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Computing L-series of geometrically hyperelliptic curves
of genus three
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Abstract

Let C/Q be a curve of genus three, given as a double cover of a plane conic. Such a curve is
hyperelliptic over the algebraic closure of Q, but may not have a hyperelliptic model of the usual
form over Q. We describe an algorithm that computes the local zeta functions of C at all odd
primes of good reduction up to a prescribed bound N . The algorithm relies on an adaptation
of the ‘accumulating remainder tree’ to matrices with entries in a quadratic field. We report
on an implementation and compare its performance to previous algorithms for the ordinary
hyperelliptic case.

1. Introduction

Let C/Q be a curve of genus three. For an odd prime p of good reduction for C, let Cp denote
the reduction of C modulo p. The zeta function of Cp is defined by

Zp(T ) := exp

( ∞∑
k=1

#Cp(Fpk)

k
T k
)

=
Lp(T )

(1− T )(1− pT )
. (1.1)

By the Weil Conjectures for curves, the numerator is of the form

Lp(T ) = 1 + a1T + a2T
2 + a3T

3 + pa2T
4 + p2a1T

5 + p3T 6 ∈ Z[T ],

and has reciprocal roots of complex absolute value p1/2. In this paper, we are interested in
algorithms for computing Zp(T ) for all good primes p up to a prescribed bound N .

A closely related problem is to compute the first N terms of the L-series associated to C.
This is defined by formally expanding the Euler product

L(C, s) =
∏
p

Lp(p
−s)−1 =

∑
n>1

cnn
−s.

To compute cn for all n < N , one must compute a1 for all p < N , but one needs a2 only
for p < N1/2 and a3 only for p < N1/3. Note that, for the primes of bad reduction, Lp(T )
is not necessarily given by (1.1) and must be computed by other means; this problem is not
addressed in this paper.

Curves of genus three over Q come in two flavors, depending on the behavior of the canonical
embedding φ : C → P2. The first possibility is that φ is a two-to-one cover of a plane conic Q,
in which case C is geometrically hyperelliptic. Otherwise, φ is an isomorphism from C to a
smooth plane quartic defined over Q, and we are in the non-hyperelliptic case.
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In the hyperelliptic case, if Q possesses a Q-rational point, then Q is isomorphic to P1

over Q and this yields a model for C of the form y2 = h(x), with h ∈ Z[x]. For such curves,
the first author proposed an algorithm that computes Lp(T ) for all odd p < N using a total of
N(logN)3+o(1) bit operations [19]. The average time per prime is thus (logN)4+o(1). Although
that algorithm has not been implemented in full generality, the first and third authors [22,
23] have developed a simpler and closely related algorithm for computing the Hasse–Witt
matrices Wp of the reductions modulo primes p < N of a fixed hyperelliptic curve y2 = h(x)
in average time (logN)4+o(1) per prime; in practice, for curves of genus two and three this
yields enough information to quickly deduce the local zeta functions. This implementation
outperforms existing packages, based on older algorithms, by several orders of magnitude. An
analogous algorithm for the non-hyperelliptic genus three case is currently under development
and will be presented in a forthcoming paper.

The main contribution of this paper is an analogue of the algorithm of [23] for the
geometrically hyperelliptic case, without the assumption that Q(Q) 6= ∅. The new algorithm
takes as input an integer N and homogeneous polynomials f, g ∈ Z[X,Y, Z], with deg g = 2
and deg f = 4, specifying the curve

g(X,Y, Z) = 0, w2 = f(X,Y, Z). (1.2)

The equation g = 0 defines the conic Q and w2 = f describes the two-to-one cover. The output
of the algorithm is the sequence of polynomials Lp(T ) for all good primes p < N .

The new algorithm is mainly intended for use in the case where Q(Q) = ∅. However, the
algorithm works perfectly well if Q(Q) 6= ∅; this may be useful, for example, if a Q-rational
point on Q exists but cannot be determined efficiently due to the difficulty of factoring the
discriminant of g. Of course, if a Q-rational point is known, then it may be profitable to switch
to a standard hyperelliptic model y2 = h(x) and apply the algorithm of [23] instead.

Our focus is on designing a practical algorithm: we want to actually compute local zeta
functions on real hardware for values of N that are as large as is practical. From a theoretical
point of view, the existence of a complexity bound analogous to [19] for curves of the type (1.2)
was essentially demonstrated by the first author in [20]. The result may be stated as follows.
For any polynomial F with integer coefficients, we denote by ‖F‖ the maximum of the absolute
values of the coefficients of F .

Theorem 1.1. There exists an explicit deterministic algorithm with the following properties.
The input consists of an integer N > 2 and polynomials f and g describing a genus three curve
C as in (1.2). The output is the collection of Lp(T ) associated to C for all good primes p < N .

The algorithm runs in N log2N log1+o(1)(N‖f‖‖g‖) bit operations.

We omit the details of the proof. Ignoring the dependence on ‖f‖‖g‖, the complexity bound
is a special case of [20, Theorem 1.1], which applies to any fixed variety over Z. To get the right
dependence on ‖f‖‖g‖, one may invoke [20, Theorem 1.4] and apply the ‘inclusion–exclusion
trick’ of [29, § 3] (see the proof of [20, Theorem 1.1] for a similar argument). The difficulty with
the algorithm just sketched is that the implied big-O constant is enormous, essentially because
the algorithms of [20] are designed for maximum possible generality. To obtain a practical
algorithm, we must exploit the geometry of the situation at hand.

Our strategy is motivated by the following observation. If we only want to compute Lp(T )
for a single prime p, we may start by finding some Fp-rational point on the conic (such a
point exists for all odd p). This leads to a rational parametrization for the conic over Fp
and hence a model for Cp of the form y2 = h(x) over Fp. We may then apply any of the
known point-counting algorithms for hyperelliptic curves over finite fields. To mount a global
attack along these lines, we must somehow choose these Fp-rational points ‘coherently’ as p
varies. This cannot be done over Q, because we are expressly avoiding any assumptions about
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Q-rational points on the conic. On the other hand, it is easy to construct a quadratic extension
K = Q(

√
D) for which Q has K-rational points. We may then parametrize Q over K to obtain

a model y2 = h(x) of a hyperelliptic curve C ′/K that is isomorphic to the base change of C
to K, where h ∈ OK [x]. Of course, the curve C ′ is not isomorphic to the original curve over Q
(it is not even defined over Q), but it nevertheless retains much arithmetic information about
the original curve.

This is exactly the approach we take in this paper. We start in § 2 by explaining how to
construct an appropriate field K and a model y2 = h(x) for C ′ over K. In § 3, we set up
recurrences for computing coefficients of powers of h(x), analogous to [23], and, in § 4, we
show how to solve these recurrences efficiently by means of an ‘accumulating remainder tree’
for matrices defined over a quadratic field. Section 5 applies these techniques to the problem of
computing the Hasse–Witt matrices associated to C ′, which, in turn, leads in § 6 to information
about Lp(T ) (mod p). Finally, to pin down Lp(T ) ∈ Z[T ], we perform a baby-steps giant-steps
search in the Jacobian of the curve; this is discussed in § 7. Section 8 presents a complete
statement of the algorithm and the last section reports on an implementation and gives some
performance data.

We will not give a formal complexity analysis of the algorithm; instead, we will discuss
complexity issues as they arise, with an eye towards practical computations. From an
asymptotic perspective, our algorithm to compute Lp(T ) ∈ Z[T ] does not run in average
polynomial time, because the lifting step (see § 7) uses p1/4+o(1) bit operations per prime.
Nevertheless, as demonstrated by the timings in § 9, the cost of the lifting step is negligible
over the range of our experiments and, by extrapolation, over the range of all currently feasible
computations. Moreover, the lifting step is trivially parallelizable (the rest of the algorithm is
not), so this is unlikely to ever be a problem in practice.

There are two main applications of this new class of ‘average polynomial time’ algorithms.
The first is the investigation of higher-genus variants of the Sato–Tate conjecture. The original
Sato–Tate conjecture proposed that, for a fixed elliptic curve over Q, the distribution of the
polynomials Lp(T ) (suitably normalized) obeys a particular statistical law when sampled over
increasing values of p. This is now a theorem thanks to work of Richard Taylor and collaborators
[4, 16, 39], but analogues for curves of higher genus remain open. The last few years have seen
significant progress on understanding the details of the genus two case [9, 14, 24, 25, 27], and
attention is now shifting to genus three [10, 28]. Briefly, the role of these algorithms is to assist
in identifying potential candidate curves possessing certain Sato–Tate groups, by computing
corresponding Sato–Tate statistics (moments of the sequence of normalized L-polynomials) for
each of a large set of candidates. The algorithm described in the present paper will be used to
investigate the possibility that certain Sato–Tate distributions in genus three are encountered
only for curves of the form (1.2).

The second application is computing zeros and special values of L-functions to high precision;
this played an important role in the recent addition of genus two curves to the L-functions and
modular forms database (LMFDB) [6], as described in [1] (as noted above, this application
also requires the Euler factors at primes of bad reduction).

Notation. We denote by M(s) the number of bit operations required to multiply s-bit
integers. We may take M(s) = s(log s)1+o(1) [12, 21, 33]. As in [23], we assume that
M(s)/(s log s) is increasing and that the space complexity of s-bit integer multiplication is
O(s).

2. Constructing a suitable quadratic field and hyperelliptic model

Let C be a genus three curve over Q, as in (1.2). The goal of this section is to construct an
integer D, not a square and not divisible by four, and a squarefree polynomial h ∈ OK [x], where
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OK is the ring of integers of K = Q(
√
D), such that y2 = h(x) is a model for C ′ = C ×Q K

(the base change of C to K). Moreover, we require that deg h = 8 and that h(0) 6= 0.
We assume that elements of OK = Z[α] are represented by pairs of integers corresponding

to the coefficients of 1 and α, where α =
√
D if D ≡ 2, 3 (mod 4), or α = 1

2 (1 +
√
D) if D ≡ 1

(mod 4). In our applications, we take D to be squarefree, but this is not strictly necessary.
Choose any line L in P2 defined over Q, say, X = 0. The points of intersection of L and Q

are defined over an extension K = Q(
√
D) for some D ∈ Z. Note that D is obtained as the

discriminant (possibly adjusted by some square factor) of a quadratic equation obtained by
solving g = 0 simultaneously with the equation of L. Let P0 ∈ Q(K) be one of the intersection
points (of which there are at most two). Now take a second line L′ in P2, also defined over Q,
which does not contain P0. By projection from P0, we obtain a K-rational parametrization
of Q(K) by the points of L′(K). Taking x to be a coordinate for some affine piece of L′,
we may write the parametrization as (ψ1(x), ψ2(x), ψ3(x)) ∈ P2, where the ψi ∈ OK [x] are
polynomials of degree at most two. Our preliminary model for C ′ is then y2 = h(x), where
h(x) = f(ψ1(x), ψ2(x), ψ3(x)).

If D is a square, then K = Q and we have actually found a Q-rational point on Q. In
this case, we could now simply apply the algorithm of [23] to the equation y2 = h(x). For
the remainder of the paper, we assume that D is not a square, so that K/Q is a quadratic
extension (although, in fact, the algorithm still works, mutatis mutandis, for square D).

Clearly deg h 6 8. Note that C ′ is isomorphic to C over K so it must have genus three; hence
deg h > 7 and h is squarefree. It remains to enforce the conditions that deg h = 8 and that
h(0) 6= 0. If h(0) = 0, we may replace h(x) by h(x−c), where c is a small integer with h(c) 6= 0.
If deg h = 7, we can replace h(x) by x8h(1/x) and translate again. These transformations all
correspond to birational maps. In this way, we obtain a model for C ′ with deg h = 8 and
h(0) 6= 0.

Note that the conditions deg h = 8 and h(0) 6= 0 are imposed only to simplify the
presentation later. From a complexity point of view, it is actually better to have deg h = 7 or
h(0) = 0, or both. These occur when the curve has Weierstrass points defined over K and, in
these cases, we can work with smaller recurrence matrices in § 3 (see [23, § 6.2] for details).
Our current implementation always assumes that deg h = 8 and that h(0) 6= 0.

The running time of the main algorithm is quite sensitive to the bit size of the coefficients
of h and, to some extent, the bit size of |D|. In the procedure described above, we have
made no attempt to minimize these quantities. If this became a bottleneck, one could try
changing variables to obtain a conic with smaller coefficients [8], and one can also attempt
to reparametrize L′ to minimize the coefficients of the resulting h(x) [35]. We do not know
if these methods would lead to optimal running times; this seems to be a difficult problem,
because of the dependence of the hyperelliptic model on the choice of D. We suspect that, to
obtain a truly optimal model, one would need to optimize D and h(x) simultaneously. In any
case, if we restrict our attention to certain very simple conics, then we can often write down
parametrizations for which the bit sizes remain under control (see § 9 for an example). We
expect that this will be sufficient for the application to the Sato–Tate conjecture.

3. Recurrences for the hyperelliptic model

Let y2 = h(x) be a model for C ′ over K = Q(
√
D), as in § 2. For each odd prime p, we define

a row vector Up ∈ (OK/p)
3 by

(Up)j := h
(p−1)/2
p−j mod p, j ∈ {1, 2, 3}.

Here h
(p−1)/2
p−j denotes the coefficient of xp−j in h(p−1)/2. Note that OK/p is not necessarily a

field, because p may split in K.
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These vectors are closely related to the Hasse–Witt matrices for C, which are, in turn, related
to the local zeta functions. The exact relationship is discussed in §§ 5 and 6. In this section,
we concentrate on the following problem: given a bound N , compute Up for all odd p < N
(except for a small number of ‘exceptional’ primes, as indicated below).

Write h(x) = h0 + h1x+ . . .+ h8x
8, where hi ∈ OK , h0 6= 0. For each integer k > 1, define

an 8× 8 matrix Mk with entries in OK by

Mk :=


0 . . . 0 (8− 2k)h8

2kh0 . . . 0 (7− 2k)h7
...

. . .
...

...
0 . . . 2kh0 (1− 2k)h1

 .
Also, define the vector V0 = [0, 0, 0, 0, 0, 0, 0, 1] ∈ (OK)8.

Proposition 3.1. Let p be an odd prime with (h0, p) = 1. Then Up is equal to the vector
consisting of the last three entries (in reversed order) of the vector

−1

h
(p−1)/2
0

V0M1 . . .Mp−1 (mod p).

Proof. For 1 6 k 6 p − 1, let vk := [h
(p−1)/2
k−7 , . . . , h

(p−1)/2
k ] ∈ (OK/p)

8. Using exactly the
same argument as in [23, § 2], one may show that vk satisfies the recurrence

vk =
1

2kh0
vk−1Mk (mod p). (3.1)

Iterating this recurrence yields

vp−1 =
1

(p− 1)!(2h0)p−1
v0M1 . . .Mp−1 (mod p).

Since 2p−1(p− 1)! = −1 (mod p) and v0 = [0, . . . , 0, (h0)(p−1)/2] (mod p), we have

vp−1 =
−1

h
(p−1)/2
0

V0M1 . . .Mp−1 (mod p).

The last three entries of vp−1 are precisely the entries of Up.

According to the proposition, the problem of computing Up for all odd primes p < N , except
those for which (h0, p) 6= 1, reduces to the problem of computing V0M1 . . .Mp−1 (mod p) for
all p < N . In § 4, we will explain how to efficiently compute products of this type; this step
constitutes the bulk of the running time of the main algorithm.

4. The accumulating remainder tree over a quadratic field

The accumulating remainder tree is a computational technique that lies at the heart of all of
the recent average polynomial time point-counting algorithms. The basic scalar version was
introduced in [7] and it was generalized to integer matrices in [19]. In this section, we present
a variant that works over the ring of integers of a quadratic field K.

We will use the same notation as in [23, § 3]. Let b > 2 and r > 1. Let m1, . . . ,mb−1 be a
sequence of positive integers. Let A0, . . . , Ab−2 be a sequence of r × r matrices with entries
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in OK and let V be an r-dimensional row vector with entries in OK . The aim is to compute
the sequence of reduced row vectors C1, . . . , Cb−1 defined by

Cn := V A0 . . . An−1 mod mn. (4.1)

So far, this set-up is identical to [23], except that, in that paper, Aj and Cj had entries in Z
rather than OK .

To apply this to the situation in § 3, we set r = 8, b = bN/2c, Aj = M2j+1M2j+2, V = V0 and
mn = 2n+1 if 2n+1 is prime, or 1 if not. Then, for any odd p < N , C(p−1)/2 = V0M1 . . .Mp−1
(mod p), from which we can read off the entries of Up by Proposition 3.1 (provided that
(h0, p) = 1).

The naive algorithm for computing Cn, which separately computes each product
V A0 . . . An−1 modulo mn, leads to a running time bound that is quasi-quadratic in b. The
accumulating remainder tree improves this to a quasi-linear bound. Pseudocode is given in
Algorithm QuadraticRemainderTree below. For simplicity, we assume that b = 2` is a
power of two, although this is not strictly necessary. The algorithm actually computes various
intermediate quantities mi,j , Ai,j and Ci,j , where 0 6 i 6 ` and 0 6 j < 2i (see [23] for precise
definitions); the output is obtained as Cj = C`,j . For convenience we set m0 = 1 and let Ab−1
be the identity matrix.

Algorithm. QuadraticRemainderTree

Given V,A0, . . . , Ab−1, m0, . . . ,mb−1, with b = 2`, compute mi,j , Ai,j , Ci,j :

1. Set m`,j = mj and A`,j = Aj , for 0 6 j < b.

2. For i from `− 1 down to 0:
For 0 6 j < 2i, set mi,j = mi+1,2jmi+1,2j+1 and Ai,j = Ai+1,2jAi+1,2j+1.

3. Set C0,0 = V mod m0,0 and then for i from 1 to `:

For 0 6 j < 2i set Ci,j =

{
Ci−1,bj/2c mod mi,j if j is even,

Ci−1,bj/2cAi,j−1 mod mi,j if j is odd.

In fact, this pseudocode is copied verbatim from algorithm RemainderTree in [23]. The
only difference between RemainderTree and QuadraticRemainderTree is the underlying
data type; in RemainderTree, the objects Ai,j and Ci,j are defined over Z, whereas, in
QuadraticRemainderTree, they are defined over OK . In all other respects, including the
proof of correctness, the algorithms are identical.

The following theorem summarizes the performance characteristics of QuadraticRemain-
derTree. The bit size of an element of OK = Z[α] is defined to be the maximum of the bit
sizes of the coefficients of 1 and α.

Theorem 4.1. Let B be an upper bound for the bit size of
∏b−1
j=0mj , let B′ be an upper

bound for the bit size of any entry of V and let H be an upper bound for the bit size of any
m0, . . . ,mb−1 and any entry of A0, . . . , Ab−1. Assume that log r = O(H) and that r = O(log b).
The running time of the QuadraticRemainderTree algorithm is

O(r2M(B + bH) log b+ rM(B′)),

and its space complexity is O(r2(B + bH) log b+ rB′).

Proof. The statement is identical to [23, Theorem 3.2]. The only difference in the analysis
is that we must bound the cost of all operations over OK instead of over Z. We assume, for
this discussion, that D is fixed; in our applications we arrange for D to be small, say, −1 or 2.
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The main operation to consider is computing the product of two r×r matrices, say, R and S,
with entries in OK . Write them as R = R0 +R1α and S = S0 + S1α, where the Ri and Si are
integer matrices. In the D 6≡ 1 (mod 4) case, RS = (R0S0 +DR1S1) + (R0S1 +R0S1)α. This
clearly reduces to four matrix multiplications over Z, plus several much cheaper operations
(matrix additions and scalar multiplications by D). A similar formula holds for the D ≡ 1
(mod 4) case and similar remarks apply to the matrix-vector multiplications in step 3.

Overall, we clearly lose only a constant factor compared with the analysis in [23].

Remark 1. One can greatly improve the space consumption (and to a lesser extent, the
running time) of the accumulating remainder tree algorithm by utilizing the remainder forest
technique, introduced in [22] (see also [23, Theorem 3.3]). The idea is to split the work into 2κ

subtrees, where κ ∈ [0, `] is a parameter. This is important for practical computations, because
QuadraticRemainderTree is extremely memory intensive.

4.1. Practical considerations

In practice, the running time of the main algorithm is dominated by the matrix-matrix and
matrix-vector multiplications over Z[α], so it is important to optimize this step.

Let us first recall the discussion in [23] for the case of matrices over Z. For multiplying
r × r integer matrices, the classical matrix multiplication algorithm requires r3 integer
multiplications. This is exactly what we do near the bottom of the tree, where the matrix
entries are relatively small.

Further up the tree, when the matrix entries become sufficiently large, it becomes profitable
to use integer multiplication algorithms based on fast Fourier transforms (FFTs). For example,
the well-known GNU Multiple Precision (GMP) arithmetic library [15] will automatically
switch to a variant of the Schönhage–Strassen algorithm for large enough multiplicands.
However, this is inefficient because each matrix entry will be transformed r times. This
redundancy can be eliminated by means of the following alternative algorithm: (1) transform
each of the 2r2 matrix entries, then (2) multiply the matrices of Fourier coefficients and finally
(3) perform an inverse transform on each of the r2 entries of the target matrix. This strategy
reduces the number of transforms from 3r3 to 3r2.

Unfortunately, in our implementation, we cannot carry out this plan using GMP, because
GMP currently does not provide an interface to access the internals of its FFT representation.
Moreover, the Schönhage–Strassen framework is not well suited to the matrix case, because
the Fourier coefficients are relatively large. Instead, we implemented our own FFT based on
number-theoretic transforms modulo word-sized primes (see [22, § 5.1]).

Asymptotically, for large matrix entries, we expect the running time to be dominated by
the Fourier transforms, and so we expect a speed-up of a factor of about r compared to
the classical algorithm. The measured speed-up is somewhat less than this, because of the
contribution of step (2). For example, taking r = 8 and matrices with entries of 500 million
bits, we observe a speed-up of around 6.4, rather than 8.

Turning now to Z[α], the same principle applies. Suppose that D 6≡ 1 (mod 4) and that
R = R0 + R1α and S = S0 + S1α, where the Ri and Si are integer matrices. We may write
the product as RS = (R0S0 + (DR1)S1) + (R0S1 +R1S0)α. We compute this as follows.

(1) Transform the entries of R0, S0, R1, S1 and also DR1. There are 5r2 transforms here.
Denote these by T (R0), . . . , T (DR1).

(2) Multiply the matrices of Fourier coefficients, to obtain T (R0)T (S0), T (DR1)T (S1),
T (R0)T (S1) and T (R1)T (S0).

(3) Add the matrices of Fourier coefficients, to obtain T (R0)T (S0) + T (DR1)T (S1) and
T (R0)T (S1) + T (R1)T (S0).

(4) Perform 2r2 inverse transforms to obtain the components of each entry of RS.
A similar discussion applies to the D ≡ 1 (mod 4) case.
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Altogether we count 7r2 transforms, compared with 3r2 for the plain integer case. We thus
expect the ratio of the cost of multiplying two matrices over Z[α] to the cost of multiplying two
matrices over Z to be about 7/3 ≈ 2.33, assuming inputs of the same bit size. The measured
ratio is somewhat worse than this, mainly because of the non-negligible contribution of step (2).
For example, with r = 8 and entries of 500 million bits, we observe a ratio of around 2.67.

One further optimization, which we did not pursue in our implementation, is to absorb
the factor D directly into the transforms themselves. For example, if D = −1, the transform
of DR1 is just the negative of the transform of R1, which we have already computed. This
would reduce the number of transforms from 7r2 to 6r2. Unfortunately, this leads to technical
complications for larger values of |D|, because the size of the Fourier coefficients needs to be
increased to accommodate the extra factor of D. In the context of our ‘small prime’ FFTs,
this optimization might be reasonable for very small |D|, but, in the interests of maintaining
generality and simplicity of our code, we did not implement it.

5. Computing the Hasse–Witt matrices

We now return to the hyperelliptic model y2 = h(x) for C ′ over K = Q(
√
D) that was

constructed in § 2.
For each odd prime p < N , we select a prime ideal p of K above p that we assume is

unramified (we ignore the primes p that ramify in K). Now assume that p does not divide the
discriminant of h(x), so that C ′ has good reduction at p. The Hasse–Witt matrix of C ′ at p is
the 3× 3 matrix Wp over OK/p with entries

(Wp)i,j = h
(p−1)/2
pi−j mod p, i, j ∈ {1, 2, 3}.

There is a close relationship between Wp and the local zeta function of the original curve C,
which is discussed in § 6. In the remainder of this section, we explain how to compute the Wp.

Let W 1
p denote the first row of Wp. By definition, W 1

p is simply Up (mod p), where Up
is the vector defined in § 3. We may, therefore, compute W 1

p for all p < N by using
QuadraticRemainderTree (§ 4) to compute Up for all p < N and then reduce each Up
modulo our chosen prime ideal p for each prime.

To obtain the remaining rows of Wp, the most obvious approach is to continue iterating the
recurrence of § 3 to reach v2p−1 and v3p−1 (in the notation of the proof of Proposition 3.1). This
can be made to work, but there are technical difficulties: the factor of k in the denominator
of (3.1) leads to divisions by p. Bostan, Gaudry and Schost deal with this by artificially
introducing extra p-adic digits [3]. Instead, we will use the following trick, which was suggested
in [23, § 5].

For each integer β, let Wp(β) denote the Hasse–Witt matrix of the translated curve y2 =
h(x+ β) and let W 1

p (β) denote its first row. The relation between Wp and Wp(β) is given by

Wp(β) = T (β)WpT (−β), (5.1)

where

T (β) =

1 β β2

0 1 2β
0 0 1

 .
For a proof, see [23, Theorem 5.1]. (Note that, in [23], we work over Fp, whereas here we are
possibly working over an extension, but this does not change the resulting formula, because β
is a rational integer.)
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Now suppose that we have computed W 1
p (βi) for three integers β1, β2, β3 and that we wish

to deduce Wp. For each i, the equation Wp(βi) = T (βi)WpT (−βi) yields a system of three
linear equations in the nine unknown entries of Wp. We therefore have nine equations in nine
unknowns, and the same argument as in [23, § 5] shows that this system has a unique solution,
provided that β1, β2 and β3 are distinct modulo p.

6. Computing the L-polynomials modulo p

At this stage, for each prime p < N (except for various exceptional primes), we have computed
Wp for our chosen p above p. In this section, we explain how this determines Lp(T ) (mod p)
in the split case, and Lp(T )Lp(−T ) (mod p) in the inert case.

Consider the zeta function of C ′ at p. This is defined by

Z ′p(T ) := exp

( ∞∑
k=1

Nk
k
T k
)

=
L′p(T )

(1− T )(1− qT )
,

where Nk is the number of points on C ′p (the reduction of C ′ modulo p) defined over the
extension of OK/p of degree k. As before, L′p(T ) ∈ Z[T ] has degree six.

In the split case, we simply have L′p(T ) = det(I − TWp) (mod p). Thus Wp determines
L′p(T ) (mod p). Moreover, since C ′p is isomorphic to Cp over OK/p ∼= Z/pZ, they have the
same zeta functions, so Lp(T ) = L′p(T ) (in Z[T ]). Hence Wp determines Lp(T ) (mod p).

In the inert case, L′p(T ) = det(I − TWpW
(p)
p ) (mod p), where W

(p)
p denotes the matrix

obtained by applying the absolute Frobenius map to each entry of Wp, which raises each entry
to the pth power. So again, in this case, Wp determines Lp(T ) (mod p). Unfortunately, because
of the base change from Q to K, we lose information when passing from C to C ′; in effect, we
have computed the zeta function of Cp over Fp2 . All we can conclude is that Lp(T )Lp(−T ) =
L′p(T 2) (see [31, Chapter VIII, Lemma 5.12]), so Wp determines only Lp(T )Lp(−T ) (mod p).

7. Lifting the L-polynomials

We now turn to the problem of determining Lp(T ) ∈ Z[T ], given as input either (1) Lp(T )
(mod p) (for p split in K) or (2) Lp(T )Lp(−T ) (mod p) (for p inert in K). Our approach to this
problem utilizes generic group algorithms operating in Jac(Cp)(Fp), the group of Fp-rational
points on the Jacobian variety of the reduction of C modulo p. It is a finite abelian group of
order p3 +O(p5/2).

We first need a model for the curve that supports efficient arithmetic in Jac(Cp)(Fp). We
start with the reduction modulo p of the model given in (1.2). Although the conic g = 0 has no
Q-rational points, its reduction modulo p does have Fp-rational points and therefore admits a
rational parametrization that can be used to construct a hyperelliptic model y2 = h(x) with
h ∈ Fp[x], as in § 2. The cost of constructing this model is negligible. Now, if Cp has a rational
Weierstrass point, we move it to infinity and thus make h(x) monic of degree seven; in this
case, fast explicit formulas for arithmetic in Jac(Cp)(Fp) are well known [5, § 14.6]. If Cp does
not have a rational Weierstrass point, then, provided p > 37 (which we assume), it has a
rational non-Weierstrass point P ; moving this point to infinity, we obtain a model with h(x)
monic of degree eight. Fast explicit formulas for arithmetic in Jac(Cp)(Fp) for such models
have recently been developed [38], using the balanced divisor approach of [13, 32].

Case (1) is considered in [26], where it is noted that the problem of determining Lp(T ) ∈ Z[T ]
given Lp(T ) (mod p) can be solved in p1/4+o(1) time (for a curve of genus three). Let us briefly
recall how this is done.
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If p > 149, then Lp(T ) (mod p) uniquely determines the coefficient a1 of Lp(T ). Indeed,
from the Weil bounds, |ai| 6

(
6
i

)
pi/2 for i = 1, 2, 3. This inequality constrains a2 to at most

2
(
6
2

)
= 30 values compatible with a2 (mod p). In fact, once a1 is known, there are at most six

possibilities for a2; this follows from [26, Proposition 4]. For each of these six values of a2,
the pair (a1, a2) determines a set of at most 40p1/2 possible values of a3, corresponding to an
arithmetic progression modulo p. The pair (a1, a2) also determines corresponding arithmetic
progressions modulo p in which the integers

#Jac(Cp)(Fp) = Lp(1) = (p3 + 1) + (p2 + 1)a1 + (p+ 1)a2 + a3,

#Jac(C̃p)(Fp) = Lp(−1) = (p3 + 1)− (p2 + 1)a1 + (p+ 1)a2 − a3
(7.1)

must lie; here C̃p denotes a (non-trivial) quadratic twist of Cp.

Now, given any α ∈ Jac(Cp)(Fp) (or Jac(C̃p)(Fp)), we may compute its order |α| as follows.
First, apply a baby-steps giant-steps search to the appropriate arithmetic progression to obtain
a multiple m of |α|. Then factor m and use a polynomial-time fast order algorithm (see [36,
Chapter 7]) to compute |α|. The time to factor m = O(p3) is negligible compared with the
cost of the baby-steps giant-steps search, both in theory [30] and in practice. Note that if our
candidate value of a2 is incorrect, we may not find such an m, in which case we discard this
value of a2 and proceed to the next of our (at most six) candidates. One of the candidates
must work, and hence we can determine the order of α in p1/4+o(1) time. This applies more
generally to any situation where we have O(1) possible pairs (a1, a2) and we know the value
of a3 modulo p; this includes case (2), as we explain below (and also the case p 6 149).

With the ability to compute the orders of arbitrary group elements, we obtain a Monte
Carlo algorithm to compute the group exponent λ of Jac(Cp)(Fp) in p1/4+o(1) time, via

[36, Algorithm 8.1] (and, similarly, for Jac(C̃p)(Fp)). The positive integer n output by this
algorithm is guaranteed to divide λ and the probability that n 6= λ can be made arbitrarily
small, at an exponential rate. Note that this algorithm needs access to random elements of
Jac(Cp)(Fp); such elements may be found by picking random polynomials u ∈ Fp[x] with
deg u 6 g = 3 and attempting to construct the Mumford representation [u(x), v(x)] of the
affine part of a representative for a divisor class in Jac(Cp)(Fp). This can be viewed as a
generalization of the decompression technique described in [5, § 14.2].

As shown in [26, Proposition 4], given the group exponent λ, we can compute #Jac(Cp)(Fp)
using the generic group algorithm in [36, Algorithm 9.1] in p1/4+o(1) time. The same applies to
#Jac(C̃p)(Fp); we can thus determine the values of both Lp(1) and Lp(−1), which is enough
to determine Lp(T ). Indeed, adding the equations in (7.1) yields the value of a2 and subtracting
them and substituting a1 yields a3 (see [37, Lemma 4] for a more general result that applies
whenever p > 1600).

The fact that we used a Monte Carlo algorithm to compute λ means that there is some
(exponentially small) probability of error. We can eliminate this possibility by considering the
set S of candidate values for #Jac(Cp) that are both multiples of our divisor n of λ and are
compatible with the constraints imposed by (7.1), the set of candidate pairs (a1, a2) and the
value of a3 modulo p. Typically, |S| = 1 and we immediately obtain a verified result. If not, any
two candidates N1 and N2 for #Jac(Cp) must differ in their `-adic valuations for at least two
primes ` (for p > 30, we cannot have N1 divisible by N2 or vice versa). By computing the group
structure of the `-Sylow subgroup H of the smaller of these two primes ` via [36, Algorithm
9.1] (a Monte Carlo algorithm that always outputs a subgroup of H), we may be able to
provably rule out one of the candidates by obtaining a lower bound on the `-adic valuation
of #Jac(Cp)(Fp) that exceeds the `-adic valuation of one of them. Provided ` = O(p1/2),

this takes p1/4+o(1) time; we can also use #Jac(C̃p). In the computations described in § 9
this method was used to verify Lp(T ) in every case; we expect that one can prove that the
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complexity of this computation is bounded by p1/4+o(1) (at least on average), but we do not
attempt this here. The timings listed in Table 1 include the (negligible) cost of this verification
in the ‘lift’ columns.

In case (2), where we are given Lp(T )Lp(−T ) (mod p), there are at most eight possible values

of Lp(T ) (mod p). To see this, let
∑6
i=0 biT

2i = Lp(T )Lp(−T ). One obtains the relations

b1 ≡ 2a2 − a21 (mod p), b2 ≡ a22 − 2a1a3 (mod p), b3 ≡ −a23 (mod p).

Given b1, b2, b3 (mod p), there are two possibilities for a3 (mod p), each of which determines a
pair of quadratic equations in a1 and a2, which, in turn, has at most four solutions modulo p.
Even though the value of a1 is not uniquely determined in this case (no matter how big p is),
we can apply the procedure described above to compute the orders of arbitrary elements of
Jac(Cp)(Fp) or Jac(C̃p)(Fp) in p1/4+o(1) time, and the rest of the discussion follows; the key
point is that we have O(1) arithmetic progressions of length O(p1/2) in which #Jac(Cp)(Fp)

and #Jac(C̃p)(Fp) are known to lie.

8. Summary of the algorithm

We now describe the complete algorithm. The input consists of the polynomials f and g
defining the curve C according to (1.2), a bound N and a parameter κ (see Remark 1). Our
goal is to compute Lp(T ) ∈ Z[T ] for all odd primes p < N , except for a small number of
exceptional primes, as documented below.

(1) Find a quadratic field K = Q(
√
D) and a suitable model y2 = h(x) for C ′ over K, using

(for example) the method of § 2.
Choose small integers β1, β2, β3 so that h(x+ βi) 6= 0 for each i.

(2) Make a list of all odd primes p < N . Perform the following steps for each p:
– If p satisfies any of the following conditions, declare p exceptional:

* p divides D (ramified prime);
* p divides some βi − βj ;
* p is not relatively prime to the discriminant of h(x) (and hence of h(x+βi) for

all i);
* p is not relatively prime to the constant term of some h(x+ βi).

– Otherwise:
* if (D/p) = 1 (split prime), pick a solution of γ2 = D (mod p) and let p =

(p, γ −
√
D) be the corresponding prime ideal above p;

* if (D/p) = −1 (inert prime), let p = (p).
(3) Let Up(βi) be the vector Up (defined in § 3) corresponding to the translated curve y2 =

h(x+ βi). Call QuadraticRemainderTree (or the ‘forest’ variant with parameter κ)
three times, once for each translated curve, with parameters as specified in § 4, to compute
Up(βi) for all non-exceptional p < N .

(4) For each non-exceptional prime p < N :
– reduce Up(βi) modulo p to obtain W 1

p (βi) for i = 1, 2, 3;
– solve the system described at the end of § 5, using (5.1) to deduce Wp;

– compute det(I − TWp) (split case) or det(I − TWpW
(p)
p ) (inert case), to determine

Lp(T ) (mod p) (split case) or Lp(T )Lp(−T ) (mod p) (inert case), according to § 6;
and

– apply the lifting procedure of § 7 to finally obtain Lp(T ) ∈ Z[T ].

As pointed out earlier, in practice, the running time is dominated by the calls to
QuadraticRemainderTree. The exceptional primes (of good reduction) can be handled
by any other suitable method; for example, naive point counting for the small exceptional
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Table 1. Comparison of algorithms for computing Lp(T ) for p < N . See text for column explanations.
Time in CPU seconds, space in gigabytes and all values rounded to three significant figures.

C1 C2 hypellfrob

N Time Space Lift Time Space Lift mod p mod p2

216 4 0.05 2 14 0.06 3 36 127

217 9 0.06 4 33 0.08 6 92 326

218 22 0.08 8 75 0.11 13 234 849

219 53 0.10 16 178 0.17 25 600 2 680

220 129 0.17 32 418 0.30 48 1 770 7 500

221 310 0.30 66 992 0.57 99 4 830 25 300

222 753 0.58 136 2 390 1.18 201 14 900 189 000

223 1 780 1.13 278 5 520 2.47 413 42 700 653 000

224 4 090 2.41 574 12 600 5.33 850 125 000 1 680 000

225 9 410 4.98 1 190 29 000 11.8 1 760 395 000 5 030 000

226 22 100 10.5 2 470 66 300 24.5 3 650 1 230 000 16 000 000

227 50 900 23.5 5 160 151 000 52.0 7 610 3 730 000 44 100 000

228 118 000 54.0 10 800 344 000 112 15 900 10 000 000 113 000 000

229 276 000 124 22 800 783 000 241 33 600 35 600 000 368 000 000

230 681 000 288 48 200 1980 000 480 71 100 97 100 000 948 000 000

primes and, for the larger ones, parametrizing the conic over Fp and then applying [18]. One
can easily prove that the number of exceptional primes is small, and one can also prove that
these primes make negligible overall contribution to the complexity. We omit the details.

9. Implementation and performance

We implemented most of the steps of the main algorithm in the C programming language,
building on the implementation for the ordinary hyperelliptic case described in [23]. It uses
the GMP library [15] for basic integer arithmetic and a customized FFT library for matrix
arithmetic over OK when the entries have large coefficients (see § 4.1 and [22, § 5.1]).

The program takes as input the original model for the curve C over Q and also the data
describing the model C ′ over K, namely, the integer D and the polynomial h ∈ OK [x]. The
construction of C ′ itself is not yet fully automated; for this we use ad hoc methods, including
Magma [2] and Sage [34] scripts. The output is the sequence of polynomials Lp(T ) for all
p < N , except for a small number of exceptional primes (listed below). As pointed out earlier,
it is not difficult to handle the missing primes of good reduction, but our implementation does
not yet do this. For the application to the Sato–Tate problem, it is safe to ignore a small
number of primes, because they have a negligible effect on the statistical data being collected,
but, for the application to computing L-series, one would need to address the missing primes
(including those of bad reduction, which is a problem we do not address here).

We give one numerical example to illustrate the performance of our implementation and
compare it to the implementation for the ordinary hyperelliptic case from [23]. For the
hyperelliptic case we take the curve C1 defined by

y2 = 2x8 − 2x7 + 3x6 − 2x5 − 4x4 + 2x3 + 2x+ 2.

For the new algorithm, we take C2 to be the curve given by w2 = f(X,Y, Z), where

f(X,Y, Z) = X4 − 2X2Y 2 − 2Y 4 −X3Z − 2X2Y Z −XY 2Z

−Y 3Z −X2Z2 −XY Z2 − Y 2Z2 +XZ3 + Z4,
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over the pointless conic X2 + Y 2 + Z2 = 0. We base extend to K = Q(i) with i2 = −1 (so
D = −1) and we parametrize the conic by (ψ1(x), ψ2(x), ψ3(x)) = (x2 − 1, 2u, i(x2 + 1)). This
leads to the curve C ′2 over K given by the hyperelliptic equation y2 = h(x), where

h(x) = (3− 2i)x8 + (2− 4i)x7 + (−4− 4i)x6 + (2− 4i)x5

+ 2x4 + (−2− 4i)x3 + (−4 + 4i)x2 + (−2− 4i)x+ (3 + 2i).

Note that the polynomial f(X,Y, Z) was chosen carefully (by a random search) to ensure that
the coefficients of h(x) would not be too large.

We ran both programs to determine the zeta functions for C1 and C2 at all p < N for various
values of N . In both cases, we used the translates βi = i for i = 0, 1, 2. For C1 the exceptional
primes were 3, 5, 7, 19, 181, 931 781; for C2, they were 3, 5, 7, 13, 31, 269, 10 169, 22 229.
The computations were run on a single core of an otherwise idle 64-core 2.5 GHz Intel Xeon
(E7-8867W v3) server with 1088 GB RAM, running Ubuntu Linux version 14.04. We used the
GCC compiler, version 4.8.4 [11], with optimization flags -O3 -funroll-loops.

Performance figures are given in Table 1. We set the parameter κ (see Remark 1) to 7 in all
our tests, a choice that optimized (or very nearly optimized) the running time in every case.
The ‘time’ columns show the total running time, excluding the lifting phase, and the ‘space’
columns show the peak memory usage. The running time of the lifting phase is given in the
‘lift’ column; the memory usage is negligible for this phase.

The last two columns give estimates for the time to run hypellfrob, an implementation
of the algorithm described in [18]. For a hyperelliptic curve of genus three, and for a given
p-adic precision parameter α > 1, it computes Lp(T ) (mod pα) in time αO(1)p1/2+o(1) for each
p separately; prior to [22, 23], it was the fastest available software for this problem. The ‘mod
pα’ column, for α = 1, 2, gives an estimate for the total time to compute Lp(T ) (mod pα)
for all p < N . The estimates were obtained by sampling for several p < N and extrapolating
based on the number of primes in each interval. For α = 1, this is enough to determine a1
(provided p > 149) but not all of Lp(T ); one would still need to run a lifting step to obtain
Lp(T ). For α = 2, it determines Lp(T ) completely.

Note that hypellfrob is limited to curves with a rational Weierstrass point, so we used the
curve y2 = x7 + 3x6 + 5x5 + 7x4 + 11x3 + 13x2 + 17x + 19. For this reason the timings are
not directly comparable with the columns for C1 and C2, but they still provide a reasonable
indication of what should be expected. No implementation for the general case y2 = h(x) with
deg h = 8 is currently available; one could presumably be developed by adapting [17].

It is clear from Table 1 that, broadly speaking, the new algorithm performs similarly to its
hyperelliptic antecedent [23]. In particular, the running time is close to linear in N . For the
largest N in the table, we observe a slowdown from C1 to C2 by a factor of about 3. This is only
slightly worse than the factor 2.33 that one expects asymptotically (see § 4.1). For N = 230,
we see that the new algorithm is nearly 50 times faster than hypellfrob. As promised, the
lifting phase makes a negligible overall contribution to the running time.

The memory footprint for C2 is about twice that for C1. This is exactly as expected, since the
input coefficient sizes are roughly equal and, for C2, we carry around twice as much information
in each matrix (the coefficients of 1 and α).

An obvious disadvantage of the new algorithm is that it is more difficult to parallelize than
hypellfrob. The latter is trivially parallelizable, by distributing primes among threads. In
fact, there is some scope for parallelization in the new algorithm, but this is a rather involved
question that will be deferred to a subsequent paper.
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