Canad. Math. Bull. Vol. 48 (4), 2005 pp. 505-522

On the Generalized d'Alembert's and Wilson's Functional Equations on a Compact Group

Belaid Bouikhalene

Abstract. Let G be a compact group.

Let σ be a continuous involution of G. In this paper, we are concerned by the following functional equation

 $\int_G f(xtyt^{-1}) dt + \int_G f(xt\sigma(y)t^{-1}) dt = 2g(x)h(y), \quad x, y \in G,$

where $f, g, h: G \mapsto \mathbb{C}$, to be determined, are complex continuous functions on G such that f is central. This equation generalizes d'Alembert's and Wilson's functional equations. We show that the solutions are expressed by means of characters of irreducible, continuous and unitary representations of the group G.

1 Introduction, Notations and Preliminaries

1.1 Let *G* be a compact group endowed with a fixed normalized Haar measure denoted by *dt*. The unit element of the group *G* is denoted by *e*. We denote by $L_{\infty}(G)$, the Banach space of all complex measurable and essentially bounded functions on *G*. $\mathcal{C}(G)$ designates the Banach space of continuous complex valued functions on *G*. The Banach space of all complex integrable functions on *G* is denoted by $L_1(G)$. For each function ϕ on the group *G*, we define the new functions $\check{\phi}, \bar{\phi}$ and $\tilde{\phi}$ on *G* by $\check{\phi}(x) := \phi(x^{-1}), \, \bar{\phi}(x) := \phi(x)$ and $\tilde{\phi}(x) := \phi(x^{-1})$, for all $x \in G$. The algebra of all regular complex measures on *G* will be denoted by M(G). We recall that the convolution of M(G) is given by $\langle \mu \star \nu, \phi \rangle = \int_G \int_G \phi(ts) d\mu(t) d\mu(s)$ and its involution is defined by $\mu^* = \check{\mu}$ where $\langle \overline{\mu}, \phi \rangle = \langle \overline{\mu}, \phi \rangle$ and $\langle \check{\mu}, \phi \rangle = \langle \mu, \check{\phi} \rangle$ for all $\phi \in \mathcal{C}(G)$. Let $f \in \mathcal{C}(G)$; *f* is called a central function (see [3]), if

 $(1.1.1) f(yx) = f(xy), \quad x, y \in G.$

We recall that a character of a representation (π, \mathcal{H}_{π}) of *G* is a complex-valued function χ_{π} defined on *G* by

(1.1.2)
$$\chi_{\pi}(x) = \operatorname{tr}(\pi(x)), \quad x \in G,$$

where tr means trace.

AMS subject classification: 39B32, 39B42, 22D10, 22D12, 22D15.

Received by the editors August 25, 2003; revised April 19, 2004.

Keywords: Compact groups, Functional equations, Central functions, Lie groups, Invariant differential operators..

[©]Canadian Mathematical Society 2005.

1.2 The aim of this paper is to solve the following integral equation

(1.2.1)
$$\int_{G} f(xtyt^{-1}) dt + \int_{G} f(xt\sigma(y)t^{-1}) dt = 2g(x)h(y), \quad x, y \in G,$$

where f, g, h to be determined, are in the space C(G) such that f is central. This equation is a generalization of the d'Alembert type functional equation

(1.2.2)
$$\int_{G} f(xtyt^{-1}) dt + \int_{G} f(xt\sigma(y)t^{-1}) dt = 2f(x)f(y), \quad x, y \in G.$$

It is also a generalization of the Wilson type functional equation

(1.2.3)
$$\int_{G} f(xtyt^{-1}) dt + \int_{G} f(xt\sigma(y)t^{-1}) dt = 2f(x)g(y), \quad x, y \in G.$$

We will show that the solutions are given by means of characters of irreducible, continuous and unitary representations of *G*.

1.3 First, we study the functional equation (1.2.2). In Theorems 3.1 and 3.2, we prove that if $f \in \mathcal{C}(G)$, then the map $h \mapsto \int_G h(x) f(x) dx$ is a character of the commutative subalgebra $C(P(L_1(G)))$ if and only if f is a solution of the functional equation (1.2.2), where $P(h) = \frac{1}{2}(h + h \circ \sigma)$ and $C(h)(x) = \int_G h(txt^{-1}) dt$, for all $x \in G$.

In Theorem 3.3, we give a description of solutions of (1.2.2). The solutions are precisely expressed by the formula

$$\psi = \frac{1}{2}(\varphi + \varphi \circ \sigma),$$

where φ is a solution of the functional equation

(1.3.1)
$$\int_{G} \varphi(xtyt^{-1}) dt = \varphi(x)\varphi(y), \quad x, y \in G$$

For more information about this equation see [3, 6, 8, 9]. As a consequence we obtain in Corollary 3.4 that f is a solution of (1.2.2) if and only if there exists an irreducible, continuous and unitary representation (π , \mathcal{H}_{π}) of G such that

$$f = \frac{1}{2d(\pi)}(\chi_{\pi} + \chi_{\pi} \circ \sigma),$$

where $d(\pi)$ is a dimension of \mathcal{H}_{π} . In Theorem 3.7, we consider the case where *G* is a compact connected Lie group. We prove that the solutions of (1.2.2) are the eigenfunctions of some differential operators associated with left invariant differential operators on *G*. Secondly, we discuss the functional equation (1.2.3). In Theorem 4.2, we show that the solutions, such that *f* is central, are of the form

$$f = \alpha \frac{\chi_{\pi} + \chi_{\pi} \circ \sigma}{2d(\pi)} + \beta \frac{\chi_{\pi} - \chi_{\pi} \circ \sigma}{2d(\pi)}, \quad g = \frac{\chi_{\pi} + \chi_{\pi} \circ \sigma}{2d(\pi)},$$

where α, β range over \mathbb{C} .

Finally, we show that the solutions of (1.2.1) can be listed as follows:

$$f(x) = ab \frac{\chi_{\pi}(x) + \chi_{\pi}(\sigma(x))}{2d(\pi)} + ac \frac{\chi_{\pi}(x) - \chi_{\pi}(\sigma(x))}{2d(\pi)},$$
$$g(x) = b \frac{\chi_{\pi}(x) + \chi_{\pi}(\sigma(x))}{2d(\pi)} + c \frac{\chi_{\pi}(x) - \chi_{\pi}(\sigma(x))}{2d(\pi)},$$
$$h(x) = a \frac{\chi_{\pi}(x) + \chi_{\pi}(\sigma(x))}{2d(\pi)}.$$

where χ_{π} is a character of an irreducible, continuous and unitary representation π of G, $d(\pi)$ is the dimension of π and a, b, c are complex numbers. This paper contains also some results concerning the equations (1.2.1), (1.2.2) and (1.2.3) and properties of their solutions.

2 General Properties

In this part, we are going to study the general properties. Let *G* be a compact group. For all $f \in \mathcal{C}(G)$, we put

$$(Cf)(x) = \int_G f(txt^{-1}) dt, \quad x, y \in G,$$

and

$$S(G) = \{ f \in L_1(G) : f(xy) = f(yx), x, y \in G \}.$$

S(G) is a commutative subalgebra (under the convolution) of the *-Banach algebra $L_1(G)$. For the notion of central function, see [3].

Proposition 2.1 For all $f \in (G)$, we have the following properties:

- (i) $(C_f)(e) = f(e)$.
- (ii) (Cf) = Cf and (Cf) = Cf.
- (iii) C(Cf) = Cf.
- (iv) f is central if and only if Cf = f.
- (v) the map $f \mapsto Cf$ is an orthogonal projection on the commutative Banach algebra S(G).

Proof By easy computations.

Proposition 2.2 Any solution of the functional equation (1.2.2) has, for all $x, y \in G$, the properties

$$f(e) = 1$$
, $f \circ \sigma = f$, $Cf = f$ and $\int_G f(xtyt^{-1}) dt = \int_G f(ytxt^{-1}) dt$.

Proof By easy computations.

The next proposition explains why we restrict ourselves to continuous solutions.

Proposition 2.3 Let $f \in L_{\infty}(G)$ verifying the functional equation (1.2.2), then f is continuous.

Proof If we replace x by xs in (1.2.2), after integration we obtain

$$\int_G \int_G f(xsyt) \, dsdt + \int_G \int_G f(xs\sigma(y)t) \, dsdt = 2\Big(\int_G f(xs) \, ds\Big) \, f(y), \quad x, y \in G.$$

Let $f \in L_{\infty}(G)$ be a solution of (1.2.2) and let $\mu = dt$, then for all $\phi \in L_1(G)$ and $y \in G$, we have

$$\begin{split} \mu \star \phi \star f \star \mu(y) + \mu \star \phi \star f \star \mu \circ \sigma(y) \\ &= \int_{G} \phi \star f \star \mu(t^{-1}y) \, dt + \int_{G} \phi \star f \star \mu(t^{-1}\sigma(y)) \, dt \\ &= \int_{G} \int_{G} f \star \mu(x^{-1}ty)\phi(x) \, dt dx + \int_{G} \int_{G} f \star \mu(x^{-1}t\sigma(y))\phi(x) \, dt dx \\ &= \int_{G} \int_{G} \int_{G} f(x^{-1}tys)\phi(x) \, ds dt dx + \int_{G} \int_{G} \int_{G} f(x^{-1}t\sigma(y)s)\phi(x) \, ds dt dx \\ &= 2f(y) \int_{G} \int_{G} f(x^{-1}s)\phi(x) \, ds dx \\ &= 2\langle \phi \star f, 1 \rangle f(y). \end{split}$$

Consequently f is continuous.

For later use we note the following results:

Proposition 2.4 ([2]) Let $f \in \mathcal{C}(G)$. Then we have (i) $\int_G \int_G f(ztxt^{-1}sys^{-1}) dtds = \int_G \int_G f(ztyt^{-1}sxs^{-1}) dtds, z, x, y \in G.$ (ii) If f is central then f satisfies the condition:

$$\int_G f(xtyt^{-1}) dt = \int_G f(ytxt^{-1}) dt, \quad x, y \in G.$$

Proposition 2.5 Let $f, g \in C(G)$ such that f is not identically 0 and (f, g) is a solution of (1.2.3). Then g is a solution of (1.2.2). Conversely if g is a solution of (1.2.2), then for any $a \in G$, (L_ag, g) is a solution of (1.2.3).

Proof Let $a \in G$ such that $f(a) \neq 0$. Then

$$2f(a)\left(\int_{G} g(xtyt^{-1}) dt + \int_{G} g(xt\sigma(y)t^{-1}) dt\right)$$

= $\int_{G} \int_{G} f(asxtyt^{-1}s^{-1}) dsdt + \int_{G} \int_{G} f(as\sigma(y)t\sigma(x)t^{-1}s^{-1}) dsdt$
+ $\int_{G} \int_{G} f(asxt\sigma(y)t^{-1}s^{-1}) dsdt + \int_{G} \int_{G} f(asyt\sigma(x)t^{-1}s^{-1}) dsdt$
= $2 \int_{G} f(asxs^{-1}) dsg(y) + 2 \int_{G} f(as\sigma(x)s^{-1}) dsg(y)$
= $4f(a)g(x)g(y)$.

from which we deduce that g is a solution of (1.2.2).

Proposition 2.6 Let g be a solution of (1.2.2). Let $a \in G$ and define the function

$$f(x) = \int_G g(xtat^{-1}) dt + \int_G g(xt\sigma(a)t^{-1}) dt, \quad x \in G.$$

Then (f, g) is a solution of (1.2.3).

Proof By easy computations.

3 On the Functional Equation

$$\int_G f(xtyt^{-1}) dt + \int_G f(xt\sigma(y)t^{-1}) dt = 2f(x)f(y)$$

The following results explain some relations existing between solutions of the functional equation (1.2.2) and continuous characters of the commutative algebra $C(P(L_1(G)))$.

Theorem 3.1 Let $f \in C(G)$ be a solution of (1.2.2). Then the map $h \mapsto \langle h, f \rangle := \int_G h(x) f(x) dx$ is a continuous character of the commutative Banach algebra

$$C(P(L_1(G))).$$

Proof Let $f \in \mathcal{C}(G)$ be a solution of (1.2.2). Let $h, g \in L_1(G)$, then we have

$$\begin{aligned} \langle C(Ph) \star C(Pg), f \rangle &= \langle C(\frac{h+h\circ\sigma}{2}) \star C(\frac{g+g\circ\sigma}{2}), f \rangle \\ &= \frac{1}{4} \int_G \int_G \Big[(g(x)h(y) + g(x)(h\circ\sigma)(y) + (g\circ\sigma)(x)h(y) \\ &+ (g\circ\sigma)(x)(h\circ\sigma)(y)) \int_G f(xtyt^{-1}) dt \Big] dxdy. \end{aligned}$$

509

Since *f* is central and $f \circ \sigma = f$, we get

$$\begin{split} \langle C(Ph) \star C(Pg), f \rangle &= \frac{1}{2} \int_G \int_G g(x)h(y) [f(xtyt^{-1}) dt + f(xt\sigma(y)t^{-1}) dt] dxdy \\ &= \int_G f(x)g(x) dx \int_G f(y)g(y) dy \\ &= \int_G f(x) \frac{g(x) + g(\sigma(x))}{2} dx \int_G f(y) \frac{h(y) + h(\sigma(y))}{2} dy \\ &= \langle C(Ph), f \rangle \langle C(Pg), f \rangle. \end{split}$$

Theorem 3.2 Let χ : $C(P(L_1(G))) \mapsto \mathbb{C}^*$ be a continuous character of $C(P(L_1(G)))$. Then there exists $f \in \mathbb{C}(G)$ solution of the functional equation (1.2.2) such that $\chi(h) = \langle h, f \rangle$, for all $h \in C(P(L_1(G)))$.

Proof Let χ be a non-zero continuous character of the Banach algebra $C(P(L_1(G)))$, since the map $L_1(G) \to \mathbb{C}^*$: $g \mapsto \chi(C(Pg))$ is continuous and linear, then there exists $f \in \mathcal{L}_{\infty}(G)$ such that $\chi(C(Pg)) = \langle g, f \rangle$. Since $\langle g, f \rangle = \chi(C(Pg)) = \chi(C(P(Cg))) = \langle Cg, f \rangle = \langle g, Cf \rangle$. It follows that f is central. On the other hand we have $\chi(C(Pg)) = \chi(C(\frac{P(Cg)+P(Cg)\circ\sigma}{2})) = \langle P(C(g)), f \rangle = \langle g, P(Cf) \rangle = \langle g, Pf \rangle$. Then we get f = Pf, *i.e.*, $f \circ \sigma = f$. Now for all $g, h \in L_1(G)$, we have

$$\begin{aligned} \langle C(Ph) \star C(Pg), f \rangle &= \frac{1}{2} \int_G \int_G g(x)h(y) [f(xtyt^{-1}) dt + f(xt\sigma(y)t^{-1}) dt] dxdy \\ &= \langle C(Ph), f \rangle \langle C(Pg), f \rangle \\ &= \int_G f(x)h(x) dx \int_G f(y)g(y) dy, \end{aligned}$$

hence it follows that $\int_G f(xtyt^{-1}) dt + \int_G f(xt\sigma(y)t^{-1}) dt = 2f(x)f(y)$, for all $x, y \in G$, which concludes the proof of the theorem.

Now we are going to determine all non-zero complex-valued continuous solutions of the functional equation (1.2.2). We adapt the proof used in [4].

Theorem 3.3

The only continuous non-zero solutions of the functional equation (1.2.2) are the functions of the form

$$f(x) = \frac{\varphi(x) + \varphi(\sigma(x))}{2}, \quad x \in G$$

where φ is a solution of (1.3.1).

Lemma 3.3.1 Let $f \in \mathcal{C}(G) \setminus \{0\}$ be a solution of (1.2.2). For a fixed $\alpha \in \mathbb{C}$ and $a \in G$, we define

$$\varphi(x) = f(x) + \alpha \left(\int_G f(xtat^{-1}) dt - \int_G f(xt\sigma(a)t^{-1}) dt \right), \quad x \in G,$$

then $f = (\varphi + \varphi \circ \sigma)/2$.

Proof Using that $f = f \circ \sigma$, f(xy) = f(yx), $\int_G f(xtyt^{-1}) dt = \int_G f(ytxt^{-1}) dt$, $x, y \in G$, we get

$$\varphi(\sigma(\mathbf{x})) = f(\sigma(\mathbf{x})) + \alpha \left(\int_G f(\sigma(\mathbf{x})tat^{-1}) dt - \int_G f(\sigma(\mathbf{x})t\sigma(a)t^{-1}) dt \right)$$
$$= f(\mathbf{x}) + \alpha \left(\int_G f(\mathbf{x}t\sigma(a)t^{-1}) dt - \int_G f(\mathbf{x}tat^{-1}) dt \right).$$

Adding this to $\varphi(x)$ we find that $\varphi(x) + \varphi(\sigma(x)) = 2f(x)$.

We will next examine whether φ is a solution of (1.3.1).

Lemma 3.3.2 Let $f \in C(G)$ be a solution of (1.2.2). For any $x, y \in G$, we define

$$\eta(x, y) = \varphi(x)\varphi(y) - \int_G \varphi(xtyt^{-1}) dt,$$

then we have the following identities

$$\eta(x, y) = \left[\int_G f(xt\sigma(y)t^{-1}) dt - \int_G f(xtyt^{-1}) dt \right]$$
$$\times \left[\alpha^2 \left(\int_G f(at\sigma(a)t^{-1}) dt - \int_G f(atat^{-1}) dt \right) + \frac{1}{2} \right]$$

Proof Let $x, y \in G$, then we have

$$\begin{split} \eta(x,y) &= \varphi(x)\varphi(y) - \int_{G} \varphi(xtyt^{-1}) \, dt \\ &= \frac{1}{2} \Big[\int_{G} f(xt\sigma(y)t^{-1}) \, dt - \int_{G} f(xtyt^{-1}) \, dt \Big] \\ &\quad - \frac{\alpha}{2} \int_{G} \int_{G} f(xtyt^{-1}sas^{-1}) \, dt ds \\ &\quad + \frac{\alpha}{2} \int_{G} \int_{G} f(xtyt^{-1}s\sigma(a)s^{-1}) \, dt ds + \frac{\alpha}{2} \int_{G} \int_{G} f(xtat^{-1}s\sigma(y)s^{-1}) \, dt ds \\ &\quad - \frac{\alpha}{2} \int_{G} \int_{G} f(xtat^{-1}s\sigma(y)s^{-1}) \, dt ds \end{split}$$

$$+ \frac{\alpha}{2} \left[\int_{G} \int_{G} f(ytxt^{-1}sas^{-1}) dsdt + \int_{G} \int_{G} f(yt\sigma(a)t^{-1}s\sigma(x)s^{-1}) dtds \right]$$

$$+ \alpha^{2} \int_{G} f(xtat^{-1}) dt \int_{G} f(ytat^{-1}) dt$$

$$- \alpha^{2} \int_{G} f(xtat^{-1}) dt \int_{G} f(yt\sigma(a)t^{-1}) dt$$

$$- \frac{\alpha}{2} \left[\int_{G} \int_{G} f(ytxt^{-1}s\sigma(a)s^{-1}) dtds + \int_{G} \int_{G} f(ytat^{-1}s\sigma(x)s^{-1}) dtds \right]$$

$$- \alpha^{2} \int_{G} f(xt\sigma(a)t^{-1}) dt \int_{G} f(ytat^{-1}) dt$$

$$+ \alpha^{2} \int_{G} f(xt\sigma(a)t^{-1}) dt \int_{G} f(yt\tau(a)t^{-1}) dt.$$

Since

$$\int_{G} \int_{G} f(ytxt^{-1}szs^{-1}) dt ds = \int_{G} \int_{G} f(xtyt^{-1}szs^{-1}) dt ds,$$
$$\int_{G} f(ytxt^{-1}) dt = \int_{G} f(xtyt^{-1}) dt,$$

 $f \circ \sigma = f$, it follows that

$$\begin{split} \varphi(\mathbf{x})\varphi(\mathbf{y}) &- \int_{G} \varphi(\mathbf{x}t\mathbf{y}t^{-1}) \, dt \\ &= \frac{1}{2} \Big[\int_{G} f(\mathbf{x}t\sigma(\mathbf{y})t^{-1}) dt - \int_{G} f(\mathbf{x}t\mathbf{y}t^{-1}) dt \Big] \\ &+ \frac{\alpha^{2}}{2} \Big[\int_{G} \int_{G} \int_{G} f(\mathbf{y}t\mathbf{x}t^{-1}lsas^{-1}al^{-1}) \, dt ds dl \\ &+ \int_{G} \int_{G} \int_{G} f(\mathbf{y}t\mathbf{x}t^{-1}ls\sigma(a)s^{-1}\sigma(a)l^{-1}) \, dt ds dl \Big] \\ &+ \frac{\alpha^{2}}{2} \Big[\int_{G} \int_{G} \int_{G} \int_{G} f(\sigma(\mathbf{y})t\mathbf{x}t^{-1}lsas^{-1}\sigma(a)l^{-1}) \, dt ds dl \\ &+ \int_{G} \int_{G} \int_{G} \int_{G} f(\sigma(\mathbf{y})t\mathbf{x}t^{-1}lsas^{-1}\sigma(a)) \, dt ds dl \Big] \\ &- \frac{\alpha^{2}}{2} \Big[\int_{G} \int_{G} \int_{G} \int_{G} f(\mathbf{y}t\mathbf{x}t^{-1}lsas^{-1}\sigma(a)) \, dt ds dl \\ &+ \int_{G} \int_{G} \int_{G} \int_{G} f(\mathbf{y}t\mathbf{x}t^{-1}lsas^{-1}\sigma(a)) \, dt ds dl \Big] \end{split}$$

Generalized d'Alembert's and Wilson's Functional Equations

$$-\frac{\alpha^2}{2} \Big[\int_G \int_G \int_G f(\sigma(y)txt^{-1}ls\sigma(a)s^{-1}\sigma(a)l^{-1}) dt ds dl + \int_G \int_G \int_G f(\sigma(y)txt^{-1}lsas^{-1}al^{-1}) dt ds dl \Big] = \Big[\int_G f(xt\sigma(y)t^{-1})dt - \int_G f(xtyt^{-1}) dt \Big] \times \Big[\alpha^2 \Big(\int_G f(at\sigma(a)t^{-1}) dt - \int_G f(atat^{-1}) dt \Big) + \frac{1}{2} \Big].$$

Proof of Theorem 3.3

Case 1: If there exists $a \in G$ such that

$$\int_G f(atat^{-1}) dt - \int_G f(at\sigma(a)t^{-1}) dt \neq 0,$$

then we may choose $\alpha \in \mathbb{C}$ such that

$$\alpha^2 \left[\int_G f(at\sigma(a)t^{-1}) dt - \int_G f(atat^{-1}) dt \right] + \frac{1}{2} = 0.$$

That is to say $\varphi(x)\varphi(y) = \int_G \varphi(xtyt^{-1}) dt$.

Case 2: Suppose that $\int_G f(xtxt^{-1}) dt = \int_G \psi(xt\sigma(x)t^{-1}) dt$, for all $x \in G$. Noting that in this case

$$\int_G f(xtxt^{-1}) dt = \int_G f(xt\sigma(x)t^{-1}) dt = f(x)^2, \quad \forall x \in G.$$

Let $X = \int_G f(xtyt^{-1}) dt$, $Y = \int_G f(xt\sigma(y)t^{-1}) dt$. Then we have X + Y = 2f(x)f(y)and by computation we show that $XY = f(x)^2 f(y)^2$. Making use of this we obtain that $X = f(x)f(y) = \int_G f(xtyt^{-1}) dt$. Conversely, for all φ satisfying the functional equation (1.3.1) it is easy to see that $f = \frac{1}{2}(\varphi + \varphi \circ \sigma)$ is a solution of (1.2.2).

Corollary 3.4 Let $f \in \mathcal{C}(G) \setminus \{0\}$. Then f is a solution of (1.2.2) if and only if there exists an irreducible, continuous and unitary representation (π, \mathcal{H}_{π}) of G such that

$$f = \frac{1}{2d(\pi)}(\chi_{\pi} + \chi_{\pi} \circ \sigma),$$

where $d(\pi)$ is a dimension of \mathcal{H}_{π} .

Proof By [3, 5, 6], we have that φ is a solution of (1.3.1) if and only if there exists (π, \mathcal{H}_{π}) an irreducible, continuous and unitary representation of *G* such that $\varphi = \frac{\chi_{\pi}}{d(\pi)}$, where $d(\pi)$ denotes the dimension of the space \mathcal{H}_{π} .

Next, we suppose that G is a connected compact Lie group, and we shall characterize the solutions of (1.2.2) in terms of eigenfunctions of some differential operators.

For each fixed $a \in G$, we define the left (resp. the right) translation operators as follows $(L_a f)(x) = f(a^{-1}x)$ (resp. $(R_a f)(x) = f(xa)$) and we will say that the operator T is left (resp. right) invariant if $(L_a T)f = T(L_a f)$ (resp. $(R_a T)f = T(R_a f)$). Let $\mathbb{D}(G)$ denote the algebra of left invariant differential operators on G and Z(G) denote the center of $\mathbb{D}(G)$.

For any differential operator D on G, we define the differential operator \tilde{D} by

$$(\tilde{D}f)(x) := \frac{1}{2} D\{C(L_{x^{-1}}f) + C(L_{x^{-1}}f) \circ \sigma\}(e),\$$

where $f \in \mathcal{C}^{\infty}(G)$ and $x \in G$.

Proposition 3.5 Let D be a differential operator on G, then \tilde{D} satisfies the following properties:

- (i) $\tilde{D} = \tilde{D}$.
- (ii) $\tilde{D} \in Z(G)$.
- (iii) If $D \in Z(G)$, then $\tilde{D} = \frac{1}{2} \{ D + D^{\sigma} \}$, where $D^{\sigma} = D(f \circ \sigma) \circ \sigma$.
- (iv) $(\tilde{D}f)(e) = \frac{1}{2}D\{Cf + C\tilde{f} \circ \sigma\}(e)$. In particular if Cf = f and $f \circ \sigma = f$, then we have $(\tilde{D}f)(e) = (Df)(e)$.
- (v) If f is a solution of (1.2.2), then $(\tilde{D}f) = (Df)(e)f = \lambda(D)f$.

Proof By easy computations we have (i) and (iv).

(ii) Let $f \in \mathcal{C}^{\infty}(G)$ and let $a \in G$, for all $x \in G$, we have

$$\begin{split} L_{a}(\tilde{D}f)(x) &= (\tilde{D}f)(a^{-1}x) \\ &= \frac{1}{2}D\{C(L_{x^{-1}a}f) + C(L_{x^{-1}a}f) \circ \sigma\}(e) \\ &= \frac{1}{2}D\{C(L_{x^{-1}}(L_{a}f)) + C(L_{x^{-1}}(L_{a}f)) \circ \sigma\}(e) \\ &= \tilde{D}(L_{a}f)(x) \end{split}$$

and

$$\begin{aligned} R_a(\tilde{D}f)(x) &= (\tilde{D}f)(xa) \\ &= \frac{1}{2} D\{C(L_{(xa)^{-1}}f) + C(L_{(xa)^{-1}}f) \circ \sigma\}(e) \\ &= \frac{1}{2} D\{C(L_{x^{-1}}(R_af)) + C(L_{x^{-1}}(R_af)) \circ \sigma\}(e) \\ &= \tilde{D}(R_af)(x). \end{aligned}$$

Then we obtain that $\tilde{D} \in Z(G)$.

(iii) Let $D \in Z(G)$; for all $x, y \in G$, we have

$$C(L_{x^{-1}}f)(y) = \int_G (L_{x^{-1}}f)(tyt^{-1}) dt,$$

and

$$D(C(L_{x^{-1}}f))(y) = \int_G (L_{x^{-1}}Df)(tyt^{-1}) dt.$$

Then we get

$$D(C(L_{x^{-1}}f))(e) = (Df)(x)$$

and

$$D(C(L_{x^{-1}}f)\circ\sigma)(e)=(D(f\circ\sigma)\circ\sigma)(x),$$

and then

$$(\tilde{D}f) = \frac{1}{2} \{ Df + D(f \circ \sigma) \circ \sigma \}.$$

(v) Let $f \in \mathcal{C}^{\infty}(G)$ be a solution of (1.2.2), then

$$C(L_{x^{-1}}f)(y) + C(L_{x^{-1}}f)(\sigma(y)) = \int_{G} f(xtyt^{-1}) dt + \int_{G} f(xt\sigma(y)t^{-1}) dt$$
$$= 2f(x)f(y).$$

For y = e, we get

$$(\tilde{D}f) = f(Df)(e) = \lambda(D)f.$$

Proposition 3.6 Let $f \in C^{\infty}(G)$ be a non-zero solution of (1.2.2), then f is analytic.

Proof Let *L* be the Laplace–Beltrami operator on *G*, we have $L \in Z(G)$ and $\tilde{L} = \frac{1}{2}\{L + L^{\sigma}\}$. In addition this operator is elliptic, and *f* is an eigenfunction of \tilde{L} , we deduce that *f* is analytic.

Theorem 3.7 Let G be a compact connected Lie group and let $f \in C^{\infty}(G)$. Then the following statements are equivalent:

- (1) f is a solution of (1.2.2).
- (2) (i) f(e) = 1, Cf = f and $f \circ \sigma = f$,
 - (ii) *f* is analytic,
 - (iii) *f* is a eigenfunction of the operators \tilde{D} , for all $D \in \mathbb{D}(G)$.

Proof (1) \Rightarrow (2) follows directly from Propositions 3.5 and 3.6. Conversely, suppose that (2) holds, with $\tilde{D}f = \lambda(D)f$, for all $D \in \mathbb{D}(G)$, where $\lambda(D) = (Df)(e)$. For a fixed $x \in G$, we define the function

$$F(y) = \frac{1}{2} \left\{ \int_G f(xtyt^{-1}) dt + \int_G f(xt\sigma(y)t^{-1}) dt \right\}, \quad y \in G.$$

515

Since *f* is central and $f \circ \sigma = f$, then we get

$$F(y) = \frac{1}{2} \left\{ \int_G L_{(t^{-1}xt)^{-1}} f(y) dt + \int_G (R_{t\sigma(x)t^{-1}} f(y) dt) \right\}.$$

Consequently, for all $D \in \mathbb{D}(G)$, we have

$$(\tilde{D}F)(y) = \frac{1}{2} \left\{ \int_{G} \tilde{D}(L_{(t^{-1}xt)^{-1}}f)(y) \, dt + \int_{G} \tilde{D}(R_{t\sigma(x)t^{-1}}f)(y) \, dt \right\}.$$

Since $\tilde{D} \in Z(G)$, then we obtain

$$(\tilde{D}F)(y) = Df(e)F(y).$$

In particular for y = e, we have

$$(\tilde{D}F)(e) = Df(e)F(e).$$

Hence, by Proposition 3.5(iv), it follows that

$$(DF)(e) = D(f)(e)F(e),$$

i.e.,

$$D(F - F(e)f)(e) = 0$$

for all $D \in \mathbb{D}(G)$. Since F - F(e)f is an analytic function on the connected Lie group *G*, then by [5, Ch. II], we obtain

$$F - F(e)f \equiv 0$$

on G. We conclude that

$$\int_G f(xtyt^{-1}) dt + \int_G f(xt\sigma(y)t^{-1}) dt = 2f(x)f(y), \quad x, y \in G.$$

Corollary 3.8 Let G be a compact connected Lie group and let $f \in C^{\infty}(G)$. Then the following statements are equivalent:

- (1) f is a solution of (1.2.2).
- (2) (i) f(e) = 1, Cf = f and $f \circ \sigma = f$,
 - (ii) *f* is analytic,
 - (iii) $\frac{1}{2}(Df + Df \circ \sigma) = \lambda(D)f$, for all $D \in Z(G)$.

Proof By using Proposition 3.5, we have for all $D \in \mathbb{D}(G)$, $\tilde{\tilde{D}} = \tilde{D}$, $\tilde{D} \in Z(G)$ and $\tilde{D} = \frac{1}{2}(Df + Df \circ \sigma)$, for all $D \in Z(G)$.

4 On the Functional Equation

$$\int_G f(xtyt^{-1}) dt + \int_G f(xt\sigma(y)t^{-1}) dt = 2f(x)g(y)$$

In this section, we study the functional equation (1.2.3) and we determine the solutions of this equation in the case where f is central. We shall need the following proposition during the proof of the theorem.

Proposition 4.1 Let $f, g \in \mathcal{C}(G) \setminus \{0\}$ constitute a solution of the functional equation

(4.0.1)
$$\int_G f(xtyt^{-1}) dt = f(x)g(y) + g(x)f(y), \quad x, y \in G.$$

Then there exists a constant $b \in \mathbb{C}$ *such that*

$$\int_G g(xtyt^{-1}) dt = g(x)g(y) + b^2 f(x)f(y), \quad x, y \in G,$$

and f, g have one of the following forms:

(1) there exists a function φ solution of (1.3.1) and a constant *c* such that

$$f=c\varphi, \quad g=rac{\varphi}{2}.$$

(2) there exist two functions φ_1 , φ_2 solutions of (1.3.1) and a constant b such that

$$f = \frac{b(\varphi_1 - \varphi_2)}{2}, \quad g = \frac{\varphi_1 + \varphi_2}{2}.$$

Proof Let $f, g \in \mathcal{C}(G) \setminus \{0\}$ be a solution of (4.0.1). If there exists a constant $\lambda \in \mathbb{C}$ such that $g = \lambda f$, then the functional equation (4.0.1) is reduced to

$$\int_G f(xtyt^{-1}) dt = 2\lambda f(x)f(y),$$

which implies that $2\lambda f = \varphi$ is a solution of (1.3.1) and we have

$$f = \frac{\varphi}{2\lambda}, \quad g = \frac{\varphi}{2}.$$

If f, g are linearly independent, then by using equation (4.0.1) we obtain for all $x, y, z \in G$

$$f(x) \int_{G} g(ytzt^{-1}) dt + g(x) \int_{G} f(ytzt^{-1}) dt$$

= $\int_{G} f(xtyt^{-1}) dtg(z) + f(z) \int_{G} g(xtyt^{-1}) dt.$

Then we get

$$(**) \quad f(x)\Big(\int_{G} g(ytzt^{-1}) \, dt - g(y)g(z)\Big) = f(z)\Big(\int_{G} g(xtyt^{-1}) \, dt - g(x)g(y)\Big) \, .$$

Since $f \neq 0$, let $z_0 \in G$ such that $f(z_0) \neq 0$, then

$$\int_G g(xtyt^{-1}) dt - g(x)g(y) = f(x)\psi(y),$$

where

$$\psi(y) = \frac{\int_G g(ytz_0t^{-1}) \, dt - g(y)g(z_0)}{f(z_0)}$$

By using (**) we obtain

$$f(z)f(x)\psi(y) = f(x)f(y)\psi(z),$$

from which we see that ψ is a constant multiple of f, so

$$\psi(y) = cf(y) = b^2 f(y), \quad b \in \mathbb{C},$$

and the functions $\varphi_1 = g + bf$, $\varphi_2 = g - bf$ are solutions of (1.3.1)

Theorem 4.2 Let $f,g \in C(G) \setminus \{0\}$ such that f is central. If (f,g) is a solution of (1.2.3), then there exist (π, \mathcal{H}_{π}) an irreducible, continuous and unitary representation of G and $\alpha, \beta \in \mathbb{C}$ such that

$$g = rac{\chi_{\pi} + \chi_{\pi} \circ \sigma}{2d(\pi)}, \quad f = lpha rac{\chi_{\pi} + \chi_{\pi} \circ \sigma}{2d(\pi)} + eta rac{\chi_{\pi} - \chi_{\pi} \circ \sigma}{2d(\pi)}.$$

Proof Let (f,g) be a solution of (1.2.3); then by Proposition 2.5 we get that *g* satisfies (1.2.2). We deduce, by using Corollary 3.4, that $g = \frac{\chi_{\pi} + \chi_{\pi} \circ \sigma}{2d(\pi)}$. By decomposing *f* into its even and odd parts we write

$$f(x) = \frac{f(x) + f(\sigma(x))}{2} + \frac{f(x) - f(\sigma(x))}{2} = f_1(x) + f_2(x).$$

We see that $f_1(\sigma(x)) = f(x)$ and $f_2(\sigma(x)) = -f(x), x \in G$. Since f is central, f_1 is central and $\int_G f(xtyt^{-1}) dt = \int_G f(ytxt^{-1}) dt$. Then we have

(4.0.2)
$$\int_G f_1(xtyt^{-1}) dt + \int_G f_1(xt\sigma(y)t^{-1}) dt = 2f_1(x)g(y), \quad x, y \in G.$$

Since f_1 is central and $f_1 \circ \sigma = f_1$, we find that $f_1 = f_1(e)g = \alpha g$. On the other hand f_2 is a solution of the functional equation

(4.0.3)
$$\int_G f_2(xtyt^{-1}) dt + \int_G f_2(xt\sigma(y)t^{-1}) dt = 2f_2(x)g(y), \quad x, y \in G.$$

https://doi.org/10.4153/CMB-2005-047-3 Published online by Cambridge University Press

So

(4.0.4)
$$\int_G f_2(ytxt^{-1}) dt + \int_G f_2(yt\sigma(x)t^{-1}) dt = 2f_2(y)g(x), \quad x, y \in G,$$

and adding the equations (4.0.3) and (4.0.4), and in view of $f_2(\sigma(x)) = -f_2(x)$ and $\int_G f_2(xtyt^{-1}) dt = \int_G f_2(ytxt^{-1}) dt$, we have

$$\int_G f_2(xtyt^{-1}) dt = f_2(x)g(y) + g(x)f_2(y), \quad x, y \in G.$$

By using Proposition 4.1(2), there exists (π, \mathcal{H}_{π}) an irreducible, continuous and unitary representation of *G* and $\alpha, \beta \in \mathbb{C}$ such that

$$f = \alpha \frac{\chi_{\pi} + \chi_{\pi} \circ \sigma}{2d(\pi)} + \beta \frac{\chi_{\pi} - \chi_{\pi} \circ \sigma}{2d(\pi)}.$$

5 On the Functional Equation

$$\int_G f(xtyt^{-1})dt + \int_G f(xt\sigma(y)t^{-1})dt = 2g(x)h(y)$$

In this section, we study the properties of the functional equation (1.2.1) and we determine the solutions of this equation in the case where f is central.

Theorem 5.1 Let $(f, g, h) \in (\mathcal{C}(G) \setminus \{0\})^3$ be a solution of the functional equation (1.2.1). Then

- (i) *h* is a central function and $h \circ \sigma = h$.
- (ii) If f is central, then g is central.
- (iii) There exists a function ϕ solution of the functional equation (1.2.2) such that (g, ϕ) and $(\check{h}, \check{\phi})$ are solutions of (1.2.3).
- (iv) If G is a connected Lie group, then g and \check{h} are eigenfunctions of the operators \tilde{D} for all $D \in \mathbb{D}(G)$. Precisely we have

$$\tilde{D}g = (D\phi)(e)g, \quad \tilde{D}\dot{h} = (D\dot{\phi})(e)\dot{h}, \quad D \in \mathbb{D}(G).$$

Proof By easy computations we have (i) and (ii).

Let $a, b \in G$ such that $g(a) \neq 0$ and $h(b) \neq 0$. Then for all $x, y \in G$ we have

$$2h(b) \left(\int_{G} g(atxt^{-1}) dt + \int_{G} g(at\sigma(x)t^{-1}) dt \right)$$

= $\int_{G} 2h(b)g(atxt^{-1} dt + \int_{G} 2h(b)g(at\sigma(x)t^{-1}) dt$
= $\int_{G} \int_{G} f(atxt^{-1}sbs^{-1}) dsdt + \int_{G} \int_{G} f(atxt^{-1}s\sigma(b)s^{-1}) dsdt$
+ $\int_{G} \int_{G} f(at\sigma(x)t^{-1}sbs^{-1}) dsdt + \int_{G} \int_{G} f(at\sigma(x)t^{-1}s\sigma(b)s^{-1}) dsdt$

$$= 2g(a)\int_G h(xtbt^{-1})\,dt + 2g(a)\int_G h(xt\sigma(b)t^{-1})\,dt.$$

Let

$$\phi(x) = \frac{1}{2g(a)} \left(\int_G g(atxt^{-1}) dt + \int_G g(at\sigma(x)t^{-1}) dt \right)$$

= $\frac{1}{2h(b)} \left(\int_G h(xtbt^{-1}) dt + \int_G h(xt\sigma(b)t^{-1}) dt \right).$

Then we get

$$2g(a) \left(\int_{G} h(xtyt^{-1}) dt + \int_{G} h(xt\sigma(y)t^{-1}) dt \right)$$

= $\int_{G} \int_{G} f(asxtyt^{-1}s^{-1}) dtds + \int_{G} \int_{G} f(as\sigma(x)t\sigma(y)t^{-1}s^{-1}) dtds$
+ $\int_{G} \int_{G} f(asxt\sigma(y)t^{-1}s^{-1}) dtds + \int_{G} \int_{G} f(as\sigma(x)tyt^{-1}s^{-1}) dtds$
= $2h(y) \left(\int_{G} g(asxs^{-1}) ds + \int_{G} g(as\sigma(x)s^{-1}) ds \right),$

i.e.,

$$\int_G h(xtyt^{-1}) dt + \int_G h(xt\sigma(y)t^{-1}) dt = 2h(y)\phi(x),$$

and

$$2h(b)\Big(\int_{G} g(xtyt^{-1})dt + \int_{G} g(xt\sigma(y)t^{-1})dt\Big)$$

= $\int_{G} \int_{G} f(xtyt^{-1}sbs^{-1}) dtds + \int_{G} \int_{G} f(xtyt^{-1}s\sigma(b)s^{-1}) dtds$
= $\int_{G} \int_{G} f(xt\sigma(y)t^{-1}sbs^{-1}) dtds + \int_{G} \int_{G} f(xt\sigma(y)t^{-1}s\sigma(b)s^{-1}) dtds$
= $2g(x)\Big(\int_{G} h(ysbs^{-1}) ds + \int_{G} h(ys\sigma(b)s^{-1}) ds\Big),$

i.e.,

$$\int_G g(xtyt^{-1}) dt + \int_G g(xt\sigma(y)t^{-1}) dt = 2g(x)\phi(y).$$

(iv) follows by using Theorem 3.7.

In the next theorem, we assume that g = f in (1.2.1). As immediate consequences, we obtain the following theorem:

520

Theorem 5.2 Let $(f,h) \in (\mathcal{C}(G) \setminus \{0\})^2$ be a solution of the functional equation (1.2.3), then

- (i) *h* is a central function and $h \circ \sigma = h$.
- (ii) h is a solution of (1.2.2).
- (iii) If G is a connected Lie group, then $\tilde{D}f = (Dh)(e)f$, for all $D \in \mathbb{D}(G)$.

Applying Theorem 5.1, we get the following theorem:

Theorem 5.3 Let $f, g, h \in C(G) \setminus \{0\}$ such that f is central, verifying the functional equation (1.2.1). Then these functions are given by

$$f(x) = ab\frac{\varphi(x) + \varphi(\sigma(x))}{2} + ac\frac{\varphi(x) - \varphi(\sigma(x))}{2},$$
$$g(x) = b\frac{\varphi(x) + \varphi(\sigma(x))}{2} + c\frac{\varphi(x) - \varphi(\sigma(x))}{2},$$
$$h(x) = a\frac{\varphi(x) + \varphi(\sigma(x))}{2},$$

where a, b, c are arbitrary complex numbers and φ is a solution of (1.3.1).

Corollary 5.4 Let $f, g, h \in C(G) \setminus \{0\}$ such that f is central. Then (f, g, h) is a solution of (1.2.1) if and only if there exists (π, \mathcal{H}_{π}) an irreducible, continuous and unitary representation of G such that

$$f(x) = ab \frac{\chi_{\pi}(x) + \chi_{\pi}(\sigma(x))}{2d(\pi)} + ac \frac{\chi_{\pi}(x) - \chi_{\pi}(\sigma(x))}{2d(\pi)},$$

$$g(x) = b \frac{\chi_{\pi}(x) + \chi_{\pi}(\sigma(x))}{2d(\pi)} + c \frac{\chi_{\pi}(x) - \chi_{\pi}(\sigma(x))}{2d(\pi)},$$

$$h(x) = a \frac{\chi_{\pi}(x) + \chi_{\pi}(\sigma(x))}{2d(\pi)},$$

where a, b, c are arbitrary complex numbers and $d(\pi)$ denotes the dimension of the representation π .

References

- [1] J. Aczèl and J. Dhombres, *Functional equations in several variables*. Encyclopedia of Mathematics and its Applications 31, Cambridge, Cambridge University Press, 1989.
- [2] B. Bouikhalene, *On the stability of a class of functional equations*. J. Inequal. Pure Appl. Math. **4**(2003), Article 104.
- [3] J. L. Clerc, Les représentations des groupes compacts. Analyse harmoniques, les Cours du CIMPA, Université de Nancy I, 1980.
- [4] E. Elqorachi and M. Akkouchi, *On generalized d'Alembert and Wilson functional equations*. Aequationes Math. **66**(2003), 241–256.
- [5] S. Helgason, Groups and Geometric Analysis. Pure and Applied Mathematics 113, Academic Press, Orlando, FL, 1984.
- [6] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I and II. Springer-Verlag, Berlin, 1963.
- [7] L. Székelyhidi, Almost periodicity and functional equations. Aequationes Math. 26(1983), 163–175.

[8] A. Weil, *L'integration dans les groupes topologiques et ses applications*. Herman, Paris, 1940.
[9] H. Weyl, *Gruppen theorie und Quantenmechanik*. 2d ed. Leipzig, 1931.

Département de Mathématiques et Informatique Université Ibn Tofail Faculté des Sciences BP 133 Kénitra 14000, Morocco. e-mail: bbouikhalene@yahoo.fr