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CODING ERGODIC PROCESSES TO APPROXIMATE 
BERNOULLI PROCESSES 

A. DEL JUNCO 

1. I n t r o d u c t i o n . In [1] Ornstein defined a metric d on processes which, for 
processes (P , r ) and (Q, a) with equal numbers of a toms, measures how closely 
the motions of P and Q under r and a, respectively, imitate each other. If we 
think of (P , r ) and (Q, a) as s tat ionary stochastic processes, and we assume 
(P , r ) and (<2, a) are ergodic, then d((P, T)(Q, a)) < a says t ha t with pro­
babili ty one a pr in tout from (P , r ) can be changed on a set of integers with 
density less than a to obtain a pr intout from (Q, a). This metric was first 
introduced (implicitly) by Ornstein in [3] to characterize Bernoulli processes 
(i.e. processes isomorphic to independent processes), bu t as he shows in [1] 
it seems to be a natural way to compare s tat ionary stochastic processes. From 
this point of view, however, the restriction to processes with equal numbers of 
a toms seems artificial, so in this paper we consider the obvious extension of d 
to a metric d which allows comparison of processes with different numbers of 
a toms. 

Since independent processes (and, more generally, Bernoulli processes) are 
particularly nice it seems natural to ask to what extent arbi t rary processes can 
be approximated by them. I t is known [1, p . 54] tha t the class of Bernoulli 
processes with a given number of a toms is closed in the metric d, and it follows 
easily t ha t the class of all Bernoulli processes is closed in the metric d. Thus 
for a given process (Q, a), d((Q, a), B) > 0 where B denotes the class of 
Bernoulli processes. However we shall show tha t if (Q, a) is ergodic and 
(P , r ) is any Bernoulli process with the same entropy as (Q, a), then one can 
find a process (Qf, af) isomorphic to (Q, a) which is arbitrari ly close to (P , r ) 
in ^/-distance. Moreover there is a bound on the number of a toms in Q' which 
is independent of e. From the point of view of s tat ionary stochastic processes 
the significance of (Q, a) and (Qr, <J') being isomorphic is t ha t (Q, a) can be 
approximated arbitrarily well in ^-distance by finite codings of {Qf, a'), and 
vice-versa. For a discussion of coding see [1]. 

Note t ha t in purely ergodic theoretic terms this result is just Theorem 4 
below. The proof of Theorem 4 is an application of some of the techniques 
introduced by Ornstein in [2] together with his characterization of Bernoulli 
processes as those tha t are finitely determined [3]. The reader is referred to [4] 
for a relaxed exposition of these mat ters . 

Theorem 4 is taken from my thesis writ ten a t the University of Toronto 

Received February 5, 1975. 

135 

https://doi.org/10.4153/CJM-1976-016-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-016-2


136 A. DEL JUNCO 

under the supervision of M. A. Akcoglu. I would like to thank Prof. Akcoglu 
for his encouragement and many helpful conversations on this result. 

2. Definitions and notation. If r is a measure preserving automorphism of 
a finite measure space (X} F, /x) and P is a finite measurable partition of X, 
the pair (P, r) is called a process. We denote by Pm'n(m S n) the partition 
W^m^P and by P"00-00 the c-field generated by the rlP, i £ Z. Another parti­
tion P' of X is called a generator for (P, r) if P;-».œ = p-œ,œ# jf p _ 
{P7 : 7 G T} is a partition indexed by a set I\ dist P is a measure on T defined 
by 

distal = 4&?. 
Thus dist Pm,n is a measure on T[m"n] ([w, w] = {m, m + 1, . . . , n)). The P 
«-name of a point x G I is a sequence J in r~ (n_1) '° defined by 

£ (_ i ) = 7 if r ' x g P7 , 0 S i ^ » - 1. 

Two processes (P, r) and (Q, a) indexed by the same set are called equivalent 
((P, r) ~ (0, a)) if dist P-n-* = dist Q~n>n for all « £ iV. If P is a partition of 
X and P C X, P\F denotes the partition {p C\ F : p G P}. If x G r ^ n ] and 
r ^ m — w + 1 we define a measure fr / on r _ ( r - 1 ) , ° by 

hx
r{y\ = —77^ ; card {i: (x(i), . . . , x(i + r - 1)) 

= (y- ( r - D ) y(0))) 
for j G p-cr-D.o^ ^g^^ j s fr/f^y} is the frequency with which the string y 
appears as a string of consecutive symbols in x. 

If P and Q are partitions of a probability space (X, F, /x) with possibly 
different numbers of atoms we define 

p(P,Q) = m i n M U (P7A<27) 

where the minimum is over all indexings of P and Q by a common set T, 
allowing P 7 or Q7 to be empty for some Y'S. For processes (P, r) and (Q, a) 
on possibly different spaces we say d((P, r ) , (Q, a)) < a if there exists a space 
F with an ergodic automorphism f/and partitions P and Q such that (P, £/) ~ 
(P, T), (<2, J7) ~ ((?, er), and p(^, Q) < a. We set 

d{(P, T), (Ç, er)) = inf {a : d((P, r) , «2, <r)) < a}. 

This corresponds to the first definition of the metric d given in [1, Section 2], 
except that for d one requires partitions with the same numbers of atoms and 
a given correspondence between their atoms. 

We also need the analogous extension of the distribution metric on partitions. 
If (P, r) and (Q, a) are processes we say A(P~W,°, Q~n'°) < a if for some 
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indexing of P and Q by a common set T 

I X |dist p-n'°{x} - dist Q~n'°{x} I < «• 

(Notice t ha t we do not allow arbi t rary correspondences between the a toms of 
p-n,o a n c j Q-n,o—the correspondence must be determined by a fixed cor­
respondence between P and Q.) We set 

A(P-W '°, Q-n.o) = inf {a : A(P-w-°, Ç-w'°) < a}. 

We will also write 

dist P~n'° ~ dist Q"w'° if A(p- n ' ° , Q"w'°) < a. 

The definition of finitely determined given in [1, Appendix 2], is in terms of d 
and the distribution metric bu t we get an equivalent definition if we use d 
instead of d and A instead of the distribution metric as long as we pu t a bound 
on the number of a toms in the processes involved. More precisely, (P , r ) is 
finitely determined if for each e > 0 and r £ N, there exist ô > 0 and n 6 N 
such tha t if (P , f) is any process with fewer than r a toms satisfying 
A(P-W*°, P~n'°) < Ô and h((P, f ) , (P , r ) ) < <5 then d((P, f ) , (P , r ) ) < e. 
T h e proof of this is straightforward. The bound on the number of a toms is 
required to keep the entropy under control. 

Before proceeding to the theorem we state without proof a simple lemma 
tha t will be needed. 

LEMMA 3. For every e > 0 there is a ô > 0 such that if P is a partition on a 
probability space X and X* C X, n(X*) > 1 — 5, then 

| | d i s t P | F - d i s t P | | < e. 

T H E O R E M 4. Given any ergodic process (Q, a), a Bernoulli process (P , r ) such 
that h(P, T) = h(Q, a) and e > 0, there exists a generator Q' for the process 
(<2, <r) such that d((Q', a), (P , r ) < e. The number of atoms in Qr has a bound 
independent of e. 

Proof. Suppose P has b a toms, Q has c a toms. (P , r ) is Bernoulli, hence 
finitely determined [5, Theorem 11.3] so there exist an r G N and a 5 > 0 
such t ha t for any ergodic process (P , r ) with fewer than 4fr + c a toms. 

(i) A(p-(r-l),0jP-(r-l),0) < 8\ 

and > = > d ( C P , r ) , (P,r)) < e. 
\h(P,f) -h(P,T)\<ô) 

We now construct an auxiliary process (P , f) with slightly higher entropy. 
Let (B, T) be an independent process on a probability space Y such tha t B has 
two atoms, one of measure 5/2r, the other of measure 1 — d/2r. Let (P , f) = 
(P X B, T X T). I t is clear t ha t A(P X F, P X B) < ô/2r whence 

A ( ( P X F ) - ^ - 1 ) - 0 , (P X B)~(r-v>°) < è/2. 
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Since dist (P X F)-^-1)-0 = dist p-c-D.o it follows that 
(ii) ACP-^-1)-0, p-e-D.o) < 5/2. 

We also have 
(iii) h = h(P, f) = A(P, r) + A(B, P) > h(P, r) = A. 

Notice that (P, f) is ergodic. 
Let r] > 0. Let w > r/77 be a positive integer to be further specified in the 

course of this proof. Assume P is indexed by Œ. The individual ergodic theorem 
and the Shannon-McMillan-Breiman theorem together imply that if n is 
sufficiently large there is a set An C Çl[~in~l)'0^ such that 

(iv) (d i s tP - ( W " 1 ) 'Vn> l-V 

(v)îrx
rJLdistP-{r-lh0 forx Ç An 

(vi) e~Ch+v)n < d i s t P - ^ - ^ ' V ) < e-Ch~v)n for x 6 4W. 

(iv) and (vi) imply 
(vii) card An > *<*-*>» (1 - 77) > é?<*-2')n 

if w is sufficiently large. 
Suppose (Q, a) acts on the probability space (X, F, /x). The Shannon-

McMillan-Breiman theorem implies that if n is sufficiently large there is a set 
Gn C X which is a union of atoms of Q-^-v^ such that 

(viii) ix{Gn) > 1 - 7? 
(ix) e-(*+^ < n(E) < e~(h-^n for all E 6 Ç-^"1^0 such that E C G». 

(ix) implies 
(x) card (Q-^n-lh0\Gn) < *<*+*>». 

By Rohlin's theorem [5, Theorem 8.1] there is a set F' £ Q~œco (note that 
h(Qi o") > 0 so Q-0000 is non-atomic), such that (ri{Fr) 0 ^ i ^ w — 1 are 
mutually disjoint and 

Ml U <r'f / > 1 — 77. 

Since 

( U V F ) 

M[ ( "u <^') ̂  G„J > 1 -2V 

there must be an i such that 

Let F = <r*P' P\ Gn. Then we have that afF, 0 ^ i ^ n — 1, are mutually 
disjoint, and 

n - l 

/ x U < T * P > 1 - 2T7. 
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Now since F C Gn, (x) implies that card (Q-{n-lh0\F) < e{h+1>)n. Comparing 
this with (vii) we see that if 77 < (h - fe)/4, then card An > card (<2~ ( W - 1 ) , 0 |F ) . 

L e t / be any one to one map from Q~ (n_1) ,0 |F to An. This assignment of (P, f) 
w-names to points in F defines a partition P of X* = U *Io JF, indexed by 12, 
in the following way. For each atom E of ( ) - ( n - 1 ) , 0 | F and each i,0 f^i ^n — 1, 
alE C P<* if f(E)( — i) = co. In other words, P is the unique partition of X* 
such that for each x £ E G <2_(n_1),0|F, the P w-name of x is j u s t / ( £ ) . L e t P 
be the partition of X whose atoms are the atoms of P V {<rn~lF, X* — <yn~lF) 
together with the atoms of Q\x-x*> Note that card P ^ 4b + c. 

Let us show that P is a generator for (Q, a). Since different atoms of <2~(n_1) ,0 

have different P w-names it is easy to see that P~ ( w _ 1 ) , 0 |x* refines Q\x*- Since 
we also have P\X-x* = Q\x-x* and X* is a union of atoms of P it follows that 
p-(n-i),o r e n n e s Ç. Thus P is a generator for (Q, 0-) and in particular h(P\ a) = 
HQ,<r). 

It remains only to show tha td( (P , <J), (P, r)) < e. Let 

n— T 

X** = \J (r*F. 

From the definition of P it is clear that for each atom E of Q~{n~1),0\F 
(xi) dist J5-C-D.0 »-r — fr/(^). 

i=0 

(xi) and (v) imply 

(xii) dist P-{T~1)%** A dist J p-^«-° . 

Since r < rjn and /x(X*) > 1 — 2r; we have 

M(X**) > (1 - „ ) ( 1 - 2̂ 7) > 1 - 3r7. 

Thus Lemma 3 implies that, given 771, if 77 is sufficiently small, then 

dist P - C ' - 1 M ^ dist P - ^ V * 

= d i s t P - ( r - 1 ) ' V * 

^ d i s t P - ^ - " ' 0 by (xii) 

i ^ d i s t P - ^ " ' 0 by(i i ) 

Thus if 771 is so small that 77 + 771 < 5/2 we have 

Ô 
dist p-e-D.o ~ dist p-e-D.o. 

Since we also have h(P, a) = h(Q, a) = &(P, r) and card P ^ 4& + c, 
(i) concludes the proof. 
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