{M}\right)=\left\{\lambda: \lambda^{q}=1\right\}$. Since $C_{\phi}=\left.\sum_{q \in Q} \oplus C_{\phi}\right|_{M_{q}}$,
$\sigma\left(C_{\phi}\right)=\underset{q \in Q}{\bigcup} \sigma\left(\left.C_{\phi}\right|_{M}\right)$. Hence $\sigma\left(C_{\phi}\right)=\bigcup_{q \in Q}\left\{\lambda: \lambda^{q}=1\right\}$.
COROLLARY. If ϕ is periodic with period m, then $\sigma\left(C_{\phi}\right)=\left\{\lambda: \lambda^{m}=1\right\}$.

THEOREM 3.3. If $C_{\phi} \in B\left(Z^{2}\right)$ is invertible and if for some $n \in N$, there does not exist any $m \in N$ such that $\phi^{m}(n)=n$, then $\sigma\left(C_{\phi}\right)=c$.

Proof. Let $n_{0} \in N$ be such that $\phi^{m}\left(n_{0}\right) \neq n_{0}$ for all $m \in N$. For $m \in N$, let $n_{m}=\phi^{m}\left(n_{0}\right)$ and $n_{-m}=\left\{\phi^{m}\right)^{-1}\left(\left\{n_{0}\right\}\right)$. If $E=\left\{n_{m}: m \in z\right\}$, where z is the set of all integers, and $z_{E}^{2}=\operatorname{span}\left\{e^{(p)}: p \in E\right\}$, then

$$
\begin{equation*}
\tau^{2}=\tau_{E}^{2} \oplus \tau_{N \backslash E}^{2} \tag{1}
\end{equation*}
$$

If the transformation S from $l^{2}(Z)$ into l_{E}^{2} is defined as $S e^{(m)}=e^{\left(n_{m}\right)}$ for every $m \in Z$, then S is a bounded linear invertible transformation and $\left.C_{\phi}\right|_{Z_{E}^{2}}=S W^{*} S^{-1}$, where W is the bilateral shift.

Thus by [3, Problem 60], $\sigma\left(\left.c_{\phi}\right|_{2_{E}^{2}}\right)=\sigma\left(W^{*}\right)$. From Problem 68 of [3], $\sigma\left(W^{*}\right)=c$ and from the relation (1), we have $\sigma\left(\left.C_{\phi}\right|_{Z_{E}}\right) \subset \sigma\left(C_{\phi}\right)$. Since C_{ϕ} is invertible implies that C_{ϕ} is unitary [8, Theorem 2.3], it follows that $\sigma\left(C_{\phi}\right)=c$.

COROLLARY. $\quad C_{\phi}$ is hermitian if and on $1 y$ if $\sigma\left(C_{\phi}\right) \subset\{-1,1\}$.
Proof. Suppose C_{ϕ} is hermitian. Then by Theorem 3 of [6], $\phi \circ \phi=I$, and hence $\sigma\left(C_{\phi}\right) \subset\{-1,1\}$ by the corollary to Theorem 3.2.

Conversely, if $\sigma\left(C_{\phi}\right) \subset\{-1, l\}$, then C_{ϕ} is invertible and so it is normal. Hence C_{ϕ} is hermitian in view of Corollary 1.7 of [5].

COROLLARY. Let $\phi: N \rightarrow N$ be an injection. Then $\sigma\left(C_{\phi}\right)=D$ if and only if C_{ϕ} is not an injection.

Proof. Suppose C_{ϕ} is not an injection. Then ϕ is not onto. Thus by Theorem 3.1, $\sigma\left(C_{\phi}\right)=D$.

On the other hand, if C_{ϕ} is an injection, then ϕ is onto. This shows that ϕ is invertible which further shows that C_{ϕ} is unitary. Hence $\sigma\left(C_{\phi}\right) \subset c$, which is a contradiction.

Bibliography

[1] Ronald G. Douglas, Banach algebra techniques in operator theory (Pure and Applied Mathematics, 49. Academic Press, New York and London, 1972).
[2] Paul R. Halmos, Measure theory (Van Nostrand, New York, Toronto, London, 1950. Reprinted: Graduate Texts in Mathematics, 18. Springer-Verlag, New York, Heidelberg, Berlin, 1974).
[3] Paul R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, New Jersey; Toronto; London; 1967. Reprinted: Graduate Texts in Mathematics, 19. Springer-Verlag, New York, Heidelberg, Berlin, 1974).
[4] Bernard B. Morrel and Paul S. Muhly, "Centered operators", Studia Math. (to appear).
[5] Heydar Radjavi, Peter Rosenthal, Invariant subspaces (Ergebnisse der Mathematik und ihrer Grenzgebiete, 77. Springer-Verlag, Berlin, Heidelberg, New York, 1973).
[6] Raj Kishor Singh, "Normal and hermitian composition operators", Proc. Amer. Math. Soc. 47 (1975), 348-350.
[7] R.K. Singh, "Composition operators induced by rational functions", Proc. Amer. Math. Soc. 59 (1976), 329-333.
[8] R.K. Singh and B.S. Komal, "Composition operator on \mathcal{Z}^{P} and its adjoint", Proc. Amer. Math. Soc. (to appear).

Department of Mathematics,
University of Jammu,
Jammu,
India.

