FORMAL MEROMORPHIC FUNCTIONS AND COHOMOLOGY ON AN ALGEBRAIC VARIETY

ROBERT SPEISER

Introduction

Let X be a projective Gorenstein variety, $Y \subset X$ a proper closed subscheme such that X is smooth at all points of Y, so that the formal completion of X along Y is regular. Writing \mathscr{M} for the sheaf of total quotient rings of $\mathcal{O}_{\hat{X}}$, we have the ring of formal meromorphic functions

$$
K(\hat{X})=\Gamma(\hat{X}, \mathscr{M})
$$

of X along Y, extending $K(X)$. Following [HM], we shall say Y is $G 3$ in X if $K(\hat{X})=K(X), G 2$ in X if $K(\hat{X})$ is a finite algebraic extension of $K(X)$, and $G 1$ in X if

$$
\Gamma\left(X, \mathcal{O}_{X}\right)=\Gamma\left(\hat{X}_{1} \mathcal{O}_{\hat{X}}\right)
$$

Here $G 3 \Rightarrow G 2 \Rightarrow G 1$, by [HM, p. 64.], and clearly $G 1 \Rightarrow Y$ is connected.
The conditions $G i$ describe the infinitesimal structure of X around Y. On the other hand, we have the cohomological dimension

$$
c d(X-Y)=\sup \left\{i \begin{array}{l}
H^{i}(X-Y, F) \neq 0 \text { for at least } \\
\text { one coherent sheaf } F \text { on } X
\end{array}\right\}
$$

By Lichtenbaum's Theorem [K], Y $\neq \varnothing \Leftrightarrow c d(X-Y)<\operatorname{dim}(X)$. The main contribution (3.2) of the present exposition is to show (among other things) that the conditions
(1) $\quad \operatorname{cd}(X-Y)<\operatorname{dim}(X)-1$
and
(2) Y is $G 3$ in X, and meets every divisor on X
are equivalent, improving the previous result $\left[\mathrm{S}_{1}, \mathrm{Th} .3\right.$, p. 20], which, in turn, generalized Hartshorne's "Second Vanishing Theorem" [CDAV, Th.

Received December 20, 1978.
7.5, p. 444] for the case $X=\boldsymbol{P}^{n}$.

Since a formal meromorphic function is given locally by Laurent series which, roughly speaking, converge only in directions tangent to Y, our main result can be viewed as a global convergence criterion-even in characteristic p-in terms of the geometry of $X-Y$.

The crucial new step (2.1) in the proof is to dominate the polar divisor of a formal meromorphic function with the completion of a suitable hypersurface section of X. With X instead of \hat{X}, this is clearly possible and, of course, well known. The delicate point is to characterize the linear systems on X which give immersions to P^{n} in such a way that the relevant properties are preserved under passage to \hat{X}, where the language of rational maps is not available.

On the way to our main results, we obtain (in §2) a simplified proof of Hartshorne's criterion [CDAV, Th. 6.7 and Cor. 6.8, pp. 438-440]: if $Y \subset X$ is a connected local complete intersection with ample normal bundle, then $G 2$ holds.

In earlier research, criteria for $G 3$ were applied to compute $c d(X-Y)$. Our new results allow computations of $c d(X-Y)$, alone, to be used to establish G3. For a simple example, suppose D_{0}, \cdots, D_{r} on X are divisors whose complements are affine, and let Y be a closed subscheme whose support is $D_{0} \cap \cdots \cap D_{r}$. Then $X-Y$ is covered by a Čech r-simplex, so we have $c d(X-Y) \leq r$. If $r<\operatorname{dim}(X)-1$, our main result gives $Y G 3$ in X. (This was known previously for ample D_{i} intersecting such that Y has ample normal bundle- compare, for example, [ASAV, Cor. 2.3, p. 202].)

We conclude with a simple result 3.2 about smooth very ample divisors D on X : if $Y \subset D \subset X$, with $Y G 1$ on X, then, under suitable assumptions, $c d(D-Y)<\operatorname{dim} D-1 \Rightarrow c d(X-Y)<\operatorname{dim}(X)-1$, giving a partial converse to $\left[\mathrm{S}_{2}\right.$, Th. B, p. 146].

Notations and terminology

All schemes below will be of finite type over $\operatorname{Spec}(k)$, where k is an algebraically closed field, and all morphisms will be over Spec (k).

Following recent usage, a morphism $f: Y \rightarrow X$ will be called an immersion if it is an embedding at each point of Y; in other words, for every $y \in Y$ we have a surjection. $\mathcal{O}_{X, f(y)} \rightarrow \mathcal{O}_{Y, y}$. If an immersion is $1-1$, we shall call it an embedding.

§1. Immersive linear systems

We begin by characterizing the linear systems which induce immersions (not necessarily embeddings-see above) into projective space. Our main result 1.2 is that an immersive linear system remains so under passage to a formal completion.

Let \mathcal{O} be a local ring, $S \subset \mathcal{O}$ a multiplicative system. We shall say that S generates the divisors of \mathcal{O} if every element of \mathcal{O} has the form

$$
\sum_{\text {finite }} \alpha_{i} s_{i}
$$

for units $\alpha_{i} \in \mathcal{O}$ and elements $s_{i} \in S$.
Example. Let X be a scheme, $p \in X, \mathcal{O}=\mathcal{O}_{X, p}$ the local ring at p. If S is the co-ordinate ring of any affine open subset containing p, then the image of S in \mathcal{O} generates the divisors of \mathcal{O}.

The globalization we have in mind applies to formal schemes as well as to ordinary schemes. So let \mathscr{X} be a formal scheme. A linear system V on \mathscr{X} is a finite dimensional vector subspace of $\Gamma(\mathscr{X}, \mathscr{L})$, for some invertible sheaf \mathscr{L} on \mathscr{X}. Identify \mathscr{L}_{p} and $\mathcal{O}_{x, p}$, and let S_{V} be the multiplicative system generated by V in $\mathcal{O}_{x, p}$. We shall say V is immersive at p if S_{V} generates the divisors of $\mathcal{O}_{x, p}$. (Clearly this is independent of the particular isomorphism $\mathscr{L}_{p} \cong \mathcal{O}_{x, p}$.) We shall say V is immersive if V is immersive at all points $p \in \mathscr{X}$.

Our next result explains this terminology.
Proposition 1.1. Let X be a proper scheme, $\mathscr{L} \in \operatorname{Pic}(X)$. Suppose $V \subset \Gamma(X, \mathscr{L})$ is a linear system, with basis s_{0}, \cdots, s_{n}, spanning \mathscr{L}. For a closed point $p \in X$, the following are equivalent:
(1) V is immersive at p;
(2) the morphism $f: X \rightarrow \boldsymbol{P}^{n}$ given by the s_{i} is an immersion of p.

Proof. (2) $\Rightarrow(1)$ is clear. If (1) holds, set $q=f(p)$. We need to show that the induced map $\mathcal{O}_{P^{n, q}} \rightarrow \mathcal{O}_{X, p}$ is surjective. On the one hand, let \mathfrak{m}_{q} and \mathfrak{m}_{p} be the maximal ideals at p and q. Choose coordinates x_{0}, \cdots, x_{n} on P^{n} so that $q=(1,0, \cdots, 0)$; hence $y_{1}=x_{1} / x_{0}, \cdots, y_{n}=x_{n} / x_{0}$ generate \mathfrak{m}_{q}. Let $t_{1}, \cdots, t_{r} \in \mathcal{O}_{X, p}$ generate $\mathfrak{m}_{p} / \mathfrak{m}_{q}^{2}$. Since V is immersive, we have

$$
t_{i}=\sum_{j} \alpha_{i j} s_{i j}
$$

for units $\alpha_{i j}$, with $s_{i j} \in S_{V} \subset \mathcal{O}_{X, p}$. Now each $s_{i j}$ is a monomial in the generators $z_{1}=s_{1} / s_{0}, \cdots, z_{n}=s_{n} / s_{0}$ of $V \subset \mathcal{O}_{x, p}$. Discarding terms in \mathfrak{m}_{p}^{2}, we can take the $s_{i j}$ linear in the z_{i}. Since $z_{i}=f^{*}\left(y_{i}\right)$, we have an expression

$$
t_{i}=\sum \alpha_{i j} f^{*}\left(y_{i}\right)
$$

so the induced map $\mathfrak{m}_{q} \rightarrow \mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}$ is surjective. (Therefore, dualizing, φ induces an injection of the tangent spaces at p and q.) $O n$ the other hand, φ is proper, so $\varphi_{*} \mathcal{O}_{X}$ is a coherent $\mathcal{O}_{P^{n}}$-module. Thus [AG, Lemma 7.4, p. 153] applies, giving (2). Our proof is complete.

Here is the main result on formal completions.
Theorem 1.2. Let X be a scheme, $Y \subset X$ a closed subscheme, $V \subset \Gamma$ (X, \mathscr{L}) a linear system, with $\mathscr{L} \in \operatorname{Pic}(X)$. Suppose V is immersive at a point $p \in Y$. Then, passing to formal completions, the linear system $V \subset \Gamma$ $(\hat{X}, \hat{\mathscr{L}})$ on \hat{X} is also immersive at p.

The question is local, so it follows immediately from the next result.
Proposition 1.3. Let \mathcal{O} be a regular local k-algebra with residue field k and completion $\hat{\mathcal{O}}$, and consider a local subring A of $\widehat{\mathcal{O}}$, with $\mathcal{O} \subset A$. If a multiplicative system $S \subset \mathcal{O}$ generates the divisors of \mathcal{O}, then S also generates the divisors of A.

Proof. Let t_{i}, \cdots, t_{d} be regular parameters for \mathcal{O}. We can take $\hat{\mathcal{O}}$ $=k\left[\left[t_{i}, \cdots, t_{d}\right]\right]$. There are two cases.

Case 1: $A=\hat{0}$. Pick $x \in A$. Since $1 \in S$, we may as well assume x is not a unit. Since each t_{i} is a linear combination of elements of S with unit coefficients, we may also assume S contains the t_{i}. If $d=1$, $\hat{0}$ is a discrete valuation ring, so up to a unit, $x=t_{1}^{e} \in S$, with $e \geq 0$. If $d>1$, we may assume our result holds for dimensions $<d$. Hence we are done if x is a power series in t_{1}, \cdots, t_{d-1}. If not, by the Weierstrass Preparation Theorem we have, up to a unit, an equation

$$
x=g_{0}+g_{1} t_{d}+\cdots+g_{n} t_{d}^{n},
$$

with $g_{i} \in k\left[\left[t_{1}, \cdots, t_{d-1}\right]\right]$. By our induction assumption, each g_{i} can be written

$$
g_{i}=\sum_{j} u_{i j} s_{i j},
$$

with units $u_{i j} \in \hat{\mathscr{O}}, s_{i j} \in S$. Hence the expression for x simplifies to an equation

$$
x=\sum \alpha_{i} s_{i},
$$

with units $\alpha_{i} \in \hat{\mathscr{O}}, s_{i} \in S$. This completes Case 1.
Case 2: $A \neq \widehat{\mathcal{O}}$. Again, consider $x \in A$. By Case 1 we have

$$
x \in\left(s_{1}, \cdots, s_{r}\right) \widehat{\mathscr{O}}
$$

for suitable $s_{1}, \cdots, s_{r} \in S$. I claim we also have

$$
x \in\left(s_{1}, \cdots, s_{r}\right) A
$$

Indeed, say $x=\sum c_{i} s_{i}$ with $c_{i} \in \hat{\mathscr{O}}$. Let \mathfrak{m} be the maximal ideal of A. Then

$$
c_{i}=\lim _{n \rightarrow \infty}\left(c_{i, n}\right)
$$

for suitable $c_{i, n} \in A$, with $c_{i}-c_{i, n} \in \mathfrak{m}^{n}, \forall n$. Thus, for each n, we find

$$
x=\sum_{i} c_{i, n} s_{i}+\sum_{i}\left(c_{i}-c_{i, n}\right) s_{i}
$$

hence

$$
x \in\left(s_{1}, \cdots, s_{r}\right) A+\mathfrak{m}^{n}
$$

But Krull's Intersection Theorem gives the equality

$$
\left(s_{1}, \cdots, s_{r}\right) A=\bigcap_{n=1}^{\infty}\left(\left(s_{1}, \cdots, s_{r}\right) A+\mathfrak{m}^{n}\right),
$$

hence $x \in\left(s_{1}, \cdots, s_{r}\right) A$, as claimed.
It follows that there is a smallest integer $r=r(x)$ such that $x \in\left(s_{1}\right.$, $\left.\cdots, s_{r}\right) A$, for some $s_{1}, \cdots, s_{r} \in S$. If $r=1$, then $x=\alpha s$, for some $\alpha \in A$. Since α is a unit of A, we are done. If $r>1$, we can assume our result is true for all $w \in A$ with $r(w)<r$. Writting

$$
x=y+z
$$

with $y \in s_{1} A, z \in\left(s_{2}, \cdots, s_{r}\right) A$, we have $r(y)=1, r(z)<r$. Hence there are elements $s_{i} \in S$, and units α_{i} of A such that

$$
y=\alpha_{1} s_{1}
$$

and

$$
z=\alpha_{2} s_{2}+\cdots+\alpha_{r} s_{r}
$$

Adding, we obtain a similar expression for x. This completes the proof.

§ 2. Formal meromorphic functions

Let X be a projective variety, with very ample invertible sheaf $\mathcal{O}(1)$, and suppose $Y \subset X$ is a connected closed subscheme such that X is smooth at all points of Y. The formal completion \hat{X} of X along Y is regular, hence integral. We shall denote by \hat{F} the formal completion, along Y, of a quasicoherent sheaf F on X.

Consider \mathscr{M}, the sheaf associated to the presheaf of total rings of fractions of $\widehat{\mathcal{O}}=\widehat{\mathcal{O}}_{x}$. Then the ring of formal meromorphic (or formal rational) functions

$$
K(\hat{X})=\Gamma(\hat{X}, \mathscr{M})
$$

is a field, extending $K(X)$. Our goal here will be to compare $K(\hat{X})$ with the sections of $\widehat{\mathscr{O}}(\nu)$, for various $\nu \geq 0$.

For any $f \in K(\hat{X})$, we define the pole sheaf $\mathfrak{P}=\mathfrak{B}_{f}$ by the assignment

$$
U \longrightarrow\left\{\begin{array}{l}
t \in \Gamma(U, \mathscr{M}) \text { such that } \\
t \cdot(f \mid U) \in(U, \widehat{O})
\end{array}\right\}
$$

for open sets $U \subset \hat{X}$. Then \Re is invertible, and f is the quotient of two global sections of \mathfrak{F}^{-1}. (Indeed, both $(\mathfrak{F})^{-1}$ and \Re^{-1} contain the unit section 1 of \mathscr{M}, and $\mathfrak{P} \cong f \Re$, giving two sections of \mathfrak{B}^{-1} whose quotient is f.)

Now fix a nonzero section $t \in \Gamma(\hat{X}, \widehat{\mathcal{O}}(1))$. Multiplication by t defines k-linear inclusions

$$
\Gamma(\hat{X}, \widehat{\mathscr{O}}) \subset \Gamma(\hat{X}, \hat{\mathscr{O}}(1)) \subset \cdots
$$

where the union

$$
A_{t}=\bigcup_{\nu \geq 0} \Gamma(\hat{X}, \widehat{O}(\nu)),
$$

is a k-algebra under the multiplication induced by cup-product. The assignment $s \mapsto s / t^{\nu} \in K(\hat{X})$, for $s \in \Gamma(\hat{X}, \hat{O}(\nu))$, is compatible with the inclusions defining A_{t}, so we obtain a map

$$
\alpha_{t}: A_{t} \rightarrow K(\hat{X})
$$

which is clearly a homomorphism of k-algebras. Since \hat{X} is integral, A_{t} is an integral domain, and α_{t} is injective.

Our main result here is the next one.
Theorem 2.1. Assumptions as above, α_{t} identifies $K(\hat{X})$ with the field of fractions of A_{t}.

Proof. Using t, we have inclusions of sheaves $\hat{\mathscr{O}} \subset \widehat{\mathcal{O}}(1) \subset \cdots$, where the union \mathfrak{Y}_{t} is a sheaf of algebras. As before, we have an algebra sheaf injection $\mathfrak{A}_{t} \rightarrow \mathscr{M}$, inducing α_{t}. Identifying $\widehat{\mathscr{O}}(\nu), \mathfrak{N}_{t}$ and A_{t} with their images in \mathscr{M} and $K(\hat{X}), t$ identifies with $1 \in \Gamma(\hat{X}, \mathscr{M})=K(\hat{X})$.

This understood, let $f \in K(\hat{X})$ be nonconstant. To prove 2.1 it will be enough to show that we have

$$
\mathfrak{B}^{-1} \subset \widehat{\mathcal{O}}(\nu)
$$

for $\nu \gg 0$, where \mathfrak{B} is the pole sheaf of f. Indeed, f will then be the quotient of two global sections of $\widehat{\mathcal{O}}(\nu)$, hence of two elements of \mathfrak{U}_{t}.

Pick any point $p \in \hat{X}$. Then f is represented by a quotient

$$
f_{p}=g_{p} / h_{p}
$$

with $g_{p}, h_{p} \in \mathcal{O}_{\hat{x}, p}$, relatively prime.
Suppose first that $t(p) \neq 0$. Here $\Gamma(X, \mathcal{O}(1))$ is an immersive linear system on X, so, by $1.1, A_{t}$ contains the co-ordinate ring S of the affine open subset of X where $t \neq 0$. Also, S generates the divisors of \mathcal{O}, by 1.2 or 1.3. Thus, for $\nu \gg 0$, there are units $u_{1}, \cdots, u_{r} \in \mathcal{O}_{\hat{\gamma}, p}$ and global sections of $\hat{O}(\nu)$ with germs s_{1}, \cdots, s_{r} at p, such that we have

$$
h_{p}=u_{1} s_{1}+\cdots+u_{r} s_{r}
$$

Hence we have an inclusion
(* ${ }^{*}$)

$$
\left(\mathfrak{P}^{-1}\right)_{p} \subset \widehat{\mathcal{O}}(\nu)_{p}
$$

for each p such that $t(p) \neq 0, \forall \nu \geq$ some ν_{p} depending on p.
Now suppose $t(p)=0$. Since $\mathcal{O}(1)$ is very ample, we can choose $u \in \Gamma(X, \mathcal{O}(1)) \subset \Gamma(\hat{X}, \widehat{\mathcal{O}}(1))$ with $u(p) \neq 0$. Reasoning as above with u instead of t, there are units $v_{i} \in \mathcal{O}_{\hat{X}, p}$ and germs s_{1}, \cdots, s_{r} of sections of some $\mathcal{O}(\nu)$ such that we have

$$
h_{p}=v_{1} \alpha_{u}\left(s_{1}\right)+\cdots+v_{r^{\prime}} \alpha_{u}\left(s_{r^{\prime}}\right)
$$

Now $\alpha_{u}\left(s_{i}\right)=(t / u)^{\nu} \alpha_{t}\left(s_{i}\right)$, so, identifying t with 1 , we have

$$
h_{p}=v_{1}\left(\frac{1}{u}\right)^{\nu} s_{1}+\cdots+v_{r^{\prime}}\left(\frac{1}{u}\right)^{\nu} s_{r^{\prime}} .
$$

Hence we find

$$
f p=\frac{u^{\nu} g_{p}}{v_{1} s_{1}+\cdots+v_{r^{\prime}} s_{r^{\prime}}},
$$

giving the inclusion (${ }^{*} p$) for every $p \in \hat{X}$. Therefore, since \hat{X} is quasicompact, we have $\mathfrak{B}^{-1} \subset \hat{O}(\nu)$ for all sufficiently large ν, and our proof is complete.

Remark. Theorem 2.1 extends Hartshorne's result [CDAV, Cor. 6.8, p. 439], which assumes Y is a local complete intersection in X, with ample normal bundle. The next corollary enables us to simplify the proof of a further result of Hartshorne.

Corollary 2.2. Suppose the function

$$
\psi(\nu)=\operatorname{dim}_{k} \Gamma(\hat{X}, \widehat{\mathscr{O}}(\nu)) \quad(\nu \in Z)
$$

is bounded above, for all $\nu \gg 0$, by a polynomial $P(\nu) \in \boldsymbol{Q}[\nu]$ of degree $n+1$. Then we have

$$
\operatorname{tr} . \operatorname{deg}_{k} K(\hat{X}) \leq n
$$

and, if $\operatorname{dim}(X)=n$, then Y is $G 2$ in X.
Proof. Apply [CDAV, Lemma 6.3, p. 435] to the graded k-algebra

$$
B=\sum \Gamma(\hat{X}, \hat{\mathscr{O}}(\nu)) .
$$

Since $A_{t}=B /(1-t)$, the corollary follows from 2.1.
Corollary 2.3 (Hartshorne, [CDAV, 6.7 and 6.8, pp. 438-9]). Let Y be a connected local complete intersection in X, with ample normal bundle, and assume $\operatorname{dim}(Y)>0$. Then Y is $G 2$ in X.

Proof. By [CDAV, Th. 6.2, p. 433], 2.2 applies.
Corollary 2.4. With $Y \subset X$ as in 2.1, suppose the natural maps

$$
\Gamma(X, \mathcal{O}(\nu)) \rightarrow \Gamma(\hat{X}, \widehat{\mathcal{O}}(\nu))
$$

are bijective for all $\nu \gg 0$. Then Y is $G 3$ in X.

Proof. This is immediate.

§ 3. Cohomological dimension

Recall that the cohomological dimension of a scheme V ([CDAV], [ASAV]) is the integer

$$
c d(V)=\sup \left\{\begin{array}{l}
i H^{i}(V, F) \neq 0 \text { for at least } \\
\text { one coherent sheaf } F \text { on } V
\end{array}\right\} .
$$

Here we are interested in the case $V=X-Y$, where Y is a closed subset of a projective variety X. We always have $c d(X-Y)<\operatorname{dim}(X)$, if Y is nonempty. For lower $c d$, we can strengthen our previous criterion ([S, Th. 3, p. 20], [ASAV, Cor. 22, p. 202]) as follows, to relate the vanishing of cohomology on $X-Y$ to the function field $K(\hat{X})$ of the formal completion.

Theorem 3.1. Let X be a projective Gorenstein variety, $Y \subset X$ a closed subscheme such that X is smooth at all points of Y. Then the following are equivalent:
(1) $\quad \operatorname{cd}(X-Y)<\operatorname{dim}(X)-1$
(2) the natural map

$$
\Gamma(X, F) \rightarrow \Gamma(\hat{X}, \hat{F})
$$

is bijective for all locally free coherent sheaves F on X
(3) for any very ample invertible sheaf $\mathcal{O}(1)$ on X, the natural map

$$
\Gamma(X, \mathcal{O}(\nu)) \rightarrow \Gamma(\hat{X}, \hat{\mathscr{O}}(\nu))
$$

is bijective, for all $\nu \gg 0$;
(4) Y is G3 in X, and meets every divisor of X.

Proof. Since X is Gorenstein, the dualizing sheaf ω_{X}^{0} is invertible. Hence the duality arguments for [ASAV, Th. 3.4, p. 96, Assertion (6)] go through without change, giving (1) $\Leftrightarrow(2)$. The implication (2) $\Rightarrow(3)$ is trivial. To show (3) $\Rightarrow(2)$, assume (3), and consider a locally free sheaf F of finite rank, with dual sheaf F^{\vee}. For $\nu \gg 0$ we have a surjection

$$
\mathcal{O}(-\nu)^{\oplus d} \underset{\alpha}{\longrightarrow} F^{\vee} .
$$

Then $K=\operatorname{ker}(\alpha)$ is locally free, so the dual sequence

$$
0 \rightarrow F \rightarrow \mathcal{O}(\nu)^{\oplus d} \rightarrow K^{\vee} \rightarrow 0
$$

is exact. Taking global sections, we have a commutative diagram

with injective verticals. The Snake Lemma gives an exact sequence

$$
0=\operatorname{ker}(c \mid \operatorname{im}(f)) \rightarrow \operatorname{cok}(q) \rightarrow \operatorname{cok}(b),
$$

where $\operatorname{cok}(b)=0$, by (3). Hence $\operatorname{cok}(a)=0$, so we have (2).
We next show $(3) \Rightarrow(4)$. First of all, $(3) \Rightarrow K(\hat{X})=K(X)$, by 2.4. To see that Y meets every divisor on X, suppose not. Then $X-Y$ contains a complete variety V of dimension $d=\operatorname{dim}(X)-1$. Since V supports coherent sheaves G with $H^{a}(V, G) \neq 0$, we have $H^{d}(X-Y, G) \neq 0$, contradicting (1). But (1) \Leftrightarrow (3), so (4) holds.

Finally, we need to show (4) \Leftrightarrow (1). Since X is Gorenstein and smooth at all points of Y, the proof of the corresponding equivalence of $\left[\mathrm{S}_{1}, \mathrm{Th}\right.$. 3, p. 20ff] generalizes immediately. Putting our implications together, we have established 3.1.

Corollary 3.2. Let X be a projective Gorenstein variety, $D \subset X a$ very ample divisor, $Y \subset D$ a closed, connected subscheme such that X and D are smooth at all points of Y. Assume Y is $G 1$ in X, and that $H^{1}(X, \mathcal{O}(\nu \cdot D))=0$ for all $\nu \geq 0$. Then

$$
\begin{aligned}
& c d(D-Y)<\operatorname{dim}(D)-1 \\
& \quad \Rightarrow \\
& \quad c d(X-Y)<\operatorname{dim}(X)-1
\end{aligned}
$$

Proof. Writing $\mathcal{O}(\nu)$ for $\mathcal{O}(\nu D)$, we have a commutative diagram with exact rows

where " \wedge " denotes formal completion along $Y, \mathcal{O}_{D}(\nu)=\mathcal{O}(\nu) \otimes \mathcal{O}_{D}$, and the
arrows marked " t " are given by multiplication by a global equation t defining D. For all ν, c_{ν} is bijective, by 3.1 and our hypothesis on D. Also, as completion maps, a_{ν} and b_{ν} are injective. Hence, if b_{ν} is bijective for $\nu \geq 0$, our result will follow from 2.5.

I claim first g_{ν} is surjective, $\forall \nu \geq 0$. For $\nu=0$, since X and D are connected, $H^{0}(X, \mathcal{O})=H^{0}\left(D, \mathcal{O}_{\dot{D}}\right)=k$; for $\nu>0$ we have $H^{1}\left(X, \mathcal{O}_{X}(\nu-1)\right)=0$ by hypothesis, so g_{ν} is surjective, by the exact cohomology sequence extending the bottom row.

Hence, for all $\nu \geq 0$, the Snake Lemma gives an exact sequence

$$
\operatorname{cok}\left(a_{\nu}\right) \xrightarrow{t} \operatorname{cok}\left(b_{\nu}\right) \longrightarrow \operatorname{cok}\left(c_{\nu}\right)=0 .
$$

By definition, $a_{\nu}=b_{\nu-1}$. Hence, by induction on ν, b_{ν} is surjective (hence bijective) if b_{0} is. But Y is $G 1$ in X, so this holds!

Remarks. (1) If Y is a local complete intersection in X, with ample normal bundle, or, more generally, if Y is $G 2$ in X, then Y is $G 1$ in X, and 3.2 applies.
(2) Iterating, 3.2 holds for sufficiently general complete intersections D containing Y.
(3) For an implication going the other way, compare [S_{2}, Th. B, p. 146].

References

[CDAV] Hartshorne, R., Cohomological dimension of algebraic varieties, Ann. of Math., 88 (1968), 403-450.
[ASAV] - Ample subvarieties of algebraic varieties, Springer Lecture Notes in Mathematics, No. 156 (1970).
[AG] -, Algebraic Geometry, Berlin, Heidelberg and New York 1977.
[HM] Hironaka, H. and Matsumura, H., Formal functions and formal embeddings, J. Math. Soc. Japan, 20 (1968), 52-82.
[K] Kleiman, S. L., On the vanishing of $H^{n}(X, F)$ for an n-dimensional variety, Proc. AMS, 18 (1967), 940-944.
$\left[S_{1}\right] \quad$ Speiser, R., Cohomological dimension and Abelian varieties, Am. J. Math., 95 (1973), 1-34.
$\left[\mathrm{S}_{2}\right]$ - Cohomological dimension of noncomplete hypersurfaces, Inv. Math., $\mathbf{2 1}$ (1973), 143-150.

[^0]
[^0]: School of Mathematics
 University of Minnesota
 Minneapolis, Minnesota 55455

