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On the Generalized d’Alembert’s and
Wilson’s Functional Equations on a
Compact Group

Belaid Bouikhalene

Abstract. Let G be a compact group.

Let σ be a continuous involution of G. In this paper, we are concerned by the following functional

equation
∫

G

f (xt yt−1) dt +

∫

G

f (xtσ(y)t−1) dt = 2g(x)h(y), x, y ∈ G,

where f , g, h : G 7→ C, to be determined, are complex continuous functions on G such that f is central.

This equation generalizes d’Alembert’s and Wilson’s functional equations. We show that the solutions

are expressed by means of characters of irreducible, continuous and unitary representations of the

group G.

1 Introduction, Notations and Preliminaries

1.1 Let G be a compact group endowed with a fixed normalized Haar measure denoted

by dt . The unit element of the group G is denoted by e. We denote by L∞(G), the

Banach space of all complex measurable and essentially bounded functions on G.

C(G) designates the Banach space of continuous complex valued functions on G.

The Banach space of all complex integrable functions on G is denoted by L1(G). For

each function φ on the group G, we define the new functions φ̌, φ and φ̃ on G by

φ̌(x) := φ(x−1), φ(x) := φ(x) and φ̃(x) := φ(x−1), for all x ∈ G. The algebra

of all regular complex measures on G will be denoted by M(G). We recall that the

convolution of M(G) is given by 〈µ⋆ν, φ〉 =

∫

G

∫

G
φ(ts) dµ(t)dµ(s) and its involution

is defined by µ∗
= µ̌ where 〈µ, φ〉 = 〈µ, φ〉 and 〈µ̌, φ〉 = 〈µ, φ̌〉 for all φ ∈ C(G).

Let f ∈ C(G); f is called a central function (see [3]), if

(1.1.1) f (yx) = f (xy), x, y ∈ G.

We recall that a character of a representation (π,Hπ) of G is a complex-valued func-

tion χπ defined on G by

(1.1.2) χπ(x) = tr(π(x)), x ∈ G,

where tr means trace.
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1.2 The aim of this paper is to solve the following integral equation

(1.2.1)

∫

G

f (xt yt−1) dt +

∫

G

f (xtσ(y)t−1) dt = 2g(x)h(y), x, y ∈ G,

where f , g, h to be determined, are in the space C(G) such that f is central. This

equation is a generalization of the d’Alembert type functional equation

(1.2.2)

∫

G

f (xt yt−1) dt +

∫

G

f (xtσ(y)t−1) dt = 2 f (x) f (y), x, y ∈ G.

It is also a generalization of the Wilson type functional equation

(1.2.3)

∫

G

f (xt yt−1) dt +

∫

G

f (xtσ(y)t−1) dt = 2 f (x)g(y), x, y ∈ G.

We will show that the solutions are given by means of characters of irreducible, con-

tinuous and unitary representations of G.

1.3 First, we study the functional equation (1.2.2). In Theorems 3.1 and 3.2, we prove

that if f ∈ C(G), then the map h 7→
∫

G
h(x) f (x) dx is a character of the commuta-

tive subalgebra C(P(L1(G))) if and only if f is a solution of the functional equation

(1.2.2), where P(h) =
1
2
(h + h ◦ σ) and C(h)(x) =

∫

G
h(txt−1) dt , for all x ∈ G.

In Theorem 3.3, we give a description of solutions of (1.2.2). The solutions are

precisely expressed by the formula

ψ =

1

2
(ϕ + ϕ ◦ σ),

where ϕ is a solution of the functional equation

(1.3.1)

∫

G

ϕ(xt yt−1) dt = ϕ(x)ϕ(y), x, y ∈ G.

For more information about this equation see [3, 6, 8, 9]. As a consequence we obtain

in Corollary 3.4 that f is a solution of (1.2.2) if and only if there exists an irreducible,

continuous and unitary representation (π,Hπ) of G such that

f =

1

2d(π)
(χπ + χπ ◦ σ),

where d(π) is a dimension of Hπ. In Theorem 3.7, we consider the case where G is

a compact connected Lie group. We prove that the solutions of (1.2.2) are the eigen-

functions of some differential operators associated with left invariant differential op-

erators on G. Secondly, we discuss the functional equation (1.2.3). In Theorem 4.2,

we show that the solutions, such that f is central, are of the form

f = α
χπ + χπ ◦ σ

2d(π)
+ β

χπ − χπ ◦ σ

2d(π)
, g =

χπ + χπ ◦ σ

2d(π)
,
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where α, β range over C.

Finally, we show that the solutions of (1.2.1) can be listed as follows:

f (x) = ab
χπ(x) + χπ(σ(x))

2d(π)
+ ac

χπ(x) − χπ(σ(x))

2d(π)
,

g(x) = b
χπ(x) + χπ(σ(x))

2d(π)
+ c

χπ(x) − χπ(σ(x))

2d(π)
,

h(x) = a
χπ(x) + χπ(σ(x))

2d(π)
.

where χπ is a character of an irreducible, continuous and unitary representation π of

G, d(π) is the dimension of π and a, b, c are complex numbers. This paper contains

also some results concerning the equations (1.2.1), (1.2.2) and (1.2.3) and properties

of their solutions.

2 General Properties

In this part, we are going to study the general properties. Let G be a compact group.

For all f ∈ C(G), we put

(C f )(x) =

∫

G

f (txt−1) dt, x, y ∈ G,

and

S(G) = { f ∈ L1(G) : f (xy) = f (yx), x, y ∈ G}.

S(G) is a commutative subalgebra (under the convolution) of the ∗-Banach algebra

L1(G). For the notion of central function, see [3].

Proposition 2.1 For all f ∈ (G), we have the following properties:

(i) (C f )(e) = f (e).

(ii) ˇ(C f ) = C f̌ and ˜(C f ) = C f̃ .

(iii) C(C f ) = C f .

(iv) f is central if and only if C f = f .

(v) the map f 7→ C f is an orthogonal projection on the commutative Banach algebra

S(G).

Proof By easy computations.

Proposition 2.2 Any solution of the functional equation (1.2.2) has, for all x, y ∈ G,

the properties

f (e) = 1, f ◦ σ = f , C f = f and

∫

G

f (xt yt−1) dt =

∫

G

f (ytxt−1) dt.

Proof By easy computations.
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The next proposition explains why we restrict ourselves to continuous solutions.

Proposition 2.3 Let f ∈ L∞(G) verifying the functional equation (1.2.2), then f is

continuous.

Proof If we replace x by xs in (1.2.2), after integration we obtain

∫

G

∫

G

f (xsyt) dsdt +

∫

G

∫

G

f (xsσ(y)t) dsdt = 2
(

∫

G

f (xs) ds
)

f (y), x, y ∈ G.

Let f ∈ L∞(G) be a solution of (1.2.2) and let µ = dt , then for all φ ∈ L1(G) and

y ∈ G, we have

µ ⋆ φ ⋆ f ⋆ µ(y) + µ ⋆ φ ⋆ f ⋆ µ ◦ σ(y)

=

∫

G

φ ⋆ f ⋆ µ(t−1 y) dt +

∫

G

φ ⋆ f ⋆ µ(t−1σ(y)) dt

=

∫

G

∫

G

f ⋆ µ(x−1t y)φ(x) dtdx +

∫

G

∫

G

f ⋆ µ(x−1tσ(y))φ(x) dtdx

=

∫

G

∫

G

∫

G

f (x−1t ys)φ(x) dsdtdx +

∫

G

∫

G

∫

G

f (x−1tσ(y)s)φ(x) dsdtdx

= 2 f (y)

∫

G

∫

G

f (x−1s)φ(x) dsdx

= 2〈φ ⋆ f , 1〉 f (y).

Consequently f is continuous.

For later use we note the following results:

Proposition 2.4 ([2]) Let f ∈ C(G). Then we have

(i)
∫

G

∫

G
f (ztxt−1sys−1) dtds =

∫

G

∫

G
f (zt yt−1sxs−1) dtds, z, x, y ∈ G.

(ii) If f is central then f satisfies the condition:

∫

G

f (xt yt−1) dt =

∫

G

f (ytxt−1) dt, x, y ∈ G.

Proposition 2.5 Let f , g ∈ C(G) such that f is not identically 0 and ( f , g) is a solution

of (1.2.3). Then g is a solution of (1.2.2). Conversely if g is a solution of (1.2.2), then

for any a ∈ G, (Lag, g) is a solution of (1.2.3).
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Proof Let a ∈ G such that f (a) 6= 0. Then

2 f (a)
(

∫

G

g(xt yt−1) dt +

∫

G

g(xtσ(y)t−1) dt
)

=

∫

G

∫

G

f (asxt yt−1s−1) dsdt +

∫

G

∫

G

f (asσ(y)tσ(x)t−1s−1) dsdt

+

∫

G

∫

G

f (asxtσ(y)t−1s−1) dsdt +

∫

G

∫

G

f (asytσ(x)t−1s−1) dsdt

= 2

∫

G

f (asxs−1) dsg(y) + 2

∫

G

f (asσ(x)s−1) dsg(y)

= 4 f (a)g(x)g(y).

from which we deduce that g is a solution of (1.2.2).

Proposition 2.6 Let g be a solution of (1.2.2). Let a ∈ G and define the function

f (x) =

∫

G

g(xtat−1) dt +

∫

G

g(xtσ(a)t−1) dt, x ∈ G.

Then ( f , g) is a solution of (1.2.3).

Proof By easy computations.

3 On the Functional Equation
∫

G

f (xt yt−1) dt +

∫

G

f (xtσ(y)t−1) dt = 2 f (x) f (y)

The following results explain some relations existing between solutions of the func-

tional equation (1.2.2) and continuous characters of the commutative algebra

C(P(L1(G))).

Theorem 3.1 Let f ∈ C(G) be a solution of (1.2.2). Then the map h 7→ 〈h, f 〉 :=
∫

G
h(x) f (x) dx is a continuous character of the commutative Banach algebra

C(P(L1(G))).

Proof Let f ∈ C(G) be a solution of (1.2.2). Let h, g ∈ L1(G), then we have

〈C(Ph) ⋆C(Pg), f 〉 = 〈C(
h + h ◦ σ

2
) ⋆C(

g + g ◦ σ

2
), f 〉

=

1

4

∫

G

∫

G

[

(g(x)h(y) + g(x)(h ◦ σ)(y) + (g ◦ σ)(x)h(y)

+ (g ◦ σ)(x)(h ◦ σ)(y))

∫

G

f (xt yt−1) dt
]

dxdy.
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Since f is central and f ◦ σ = f , we get

〈C(Ph) ⋆C(Pg), f 〉 =

1

2

∫

G

∫

G

g(x)h(y)[ f (xt yt−1) dt + f (xtσ(y)t−1) dt]dxdy

=

∫

G

f (x)g(x) dx

∫

G

f (y)g(y) dy

=

∫

G

f (x)
g(x) + g(σ(x))

2
dx

∫

G

f (y)
h(y) + h(σ(y))

2
dy

= 〈C(Ph), f 〉〈C(Pg), f 〉.

Theorem 3.2 Let χ : C(P(L1(G))) 7→ C
⋆ be a continuous character of C(P(L1(G))).

Then there exists f ∈ C(G) solution of the functional equation (1.2.2) such that χ(h) =

〈h, f 〉, for all h ∈ C(P(L1(G))).

Proof Letχ be a non-zero continuous character of the Banach algebra C(P(L1(G))),

since the map L1(G) → C
⋆ : g 7→ χ(C(Pg)) is continuous and linear, then there

exists f ∈ L∞(G) such that χ(C(Pg)) = 〈g, f 〉. Since 〈g, f 〉 = χ(C(Pg)) =

χ(C(P(Cg))) = 〈Cg, f 〉 = 〈g,C f 〉. It follows that f is central. On the other hand we

have χ(C(Pg)) = χ(C(
P(Cg)+P(Cg)◦σ

2
)) = 〈P(C(g)), f 〉 = 〈g, P(C f )〉 = 〈g, P f 〉. Then

we get f = P f , i.e., f ◦ σ = f . Now for all g, h ∈ L1(G), we have

〈C(Ph) ⋆C(Pg), f 〉 =

1

2

∫

G

∫

G

g(x)h(y)[ f (xt yt−1) dt + f (xtσ(y)t−1) dt] dxdy

= 〈C(Ph), f 〉〈C(Pg), f 〉

=

∫

G

f (x)h(x) dx

∫

G

f (y)g(y) dy,

hence it follows that
∫

G
f (xt yt−1) dt +

∫

G
f (xtσ(y)t−1) dt = 2 f (x) f (y), for all x, y ∈

G, which concludes the proof of the theorem.

Now we are going to determine all non-zero complex-valued continuous solutions of

the functional equation (1.2.2). We adapt the proof used in [4].

Theorem 3.3

The only continuous non-zero solutions of the functional equation (1.2.2) are the

functions of the form

f (x) =

ϕ(x) + ϕ(σ(x))

2
, x ∈ G

where ϕ is a solution of (1.3.1).
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Lemma 3.3.1 Let f ∈ C(G) \ {0} be a solution of (1.2.2). For a fixed α ∈ C and

a ∈ G, we define

ϕ(x) = f (x) + α
(

∫

G

f (xtat−1) dt −

∫

G

f (xtσ(a)t−1) dt
)

, x ∈ G,

then f = (ϕ + ϕ ◦ σ)/2.

Proof Using that f = f ◦ σ, f (xy) = f (yx),
∫

G
f (xt yt−1) dt =

∫

G
f (ytxt−1) dt ,

x, y ∈ G, we get

ϕ(σ(x)) = f (σ(x)) + α
(

∫

G

f (σ(x)tat−1) dt −

∫

G

f (σ(x)tσ(a)t−1) dt
)

= f (x) + α
(

∫

G

f (xtσ(a)t−1) dt −

∫

G

f (xtat−1) dt
)

.

Adding this to ϕ(x) we find that ϕ(x) + ϕ(σ(x)) = 2 f (x).

We will next examine whether ϕ is a solution of (1.3.1).

Lemma 3.3.2 Let f ∈ C(G) be a solution of (1.2.2). For any x, y ∈ G, we define

η(x, y) = ϕ(x)ϕ(y) −

∫

G

ϕ(xt yt−1) dt,

then we have the following identities

η(x, y) =

[

∫

G

f (xtσ(y)t−1) dt −

∫

G

f (xt yt−1) dt
]

×
[

α2
(

∫

G

f (atσ(a)t−1) dt −

∫

G

f (atat−1) dt
)

+
1

2

]

Proof Let x, y ∈ G, then we have

η(x, y) = ϕ(x)ϕ(y) −

∫

G

ϕ(xt yt−1) dt

=

1

2

[

∫

G

f (xtσ(y)t−1) dt −

∫

G

f (xt yt−1) dt
]

−
α

2

∫

G

∫

G

f (xt yt−1sas−1) dtds

+
α

2

∫

G

∫

G

f (xt yt−1sσ(a)s−1)dtds +
α

2

∫

G

∫

G

f (xtat−1sσ(y)s−1) dtds

−
α

2

∫

G

∫

G

f (xtat−1sσ(y)s−1) dtds
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+
α

2

[

∫

G

∫

G

f (ytxt−1sas−1) dsdt +

∫

G

∫

G

f (ytσ(a)t−1sσ(x)s−1) dtds
]

+ α2

∫

G

f (xtat−1) dt

∫

G

f (ytat−1) dt

− α2

∫

G

f (xtat−1)dt

∫

G

f (ytσ(a)t−1) dt

−
α

2

[

∫

G

∫

G

f (ytxt−1sσ(a)s−1) dtds +

∫

G

∫

G

f (ytat−1sσ(x)s−1) dtds
]

− α2

∫

G

f (xtσ(a)t−1) dt

∫

G

f (ytat−1) dt

+ α2

∫

G

f (xtσ(a)t−1)dt

∫

G

f (ytτ (a)t−1)dt.

Since

∫

G

∫

G

f (ytxt−1szs−1) dtds =

∫

G

∫

G

f (xt yt−1szs−1) dtds,

∫

G

f (ytxt−1) dt =

∫

G

f (xt yt−1) dt,

f ◦ σ = f , it follows that

ϕ(x)ϕ(y) −

∫

G

ϕ(xt yt−1) dt

=

1

2

[

∫

G

f (xtσ(y)t−1)dt −

∫

G

f (xt yt−1)dt
]

+
α2

2

[

∫

G

∫

G

∫

G

f (ytxt−1lsas−1al−1) dtdsdl

+

∫

G

∫

G

∫

G

f (ytxt−1lsσ(a)s−1σ(a)l−1) dtdsdl
]

+
α2

2

[

∫

G

∫

G

∫

G

f (σ(y)txt−1lsas−1σ(a)l−1) dtdsdl

+

∫

G

∫

G

∫

G

f (σ(y)txt−1lsas−1σ(a)) dtdsdl
]

−
α2

2

[

∫

G

∫

G

∫

G

f (ytxt−1lsas−1σ(a)) dtdsdl

+

∫

G

∫

G

∫

G

f (ytxt−1lsas−1σ(a)l−1) dtdsdl
]
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−
α2

2

[

∫

G

∫

G

∫

G

f (σ(y)txt−1lsσ(a)s−1σ(a)l−1) dtdsdl

+

∫

G

∫

G

∫

G

f (σ(y)txt−1lsas−1al−1) dtdsdl
]

=

[

∫

G

f (xtσ(y)t−1)dt −

∫

G

f (xt yt−1) dt
]

×
[

α2
(

∫

G

f (atσ(a)t−1) dt −

∫

G

f (atat−1) dt
)

+
1

2

]

.

Proof of Theorem 3.3

Case 1: If there exists a ∈ G such that

∫

G

f (atat−1) dt −

∫

G

f (atσ(a)t−1) dt 6= 0,

then we may choose α ∈ C such that

α2
[

∫

G

f (atσ(a)t−1) dt −

∫

G

f (atat−1) dt
]

+
1

2
= 0.

That is to say ϕ(x)ϕ(y) =

∫

G
ϕ(xt yt−1) dt .

Case 2: Suppose that
∫

G
f (xtxt−1) dt =

∫

G
ψ(xtσ(x)t−1) dt , for all x ∈ G. Noting

that in this case

∫

G

f (xtxt−1) dt =

∫

G

f (xtσ(x)t−1) dt = f (x)2, ∀x ∈ G.

Let X =

∫

G
f (xt yt−1) dt , Y =

∫

G
f (xtσ(y)t−1) dt . Then we have X +Y = 2 f (x) f (y)

and by computation we show that XY = f (x)2 f (y)2. Making use of this we obtain

that X = f (x) f (y) =

∫

G
f (xt yt−1) dt . Conversely, for all ϕ satisfying the functional

equation (1.3.1) it is easy to see that f =
1
2
(ϕ + ϕ ◦ σ) is a solution of (1.2.2).

Corollary 3.4 Let f ∈ C(G) \ {0}. Then f is a solution of (1.2.2) if and only if there

exists an irreducible, continuous and unitary representation (π,Hπ) of G such that

f =

1

2d(π)
(χπ + χπ ◦ σ),

where d(π) is a dimension of Hπ.

Proof By [3, 5, 6], we have that ϕ is a solution of (1.3.1) if and only if there exists

(π,Hπ) an irreducible, continuous and unitary representation of G such that ϕ =

χπ
d(π)

, where d(π) denotes the dimension of the space Hπ.
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Next, we suppose that G is a connected compact Lie group, and we shall character-

ize the solutions of (1.2.2) in terms of eigenfunctions of some differential operators.

For each fixed a ∈ G, we define the left (resp. the right) translation operators as

follows (La f )(x) = f (a−1x) (resp. (Ra f )(x) = f (xa)) and we will say that the opera-

tor T is left (resp. right) invariant if (LaT) f = T(La f ) (resp. (RaT) f = T(Ra f )). Let

D(G) denote the algebra of left invariant differential operators on G and Z(G) denote

the center of D(G).

For any differential operator D on G, we define the differential operator D̃ by

(D̃ f )(x) :=
1

2
D{C(Lx−1 f ) + C(Lx−1 f ) ◦ σ}(e),

where f ∈ C∞(G) and x ∈ G.

Proposition 3.5 Let D be a differential operator on G, then D̃ satisfies the following

properties:

(i) ˜̃D = D̃.

(ii) D̃ ∈ Z(G).

(iii) If D ∈ Z(G), then D̃ =
1
2
{D + Dσ}, where Dσ

= D( f ◦ σ) ◦ σ.

(iv) (D̃ f )(e) =
1
2
D{C f + C f ◦ σ}(e). In particular if C f = f and f ◦ σ = f , then

we have (D̃ f )(e) = (D f )(e).

(v) If f is a solution of (1.2.2), then (D̃ f ) = (D f )(e) f = λ(D) f .

Proof By easy computations we have (i) and (iv).

(ii) Let f ∈ C
∞(G) and let a ∈ G, for all x ∈ G, we have

La(D̃ f )(x) = (D̃ f )(a−1x)

=

1

2
D{C(Lx−1a f ) + C(Lx−1a f ) ◦ σ}(e)

=

1

2
D{C(Lx−1 (La f )) + C(Lx−1 (La f )) ◦ σ}(e)

= D̃(La f )(x)

and

Ra(D̃ f )(x) = (D̃ f )(xa)

=

1

2
D{C(L(xa)−1 f ) + C(L(xa)−1 f ) ◦ σ}(e)

=

1

2
D{C(Lx−1 (Ra f )) + C(Lx−1 (Ra f )) ◦ σ}(e)

= D̃(Ra f )(x).

Then we obtain that D̃ ∈ Z(G).
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(iii) Let D ∈ Z(G); for all x, y ∈ G, we have

C(Lx−1 f )(y) =

∫

G

(Lx−1 f )(t yt−1) dt,

and

D(C(Lx−1 f ))(y) =

∫

G

(Lx−1 D f )(t yt−1) dt.

Then we get

D(C(Lx−1 f ))(e) = (D f )(x)

and

D(C(Lx−1 f ) ◦ σ)(e) = (D( f ◦ σ) ◦ σ)(x),

and then

(D̃ f ) =

1

2
{D f + D( f ◦ σ) ◦ σ}.

(v) Let f ∈ C∞(G) be a solution of (1.2.2), then

C(Lx−1 f )(y) + C(Lx−1 f )(σ(y)) =

∫

G

f (xt yt−1) dt +

∫

G

f (xtσ(y)t−1) dt

= 2 f (x) f (y).

For y = e, we get

(D̃ f ) = f (D f )(e) = λ(D) f .

Proposition 3.6 Let f ∈ C
∞(G) be a non-zero solution of (1.2.2), then f is analytic.

Proof Let L be the Laplace–Beltrami operator on G, we have L ∈ Z(G) and L̃ =

1
2
{L + Lσ}. In addition this operator is elliptic, and f is an eigenfunction of L̃, we

deduce that f is analytic.

Theorem 3.7 Let G be a compact connected Lie group and let f ∈ C∞(G). Then the

following statements are equivalent:

(1) f is a solution of (1.2.2).

(2) (i) f (e) = 1, C f = f and f ◦ σ = f ,

(ii) f is analytic,

(iii) f is a eigenfunction of the operators D̃, for all D ∈ D(G).

Proof (1) ⇒ (2) follows directly from Propositions 3.5 and 3.6. Conversely, suppose

that (2) holds, with D̃ f = λ(D) f , for all D ∈ D(G), where λ(D) = (D f )(e). For a

fixed x ∈ G, we define the function

F(y) =

1

2

{

∫

G

f (xt yt−1) dt +

∫

G

f (xtσ(y)t−1) dt
}

, y ∈ G.
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Since f is central and f ◦ σ = f , then we get

F(y) =

1

2

{

∫

G

L(t−1xt)−1 f )(y) dt +

∫

G

(Rtσ(x)t−1 f )(y) dt
}

.

Consequently, for all D ∈ D(G), we have

(D̃F)(y) =

1

2

{

∫

G

D̃(L(t−1xt)−1 f )(y) dt +

∫

G

D̃(Rtσ(x)t−1 f )(y) dt
}

.

Since D̃ ∈ Z(G), then we obtain

(D̃F)(y) = D f (e)F(y).

In particular for y = e, we have

(D̃F)(e) = D f (e)F(e).

Hence, by Proposition 3.5(iv), it follows that

(DF)(e) = D( f )(e)F(e),

i.e.,

D(F − F(e) f )(e) = 0,

for all D ∈ D(G). Since F − F(e) f is an analytic function on the connected Lie group

G, then by [5, Ch. II], we obtain

F − F(e) f ≡ 0

on G. We conclude that

∫

G

f (xt yt−1) dt +

∫

G

f (xtσ(y)t−1) dt = 2 f (x) f (y), x, y ∈ G.

Corollary 3.8 Let G be a compact connected Lie group and let f ∈ C∞(G). Then the

following statements are equivalent:

(1) f is a solution of (1.2.2).

(2) (i) f (e) = 1, C f = f and f ◦ σ = f ,

(ii) f is analytic,

(iii) 1
2
(D f + D f ◦ σ) = λ(D) f , for all D ∈ Z(G).

Proof By using Proposition 3.5, we have for all D ∈ D(G), ˜̃D = D̃, D̃ ∈ Z(G) and

D̃ =
1
2
(D f + D f ◦ σ), for all D ∈ Z(G).
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4 On the Functional Equation
∫

G

f (xt yt−1) dt +

∫

G

f (xtσ(y)t−1) dt = 2 f (x)g(y)

In this section, we study the functional equation (1.2.3) and we determine the so-

lutions of this equation in the case where f is central. We shall need the following

proposition during the proof of the theorem.

Proposition 4.1 Let f , g ∈ C(G)\{0} constitute a solution of the functional equation

(4.0.1)

∫

G

f (xt yt−1) dt = f (x)g(y) + g(x) f (y), x, y ∈ G.

Then there exists a constant b ∈ C such that

∫

G

g(xt yt−1) dt = g(x)g(y) + b2 f (x) f (y), x, y ∈ G,

and f , g have one of the following forms:

(1) there exists a function ϕ solution of (1.3.1) and a constant c such that

f = cϕ, g =

ϕ

2
.

(2) there exist two functions ϕ1, ϕ2 solutions of (1.3.1) and a constant b such that

f =

b(ϕ1 − ϕ2)

2
, g =

ϕ1 + ϕ2

2
.

Proof Let f , g ∈ C(G)\ {0} be a solution of (4.0.1). If there exists a constant λ ∈ C

such that g = λ f , then the functional equation (4.0.1) is reduced to

∫

G

f (xt yt−1) dt = 2λ f (x) f (y),

which implies that 2λ f = ϕ is a solution of (1.3.1) and we have

f =

ϕ

2λ
, g =

ϕ

2
.

If f , g are linearly independent, then by using equation (4.0.1) we obtain for all

x, y, z ∈ G

f (x)

∫

G

g(ytzt−1) dt + g(x)

∫

G

f (ytzt−1) dt

=

∫

G

f (xt yt−1) dtg(z) + f (z)

∫

G

g(xt yt−1) dt.
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Then we get

(∗∗) f (x)
(

∫

G

g(ytzt−1) dt − g(y)g(z)
)

= f (z)
(

∫

G

g(xt yt−1) dt − g(x)g(y)
)

.

Since f 6= 0, let z0 ∈ G such that f (z0) 6= 0, then

∫

G

g(xt yt−1) dt − g(x)g(y) = f (x)ψ(y),

where

ψ(y) =

∫

G
g(ytz0t−1) dt − g(y)g(z0)

f (z0)
.

By using (∗∗) we obtain

f (z) f (x)ψ(y) = f (x) f (y)ψ(z),

from which we see that ψ is a constant multiple of f , so

ψ(y) = c f (y) = b2 f (y), b ∈ C,

and the functions ϕ1 = g + b f , ϕ2 = g − b f are solutions of (1.3.1)

Theorem 4.2 Let f , g ∈ C(G) \ {0} such that f is central. If ( f , g) is a solution of

(1.2.3), then there exist (π,Hπ) an irreducible, continuous and unitary representation

of G and α, β ∈ C such that

g =

χπ + χπ ◦ σ

2d(π)
, f = α

χπ + χπ ◦ σ

2d(π)
+ β

χπ − χπ ◦ σ

2d(π)
.

Proof Let ( f , g) be a solution of (1.2.3); then by Proposition 2.5 we get that g satis-

fies (1.2.2). We deduce, by using Corollary 3.4, that g =
χπ+χπ◦σ

2d(π)
. By decomposing f

into its even and odd parts we write

f (x) =

f (x) + f (σ(x))

2
+

f (x) − f (σ(x))

2
= f1(x) + f2(x).

We see that f1(σ(x)) = f (x) and f2(σ(x)) = − f (x), x ∈ G. Since f is central, f1 is

central and
∫

G
f (xt yt−1) dt =

∫

G
f (ytxt−1) dt . Then we have

(4.0.2)

∫

G

f1(xt yt−1) dt +

∫

G

f1(xtσ(y)t−1) dt = 2 f1(x)g(y), x, y ∈ G.

Since f1 is central and f1 ◦ σ = f1, we find that f1 = f1(e)g = αg. On the other hand

f2 is a solution of the functional equation

(4.0.3)

∫

G

f2(xt yt−1) dt +

∫

G

f2(xtσ(y)t−1) dt = 2 f2(x)g(y), x, y ∈ G.
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So

(4.0.4)

∫

G

f2(ytxt−1) dt +

∫

G

f2(ytσ(x)t−1) dt = 2 f2(y)g(x), x, y ∈ G,

and adding the equations (4.0.3) and (4.0.4), and in view of f2(σ(x)) = − f2(x) and
∫

G
f2(xt yt−1) dt =

∫

G
f2(ytxt−1) dt , we have

∫

G

f2(xt yt−1) dt = f2(x)g(y) + g(x) f2(y), x, y ∈ G.

By using Proposition 4.1(2), there exists (π,Hπ) an irreducible, continuous and uni-

tary representation of G and α, β ∈ C such that

f = α
χπ + χπ ◦ σ

2d(π)
+ β

χπ − χπ ◦ σ

2d(π)
.

5 On the Functional Equation
∫

G

f (xt yt−1)dt +

∫

G

f (xtσ(y)t−1)dt = 2g(x)h(y)

In this section, we study the properties of the functional equation (1.2.1) and we

determine the solutions of this equation in the case where f is central.

Theorem 5.1 Let ( f , g, h) ∈ (C(G) \ {0})3 be a solution of the functional equation

(1.2.1). Then

(i) h is a central function and h ◦ σ = h.

(ii) If f is central, then g is central.

(iii) There exists a function φ solution of the functional equation (1.2.2) such that

(g, φ) and (ȟ, φ̌) are solutions of (1.2.3).

(iv) If G is a connected Lie group, then g and ȟ are eigenfunctions of the operators D̃

for all D ∈ D(G). Precisely we have

D̃g = (Dφ)(e)g, D̃ȟ = (Dφ̌)(e)ȟ, D ∈ D(G).

Proof By easy computations we have (i) and (ii).

Let a, b ∈ G such that g(a) 6= 0 and h(b) 6= 0. Then for all x, y ∈ G we have

2h(b)
(

∫

G

g(atxt−1) dt +

∫

G

g(atσ(x)t−1) dt
)

=

∫

G

2h(b)g(atxt−1 dt +

∫

G

2h(b)g(atσ(x)t−1) dt

=

∫

G

∫

G

f (atxt−1sbs−1) dsdt +

∫

G

∫

G

f (atxt−1sσ(b)s−1) dsdt

+

∫

G

∫

G

f (atσ(x)t−1sbs−1) dsdt +

∫

G

∫

G

f (atσ(x)t−1sσ(b)s−1) dsdt
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= 2g(a)

∫

G

h(xtbt−1) dt + 2g(a)

∫

G

h(xtσ(b)t−1) dt.

Let

φ(x) =

1

2g(a)

(

∫

G

g(atxt−1) dt +

∫

G

g(atσ(x)t−1) dt
)

=

1

2h(b)

(

∫

G

h(xtbt−1) dt +

∫

G

h(xtσ(b)t−1) dt
)

.

Then we get

2g(a)
(

∫

G

h(xt yt−1) dt +

∫

G

h(xtσ(y)t−1) dt
)

=

∫

G

∫

G

f (asxt yt−1s−1) dtds +

∫

G

∫

G

f (asσ(x)tσ(y)t−1s−1) dtds

+

∫

G

∫

G

f (asxtσ(y)t−1s−1) dtds +

∫

G

∫

G

f (asσ(x)t yt−1s−1) dtds

= 2h(y)
(

∫

G

g(asxs−1) ds +

∫

G

g(asσ(x)s−1) ds
)

,

i.e.,
∫

G

h(xt yt−1) dt +

∫

G

h(xtσ(y)t−1) dt = 2h(y)φ(x),

and

2h(b)
(

∫

G

g(xt yt−1)dt +

∫

G

g(xtσ(y)t−1)dt
)

=

∫

G

∫

G

f (xt yt−1sbs−1) dtds +

∫

G

∫

G

f (xt yt−1sσ(b)s−1) dtds

=

∫

G

∫

G

f (xtσ(y)t−1sbs−1) dtds +

∫

G

∫

G

f (xtσ(y)t−1sσ(b)s−1) dtds

= 2g(x)
(

∫

G

h(ysbs−1) ds +

∫

G

h(ysσ(b)s−1) ds
)

,

i.e.,
∫

G

g(xt yt−1) dt +

∫

G

g(xtσ(y)t−1) dt = 2g(x)φ(y).

(iv) follows by using Theorem 3.7.

In the next theorem, we assume that g = f in (1.2.1). As immediate consequences,

we obtain the following theorem:
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Theorem 5.2 Let ( f , h) ∈ (C(G) \ {0})2 be a solution of the functional equation

(1.2.3), then

(i) h is a central function and h ◦ σ = h.

(ii) h is a solution of (1.2.2).

(iii) If G is a connected Lie group, then D̃ f = (Dh)(e) f , for all D ∈ D(G).

Applying Theorem 5.1, we get the following theorem:

Theorem 5.3 Let f , g, h ∈ C(G) \ {0} such that f is central, verifying the functional

equation (1.2.1). Then these functions are given by

f (x) = ab
ϕ(x) + ϕ(σ(x))

2
+ ac

ϕ(x) − ϕ(σ(x))

2
,

g(x) = b
ϕ(x) + ϕ(σ(x))

2
+ c

ϕ(x) − ϕ(σ(x))

2
,

h(x) = a
ϕ(x) + ϕ(σ(x))

2
,

where a, b, c are arbitrary complex numbers and ϕ is a solution of (1.3.1).

Corollary 5.4 Let f , g, h ∈ C(G) \ {0} such that f is central. Then ( f , g, h) is a

solution of (1.2.1) if and only if there exists (π,Hπ) an irreducible, continuous and

unitary representation of G such that

f (x) = ab
χπ(x) + χπ(σ(x))

2d(π)
+ ac

χπ(x) − χπ(σ(x))

2d(π)
,

g(x) = b
χπ(x) + χπ(σ(x))

2d(π)
+ c

χπ(x) − χπ(σ(x))

2d(π)
,

h(x) = a
χπ(x) + χπ(σ(x))

2d(π)
,

where a, b, c are arbitrary complex numbers and d(π) denotes the dimension of the rep-

resentation π.
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