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Relatively strongly stratified turbulent flows tend to self-organise into a ‘layered
anisotropic stratified turbulence’ (LAST) regime, characterised by relatively deep and
well-mixed density ‘layers’ separated by relatively thin ‘interfaces’ of enhanced density
gradient. Understanding the associated mixing dynamics is a central problem in
geophysical fluid dynamics. It is challenging to study LAST mixing, as it is associated
with Reynolds numbers Re := UL/ν � 1 and Froude numbers Fr := (2πU)/(LN) � 1
(U and L being characteristic velocity and length scales, ν the kinematic viscosity and
N the buoyancy frequency). Since a sufficiently large dynamic range (largely) unaffected
by stratification and viscosity is required, it is also necessary for the buoyancy Reynolds
number Reb := ε/(νN2) � 1, where ε is the (appropriately volume-averaged) turbulent
kinetic energy dissipation rate. This requirement is exacerbated for oceanically relevant
flows, as the Prandtl number Pr := ν/κ = O(10) in thermally stratified water (where κ

is the thermal diffusivity), thus leading (potentially) to even finer density field structures.
We report here on four forced fully resolved direct numerical simulations of stratified
turbulence at various Froude (Fr = 0.5, 2) and Prandtl (Pr = 1, 7) numbers forced so that
Reb = 50, with resolutions up to 30 240 × 30 240 × 3780. We find that, as Pr increases,
emergent ‘interfaces’ become finer and their contribution to bulk mixing characteristics
decreases at the expense of the small-scale density structures populating the well-mixed
‘layers’. However, extreme mixing events (as quantified by significantly elevated local
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destruction rates of buoyancy variance χ0) are always preferentially found in the (statically
stable) interfaces, irrespective of the value of Pr.

Key words: turbulent mixing, stratified turbulence, turbulence simulation

1. Introduction

In density-stratified flows, small-scale turbulence is known to enhance the rate at which
density gradients are irreversibly smoothed by diffusive processes (i.e. mixed) and
quantifying this rate in geophysical, environmental and industrial settings is of crucial
importance. For instance, turbulent mixing is known to have a leading-order impact
on global oceanic circulations (Wunsch & Ferrari 2004). Stratified turbulent flows are
characterised by a variety of length scales associated with the structure of the turbulent
velocity and density fields. Velocity fluctuations are smoothed by molecular viscosity
and dissipated into heat below the Kolmogorov scale LK := (ν3/ε)1/4 (where ν is
the molecular viscosity and ε is the appropriately volume-averaged dissipation rate of
turbulent kinetic energy). Similarly, density fluctuations are dissipated by molecular
diffusion below the Batchelor scale Lρ := (νκ2/ε)1/4, κ being the molecular diffusivity.
The (molecular) Prandtl number Pr := ν/κ , that effectively quantifies the relative strength
of viscous dissipation to diffusion, is the ratio of the square of these two length scales.
Unlike the atmosphere, in which Pr � 0.7 (LK ≈ Lρ), in the ocean Pr ∼ O(10) when
thermally stratified and the equivalent Schmidt number Sc := ν/D ∼ O(1000) (D being
the salt diffusivity) when dominantly salt-stratified.

For turbulent flows with Pr � 1, the inevitable scale separation with Lρ � LK is
such that fully resolved numerical simulations are highly challenging. However, there
is increasing evidence indicating that the value of Pr has (perhaps unsurprisingly) a
leading-order impact on irreversible scalar-mixing properties of stratified turbulent flows.
For instance, the effects of Pr variations on the properties of secondary instabilities arising
from the breakdown of Kelvin–Helmholtz billows were reported by Mashayek & Peltier
(2011) and Salehipour, Peltier & Mashayek (2015). Similarly, Zhou, Taylor & Caulfield
(2017) studied the influence of Pr variations on fully developed turbulence in stratified
plane Couette flows using direct numerical simulations (DNS) and reported significant
effects on density and momentum fluxes. Also using DNS, Legaspi & Waite (2020)
analysed the effects of Pr variations on homogeneous forced stratified turbulence and
showed, at least for the range of parameters they considered, that the Pr = 1 simulations
are able to describe Pr > 1 dynamics at large scales and also that kinetic energy spectra
(which importantly do not directly contain information from the density field) are largely
unaffected by variations in Pr. However, they did observe Pr effects at small scales
below LK and in the density flux spectra. Therefore, here we focus on the influence of
Pr variations on small-scale structures of the density field and their associated effects on
the mixing properties of forced stratified turbulent flows.

Another important length scale associated with stratified turbulent flows is the buoyancy
length scale LB := 2πU/N0, where U is a characteristic velocity of the flow and N0 is a
characteristic (background) value of the buoyancy frequency. Scaled using a characteristic
horizontal length scale Lh, this parameter then defines a horizontal Froude number
Frh := LB/Lh = 2πU/N0Lh that quantifies the relative strength of the stratification of
the flow. For small horizontal Froude numbers Frh (i.e. relatively strongly stratified
flows), the density field is known to self-organise into relatively well-mixed ‘layers’
(whose size scales as LB; the buoyancy scale can therefore be thought of as the largest
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energetically possible overturn) separated by relatively thin ‘interfaces’ of enhanced
density gradient (Billant & Chomaz 2001; Waite 2011). Such density ‘staircase’ structure
has important implications for irreversible scalar mixing in density-stratified turbulent
flows. Couchman, de Bruyn Kops & Caulfield (2023) showed that (in the Pr = 1 case)
while static instabilities are most prevalent within the well-mixed layers (that are hence
characterised by relatively high values of ε), much of the scalar mixing, as described
by the (appropriately volume-averaged) buoyancy variance destruction rate χ , is located
in the relatively strongly stratified interfaces, a phenomenon that is not apparent when
considering ε only. Hence, we focus here on the contribution of the different structures
described above to the overall mixing properties of the flow, as described by χ . Note that
we focus in this work on χ to describe mixing since this microstructure measurement
currently provides the best observational means of probing ocean mixing (Gregg et al.
2018). Other quantities are also used in practical settings, such as buoyancy fluxes or
turbulent diffusivities. However, these quantities usually rely upon some kind of averaging
or parametrisation and our goal in this work is to probe the small-scale ‘raw’ structures of
the density field and their contribution to mixing.

Fundamentally, we aim to understand how the density field’s small-scale organisation
shapes the bulk mixing properties of forced stratified turbulent flows at different Prandtl
numbers. To this end, we analyse fully resolved DNS data of forced stratified turbulent
flows at Pr = 1 and Pr = 7, each with Fr = 0.5 and Fr = 2, for values of Re such that the
emergent Reb = 50. The rest of this paper is organised as follows. We describe the DNS
data in § 2 and then present the methodology used to extract distinct classes of density field
structures in § 3. In § 4, we apply this methodology to the DNS data to segment the density
field into weakly and strongly stratified interfaces, relatively small-scale ‘lamella-like’
structures and larger-scale density inversions and analyse the associated mixing properties
of the extracted density structures. Brief conclusions are drawn in § 5.

2. Summary of the DNS datasets

We consider statistically steady, forced, fully resolved DNS of stratified turbulence
from the simulation campaign originally reported by Almalkie & de Bruyn Kops
(2012). The non-hydrostatic dimensionless Navier–Stokes equations under the Boussinesq
approximation,

∂tu + u · ∇u = −∇p + 1
Re

∇2u −
(

2π

Fr

)2

ρẑ + F , ∇ · u = 0,

∂tρ + u · ∇ρ = 1
Pr Re

∇2ρ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

are numerically integrated using a pseudospectral code in a triply periodic domain,
where ẑ is the (upward) vertical unit vector. The dimensionless parameters are: the
above-defined Prandtl number Pr; the Froude number Fr := 2πU/(N0L) (where U and
L are characteristic velocity and length scales associated with the forcing and N0 is the
background buoyancy frequency); and the Reynolds number Re := UL/ν. The forcing
term F corresponds to the deterministic ‘Rf’ scheme described in Rao & de Bruyn Kops
(2011) and is designed to match a target low-wavenumber kinetic energy spectrum at
steady state. This ensures a buoyancy Reynolds number Reb := ε/(νN2

0) � 50 for these
simulations, where ε is the volume average of the point-wise local dissipation rate of
turbulent kinetic energy ε0, defined in terms of the symmetric part of the strain-rate tensor
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sij as

ε0 := 2
Re

sijsij; sij := 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (2.2)

The density field is a superposition of a background linear density field ρ̄(z), characterised
by a reference density ρ0 and reference density gradient −N2

0ρ0/g, and a perturbation
ρ′(x, t) so that, in dimensional form,

ρ(x, t) = ρ̄(z) + ρ′(x, t) := ρ0(1 − N2
0z/g) + ρ′(x, t). (2.3)

We can use ρ′ to compute the (dimensional) local destruction rate of buoyancy variance:

χ0 := g2κ

ρ2
0N2

0
∇ρ′ · ∇ρ′. (2.4)

This quantity, appropriately scaled in this way by −ρ0N2
0/g (i.e. the density gradient

against which the turbulence acts), corresponds to the local destruction rate of available
potential energy (density) and can therefore be used as a proxy of local irreversible mixing
(Howland, Taylor & Caulfield 2021) which can still be calculated pointwise-locally in
the flow domain. Henceforth, we consider dimensionless quantities (the prefactor being
1/(Pr Re) in our system) and denote by χ the volume average of local χ0 across the entire
computational domain.

Here, we consider two values of the Prandtl number (Pr = {1, 7}) as well as two
values of the Froude number (Fr = {0.5, 2}). The simulation parameters are summarised
in table 1. We choose a grid spacing Δ � Lρ , and a vertical domain dimension of
approximately 1.5LB. We consider a single snapshot in time (at statistical steady state)
of the various simulations.

For the weakly stratified Fr = 2 simulations, a patch of elevated turbulence, described
by relatively high values of the local dissipation rate ε0, is generated by a large-scale
vertically aligned vortex such as that reported in Couchman et al. (2023) for the P1F200
dataset (see figure 1). Outside the vortex, the density field self-organises into well-mixed
layers separated by interfaces characterised by enhanced density gradients (see figures 2
and 3). In the strongly stratified Fr = 0.5 case, the vortex does not appear. Couchman et al.
(2023) showed (at least for the P1F200 simulation) that the interfaces account for relatively
large values of χ0 and low values of ε0 and hence ‘extreme’ values of the (local) flux
coefficient Γ0 := χ0/ε0, whereas the well-mixed layers were potentially more turbulent
(relatively large values of ε0) but characterised by relatively low values of χ0 (owing to
relatively low values of the density gradient) and hence relatively low values of Γ0. Here
we aim to understand whether such a picture holds for flows with different values of Fr
and more importantly of Pr, and to understand how different structures in the density field
(defined more precisely in the next section) influence the mixing within the flow, quantified
by values of (local) χ0.

3. Density field segmentation methodology

Following Couchman et al. (2023), we are interested in the contribution to mixing of
the emergent stably stratified interfaces appearing in the density field and how this
contribution varies as a function of Pr and Fr. As Pr increases, we expect finer structures to
arise in the intervening well-mixed regions and we also are interested in understanding how
these structures shape the mixing properties of the flow. Therefore, prior to any analysis,
the flow is segmented into four different categories based on the local (vertical) density
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Figure 1. Vertical average of the dissipation rate of turbulent kinetic energy 〈ε0〉z (scaled by the bulk average
ε) in the horizontal x–y plane for the (a) P1F200, (b) P1F050, (c) P7F200 and (d) P7F050 simulations.
A coherent patch of elevated dissipation rate is found in the Fr = 2 simulations (corresponding to a large-scale
vortex; see Couchman et al. (2023) for more details). This vortex is not sustained in the strongly stratified case
F = 0.5.

gradient ∂zρ as well as the neighbouring (vertical) structure of the flow. We apply the
following methodology, as summarised in figure 2:

(i) Stably stratified interfaces. We sort vertical density profiles by values of the density
ρ in order to create statically stable density profiles ρ∗(x). We identify points of
the dataset whose values of the density remain unaltered by the sorting procedure,
i.e. points that satisfy ρ(x) = ρ∗(x). These points are by definition statically
stable and have relatively high values of the background buoyancy gradient N2∗ :=
−g/(ρ0N2

0)∂zρ
∗ (see figure 2b–d) and correspond to stably stratified interfaces lying

between relatively well-mixed regions, such as those reported by Couchman et al.
(2023) for the P1F200 dataset. We thus refer to such points as belonging to the INT
(‘interface’) cluster, which is further subdivided into relatively strongly stratified
(SINT) and relatively weakly stratified (WINT) interfaces, for N2∗ > 1 and N2∗ ≤ 1
respectively.
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Figure 2. Flow segmentation methodology. For the P1F200 simulation, the density field, represented here by
its vertical gradient as shown in (a), is vertically sorted into a statically stable field, whose vertical gradient
is denoted N2∗ (up to a multiplicative constant), as shown in (b). The sorting algorithm highlights the stable
interfaces of the density field, i.e. the points of the density field unaltered by the sorting procedure. The strongly
stratified interfaces (SINT, in blue with N2∗ > 1) are then extracted in (d). The entire segmented field is shown
in (e), including the weakly stratified interfaces with N2∗ ≤ 1 (WINT, in purple), and the relatively well-mixed
regions between interfaces, further subdivided into small-scale ‘lamella’ structures (LAM, in orange) and
larger-scale density inversions (INV, in red) using the procedure described in § 3 and shown schematically
in (c), based on the Taylor microscale LT . A segmented vertical profile is presented in (f ), showing strongly
stratified interfaces (in blue) separating relatively well-mixed regions made up of isolated lamellae, aggregated
ones as well as a large-scale inversion. The dashed line corresponds to the sorted density field ρ∗. Note that
because of the segmentation algorithm used in this work, only the unstable (strongly stratified in absolute value)
edge of the large-scale density inversion is considered in the INV cluster, the rest of the inversion being made
of smaller-scale aggregating lamellae. This edge corresponds to the maximal density gradient found in the
inversion, suggesting a large contribution to statistics of χ0, as shown in § 4 and as suggested experimentally
(see, for instance, Hult, Troy & Koseff 2011).

(ii) Relatively well-mixed layers. We subdivide points that are altered by the sorting
procedure (i.e. are not within an interface INT) into two categories depending
on the local density gradient ∂zρ and neighbouring structure of the (unsorted)
density field ρ, in particular relative to LT , the Taylor microscale of the flow.
Parameter LT describes the scale at which viscosity starts to affect the development
of turbulent eddies significantly, defined (dimensionally) as LT := √

10νK/ε, where
K is the volume-averaged turbulent kinetic energy. As illustrated in figure 2(c),
by considering a point in the dataset at vertical coordinate zc with associated
density ρc := ρ(zc) satisfying ∂zρ(zc) > 0, we define z+ as the closest point moving
upwards for which ρ(z+) = ρc. As equality is difficult to ensure numerically, we
define

z+ := min{z > zc | ρ(z) ≤ ρ(zc)}. (3.1)

Similarly, if ∂zρ(zc) < 0, we define z− := min{z < zc | ρ(z) ≥ ρ(zc)}. If |zc −
z+| ≤ LT (or |zc − z−| ≤ LT depending on the local value of the density gradient),
we have identified a relatively small-scale structure in the density field, such as a

983 R1-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.110


N. Petropoulos and others

blob or stretched ‘lamella’ as discussed in detail by Villermaux (2019), which is
strongly affected by viscosity. Therefore we classify these structures as belonging
to the LAM (‘lamella’) cluster. Conversely, if |zc − z+| > LT (or |zc − z−| > LT ),
we have identified a point belonging to a relatively large-scale density inversion
largely unaffected by viscosity, and so we classify it as being in the INV (‘inversion’)
cluster. This algorithm is applied to all vertical levels zc in a given vertical profile
of a simulation, and then for all the profiles in the simulation box. Note that the
well-mixed regions can be made up of many ‘aggregating’ lamellae, hence the large
vertical extent of the LAM cluster (even though this cluster is made up of relatively
thin density structures). Similarly, because of the segmentation algorithm used in
this work, only the edges of large-scale density inversions are considered in the
INV cluster, the bulk of the inversion being made of smaller-scale (aggregating)
lamellae. (Indeed, if zc and z± are separated by a distance larger than LT , only the
point zc will be considered in INV but not all the points between zc and z±, these
points being perhaps part of smaller-scale structures.) These edges correspond to
the region of maximal (vertical) density gradient in the inversion and hence to the
maximal contribution to the statistics of χ0 within the inversion (as is shown in
§ 4; this fact has also been demonstrated experimentally – see Hult et al. (2011)
for instance), motivating further our choice of clusters. Note that the small-scale
structure of the relatively well-mixed regions is potentially a consequence of the
breakdown of various instabilities, such as the Kelvin–Helmholtz one. Because we
are considering only one snapshot in time (at statistical steady state), we cannot
further check this hypothesis.

This segmentation methodology, summarised in figure 2, is applied to the four datasets
considered in this work, as shown in figure 3.

4. Cluster properties

4.1. Contributions to χ

We consider the relative importance of each cluster defined in § 3 in terms of their
contribution to the local and bulk mixing properties of the flow, as described by local
χ0 and volume-averaged χ . We particularly focus on the role of ‘extreme’ mixing events
and therefore sort the data by decreasing values of χ0, defining a sorted vector χ∗

0 =
(χ0∗

0 , . . . , χM∗
0 ), where M is the number of points in the dataset and χ0∗

0 and χM∗
0 are

the greatest and lowest values of χ0 found in the dataset, respectively. This vector can be
used to construct the normalised cumulative contribution to χ as

∀n ∈ {1, . . . , M}, χc(n) := 1
χ

n∑
i=1

χ i∗
0 . (4.1)

The cumulative contribution χc is plotted in figure 4 for each dataset (solid black line),
highlighting the fact that the dominant contribution to χ is generated by a relatively small
set of localised ‘extreme’ events, regardless of Fr and Pr. More specifically, for the four
sets of parameters considered in this work, approximately 80 % of the contribution to χ is
contained within the first 10 % of the points sorted by decreasing values of χ0 (and hence
10 % of the box volume). Similar statistics are observed in oceanographic data (Couchman
et al. 2021).

The total contribution of each cluster to bulk χ is shown in figure 4(e). We also
assign the data points sorted by values of χ0 into n = 20 equal-volume bins, in order
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Figure 3. Normalised vertical density gradient ∂zρ
′/|∂zρ̄| (a,c,e,g) and associated segmented fields (b,d,f,h),

for simulations P1F200 (a,b), P1F050 (c,d), P7F200 (e,f ) and P7F050 (g,h). The strongly stratified interfaces
(SINT) are depicted in blue, the small-scale structures (LAM) in orange, the larger-scale density inversions
(INV) in red and the weakly stably stratified regions (WINT) in purple.

to calculate a relative contribution of points in each cluster to the bin-volume-averaged
〈χ〉bin := ∑

bin χ0/(V/n), where V is the total number of points in the domain, as
illustrated by coloured shading in figure 4(a–d). Focusing on the Pr = 1 case, the
contribution (figure 4e) from the strongly stratified interfaces (SINT cluster) to bulk
χ is roughly 25 %–35 %, whereas the contribution from small-scale structures (LAM)
reaches ∼60 %. As Fr decreases and stratification strengthens, the total contribution
from large-scale inversions (INV) shrinks from ∼10 % for Fr = 2 to less than 3 % for
Fr = 0.5, possibly due to the suppression of large-scale overturnings by relatively strong
stratification. We observe similar trends for the relative contributions in each bin. In
increasing the Prandtl number from Pr = 1 to 7, strong interfaces become (perhaps
unsurprisingly) finer (figure 3f,h) and their total contribution shrinks to about 10 %,
whereas the total contribution from small-scale structures in ‘lamella’ (LAM) increases
to about 80 %–90 %. The total contribution from large-scale inversions does not exceed
10 %. Again, we observe similar trends in the relative contributions as χ0 decreases.

4.2. Statistics of Γ

For each bin in figure 4, we compute a mean value of the (local) flux coefficient
Γ0 := χ0/ε0 associated with each cluster (see dashed lines), although such mean values
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Figure 4. Normalised cumulative contribution to χ (black line; see (4.1)) for each simulation: (a) P1F200, (b)
P1F050, (c) P7F200 and (d) P7F050. Data points are assigned to 20 equal-volume bins, sorted by decreasing
χ0 and clustered using the method presented in § 3. For each bin, we compute the relative contribution of each
cluster to 〈χ〉bin, as shown by the heights of the coloured regions. For each bin, we compute the (arithmetic)
mean value of Γ0 := χ0/ε0 for each cluster (dashed lines). (e) Total contributions to χ from each cluster for
the four simulations.

of ratios of local quantities should always be treated with caution. The leftmost bins
(corresponding to the most ‘extreme’ values of χ0) have the largest values of Γ0 (of
order unity, significantly above the canonical value Γ = 0.2) suggesting strongly that the
extreme mixing events (large χ0) are not necessarily correlated with extreme dissipation
events (large ε0). Among the extreme events in χ0, those in the strongly stratified interfaces
(SINT) cluster correspond to the largest mean values of Γ0 (as suggested by Couchman
et al. (2023) for the Pr = 1, Fr = 2 case), independently of variations in Pr and Fr. This
point is further emphasised in figure 5 where we plot the probability density functions
(p.d.f.s) of log10(χ0), log10(ε0) and log10(Γ0) for the different clusters and simulations
(computed using normalised histograms with 50 equispaced bins). We also present the
statistical mean of χ0, ε0 and Γ0 (computed using normalised histograms with 50 bins
in log-space). Interestingly, the χ0 distributions are skewed towards high values (note
that this skewness seems exacerbated for the INV cluster, for reasons presented in § 3)
and the Γ0 ones encompass almost four orders of magnitude, emphasising again the fact
that extreme local values of χ0 are important in setting the overall mixing statistics. Note
that these statistics are computed using all the data points in the simulation boxes and
hence all the resolved length scales. In more practical settings, where all the length scales
down to the Batchelor scales are not necessarily accessible, these p.d.f.s might sharpen
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Figure 5. The p.d.f.s for log10(χ0) (a,d), log10(ε0) (b,e) and log10(Γ0) (c,f ) for the different clusters defined
in § 3 and for the four simulations. The statistical mean of each field (without the logarithm) is represented by
a colour-coded circle (Pr = 1) or triangle (Pr = 7). The green dotted vertical line corresponds to the canonical
value Γ = 0.2.

around their mean. However, the effective coarse-graining induced by the resolution of
the measurements might smooth the fields and hence overlook the (very) thin but yet
important strongly stratified interfaces (especially in the high-Prandtl-number case where
these interfaces are extremely thin), potentially leading to undersampling of important
regions of the density field, and raising the important question of what is the relevant
scale at which a turbulent density field should be profiled to get mixing statistics right.
This question is not addressed here and is left for future work. For each simulation, the
statistical mean of the flux coefficient Γ0 is maximised for the strongly stratified interfaces
(almost twice as large as the statistical mean for the entire dataset), because of relatively
low values of ε0 and large values of χ0. As the Prandtl number increases, the statistical
mean of Γ0 decreases (a result also observed by Salehipour et al. (2015)) for both the
weakly and strongly stratified cases, for the following (different) reasons.

In the weakly stratified simulations with Fr = 2 (figure 5a–c), density effectively acts
as a passive scalar (as can be seen from the weakly stratified scaling of Riley, Metcalfe &
Weissman (1981), for instance) and hence the statistics of ε0 do not depend on Pr, as can
be seen in figure 5(b). However, as Pr increases, the left-hand tails of the χ0 distributions
become more significant, as might be expected for the mixing of an effectively passive
scalar, as χ0 is multiplied by (Pr Re)−1 where Re is fixed. We note that a widening of
the tails of ∂zρ

′ (not shown here; see for instance Riley, Couchman & de Bruyn Kops
(2023)) effectively rebuilds the right-hand tail of χ0, explaining why the p.d.f. of χ0 is
not just shifted toward lower values. A more in-depth discussion of this phenomenon is
provided by Bragg & de Bruyn Kops (2023). As a result of the statistics of ε0 remaining
roughly independent of Pr but those of χ0 decreasing with increasing Pr, the statistics of
Γ0 decrease as Pr increases for the weakly stratified (Fr = 2) case.

Conversely, in the strongly stratified simulations with Fr = 0.5, buoyancy acts ‘actively’
on the momentum field, as demonstrated for instance by the strongly stratified scaling
analysis of Billant & Chomaz (2001). Moreover, as Pr increases, the volume contribution
of the small-scale structures (LAM cluster) increases at the expense of the strongly
stratified interfaces (SINT) (see figure 4). The LAM structures, which locally are only
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weakly affected by stratification because they populate the relatively well-mixed regions
of the flow, are viscously affected (as their vertical extent is, by definition, smaller than
LT ) but still significantly disordered. As a result, their local static instability inevitably
encourages increased viscous dissipation, and so their enhanced prevalence actually shifts
the statistics of ε0 towards higher values for the Pr = 7 flows as compared with Pr = 1
(yellow curves, figure 5f ). In this sense, enhanced stratification at higher Pr actually makes
the flow ‘more turbulent’, reminiscent of the prediction by Pearson & Linden (1983) of
relatively long-lived ‘approximately horizontal striations’ in high-Pr decaying stratified
turbulence. Also, though this is a second-order effect, for the strongly stratified simulations
the left-hand tail of the χ0 distribution once again becomes somewhat more significant as
Pr increases. We note that while the forcing scheme endeavours to maintain a constant Reb,
bulk ε is slightly mismatched between the two Pr simulations at Fr = 0.5 (see table 1).
Therefore, while increased Pr dramatically changes the relative prevalence of LAM versus
SINT structures, part of the observed increase in local ε0 statistics at Pr = 7, Fr = 0.5
is due to the slight mismatch in targeted bulk ε rather than being a purely Pr effect.
Importantly, it is apparent in figure 5(e) that the total amount of irreversible mixing for
the flow with Pr = 7 actually slightly increases compared to Pr = 1 in the more strongly
stratified Fr = 0.5 simulations, essentially because the Pr = 7 flow is more vigorous,
despite the fact that Γ0 appears to decrease with increasing Pr. Therefore, consideration of
Γ0, or even Γ := χ/ε (constructed from volume-averaged dissipation rates), in isolation
should be treated with caution.

5. Discussion

We have analysed the influence of the Prandtl number Pr and Froude number Fr on density
structures in forced turbulent stratified flows and their contribution to irreversible scalar
mixing properties. Using fully resolved DNS data and a flow segmentation algorithm
based on the local value of the (vertical) density gradient and the local (vertical) structure
of the density field, we have extracted distinct regions of the turbulent density field –
interfaces (both relatively strong and relatively weak) separating well-mixed density layers
made up of both small-scale lamellar structures and larger scale density inversions – and
analysed their contribution to the bulk value of the destruction rate of buoyancy variance
χ and to the statistics of the (locally evaluated) flux coefficient Γ0.

As Pr increases, the strongly stratified density interfaces become finer and their
contribution to average values of χ decreases at the expense of the small-scale lamellar
structures in the relatively well-mixed density layers. However, similarly to the flow with
Pr = 1 (Couchman et al. 2023), these structures are ‘quiescent’, yet mixing hotspots. The
points in these structures associated with the largest values of (local) χ0 are associated
with extreme values of Γ0 and hence with relatively low values of ε0. More generally,
the flux coefficient associated with strongly stratified structures is (in an averaged sense)
essentially twice as large as its value for the three other segmented regions, regardless of
the values of Pr and Fr. All in all, strongly stratified interfaces are therefore characterised
by relatively large values of χ0 and relatively weak values of ε0 compared with the other
density structures considered in this work and are therefore likely to be overlooked if
considering ε0 (or indeed the volume average ε) alone as a proxy for significant irreversible
mixing.

As is becoming increasingly well appreciated, a universal value of Γ is not able to
capture the complex and inhomogeneous structures of the density and density gradient
turbulent fields. Moreover, our description of the density fields as well as consideration
of the considered mixing regime (i.e. ‘passive’ mixing at higher Fr as compared with
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‘active’ mixing at lower Fr) offers a potential explanation for the empirical observation
that the ‘mixing efficiency’ Γ/(1 + Γ ) decreases with Pr. On the one hand, mixing in the
relatively weakly stratified case can be described as ‘passive’: the velocity field and hence
ε0 are largely unaffected by Pr but the small-scale structure of the density field evolves as
Pr increases from 1 to 7 in a way that results in a decrease in χ0 and thus the flux coefficient
Γ0. On the other hand, mixing in the relatively strongly stratified case can be thought of as
‘active’, with the density field and its small-scale lamellar structure having a leading-order
impact on the rate at which the turbulent kinetic energy is dissipated (ε0), ultimately
leading to a decrease in Γ0 as Pr increases. This shows another way in which a focus
on the flux coefficient can be misleading. Since the decrease in Γ0 is actually principally
related to an increase in ε0, the total amount of mixing (quantified by χ ) actually increases
in the higher-Pr, strongly stratified flow considered here. Accurately predicting the flux
coefficient being crucial to modelling mixing in large-scale ocean models for instance
(through turbulent diffusivities for instance), our study emphasises the need to better
understand the dependence of this parameter on the small-scale structure of the density
field. Another key result of our analysis is that the Prandtl number Pr has a leading-order
impact (at least compared with the Froude number Fr) on the density field structures and
their mixing properties, further emphasising the need to take this parameter into account
when ‘measuring mixing’, a process that is inherently a diffusive one (Villermaux 2019;
Caulfield 2021) and that affects the density field.

We here considered steady-state forced stratified turbulent flows, and so it would now
be interesting to apply our segmentation and associated mixing contribution analysis to
time-dependent decaying stratified turbulent flows. For example, what is the fate of the
different emerging structures? Can a separate analysis of the temporal evolution of each
structure help us better understand the mixing history of a stratified turbulent flow as a
whole and unveil the fundamental rules of stratified mixing? These are questions left for
future work.

Funding. This project received funding from the European Union’s Horizon 2020 research and innovation
programme under Marie Sklodowska-Curie grant agreement no. 956457 and used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory, supported by the Office of Science of
the US Department of Energy under contract no. DE-AC05-00OR22725. S.d.B.K. was supported under US
Office of Naval Research grant number N00014-19-1-2152.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Nicolaos Petropoulos https://orcid.org/0000-0002-8585-7139;
Miles M.P. Couchman https://orcid.org/0000-0002-4667-6829;
Ali Mashayek https://orcid.org/0000-0002-8202-3294;
Stephen M. de Bruyn Kops https://orcid.org/0000-0002-7727-8786;
Colm-cille P. Caulfield https://orcid.org/0000-0002-3170-9480.

REFERENCES

ALMALKIE, S. & DE BRUYN KOPS, S.M. 2012 Kinetic energy dynamics in forced, homogeneous, and
axisymmetric stably stratified turbulence. J. Turbul. 13, N29.

BILLANT, P. & CHOMAZ, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13 (6),
1645–1651.

BRAGG, A.D. & DE BRUYN KOPS, S.M. 2023 Understanding the effect of Prandtl number on momentum
and scalar mixing rates in neutral and stably stratified flows using gradient field dynamics. J. Fluid Mech.
(submitted) arXiv:2308.00518.

983 R1-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-8585-7139
https://orcid.org/0000-0002-8585-7139
https://orcid.org/0000-0002-4667-6829
https://orcid.org/0000-0002-4667-6829
https://orcid.org/0000-0002-8202-3294
https://orcid.org/0000-0002-8202-3294
https://orcid.org/0000-0002-7727-8786
https://orcid.org/0000-0002-7727-8786
https://orcid.org/0000-0002-3170-9480
https://orcid.org/0000-0002-3170-9480
https://arxiv.org/abs/2308.00518
https://doi.org/10.1017/jfm.2024.110


N. Petropoulos and others

CAULFIELD, C.P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech.
53 (1), 113–145.

COUCHMAN, M.M.P., DE BRUYN KOPS, S.M. & CAULFIELD, C.P. 2023 Mixing across stable density
interfaces in forced stratified turbulence. J. Fluid Mech. 961, A20.

COUCHMAN, M.M.P., WYNNE-CATTANACH, B., ALFORD, M.H., CAULFIELD, C.P., KERSWELL, R.R.,
MACKINNON, J.A. & VOET, G. 2021 Data-driven identification of turbulent oceanic mixing from
observational microstructure data. Geophys. Res. Lett. 48 (23), e2021GL094978.

GREGG, M.C., D’ASARO, E.A., RILEY, J.J. & KUNZE, E. 2018 Mixing efficiency in the ocean. Ann. Rev.
Mar. Sci. 10, 443–473.

HOWLAND, C.J., TAYLOR, J.R. & CAULFIELD, C.P. 2021 Quantifying mixing and available potential energy
in vertically periodic simulations of stratified flows. J. Fluid Mech. 914, A12.

HULT, E.L., TROY, C.D. & KOSEFF, J.R. 2011 The mixing efficiency of interfacial waves breaking at a ridge.
2. Local mixing processes. J. Geophys. Res. 116, C02004.

LEGASPI, J.D. & WAITE, M.L. 2020 Prandtl number dependence of stratified turbulence. J. Fluid Mech.
903, A12.

MASHAYEK, A. & PELTIER, W.R. 2011 Turbulence transition in stratified atmospheric and oceanic shear
flows: Reynolds and Prandtl number controls upon the mechanism. Geophys. Res. Lett. 38 (16), L16612.

PEARSON, H.J. & LINDEN, P.F. 1983 The final stage of decay of turbulence in stably stratified fluid. J. Fluid
Mech. 134, 195–203.

RAO, K.J. & DE BRUYN KOPS, S.M. 2011 A mathematical framework for forcing turbulence applied to
horizontally homogeneous stratified flow. Phys. Fluids 23 (6), 065110.

RILEY, J.J., COUCHMAN, M.M.P. & DE BRUYN KOPS, S.M. 2023 The effect of Prandtl number on decaying
stratified turbulence. J. Turbul. 24 (6–7), 330–348.

RILEY, J.J., METCALFE, R.W. & WEISSMAN, M.A. 1981 Direct numerical simulations of homogeneous
turbulence in density-stratified fluids. In AIP Conference Proceedings, vol. 76, pp. 79–112. AIP Publishing.

SALEHIPOUR, H., PELTIER, W.R. & MASHAYEK, A. 2015 Turbulent diapycnal mixing in stratified shear
flows: the influence of Prandtl number on mixing efficiency and transition at high Reynolds number. J. Fluid
Mech. 773, 178–223.

VILLERMAUX, E. 2019 Mixing versus stirring. Annu. Rev. Fluid Mech. 51, 245–273.
WAITE, M.L. 2011 Stratified turbulence at the buoyancy scale. Phys. Fluids 23 (6), 066602.
WUNSCH, C. & FERRARI, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu.

Rev. Fluid Mech. 36, 281–314.
ZHOU, Q., TAYLOR, J.R. & CAULFIELD, C.P. 2017 Self-similar mixing in stratified plane Couette flow for

varying Prandtl number. J. Fluid Mech. 820, 86–120.

983 R1-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.110

	1 Introduction
	2 Summary of the DNS datasets
	3 Density field segmentation methodology
	4 Cluster properties
	4.1 Contributions to 
	4.2 Statistics of 

	5 Discussion
	References

