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1. Introduction. Our work is motivated by a classic paper of H. Widom. In [12]
Widom considers integral operators on L2 (−1, 1) with kernels of the form K (s, t) =
ψ̂ (s − t), where ψ is a continuous, positive even function on �, which vanishes at
infinity, and ψ̂ is the Fourier transform of ψ

ψ̂(s) =
∫ ∞

−∞
ψ(u)eisu (−∞ < s < ∞).

There are three main theorems in [12]. It is Widom’s theorem II which is of interest in
the present context and the aim of this paper is to prove a theorem, Theorem 4, similar
to Widom’s Theorem II.

Let I be a closed (bounded) sub-interval of the real line �. To prove our main
theorem, Theorem 4, we need to recall some definitions and results of [11]. The first
definition we require is the following.

DEFINITION 1. A function K of two complex variables will be called an A+ kernel
on I × I , and we will write K ∈ A+ (I), if

(i) there is an open neighbourhood G of I in � such that K is continuous on
G × G.

(ii) K (z, w) = K (w, z), for all z, w ∈ G.
(iii) For each w ∈ G, the function z �−→ K (z, w) is analytic on G.
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(iv) The compact symmetric integral operator TKI on L2 (I):

TKI f (s) =
∫

I
K (s, t) f (t) dt

(
f ∈ L2 (I) , s ∈ I

)
is positive in the sense that (TKI f, f ) ≥ 0, for all f ∈ L2 (I).

We are interested in finding asymptotic estimates of eigenvalues of explicit kernels
in A+ (I). In practice, we shall probably be given K(s, t) for real values of s, t at the
outset. It will always be possible to extend K to a function of complex variables by
replacing s with z and t with w. Consider, for instance, the simple example

K(s, t) = 1
s + t

, I = [a, b] ,

where 0 < a < b. An extension of K to a A+ kernel on I is given by

K(z, w) = 1
z + w

.

In the usual way, we shall always assume that the eigenvalues of TKI are ordered into a
decreasing sequence λ0 (TKI ) ≥ λ1 (TKI ) ≥ λ2 (TKI ) ≥ . . . tending to 0, with repetitions
to account for multiplicities. We shall write λn (TKI ) and λn (K, I) interchangeably for
these eigenvalues. Given two sequences (an) and (bn) of non-negative reals, we shall
write an � bn when an = O (bn) and b = O (an). It is known [4] that if K ∈ A+ (I) , then
λn (K, I) = O (rn), for some r satisfying 0 < r < 1, but the estimates of this paper will
be of the sharper form λn (K, I) � ncrn, where c ∈ � and 0 < r < 1.

In [5] and [7] Little considered power series kernels, that is kernels of the form∑∞
n=0 ansntn, where an ≥ 0, for all n. Our main result will be derived from the following

theorem, see Theorem 2 of [7]. The term q(k) will be explained immediately after the
statement of the result.

THEOREM 2. Let K (s, t) = ∑∞
n=0 ansntn, where an > 0, for all n, and an � nc, for

some c ∈ �. If J = [α, β], where −1 < α < β < 1, then the integral operator TKJ on
L2 (J):

TKJf (s) =
∫

J
K (s, t) f (t) dt

(
f ∈ L2 (J) , s ∈ J

)
is compact and positive, and its eigenvalues satisfy

λn (K, J) � ncq
(

β − α

1 − αβ

)n

.

Here q = q(k) is Jacobi’s nome with modulus k as in the theory of elliptic functions
and integrals. It is defined for 0 < k < 1 by

q (k) = exp
(−πK ′/K

)
,

where

K =
∫ π/2

0

dθ(
1 − k2 sin2 θ

) 1
2

, K ′ =
∫ π/2

0

dθ(
1 − �2 sin2 θ

) 1
2

,
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and � = (
1 − k2

) 1
2 . This parameter q (k) arises naturally in the theory of Jacobian

elliptic functions. A detailed knowledge of the theory of elliptic functions and integrals
is not necessary to understand our methods in this paper, though the reader should
note that q is a strictly increasing continuous function on the open interval (0, 1) and
that

lim
k→0

q (k) = 0, lim
k→1

q (k) = 1.

Detailed accounts of elliptic functions and integrals can be found in [3] and [8] and
there is good introductory account in [9]. Numerical values of K, K ′ and q are tabulated
in handbooks such as [1].

Here we shall study Laplace transform kernels:

K (s, t) =
∫ ∞

0
ψ (u) e−u(s+t)du (s, t > 0) ,

where ψ is a locally integrable, non-negative function on (0,∞) and satisfies further
conditions to be given in Definition 3.

A Laplace transform kernel will be defined using a function ψ on (0,∞) satisfying
conditions analogous to those imposed on the sequence (an) as in the Theorem 2. For
non-negative functions φ,ψ on (0,∞) we will write φ (u) � ψ (u) as u → ∞ when there
are constants M, m > 0 and u0 ≥ 0 such that

mφ (u) ≤ ψ (u) ≤ Mφ (u) (u ≥ u0) .

DEFINITION 3. (i) A function ψ on (0,∞) will said to be of class P (0,∞) if it is
non-negative and locally integrable and if, for all δ > 0,

ψ (u) = O
(
eδu) as u → ∞.

(ii) A function ψ will said to be of class Pc (0,∞), where c ∈ �, if it is non-negative
and locally integrable and

ψ (u) � uc as u → ∞.

(iii) Given ψ ∈ P (0,∞) let Kψ denote the function

Kψ (s, t) =
∫ ∞

0
ψ (u) e−u(s+t)du (s, t > 0) .

(iv) Given ψ ∈ P (0,∞) and a closed interval I = [a, b], where 0 < a < b < ∞ let TψI

denote the integral operator on L2 (I) with kernel Kψ :

TψI f (s) =
∫

I
Kψ (s, t) f (t) dt

(
f ∈ L2 (I) , s ∈ I

)
.

Clearly, Pc (0,∞) ⊆ P (0,∞), for all c ∈ �, and a ψ ∈ P (0,∞) belongs to at most one
Pc (0,∞). If ψ ∈ P (0,∞), then its Laplace transform is analytic on the open right
half-plane G, and if I is as in (iv), then Kψ is continuous and real-symmetric on I × I ,
so that TψI is a compact symmetric operator on L2 (I); moreover, TψI is positive.
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336 YÜKSEL SOYKAN AND GRAHAM LITTLE

We can now state our main result.

THEOREM 4. Let ψ ∈ Pc (0,∞), where c ∈ � and let I = [a, b], where 0 < a < b <

∞. If

Kψ (s, t) =
∫ ∞

0
ψ (u) e−u(s+t)du (s, t > 0)

and if TψI is the integral operator on L2 (I) with kernel Kψ ,

TψI f (s) =
∫

I
Kψ (s, t) f (t) dt

(
f ∈ L2 (I) , s ∈ I

)
,

then TψI is compact and positive and its eigenvalues satisfy

λn
(
TψI

) = λn
(
Kψ, I

) � ncq
(

b − a
b + a

)n

.

REMARK 5. The proof of above theorem when c > −1 is given in [11]. So we shall
prove the theorem for the case c ≤ −1.

2. Reductions and preliminaries. If T is a compact positive operator on a Hilbert
space H, then its eigenvalues λ0 (T) ≥ λ1 (T) ≥ λ2 (T) ≥ . . . can be determined by the
Courant-Weyl formula:

λn (T) = inf
dim E⊥=n

sup
f ∈E
‖f ‖=1

〈Tf, f 〉 (n ≥ 0) (2.1)

where E denotes a closed sub-space of H and E⊥ is its orthogonal complement.
For the formula, see Section 95 of [10], but note that we are using non-negative

rather than positive integers to label our eigenvalues. We shall need the following
lemma (for a proof, see Lemma 2.1 of [11]) in the proof of Theorem 4.

LEMMA 6. Let H be a Hilbert space and suppose that A, B are compact positive
operators on H and that R is a continuous symmetric operator on H of finite rank.
Also suppose that H1 is a Hilbert space, S is a compact positive operator on H1 and
V : H1 → H is a continuous operator.

(i) |λn (A) − λn (B)| ≤ ‖A − B‖ (n ≥ 0) .

(ii) λn (VSV∗) ≤ ‖V‖2 λn (S) (n ≥ 0) .

(iii) If, in addition, V is invertible, then

λn (VSV∗) � λn (S) .

(iv) If A + R ≥ 0 and rank R ≤ N < ∞, then

λn (A + R) ≤ λn−N (A) (n ≥ N) .

From now on, we shall always assume that I and J are (bounded) closed subintervals
of �. The term positive definite will be used for kernels, while the term positive will
be reserved for operators. Thus the continuous, symmetric kernel K on I × I will be
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called positive definite if and only if the integral operator TKI on L2 (I) is positive, that
is 〈TKI f, f 〉 ≥ 0, for all f ∈ L2 (I). In this case we will write

K (s, t) ≥◦ 0 (s, t ∈ I)

and more generally, if L is another positive definite kernel on I × I , we will write

K (s, t) ≥◦ L (s, t) (s, t ∈ I)

when TKI − TLI ≥ 0 in the operator sense.
We shall need the following lemma as well.

LEMMA 7. Let K, L be continuous positive definite kernels on I × I.
(i) The pointwise product KL is positive definite.

(ii) Suppose that TLI = SS∗, where S is a compact operator mapping some Hilbert
space H into L2 (I), suppose that ρ ∈ H is non-zero and that σ = Sρ is continuous, then

K (s, t) L (s, t) ≥◦ μσ (s) K (s, t) σ (t) (s, t ∈ I) , (2.2)

where μ = 1/ ‖ρ‖2 .

Proof. For a proof, see a corollary of proposition 2 of [6] or Lemma 2.2 of [11].

From now on our notation will be as set out in Definition 3 and Theorem 4.
Thus I = [a, b] always satisfies 0 < a < b < ∞, ψ is a non-negative, locally integrable
function on (0,∞), and Kψ (s, t) is the Laplace transform of ψ evaluated at s + t.

The following lemma shows that if ψ ∈ Pc (0,∞) , then the asymptotic behaviour
of the eigenvalues of TψI depends only on c. This lemma gives us reductions to proof
Theorem 4.

LEMMA 8. Let I = [a, b] , where a > 0, and let c ∈ �. If φ,ψ ∈ Pc(0,∞), then

λn
(
Kψ, I

) � λn
(
Kφ, I

)
. (2.3)

Proof. For the proof, see Lemma 2.3 of [11].

This lemma shows us that, for a given c ∈ �, we need only to verify Theorem 4
for one special case ψ ∈ Pc (0,∞). A good choice of ψ will enable us to compare the
corresponding operator with an operator S satisfying the hypotheses of Theorem 2.
After choosing ψ we shall need to use a unitary equivalence of the following kind.

Suppose that J ⊆ � is another closed interval and that σ : J → I is a C1

homeomorphism with σ ′ (t) > 0 on J, then σ induces a unitary operator Uσ mapping
L2 (I) onto L2 (J) :

Uσ f (s) = f (σ (s)) σ ′ (s)
1
2

(
f ∈ L2 (I) , s ∈ J

)
. (2.4)

The inverse U−1
σ = U∗

σ : L2 (J) → L2 (I) is given by an analogous formula involving
σ−1. If K is an L2-integral kernel on I × I , then the function σK on J × J

σK (s, t) = σ ′ (s)
1
2 K (σ (s) , σ (t)) σ ′ (t)

1
2 (s, t ∈ J) (2.5)
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is an L2-kernel on J × J. A simple integration by substitution argument is enough to
verify that

TσKJ = Uσ TKI U∗
σ

so that TσKJ and TKI have exactly the same eigenvalues.

3. Proof of Theorem 4 when c ≤ −1. The method of Section 3 of [11] by proving
Theorem 4 for the case c > −1 breaks down here because the function ψ (u) = uc is
not a member of Pc (0,∞): it is not locally integrable. For the case c ≤ −1, more
indirect methods will be needed, and we shall have to give separate proofs of the two
propositions

ncq
(

b − a
b + a

)n

= O (λn (T)) , (3.1)

λn (T) = O
(

ncq
(

b − a
b + a

)n)
. (3.2)

Once we fix c ≤ −1, Lemma 8 allows us to verify (3.1) for just one ψ ∈ Pc (0,∞), and
likewise for (3.2). But it will be necessary for us to make two choices of ψ : one to prove
(3.1) and the other to prove (3.2).

Let us now fix I = [a, b], where 0 < a < b. The Möbius transformation

σ (s) = 1 + s
1 − s

(3.3)

maps the open interval (−1, 1) in a strictly increasing fashion onto the open half-line
(0,∞): its derivative σ ′ (s) = 2/ (1 − s)2 is everywhere positive. Let us define

α = σ−1 (a) , β = σ−1 (b) , J = [α, β] , (3.4)

so that −1 < α < β < 1 and σ (J) = I. It is elementary that

σ−1 (s) = s − 1
s + 1

, σ−1′ (s) = 2

(1 + s)2 (3.5)

and that

β − α

1 − αβ
= σ−1 (b) − σ−1 (a)

1 − σ−1 (a) σ−1 (b)
= b − a

b + a
. (3.6)

The significance of (3.6) will be seen by referring to the statements of Theorems 2 and
4. Let U = Uσ : L2 (I) → L2 (J) be the unitary operator in (2.4) with σ as in (3.3). We
assume throughout that I, J, σ and U are as above.

We start our discussion of (3.1) by recalling the result, Lemma 2 of [7]. It states
that if 1

q and r are continuous, positive definite kernels on J × J and if

|r (s, t)| < q (s, t) (s, t ∈ J) , (3.7)
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then

1
q (s, t) − r (s, t)

≥◦ 1
q (s, t)

(s, t ∈ J) . (3.8)

A detailed proof is given in [7], but it is in fact elementary, because the left-hand side
of (3.8) is just

∞∑
n=0

r (s, t)n

q (s, t)n+1 ≥◦ 1
q (s, t)

(s, t ∈ J) ,

by Lemma 7(i); the compactness of J and (3.7) ensure that the series is uniformly
convergent on J × J. It is a corollary of this result that we shall need.

LEMMA 9. Let 1/p, r be continuous, positive definite kernels on J × J such that

2 |r (s, t)| < p (s, t) (s, t ∈ J) . (3.9)

If 1/ (p + r) and r are positive definite, then

1
p (s, t)

≥◦ 1
p (s, t) + r (s, t)

(s, t ∈ J) .

Proof. Put q = p + r.

Of course, this lemma is true for any closed interval J, but in the present discussion
J = [α, β] ⊆ (−1, 1) as in (3.4).

Put c = −ρ, so that ρ > 1. We shall verify (3.1) in the case when

ψ (u) =
∫ δ

0
xρ−1e−xudx (u ≥ 0) .

Here δ > 0 is fixed, though we shall place an upper bound on its value later on. Clearly
ψ is positive and continuous and, by Watson’s lemma [2, Chapter 6], ψ (u) � u−ρ , so
that ψ ∈ Pc (0,∞) . In this case we have

K (s, t) =
∫ ∞

0

∫ δ

0
xρ−1e−xudxe−u(s+t)du

=
∫ δ

0
xρ−1

∫ ∞

0
e−xue−u(s+t)dudx (3.10)

=
∫ δ

0

xρ−1

x + s + t
dx (s, t ∈ I) . (3.11)

This is the kernel of T . Our aim is to define an integral operator S on L2 (J) as in
Theorem 2 such that S ≤ UTU∗. The kernel of UTU∗ is

σK (s, t) = σ ′ (s)
1
2 K (σ (s) , σ (t)) σ ′ (t)

1
2

=
∫ δ

0
xρ−1 2

(1 − s) (x + σ (s) + σ (t)) (1 − t)
dx

=
∫ δ

0

xρ−1

1 − st + 1
2 x (1 − s) (1 − t)

dx (s, t ∈ J) , (3.12)
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see (2.5) and (3.3). We shall construct S by applying Lemma 9 to the kernels under the
integral sign in (3.12).

For x ∈ [0, δ], let Tx be the integral operator on L2 (I) with kernel

Kx (s, t) = 1
x + s + t

(s, t ∈ I) ,

and let Rx be the integral operator on L2 (J) with kernel

Lx (s, t) = 1

1 − st + 1
2 x (1 − s) (1 − t)

(s, t ∈ J) . (3.13)

Since the function φ (u) = e−xu belongs to P (0,∞), the transition from (3.10) to (3.11)
shows that each Kx is positive definite on I × I (simply ignore the term xρ−1 and the
dx integration from 0 to δ). Likewise, (3.12) shows that for each x, Lx = σKx, or
equivalently UTxU∗ = Rx. So each Lx is positive definite on J × J.

We shall now apply Lemma 9 to Lx by putting p (s, t) = 1 − st + 1
2 x (1 − s) (1 − t)

and r (s, t) = 1
2 x (1 + s) (1 + t) . This last kernel has rank 1 and is positive definite: It is

chosen so that p + r is a polynomial in x and st only. Thus, by Lemma 9,

Lx (s, t) = 1
p (s, t)

≥◦ 1
p (s, t) + r (s, t)

= 1
(1 + x) − (1 − x) st

(s, t ∈ J) (3.14)

provided

x (1 + s) (1 + t) < 1 − st + 1
2

x (1 − s) (1 − t) , (3.15)

for all s, t ∈ J : We do not need modulus signs on the left because −1 < α ≤ s, t ≤ β <

1, for all s, t ∈ J. For the same reason (3.15) will be true when x is sufficiently small.
Indeed, if we choose δ > 0 so that δ (1 + β)2

< 1 − β2, then (3.15) will be true for all
s, t ∈ J and all x ∈ [0, δ].

All that we need to do now is integrate from 0 to this δ. Thus, if g ∈ L2 (J), then
by (3.12), (3.13) and (3.14),

〈
UTU∗g, g

〉 =
∫

J

∫
J
σK (s, t) g (s)g (t) dt

=
∫

J

∫
J

∫ δ

0
xρ−1Lx (s, t) g (s)g (t) dxdtds

=
∫ δ

0
xρ−1

∫
J

∫
J

Lx (s, t) g (s)g (t) dtdsdx

≥
∫ δ

0
xρ−1

∫
J

∫
J

g (s)g (t)
(1 + x) − (1 − x) st

dtdsdx

=
∫

J

∫
J

L (s, t) g (s)g (t) dtds,

where

L (s, t) =
∫ δ

0

xρ−1

(1 + x) − (1 − x) st
dx (s, t ∈ J) .
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So if S is the integral operator on L2 (J) with kernel L, then

UTU∗ ≥ S. (3.16)

Now, for all s, t ∈ J,

L (s, t) =
∞∑

n=0

ansntn,

where

an =
∫ δ

0
xρ−1 (1 − x)n

(1 + x)n+1 dx > 0 (n ≥ 0) .

A simple exercise on Watson’s lemma shows that an � n−ρ = nc (for a detailed proof
see Lemma 1 of [7]). It follows from (3.16), Theorem 2 and (3.6) that

ncq
(

b − a
b + a

)n

� λn (S) ≤ λn (UTU∗) = λn (T) ,

so that (3.1) is now verified.
To verify (3.2) we again put c = −ρ, where ρ ≥ 1, but this time our special function

is ψ (u) = 1/ (1 + u)ρ . Thus,

K (s, t) =
∫ ∞

0

e−u(s+t)

(1 + u)ρ
du (s, t ∈ I) , (3.17)

and, for all f ∈ L2 (I)

〈Tf, f 〉 =
∫

I

∫
I

f (s)f (t)
∫ ∞

0

e−u(s+t)

(1 + u)ρ
dudtds

=
∫ ∞

0

1
(1 + u)ρ

∫
I

∫
I

f (s)f (t) e−u(s+t)dtdsdu. (3.18)

Let us suppose, until further notice, that ρ > 1 is not an integer, and let us choose and
fix an integer m such that 2m > ρ. We shall analyse the integral in (3.18), but only for
f in a certain closed subspace E ⊆ L2 (I)) of finite codimension m. We shall be able to
construct a positive integral operator S on L2 (J) satisfying the hypotheses of Theorem
2 such that

T ≤ VSV∗ + R, (3.19)

where V : L2 (J) → L2 (I) is a continuous operator and R : L2 (J) → L2 (I) is
continuous and symmetric. The operator R will have finite rank ≤ 4m and comprise
the sum of two rank 2m operators. These will be accumulated as we go, in a process
reminiscent of the way in which awkward sets of points are consigned one after the
other into an unimportant set of measure zero. The operator V will comprise the
product of three operators, and these will be much more significant.

We define the subspace E by

E =
{

f ∈ L2 (I) :
∫

I
f (t) tndt = 0, 0 ≤ n < m

}
.
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342 YÜKSEL SOYKAN AND GRAHAM LITTLE

Thus E is the orthogonal complement of the space of all polynomials of degree < m, so
that E has codimension m. Let us note here that if f ∈ E, then f ∈ E, but that |f | /∈ E
unless f = 0.

For f ∈ E, let Lf denote the Laplace transform of E:

Lf (z) =
∫

I
f (t) e−ztdt (z ∈ �) ,

then Lf is an entire function and, differentiating under the integral sign, we see that Lf
has a zero at 0 of order ≥ m. Let us also define

F (z) = Lf (z) Lf (z) =
∫

I

∫
I

f (s)f (t) e−z(s+t)dtds (z ∈ �) , (3.20)

so that F is entire and has a zero at 0 of order ≥ 2m > ρ.
Now if f ∈ E, then by (3.18) and (3.20) we have

〈Tf, f 〉 =
∫ ∞

0

1
(1 + u)ρ

F (u) du

≤
∫ ∞

0

1
uρ

F (u) du (3.21)

=
∫ ∞

0
u−ρ

∫
I

∫
I

f (s)f (t) e−u(s+t)dtdsdu. (3.22)

If we write the last two integrals in (3.22) as a product of integrals and apply Schwarz’s
inequality, we see that F (u) = O

(
e−2au

)
as u → ∞. So, since a > 0 and F has a zero

order ≥ 2m at 0, it follows that the integral in (3.21) is absolutely convergent, hence
finite when f ∈ E. On the other hand, unless f = 0, the repeated integral in (3.22) is
definitely not absolutely convergent; in particular, we are not at liberty to interchange
the order of integration in (3.22).

We can overcome this difficulty with the familiar ploy of integrating a single-
valued branch of the du integrand along a Hankel loop surrounding the half-line
[0,∞): the notation we require is made explicit as follows. For r > 0, let γ (r) be the
negatively oriented boundary of the r-neighbourhood of the half-line [0,∞). When
r → 0, γ r shrinks to two descriptions of [0,∞), one in each direction. For z /∈ [0,∞) we
put z−ρ = |z|−ρ exp (−i arg z) , where 0 < arg z < 2π . Thus z �→ z−ρ defines a single-
valued analytic function on � − [0,∞). The limiting values of z−ρ along the cut [0,∞)
are given by

lim
y↓0

(x + iy)−ρ = x−ρ, lim
y↑0

(x + iy)−ρ = e−2π iρx−ρ (x > 0) .

What we need to know about loop integrals is summarised in the following lemma.
Our non-integer constant ρ > 1 is still fixed.

LEMMA 10. Let G be an entire function, and suppose that there exist constants
M, δ, X > 0 such that

|G (z)| ≤ Me−δx, for all x = Re z ≥ X.
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(i) For all r > 0 the contour integral

∫
γ (r)

z−ρG (z) dz

exists and is absolutely convergent with respect to arc length measure.
(ii) The value H (r) of the integral in (i) is independent of the choice of r ∈ (0,∞) .

(iii) If λ > 0, then for all r > 0,

∫
γ (r)

z−ρG (z) dz =
∫

γ (r)
λ−ρ+1ω−ρG (λω) dω.

(iv) If in addition G has a zero at 0 of order ≤ 2m, then for all r > 0,

∫
γ (r)

z−ρG (z) dz = (
1 − e−2π iρ) ∫ ∞

0
x−ρG (x) dx.

Proof. We leave the proof to the reader, but some comment is in order about
(iii). If we evaluate left-hand integral using the substitution z = λω, then we certainly
replace the integrand with the one on the right, but, apriori, the left-hand contour
λ (r) should be replaced with its counter-image γ (r/λ). But this last contour can be
replaced with γ (r), because the new entire function on the right satisfı̂es the same kind
of inequality as does G. This item is less trite than it might seem at first sight. In the
application we have in mind, G will depend on parameters s, t ∈ J. We shall start with
the parametrized integral on the left taken over the same contour for every s, t ∈ J. We
shall then make the parametrized substitutions z = λ (s, t) ω, where each λ (s, t) > 0.
In the new integral on the right we will not need a parametrized family of contours:
We can choose the same fixed contour, for all s, t ∈ J.

In the rest of this section we shall have to pay a good deal of attention to matters
of rigour as well as manipulation so that the reader is not too distracted referring back
to different parts of the paper. We give here a brief recapitualation of our notation.

We are given an interval I = [a, b], where a > 0. The subspace E ⊆ L2 (I) is the
orthogonal complement of the space of all polynomials of degree < m. Here 2m >

ρ > 1 and ρ /∈ �. The function σ , its inverse σ−1 and their derivatives are given by

σ (s) = 1 + s
1 − s

, σ ′ (s) = 2

(1 − s)2 , σ−1 (s) = s − 1
s + 1

, σ−1′ (s) = 2

(1 + s)2 .

The interval J ⊆ (−1, 1) is defined by

J = σ−1 (I) = [α, β] = [
σ−1 (a) , σ−1 (b)

]
.

The unitary operators U : L2 (I) → L2 (J) and U∗ = U−1 : L2 (J) → L2 (I) are given
by

Uf (s) = f (σ (s)) σ ′ (s)
1
2
(
f ∈ L2 (I) , s ∈ J

)
, U∗g (s)

= g
(
σ−1 (s)

)
σ−1′ (s)

1
2
(
g ∈ L2 (J) , s ∈ I

)
.

https://doi.org/10.1017/S0017089510000030 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000030
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Given f ∈ E, the entire function F is defined by

F (z) =
∫

I

∫
I

f (s)f (t) e−z(s+t)dtds =
(∫

I
f (s)e−zsds

) (∫
I

f (t) e−ztdt
)

(z ∈ �) ;

it as a zero order ≥ 2m at 0.
Now let f be a fixed but arbitrary element of E; then, by Schwarz’s inequality,

|F (z)| ≤ ‖f ‖2
(

e−2ax − e−2bx

2x

)
(z ∈ �) ;

so by (3.21), (3.22) and Lemma 10 (iv),

〈Tf, f 〉 ≤ (
1 − e−2π iρ)−1

∫
γ (r)

z−ρF(z)dz

= (
1 − e−2π iρ)−1

∫
γ (r)

z−ρdz
(∫

I
f (s)e−zsds

) (∫
I

f (t) e−ztdt
)

, (3.23)

for any r > 0. Another application of Schwarz’s inequality, to the inner integrals, shows
us that the repeated integral in (3.23) is absolutely convergent, unlike the one in (3.22).
It will now be convenient to write f = U∗g, where g ∈ L2 (J). Thus

〈Tf, f 〉 ≤ (
1 − e−2π iρ)−1

∫
γ (r)

z−ρ

∫
I

∫
I

g
(
σ−1 (s)

)
g
(
σ−1 (t)

)
σ−1′ (s)

1
2 σ−1′

(t)
1
2 e−z(s+t)dtdsdz.

We now integrate by substitution in the inner integrals, replacing s with σ (s) and t with
σ (t): we obtain

〈Tf, f 〉 ≤ (
1 − e2π iρ)−1

∫
γ (r)

z−ρ

∫
J

∫
J

2g (s)g (t)
(1 − s) (1 − t)

exp (−z (σ (s) + σ (t))) dtdsdz

= (
1 − e2π iρ)−1

∫
γ (r)

z−ρ

∫
J

∫
J

2g (s)g (t)
(1 − s) (1 − t)

exp
(

2z (st − 1)
(1 − s) (1 − t)

)
dtdsdz.

Necessarily this last repeated integral is still absolutely convergent; so we can
interchange the order of integration, thus

〈Tf, f 〉 ≤ (
1 − e−2π iρ)−1

∫
J

∫
J

2g (s)g (t)
(1 − s) (1 − t)

∫
γ (r)

z−ρ exp
(

2z (st − 1)
(1 − s) (1 − t)

)
dzdtds.

Since the dz integral is now innermost we can evaluate it by substitution. For each fixed
s, t ∈ J we shall replace z with 1

2 (1 − s) (1 − t) z, so that the argument of the exponential
function becomes z (st − 1). Clearly 1

2 (1 − s) (1 − t) > 0 if s, t ∈ J. Moreover, if

G (s, t, z) = exp
(

2z (st − 1)
(1 − s) (1 − t)

)
(z ∈ �, s, t ∈ J) ,
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then G satisfies an inequality of the type given in Lemma 10; this is because
(st − 1) / (1 − s) (1 − t) < 0 on J × J. So, by Lemma 10 (i), (ii) and (iii),

〈Tf, f 〉 ≤
∫

J

∫
J

2ρ+1g (s)g (t)

(1 − s)ρ+1 (1 − t)ρ+1

(
1 − e−2π iρ)−1

∫
γ (r)

z−ρe−zezstdzdtds. (3.24)

This is true for all r > 0 (independent of s, t).
We can now interpret the right-hand side of (3.24) in terms of operators. Let M

be the multiplication operator on L2 (J):

Mh (s) = 2
1
2 (ρ+1)

(1 − s)ρ+1 h (s)
(
h ∈ L2 (J) , s ∈ J

)
(3.25)

so that M is continuous and symmetric and

‖M‖ = sup
s∈J

∣∣∣∣∣ 2
1
2 (ρ+1)

(1 − s)ρ+1

∣∣∣∣∣ = 2
1
2 (ρ+1)

(1 − β)ρ+1 . (3.26)

Let S′ be the integral operator on L2 (J) with kernel

L′ (s, t) = (
1 − e−2π iρ)−1

∫
γ (r)

z−ρe−zezstdz (s, t ∈ J) ,

then

L′ (s, t) = (
1 − e−2π iρ)−1

∫
γ (r)

∞∑
n=0

sntn

n!
z−ρ+ne−zdz (s, t ∈ J)

=
∞∑

n=0

(n − ρ)!
n!

sntn, (3.27)

absolutely and uniformly on J × J. The coefficients in (3.27) are real, so S′ is symmetric.
We can now rewrite (3.24) as

〈Tf, f 〉 ≤ 〈
S′Mg, Mg

〉 = 〈
MS′Mg, g

〉
. (3.28)

Since 2m > ρ, the coefficients in (3.27) are positive for n ≥ 2m, and asymptotic to n−ρ ,
by Stirling’s formula; but the first few coefficients alternate in sign. With this problem
in mind let us define

L (s, t) =
2m−1∑
n=0

sntn +
∞∑

n=2m

(n − ρ)!
n!

sntn, (s, t ∈ J) , (3.29)

and define S to be the positive integral operator on L2 (J) with kernel L; clearly S
satisfies the hypotheses of Theorem 2 with c = −ρ. From (3.28) we now have

〈Tf, f 〉 ≤ 〈MSMg, g〉 + 〈
M

(
S′ − S

)
Mg, g

〉
.
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Since the kernel L′ − L of S′ − S is a real polynomial in st of degree 2m − 1, we see
that M (S′ − S) M has rank 2m. Replacing g with Uf we see that for all f ∈ E,

〈Tf, f 〉 ≤ 〈
U∗MSMUf, f

〉 + 〈R1f, f 〉 , (3.30)

where R1 = U∗M (S′ − S) MU : a continuous symmetric operator on L2 (I) of rank
2m.

Let P be the orthogonal projection of L2 (I) onto E. The null-space of P is the
space of all polynomials of degree < m, so the rank of R2 = T − PTP is ≤ 2m. Now,
if f is any element of L2 (I), then from (3.30), we have

〈Tf, f 〉 = 〈PTPf, f 〉 + 〈R2f, f 〉
≤ 〈

PU∗MSUMPf, f
〉 + 〈

U∗R1Uf, f
〉 + 〈R2f, f 〉 .

Thus

T ≤ VSV∗ + R,

where

V = PU∗M, R = U∗R1U + R2. (3.31)

V : L2 (J) → L2 (I) is continuous and R is a continuous symmetric operator on L2 (I)
of rank ≤ 4m. It follows from Lemma 6 (ii) and (iv) that

λn (T) ≤ ‖V‖2 λn−4m (S) (n ≥ 4m) . (3.32)

Now, by Theorem 2 and (3.6),

λn (S) � n−ρq
(

β − α

1 − αβ

)n

= n−ρq
(

b − a
b + a

)n

,

so that λn−4m (S) = O (λn (S) ) and hence by (3.31),

λn (T) = O
(

n−ρq
(

b − a
b + a

)n)
.

This establishes (3.2), so the proof of Theorem 4 is now complete in the case where
c < −1 is not an integer.

Finally, let us assume that c = −N, where N ≥ 1 is an integer. Relation (3.1) has
already been verified, so it only remains for us to establish (3.2). We shall do this by
letting ρ decrease to N in (3.32). If ρ is to be variable we must take account of this
fact in our notation. Rather than use the special functions ψ (u) = (1 + u)−ρ to label
our operators and kernels, as we did in Definition 3, it is simpler to label them with ρ.
In (3.32) the integer m was chosen to satisfy 2m > ρ. We must ensure that m does not
vary with ρ as we take the limit. This can easily be done by restricting N < ρ < N + 1
throughout and insisting that m is fixed and satisfies 2m ≥ N + 1.

Now, for N ≤ ρ < N + 1, let

Kρ (s, t) =
∫ ∞

0

e−u(s+t)

(1 + u)ρ
du (s, t ∈ J) , (3.33)
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(see (3.17)) and Tρ be the integral operator on L2 (I) with kernel Kρ . Let Sρ be the
integral operator on L2 (J) with kernel

Lρ (s, t) =
2m−1∑
n=0

smtn +
∞∑

n=2m

(n − ρ)!
n!

sntn (s, t ∈ J) , (3.34)

(see (3.29)). We define Vρ = PU∗Mρ (see (3.31)); here P is a fixed projection on L2 (I) ,

U∗ : L2 (J) → L2 (I) is a fixed unitary operator, and Mρ is the multiplication operator

Mρh (s) = 2
1
2 (ρ+1)

(1 − s)ρ+1 h(s)
(
h ∈ L2 (J) , s ∈ J

)
,

as in (3.25). We can now rewrite (3.32) as

λn
(
Tρ

) ≤ ∥∥Vρ

∥∥2
λn−4m

(
Sρ

)
(n ≥ 4m, N < ρ < N + 1) ,

and because ‖U∗‖ = ‖P‖ = 1, (3.26) shows that

λn
(
Tρ

) ≤ 2ρ+1

(1 − β)2ρ+2 λn−4m
(
Sρ

)
(n ≥ 4m, N < ρ < N + 1) . (3.35)

Now suppose that ρ decreases to N. It is easy to verify that Kρ → KN uniformly on I × I
and that Lρ → L uniformly on J × J, so that

∥∥Kρ − KN
∥∥ → 0 and

∥∥Lρ − LN
∥∥ → 0.

So by (3.35) and Lemma 6 (i),

λn (TN) ≤ 2N+1

(1 − β)2N+2 λn−4m (SN) (n ≥ 4m) .

Once again we have λn−4m (SN) = O (λn (SN)) , so that

λn (TN) = O (λn (SN)) = O
(

n−Nq
(

b − a
b + a

)n)
.

This establishes (3.2) for c = −N and the proof of Theorem 4 is now complete.
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