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Abstract. Almost simple (AS) minimal flows are defined and it is shown that any
factor map of an AS flow is, up to almost 1-1 equivalence, a group factor. An
analogous theorem for metric, regular, point distal extensions is proved. In particular
a theorem of Gottschalk is strengthened to show that any regular, point distal,
metric flow is equicontinuous. When the acting group T is commutative it is shown
that every proper minimal joining of an AS flow X and a minimal flow Y, is, up
to almost 1-1 extensions, the relative product of X and Y over a common factor
which is a group factor of X.

Introduction
An ergodic process (X, T, m), where X is compact metric and T a Borel one to
one measure preserving map of X into itself, is called (two-fold) simple, if every
ergodic self joining of (X, T, m) is either m x m o r a measure of the form (Id x S)A =
As where 5 is a Borel automorphism of (X, T, m) and A is the probability measure
on X x X defined by: | / d A = J/(x,x) dm(x). The main result of [V2] is that for
a simple process every non-trivial factor (X, T,m)JL* (X', 7", m') is a compact group
factor; i.e., there exists a compact group K of automorphisms of (X, T, m) such
that X' = X/K and m', 7" are the induced measure and measure preserving trans-
formation, respectively. The crucial device in proving this theorem is the following
easy version of a theorem of A. Weil [V2]

THEOREM. IfK is a Polish topological group admitting a left invariant Borel probability
measure, then K is compact.

Let (X, T,m) be (two fold) simple, [J-R], then A, its group of automorphisms
is a Polish topological group under the weak topology. If (X, T, m) -^ (X', 7", m')
is a factor map then simplicity of (X, T, m) implies that the subgroup K =
{SeA: 7T° S = 77} admits an invariant probability measure and by Weil's theorem
is therefore compact. It then follows that v is K -extension.

When we look for a theorem analogous to that of Veech in topological dynamics,
we are faced with two problems. The first is to find an appropriate notion of
topological simplicity and the second is to find a substitute for Weil's theorem. Our
starting point for the latter problem will be the following theorem of Gottschalk, [Go].
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464 E. Glasner

THEOREM. Let (X, T) be a topologically ergodic metric flow, where T is an abelian
group. If the group Aut (X, T) acts transitively on X then (X, T) is equicontinuous.

As was observed by J. Auslander [A], Gottschalk's theorem, for minimal flows,
can be reformulated as the statement that a metric distal regular T-flow for abelian
T is equicontinuous. In § 3 we shall show that the assumption of commutativity in
Gottschalk's theorem is not necessary; any metric regular, flow is equicontinuous
(Proposition 3.1).(Thiswas proved independently and earlier by J. Auslander [ A1 ].)
In fact we shall show that moreover any regular, open, point distal homomorphism
of a metric minimal flow is necessarily a group extension (Theorem 4.7). We consider
these theorems as topological counterparts of Weil's theorem.

Our definition for topological simplicity, which we call Almost Simple (AS), is
motiviated by A. del-Junco's definition of topological almost minimal self-joinings
(AMSJ), [J]. We show that AS is an invariant of almost 1-1 extensions and that a
weak-mixing group extension of AMSJ is AS. Well known results imply now that
any non-trivial factor map X -^ y of an AS flow X is necessarily point distal
(Proposition 1.7). In § 4 we get the stronger result that up to almost 1-1 extensions
•w is actually a group extension (Theorem 4.5). The main proposition for the proofs
of both Theorems 4.5 and 4.7 is proved in § 2 (Proposition 2.5). Actually, among
the assumptions in Proposition 2.5, we include one (that TT is Be) which we do not
have when we come to apply it in the proofs of Theorems 4.5 and 4.7. However,
in some special cases, namely when IT is distal and when X is not weakly mixing,
this assumption does hold and in § 3 we do use Proposition 2.5 in proving the
corresponding results in these special cases (Propositions 3.1 and 3.2). In this way,
we hope, the main ideas and also the exposition are made clear and easier to follow.
Finally in § 4 we discuss the technical changes which we need to introduce into
Proposition 2.5 so that Theorems 4.5 and 4.7 can be deduced. This way of proof
necessitates a certain amount of repetition.

In [J-R] the following theorem is proved for ergodic measure preserving actions
(X,M, T)and(y , v, T).

THEOREM. If (X, /u) is simple then every ergodic joining of (X, /A) and (Y, v) which
is not product measure is the projection on X x Y of the relatively independent joining
of (Xn, n") and (Y, v) over (X/K)"°, for some compact subgroup K ofC(X, /x T)
and some factor map <p : Y-> (X/ K)"°.

Here C(X, /x, T) is the group of automorphisms of (X, fi, T), X/K is the factor
of (X, ft, T) corresponding to K and (X/K)"° is (X/K)"/Sn where Sn is the group
of permutations on the coordinates of (X/K)".

In § 6 we obtain, using Theorem 4.5 a topological analogue for this theorem.
Simple is replaced by AS and ergodic joining is replaced by minimal joining, i.e.,
a minimal subset of X x Y. We are not able to prove our theorem for general T and
have to restrict it to abelian T. Under these assumptions we prove (Theorem 6.1)
that any proper minimal joining L c X x Y is, up to almost 1-1 extensions, the
relative product of X and Y over a common factor which is, up to almost 1-1
extensions, a group factor of X. The cases n > 1 in del-Junco Rudolph's theorem
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cannot arise here since (X/K)1"3, which is never minimal for n> 1, cannot occur
as a factor of the minimal flow Y.

In § 5 we prove some preliminary lemmas and in § 6 Theorem 6.1 and some
corollaries are proved.

In § 0 we introduce briefly our general setup and recall basic theorems from the
structure theory of minimal sets (see [El], [B], [Gl] and mainly [VI]).

0. General background
Throughout this paper T is a fixed but arbitrary discrete group. Discreteness is not
as severe a restriction as it sounds, because first, most dynamical notions we deal
with do not depend on the topology of T and second, in those cases when the
topology is significant, one can use slight modifications to obtain the same results
for general topological groups.

We write /3T for the Stone-Cech compactification of T. M will denote a fixed
minimal ideal in BT. J is the set of idempotents in M and u is a fixed element of
J. The subset uM = G forms a subgroup of the semi-group M.

BT acts on every flow (X, T) and the orbit closure of a point xe X is given by
o(x) = {px: p e BT}. The point x e X is an almost periodic point iff o(x) is minimal
iff 6(x) = {px: pe M}. We make the convention that whenever we choose a base
point x0 in a minimal flow X then uxo = xo. If (X, T) is any flow then the set of
almost periodic points in X is just JX = {vx: xeJ,xe X}; e.g. a point (x, x') e X x X
is almost periodic iff 3D € J with v(x, x') = (x, x').

Whenever X —* Y is a homomorphism of flows we denote by R^ the subflow of
X x X given by

R9={(x,x'):<p(x) = <P(x')}.

A homomorphism (or extension) X ^* Y of minimal flows is Be (satisfies the
Bronstein condition) if JRV is dense in Rv.

If (X, x0) is a pointed minimal flow, (i.e. a minimal flow with a distinguished
base point x0) its Ellis group is the subgroup

xo} of G.

A homomorphism (X, x0) -*» (Y, y0) of minimal flows is proximal iff ^(X, x0) =
V(Y,y0).

If v e / then the sets {B~lA n vG: A, B <= T, ve B} (closure in )3T) form a basis
for a topology on vG called the r-topology. For any v,weJ, the groups vG and wG
are r-homeomorphic. The groups of the form ^(X, x0) are exactly the r-closed
subgroups of G. If F <= G is a r-closed subgroup of G then

F ' = P|{T-C1S(O): O a r-nbd of M in F}

is a normal subgroup of F and F/ F' with the quotient r-topology is a compact
Hausdorff topological group. More generally if (X, T) is a minimal flow, v e J and
vx = x e X then the map vG -* vX, va>-*vax defines a quotient topology on vX, also
called the r-topology. A basis for the r-topology at x is given by the sets

O = [U,B]v = BlUnvX,
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where B<=• T is such that ve BnM and U is a neighbourhood of x in X. If F<= G
is a r-closed subgroup, ^(X, x 0 ) c J7 and x = vax0 for a e G then H {r-cls(O): O
is a relative r-nbd of x in uaFx0} = vaF'x0.

An extension Z —* Y of minimal flows is an almost periodic extension if it is distal
and F ' c f l where F= ^(V,y0) , B = ^(Z,z0), p(zo) = yo. It is a group extension if
in addition S < F. In the latter case K = F/ B is a compact Hausdorff topological
group which acts on (Z, T) as a group of automorphisms, with Z / K=Y.

An extension X -^ Y of minimal flows is called weakly mixing if the flow (/?„., T)
is topologically ergodic, i.e. for every two non-empty open subsets U, V in Rn, 3teT
with tUn V*0. We have the following theorem (see [VI]).

THEOREM. Let X -^ Y be a Be homomorphism of minimal sets then there exists a
commutative diagram

X

where p is almost periodic with B = F'A. Here B = ^(Z, z0), F=CS(Y,y0) and A =
'SiX, x0). Z is the largest almost periodic extension of Y within X and p is trivial (i.e.
an isomorphism) iff TT is weakly mixing.

For the general structure theorems of minimal flows we refer to [VI]. One we
use here is the Veech-Ellis theorem which states the identity, for metric flows, of
point distal extensions and Al-extensions, i.e. those extensions which can be
described as a composition of almost 1-1 extensions, almost periodic extensions
and countable inverse limits. The almost 1-1 extensions arise in this theorem via
the following construction, called a shadow diagram by Veech.

If X -^ Z is a homomorphism of minimal flows then one can construct a commuta-
tive diagram of homomorphisms of minimal flows:

where & is open and 6, 6 are almost 1-1. A concrete description using quasifactors
(i.e., minimal subsets of 2X) and the circle operation of BT on 2X is this:

Z = {p°o-1(z): zeZ,peM}, 0(p° a~\z))=pz,

X={(x, z): xezel}, d(x,z) = x,

and o-(x, z) = z. For details see, e.g. [Gl]. We say that two minimal flows are almost
1-1 equivalent if they have a common almost 1-1 extension. We recall that a minimal
flow (X, T) is called regular if for any almost periodic point (x, x') e X x X there
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exists i/» € Aut (X, T) such that x' = <Mx). A homomorphism X -^ Y of minimal
flows is regular if the same holds for every almost periodic point in Rv.

If <p:X-* Y is a map we also write <p(x, x') = (<p(x), <p(x')) for (x, x'JeXxX. If
L c X x X a n d x e X then L[x] = {x'eX:(x,x')e L}. If also K c X x J f then

L°K = {(x, x"): 3x' with (x, x')€ L, (x1, x")e K}.

With the exceptions /3T and M all flows are assumed to be metric.

1. Almost automorphisms and almost simplicity
Let (X, T) be a minimal flow. A pair ip, D is an almost automorphism if D is a
dense G« subset of X which is T- invariant and if/:D-*X is a continuous 1-1 map
such that ij/°t = t°tl/ V /eT and if>D is also a dense Gs with t/T1:ifi{D)-*• D
continuous. We sometimes refer only to tfi and write D^, for D.

LEMMA 1.1. Let (X, T) be minimal and <// an almost automorphism. Then for every
x e D# the point (x, ^(x)) is an almost periodic point of (X2, T), and ifL = o(x, \}i{x))

Proof. From Tx c D#, the continuity of tfi on D^ and the relations /°i/' = i/»
we conclude that lim t,x = x for some net f, e T implies also lim ^ ( x ) = lim i/»(f,x) =
ifi{x). If v e J is such that vx = x and lim f, = « in f}T, then also fi/»(x) = i/f(x). This
proves that (x, iA(x)) is almost periodic. If (x, x') e L then for some sequence tt e T,
(x, x') = lim f,(x, i/>(x)) = lim (f/X, i/Kf,x)) = (x, (/'(x)) by continuity of ijt. Thus L[x] =

•
If i|», D is an almost automorphism then, let Dx = Dn e/»(D), D2 = Dr\ i/»(D,),...,

Dn = Dnij((Dn_i) and Deo = n* = 1 Dn, then Dco = { z e D : V n 3 x e D , f x = z} is a
T-invariant dense G6 subset of X and if/iD^^ Dxis an automorphism in the usual
sense.

PROPOSITION 1.2. Lef (X, T) be a minimal flow ty an almost automorphism. Then
there exists a minimal almost 1-1 extension (X, T) -^ (X, T) and an automorphism
V of (X, T) SMC/I f/iaf
(i) TT"1^) = {X} is a singleton for every x e Doo •
(ii) ^x="^(x), VxeDoc.

/Voo/ Choose x0 e D^ and let

X=V (X, r(xo))•= o(..., *-l(xo), x0, (/r(x0),...)c Xz.
neZ

The proof of Lemma 1.1 shows that xo = (. . . , i/r'(xo), x0, </Kx0), • • •) is an almost
periodic point in (Xz, T) so that (X, T) is minimal. Let TT : X -> X be the projection
on the zeroth coordinate. If yo€.Dx and xeX with TT(X) = >'O; choose f,e 7* with
ffX0-» x = (... ^_,, >>„, >>,...). By continuity of <\> on D^, (A"(r,x0) -» •/'"(yo) and there-
fore yn = tli"(yo)Vn e Z. Thus Tr~\y0) = {*} and (i) is proved.

Let S be the shift on Xz. If we choose f,e T with lim <,xo = i/K ô) then clearly
lim /(X0 = Sx0. Now S°t = t°S(teT) and the minimality of X imply that SX = X
Claim (ii) of the proposition now follows when we define P̂ = S\x • D
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Motivated by [J] we now introduce

Definition. A metric minimal flow (X, T) is (two fold) almost simple (AS) if there
exists a T-invariant dense Gs subset X*<= X such that for every x, x'eX* either
6(x, x') = X x X or there exists an almost automorphism ip with x e D^, <=• X* such
that i/»(x) = x'. (Since we can replace D^, by ifi~1(if>(D)nX*) there is no loss in
generality if we assume also that i/f(D )̂<= X*.)

PROPOSITION 1.3. Let (X, T) -^ (Y, T) be an almost 1-1 homomorphism of metric
minimal flows; (X, T) is AS iff (Y, T) is AS.

/ Let Y0 = {ye Y: ir~\y) is a singleton.}, Xo= TT'H y0). Then y0 and Xo are
T- invariant dense Gs subsets of Y and X respectively, and IT : Xo-> Yo is a homeo-
morphism.

Suppose Y is an AS flow with Y*a Y as the required subset. Put X* =
ir~\Y*r\ Yo); then X* is clearly T-invariant dense GB. Let x, x'eX* and let
>> = TT(X), J ' = TT(X'). If o()>,/) = y x V then in particular o(y, /)=> Vox *o- Thus
o(x, x') => Xo x Xo and since the latter is dense in X x X we have 6(x, x') = X x X.
If on the other hand o(y,y')^ YxY then by almost simplicity of Y there exists
an almost automorphism <p with D^a Y* and ^/{y)= y'. Without loss of generality
we can assume that D#, if/(D^,) <= Y* nY0. Then TT"1 ° iff ° IT restricted to ir~x{D^)
is an almost automorphism cp of (X, T) with Dip = ir~l(D^,)ci X* and <p(x) = x'.

Conversely assume (X, T) is AS with X* as the required set. Put Y* = ir(X* n Xo)
and it is now easy to see that with respect to Y*, (Y, T) is AS. Q

Problem. Is every AS flow almost I-1 equivalent to a regular flow?

We say that a metric minimal flow (X, T) has (two fold) almost minimal self-joinings
(AMSJ) if there exists a T-invariant dense Gs subset X* of X such that for all
pairs x, x' e X* either o(x, x') = X x X or x' = tx for some t £ T. Again it is easy to
see that AMSJ is an invariant of the almost l-l equivalence relation. Clearly every
AMSJ flow is AS when T is commutative. We assume this is the next.

PROPOSITION 1.4. Let (X, T) be a metric minimal weakly mixing flow, (X, T)-2* (Y, T)
a group extension and suppose that (Y, T) has AMSJ; then (X, T) is AS.

Proof. Let Y*c y be the subset ensuring AMSJ for (Y, T). Let K be the compact
group of automorphisms of (X, T) such that TT:X/K= Y. Let X* = n~\ Y*), then
X* is a T-invariant dense Gs subset of X. Let x, x 'eX* and denote L=o(x,x').
If TT(L) ̂  YXY then by AMSJ of Y, there exists te T such that tir(x) = TT(X') SO

that ktx = x' for some ke K and the AS requirement is satisfied with the global
automorphism kt. If TT(L) = Yx Y then

X xX = U {(kx k')L: (k, k')eKx K}.

Since X is weakly mixing there exists (z, z ' ) e X x X with o(z,z') = X xX. If
(z, z') e (k x k')L then (fc~'z, k'~lz') is a point of L whose orbit is dense in X x X.
Thus L = X x X. •
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Since the Chacon minimal set has AMSJ, [J], it follows that every minimal metric
flow which is almost 1-1 equivalent to a weakly mixing group extension of the
Chacon minimal set is AS.

In the proof of the next lemma we use an idea of N. Markley [J, Proposition
3.11]. This will be used repeatedly throughout the paper.

A map X •£* Y is called semi-open if int^>(V)#0 for every V<=X open and
non-empty.

LEMMA 1.5. Let {X, T) be a minimal flow, X* a dense Gs subset of X and W<= X2

a closed invariant subset. If the projection maps TTJr. W-* X (j = 1, 2) are semi-open
then r = W n ( X * x X * ) is dense Gs in W.

Proof. Let V<= W be a non-empty open subset. By assumption int vj( V) 5̂  0 , whence
int wj( V ) n X V 0 . Thus nj\X*) is a dense Gs subset of W (j = 1,2), and therefore
so is irTl(X*)nnV(X*)= W*. •

As observed by J. Auslander, when X is minimal every homomorphism X ^* Y
is semi-open.

LEMMA 1.6. Let (X, T) be an AS flow X ^* Y an open homomorphism where Y is
not a point. Then the set of almost periodic points in Rv contains a dense Gs subset.
In particular q> is a Bc-extension.

Proof. Let TTJ:RV^X (j = 1,2) be the projections on X. It is easy to check that
these also are open maps.

By Lemma 1.5 R* = Rvn (X* x X*) is dense Gs in /?„. But if (x, x') e R* then
5{x, x') a Rv jt X x X and by the AS property x' = i//(x) for some almost automorphic
t\i. By Lemma 1.1 (x, x') is almost periodic. •

PROPOSITION 1.7. Let (X, T) be an AS flow X A Y a homomorphism with non-trivial
Y. Then <p is an AI hence also a point distal extension.

Proof. Let X^ —> Yx be the canonical AI tower corresponding to <p then XB as an
almost 1-1 extension of X is also AS and the extension <px is open. By Lemma 1.6
it is also a Bc-extension.

By maximality of Y^ it follows that (p^ is weakly mixing (see [VI, Theorem
2.6.4]). Since both the set of points with dense orbit and the set (X* x X*) n RVoo

are dense Gs in RVa>, we conclude that RVoc is minimal. Thus /?Vcc = AXoo, <Px, is 1-1,
and YX,= XOO is a strictly AI extension of Y. Since Xx is an almost 1-1 extension
of X it follows that <p is AI. •

COROLLARY 1.8. / / (X, T) is AS and purely weakly mixing ([E-G]), then (X, T) is
essentially prime; i.e., every factor map of (X, T) is almost 1-1.

Proof. Suppose X -̂ > Y is a factor. By Proposition 1.7 <p is a point distal homomorph-
ism and by definition of pure weak mixing <p is proximal hence almost 1-1. •

PROPOSITION 1.9. / / (X, T) is AS and X A Y is an almost periodic extension then
<p is a group extension.
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Proof. By [El] there exists a commutative diagram

X v ,

such that <p is a group extension, say <p: X -> X/.K = Y where X is a compact group
of automorphisms of (X, T). Let K0 = {ke K: \ (xok) = A (x0) = x0} then A is not 1-1
iff Ko is a non-normal subgroup of K. Assume fc"'Kofc ̂  Ko for some fce K and
choose fcoe Xo with k~lkok£ Ko.

Let L = o(x0,x,) = o(A(xo), A(xofc)). Choose a sequence /,e Tsuch that lim tjX0 =
xoko, then

lim f,(x0, x , ) = lim A(f,x0, f,xo&) = A(xofco,

where x2 = \(xokok) = \ixokik~1 kok))^\(xok) = xt. Since equality will imply by
equivariance of A that also A(xo) = Xixok'^ok), i.e., k'^ke Ko, a contradiction.

By Lemma 1.5 L* = Ln(X*xX*) is dense Gs in L. Choose (x,x')ei-*; by the
AS property x' = t/»(x) for an almost automorphism tji. Moreover, if (x, x") e L then
there exists a sequence /, e T with lim u{x, x') = (x, x"). But /,x € X* and f,x -> x imply

lim t,(x, x') = lim (t-x, iA(f,x)) = (x, i/f(x)) = (x, x')

so that x' = x".
Finally choose a sequence f, e T with lim f,x0 = x then for j = 1,2 we have

lim r,(x0, x.) = (x, lim f,x.) € L.
i i

So that lim, t,x, = lim, ttx2, i.e. xx and x2 are proximal. Since L<^ Rv and <p is a distal
extension this is impossible. Thus Ko < K hence Xo = e and <p is a group extension.

•
As an application of Proposition 1.2 here is an alternative proof for Proposition

1.9. Let A = <0{X, x0), F=<S(Y, y0) where y0 = <p(x0). It suffices to show that A < F.
Let yeF then d(xo,yxo) = N is minimal. Hence Af* = Nn(X*nX*) is a dense
Gs subset of N (Lemma 1.5) and if (x, x') € N* then by AS, x' = t//(x) for an almost
automorphism i/>. By Proposition 1.2 there exists an almost 1-1 extension X-2* X
and an automorphism ^ of (X, T) extending 6~x°\l)°6 on D ^ c D ^ n X o c X *
where X0 = {xeX: 6~\x) is a singleton}. If r* = {(x,f(x)):x€X} then clearly

. Now o(x0,-yxo) is also a minimal set with 0(o(xo, yxo)) = N. Thus
r') = (x,x ')er*no(x0,yx0) whence r^ = o(x0, yx0). In particular yxo =

). Since 6 is proximal <£(X, x0) = «(X, x0) = A and for a e A

ayx0 =

so that y~layx0 = x0 and y~layeA. •
PROPOSITION 1.10. Lef (X, T) -^ (y, T) fee a regular, point distal homomorphism of
minimal flows. Then for every Y-distal point x € X, ir~'(_v) = Ax where y = TT(X) and
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A = {ip e Aut (X, T): IT ° t/> = IT). In particular if (X, T) is a regular point distal flow
then Aut (X, T) is transitive on X and (X, T) is distal (hence also equicontinuous by
Proposition 3.1 when X is metrizable).

Proof. Let TT(X') = y and choose veJ with vx' = x'. Then vy = y and since x is
Y-distal vx = x, so that (x, x') is an almost periodic point of Rn. The regularity of
77 implies that x' = t/»(x) for some i/» e Aut {X, T) and necessarily i/» e A. D

2. 77ie existence of saturated orbit closures
LEMMA 2.1. Let X -̂ * Ybe an open homomorphism of metric flows. Let V = {V c X: V
ope/i and (p(V)= Y}. Then there exists a countable sub-collection {V,}°°=1 of V such
that every element ofV contains some V,.

Proof. Let Ve V and for e > 0 denote VE ={xe V: d(x, Vc)>e}. If for every n,
<p( V\/n) 5* Y, then there exist yn € Y\<p( V1/n). Let ynk -*y; by assumption there exists
xe V with <p(x)=y. Let 5 = d(x, Vc). Since <p is open we can find xnkeX with
<p(xnj = ynk such that xnk -> x But then xnk is eventually in Vs/2 and ynk e <p( Vs/2) a
contradiction. We proved: for every VeY there exists a closed subset L<= V with
<p(L)= Y. Let ^ = {(7;}°=! be a countable basis for open sets on X, then a finite
subset {Uh,..., t/,J covers L and satisfies U*=i ^ c V. Thus

=Ut/0:t/lj€'tt and«p(V)=Y]
7 = 1 J

is the required countable sub-collection. •

LEMMA 2.2. If

is a commutative diagram and a is open then cr: Rw -» Rp is also open.
Proof. Let Rp 3(zt, z\)^{z, z') and (x ,x ' )s / i , with a(x,x') = (z,z'). By openness
of a there exist sequences x,, x't e X such that eKx,) = z,, o-(xj) = z\ and x, -» x, x\ -» x'.
Clearly then #,, 3 (x(, x[) -> (x, x') and a(x, x') = (z, z') so that a :/?„-» i?p is open.

•
LEMMA 2.3. Let X —* Y be a homomorphism of minimal flows. Let F' = ^( Y, y0)
A = ®(X, x0) with y0 = v(x0). Let (x, x') = (vax0, vfix0) where a, /3 e G and veJ, be
an almost periodic point in Rw. Then for every neighbourhood Vof (x, x') in R^ we have

(vaF'xo)x(vpF'xo)<

Proof. Let U, U' be open subsets of X such that (x, x') € (U x U') n JRn <= V. Since
v{x, x') = (x, x') there exists a subset BaT such that veBnM (closure in /3T)
and Bx'c [/'.

The set O = [t/, B]r = B~XU n vtr~lTr(x) is a r-neighbourhood of xin VIT~*IT(X) =

vaFx0.
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If xt € O, there exists t e B with x2 = tXi e U. Since TJ-(X,) = ir{x) = ir{x') we have

Thus O x {x'} c T(( t/ x [/') n //? J and therefore

r-cls(O x {x'})<= T(([/ x [/')n//* J .

Since O is an arbitrary basic r-neighbourhood of x in vaFx0 we conclude that

o
Now (x, x') e /?„ implies a~xB e F and F' <] F. Thus for every y, 8 e F', a~'/38 =

S'a~'/3 for 5 'eF 'and

(vayx0, vfi8x0) = va(yx0, a~^8x0)

= va(yxo,8'a~ipxo)

= va8'(8'~1yx0,a~lpx0)

= va8'a~\a8'~lyx0, Px0)

e(va8'a'1)[(vaF'x0)x{x'}]

as claimed. D

LEMMA 2.4. Let

be a commutative diagram of minimal flows such that ^(Z, z0) = F'A where F =
^( y, yo), ^ - ^(X, x0). Then for a non-empty relatively open U <=• JR^ such that
o-( U) = Rp we have TV = 7RZ-

Proof. Let W = (Uxy. U2) n JR^ <= U where U{ (i = 1, 2) are open subsets of X. Let
(x,, x2) e W be an almost periodic point say z;(x,, x2)) = (x,, x2) for v e J. By Lemma
2.3 TW=>(vaF'x0)x(vpF'x0) = (w~lo~(Xi))x(vo-~lo-(x2)), where x, = t)ax0, x2 =
t)j8x0. For any (x, x') € W choose (x,, x[) 6 Wn JRW say w,(x,, x!) = (x,, x!) such that
(x,, x'i)-*(x, x'). We can find a,, a, a j , a 'e G, w,,w,w'e.J such that wft^wa,
w,a'i^w'a' and Wia/x0 = x,, w,ajxo = x!, waxo = x, w'a'xo = x'. If y, y'eF' then

o, w'a'-y'x0)

so that also TL7=>7W=>(wo-"1cr(x))x(vv'o-"1o-(x')).
Now let (x, x^eJR,,; by assumption there is a point (x, x')e t/ with a(x, x') =

o-(x, x') = (z, z')e/?p. If »vx = x, w'x' = x' for w,w'eJ then by the above TV =>
(wo--'(z))x(w'o-"1(z')) hence also 7X7=>(w-'(z))x(w-~1(z')) 3 (^ x') where
D(X, x') = (x, x'), veJ. Thus TU^JR, and finally 717 = 7^7• •
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PROPOSITION 2.5. Let X

, Z

473

be a commutative diagram of homomorphisms of minimal metric flows such that v is
open Bc-extension and p is the maximal a.p. extension of Z inside X. Let

X

be the given diagram with a Veech shadow diagram for a attached. Thus 6 and 6 are
almost 1-1 and a is open. Suppose further that TT happens to be a Bc-extension. Then
there exists a dense Gs subset S ofR^ such that (x, x') e S implies Rj ° 6{x, x') ° R$ =
o(x, x'), i.e. the orbit closure of (x, x') is Rs saturated.

Proof. Applying Lemma 2.2 to the diagram

we see that &: R* -* Rp is an open homomorphism. From Lemma 2.1 we now deduce
the existence of a sequence { VJ^, of open subsets of R+ such that for each i V) e V
and for every V € V there exists an i with Vt <= V. Here V = {V: V c R^ is open and
<r( V) = Rp-}. Our assumptions that IT is Be and that p is the maximal a.p. extension
of Y inside X imply that F'A=<S(Z, z0) where F=<S(Y,y0), A=(S(X, x0), [El].
Since 6 and 6 are almost 1-1, hence proximal, we also have A=(S(X, x0) and
F'A = $(Z, z0). Thus we can apply Lemma 2.4 to the diagram

and conclude that TU = JR* for every relatively open U<=JRt with a-(U) = Rfi.
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Since we also assumed that v- is Be, 7R^=R^ and ~TV=Ri for every VeV.
Baire's theorem now shows that S' = Pl°l, TV, is a dense Gs subset of R^. It also
follows that JRp = Rp and hence the projections of Rp- on Z are semiopen. Let
Z0 = {z6Z:|e- I(z) | = l}, Z0=6-l(Z0).

Since /?p consists of almost periodic points so does Rp-nZox Zo which by Lemma
1.5 is dense Gs in R^. Put S = S'na~l(Rpr\Z0xZ0). Let (x,x')eS and denote
L=o(x,x'). If there exists (£,, z2)e R^ with a'1 (zt)x or'1 (^^ L then by minimality
of ar(L) and openness of a

Rz°L°Rz = L

and we are done. Otherwise, V=R$.\L is an element of V and choosing i with
V; c V we get a contradiction since by definition of S there exists < € T with

x') e v; c v. n

3. Two special cases
PROPOSITION 3.1. Let (X, T) be a minimal metric flow and let X -^ Y be a regular,
distal homomorphism, then TT is a group extension. In particular if (X, T) is a minimal
regular metric distal flow then (X, T) is equicontinuous.

Proof. Let Z A Y be the maximal almost periodic extension of Y within X so that
we have the commutative diagram

X

as in Proposition 2.5. Now a as a distal homomorphism is open so that the shadow
diagram in Proposition 2.5 degenerates (Z = Z, X = X, T? = IT, & = a) and we con-
clude that there exists (JC, X') e Rr with

Ra ° 6{x, x') o Ra = o(x, x').

However, since IT is distal (x, x') is an almost periodic point and by regularity of
77, 5{x,x') = Y^ for i/»eAut(X, T). Thus o- is 1-1 and IT is almost periodic. It is
easy to see that an almost periodic regular extension is necessarily a group extension.

•
PROPOSITION 3.2. Let (X, T) be an AS flow and suppose that (X, T) admits a non
trivial equicontinuous factor (e.g. this is the case when (X, T) is incontractible [GI]
and not weakly mixing). Then X is an almost 1-1 extension of an equicontinuous flow.

Proof. Let X -^ Z be the non trivial equicontinuous factor. By Proposition 1.7 a is
point distal. Thus X itself is a point distal flow. This implies that the almost periodic
points are dense in X x X. Taking Y to be the one point trivial flow we have a diagram
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satisfying the hypothesis of Proposition 2.5. Also when we attach the shadow diagram
of <J to obtain

where & is open and 6, 6 almost 1-1, then X is also point distal and therefore TT
is Be and obviously open. Thus all the assumptions in Proposition 2.5 are satisfied
and we conclude that there exists a dense Gs subset S <= R^ = X x X such that
(x,x')e S implies

Ra°o(x,x')°Rt} = d(x,x').

Since X is an almost 1-1 extension of X it is AS as well and we have a dense G$
subset X* <= X which makes X AS.

Let (x, x')eSn(X*xX*) and let L = o(x, x'). By the AS property of X there
exists an almost automorphism i// with (/J(X) = x'. By Lemma 1.1 L[x] = {x'} and by
the definition of S, L[x] = &~xa{x'). Thus a~la(x) = {*'} and & is both open and
almost 1-1, hence an isomorphism. This means that a is almost 1-1, proving our
proposition. •

4. The topological versions of Veech's theorem
The situation we consider here is described by the diagram
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where TT is point distal open, p is the largest almost periodic extension of Y within
X, and the top square is the shadow diagram for cr. Thus

Z = {p o o--\z0): p e M}, 6(p ° o-~\z0))=pz0

X = {(x,z):xezeZ}, §(x,z) = z, &(x,z) = z,

6, 6 are almost 1-1 and or is open.
Let Z0 = {zeZ: ^ - ' ( z J h l } , Zo= ^ " ' ( ^ c Z , Xo^o-'H^o), Xo=0"1(A'o). Then

Xo = {(x, z) e X :zeZ0} and the sets Zo, Zo, Xo and Xo are all dense Gs subsets of
the corresponding spaces.

Note that if U is an open subset of X then int 6(U) => 0(Xon U). To see this
suppose xeXonU and xi-»x = 0'(x). Then choosing x ;eX with 0(Xj) = Xj and
choosing any subsequence x, -» x' we have 6(x') = 0(x). Hence x' = x and therefore
eventually x, e U. Thus x, e 0( U) and we conclude that x € int 8( U).

LEMMA 4.1. Let X -^ Y be open and point distal; then the set of almost periodic
points in R^ contains a dense Gs subset Sx of Rv. In particular v is a Bc-extension.

Proof. By [E2] there exists a dense Gs subset X, of X consisting of Y-distal points.
Since IT is open the projection maps TT, :/?„-> X 0" = 1,2) are open and by Lemma
1.5 5, = -n '̂CX]) n irj '(^i) is a dense Gs subset of Rn. If (x, x') e S, and vx = x for
t)€/, then v(x, x') = (x, vx')e /?„. Hence also (x', vx') e Rw. But x' is Y-distal hence
x' = vx' so that (x, x') is in JR^. D

LEMMA 4.2. 77ie subset Sx = (Xo x Xo) n Sx is a dense G« subset of Rv.

Proof. As in the previous lemma (Xox Xo) n Rv is dense Gs in Rw and hence so is
Sx=(XoxXo)nRwnSl = (XoxXo)nS1. D

Since p is almost periodic Rp consists of almost periodic points and as above
Sz=ZoxZonRp is a dense Gs subset of Rp. Put Sz = 0~\Sz), S* = S~\SX) and
Sx = cr~\Sz). Note that Sz c y/?p- and S* "= /^* ; also SX^SX.
LEMMA 4.3. Let V^R^be open with a{V) = Rfi. Put U = VnTK^ then UnSx is
dense in V n Sx.

Proof. Let (x, x') = ((x, z), (x', z')) e VnSx, then there are open subsets U, U' of X
with (x,x')e(UxU')nRt<=V. Since (x, x')eXoxXo we have (x, x')e
[(int 6(U))x (int 6(U'))]nRv. Therefore there are points (x,, xj)^(x,x') with
(x,, x'i)eSxn[(int 6(U))x (int 6(U'))]. Hence also ((x,,z,), (x,', f,'))^((x, f),
(x', f')) = (x, x') with ((x,, z,), (x,., £ ; ) ) e S ^ V = S x n ^ n V c S ^ n [ / . Here
((x,, f,), (xj, z!)) are the unique points in R+ above (x,, x|). D

LEMMA 4.4. With Vand Uas in Lemma 4.3, ifar(V) = R? then

TU^JR*.

Proof. Let (x, x')eJR^, say v(x, x') = (x, x') with t?€/ Denote (z, £') =
(T(X, X'), (Z, Z') = 0(z, £'), then there exists a sequence (z,, z!) € Sz such that (z,, z\) -*

(z, z').
Let (£,, zj) e 5^ be the unique point in Rp with 8(zt, z\) = (z,, z\) and let (£,, £!) -»

(£„,, z .̂), then clearly !;(£,,., £̂ .) = (z, £'). By assumption there are points (x,, x!) e V
with ^(x,, x;) = (£,-,£;); let (x,, x;)^(x,,xi).
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Now (Xi, x'j) € SxnV and by Lemma 4.3 we can find a sequence (x,, x,') e S* n t/
such that (x,, x|)-> (x,, xj). By Lemma 2.3

where w, e J satifies H^X,, x[) = (x,, x"!). As in the proof of Lemma 2.4 we also have
TU ^>{wcr~x&{xl))x.{w'cr~la{x\)) where w, w'eJ and wx,=x), w'xj = xj. It now
follows that

TU=>(var-la(xx)) x (vcr~la{x[))

Z))X(W-1(2'))B{X,X'). D
We can now prove the main theorems of this section.

THEOREM 4.5. Let (X, T) be an AS flow and (X, T)^*(Y,T) a non-trivial
homomorphism. Then up to almost 1-1 equivalence, TT is a group extension.

Proof. Using a shadow diagram we can assume that TT is open and by Proposition
1.7 it is point distal. Construct the diagram @.

Let r={V<=-_R£. V open, &(V) = J?p-} and let { V,}?, be a basis for Y. For each
i let U,= Vt n JR.*. Then by Lemma 4.4 TUt is an open dense subset of JR*. Put

S=f)TU,
1 = 1

then S is a dense Gs subset of JR*. Now if Sx is the subset of JR,, denned in
Lemma 4.2 and X* is a set which makes X AS, then S% = (X* x X*) nSx is a
dense Gs subset of JRn and £~':S* -»//?* is a homeomorphism. Denote S% =
0~\S%), then S% is a dense Ga subset of JR^. TO see this let (x, x') = ((x, z), (x', f')) e
JRt, say u(x, x') = (x, x')- Then (x, x') e JR,, and there exists a sequence (xj5 x[) e Sx

converging to (x, x'). Let (x^ x,') = ((x,, £,•), (xj, £J)) € S | be the unique point of Rf

above (x,,x't) and suppose (xiLx'i)^{xl,x[) = {{x,zx){x',z\)). Then clearly
D(X,, xj) = (x, X'). Since (x , ,xJ )eSj and since the latter set is T-invariant and
closed it also contains (x, x'). Thus S*x is dense Gs in JR^ and therefore S% n S is
non-empty. Let (x, x') eS%nS then x' = i/f(x) for an almost automorphism if/ and
in particular L = o(x, x') is minimal. If there exists a (f, £') e Rp with

<?-*(£, £')<=L

then we have (by minimality of L and openness of &)

Rt°LoR&cL

and L[x] = {x'} = R^[x'] so that o1 is both open and almost 1-1. Hence a is an
isomorphism and our theorem follows from Proposition 1.9. If no such (£, £') exists
then V= R*\L is open and satisfies <?( V) = /?p, i.e. Ve V. Choose an i with V; c V,
then 3teT with t(x, x') e V; c V, a contradiction. This completes the proof. •

We actually proved the following version of Proposition 2.5.

PROPOSITION 4.6. Consider the diagram (@) where we now assume that TT is open
point distal, p the maximal almost periodic extension of Y within X and a the open
shadow map of a. Then there exists a dense Gs subset S ofJR+ such that for (x, x') e S
o(x, x') is R# saturated.
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THEOREM 4.7. Let (X, T) be a minimal metric flow and let X -^ Y be a regular point
distal, open homomorphism. Then v = p° o~ where p is a group extension and a almost
1-1. In particular a metric regular point distal flow is equicontinuous.

Proof. Construct the diagram (@) as in the proof of Theorem 4.5. Let T, {Vj}^,,
{t/Ji^i and S be defined in the same way. Let Sx be as in Lemma 4.2, put
Sx = 6~\Sx), choose (x,x')eSxnS and let L = 5(x, x'). Since (x, x')eSx, L is
minimal and d(x, x') = (x, x') is an almost periodic point in R,. By regularity of TT,
x' = i//(x) for some tf> e Aut (X, T). Lifting iff to Xo we have x' = i//(x) and we finish
the proof as in Theorem 4.5. However, since our TT was assumed to be open we
actually get that TT = p° a where p is a group extension and p is almost 1-1. The
last part of the theorem follows from Proposition 1.10. •

Problem. Does there exist an AS weakly mixing flow X which is an inverted tower
of group extensions. I.e., X -4 Xn is a group extension, Rnn+I => R^n and LC=i ^
is dense in X x X ? Can any weakly mixing minimal flow have such a structure?
(See [G-W] for a weaker result.)

5. Preliminary lemmas
Our purpose in the rest of this paper is to deal with minimal joinings of AS flows.

LEMMA 5.1. Let X and Ybe minimal flows and L<= YxX a minimal subset. There
exist an almost 1-1 extension Y-* Y and a minimal subset L<= Y x X projecting onto
L, such that the projection of L onto Y is an open homomorphism.

Proof. Let w.L^Y be the projection and let L[y~\ = {xeX: (y, x)e L}. Since
TT"1: F-»2 L is an upper semicontinuous map it has a dense Gs subset Yoa Y of
continuity points. Choose yo&Yo and let yo= ir~x{y0) = {yo}'XL[yo]e2L. Define
Y = o(y0) = {p o Tr'\yo):p& M) = {{py0} x (p ° L[y0]): p e M}. We denote by <p the
canonical map of Y onto Y (projection on the first coordinate). Finally, let L =
{(y,x):bp(y),x)eyeY}.

If yi~*y is a convergent sequence in Y and (y, x)eL then ((p(y), x)e y and by
the definition of the topology in 2L it follows that a sequence (yit x,) e yt exists with
()>i, Xj)-*(<p(y), x). This shows that the projection TT : L-* Y is open.

For a point y e Yo and pe M with py0 = y we have p({y0} x Z-f̂ o]) = {>>} x L[y] = j?.
It follows that (p~1{y) = {y} and <p is almost 1-1.

By definition Y is minimal. To see that L is minimal choose a point (y0, x0) syo =
{yo}x-L[yo] so that (yo,xo) is an almost periodic point of L. If (yo,x)eyo then
()>0,x)eL and there exists a sequence f,-e T such that f,(>>o, xo)^(>'o, x). By con-
tinuity of TT'1 at>>oalso ^o-* 9o so that (y0, x )e o(y0, x0). If now(>', x) is an arbitrary
point of L, (<p(y),x)ey implies that a sequence tteT exists that lim tjyo = y and
x = lim tjXj where (y0, x,) e y0.

Thus (y, x) = lim f,(j0, *.-) G o(j^o, ^o) and L>= o(y0, ^o) is minimal. D

W h e n L c YxX is minimal and the projection v. L-» Y is open, the map y>->L[y]
from Y into 2*, is a homomorphism whose image {Lfy]: j>e Y} is a quasifactor of
X. If we change notation and call this quasifactor Y then we are at the situation
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assumed in the next lemma. This lemma is a version of a topological 'Fubini theorem'
of the type proved by Kuratowski and Ulam. We follow Veech [V3, Proposition 3.1].

LEMMA 5.2. Let (X, T) be a minimal flow, Y<=-2X a minimal quasi-factor such that

L = {(y,x):xeye Y}<= YxX

is minimal. Let X*<= X be a dense Gs subset ofX, then

Y* = {ye Y: ynX0 is dense Gs in y}

is a residual subset of Y.

Proof. Let X*=f~)7=, vi where {V,}?=1 are open dense subsets of X. Let {Um)2 = i
be a basis for the topology on X. A point y e Y is not in Y* iff there are m and /
such that ye Cml where

Cm,, = {ze Y:</>r*zn£/mc vc,}.

Denote Eml = int(Cm/) and suppose EmJ7*0. Let TT, (I = 1,2) be the projections
of L on Y and X respectively. Then V = Tr\l(Eml)n TTJ'(Um) is a non-empty open
subset of L because Cml n Eml is dense in Eml and z € Cmj implies z n £/m r̂  0 .

Since L is minimal int TT2( V) = U is an open non-empty subset of X. We claim
that L/<= VI. This contradiction (we assumed V, is open dense) will show that
Eml ¥=• 0 and it will follow that (Y*)c is of first category.

Let xe U say x = ir2(y, x), (y, x)e V. Since CmJn £m, is dense in Eml, TT^\Cmjn
£mi) is dense in irr'C^m,;) (use again the minimality of L), and 7rr1(Cm>/n£m>/)n
Tr̂ H^m) is dense in V. Thus we can find a sequence (yf, Xj)-»(_v, x) such that
yte Cm,n £m/, x( e t/m and (y{, x,)e L. By definition of Cm>, it follows that x, € Vc,
and since the latter set is closed, also xe V/. We have shown that L/<= V7 and the
proof is completed. •

Remark The use we made of the group action here, was only to insure that the
maps 7T, (/ = 1,2) are semi-open. Taking Y <= 2X to be a closed subset and assuming
the semi-openness of TT, (i = l,2) our lemma becomes purely topological (no
dynamics is involved).

LEMMA 5.3. Let Y be a quasifactor ofX then the sets

and therefore also Ym = YmM n Ymin are dense Gs subsets of Y

Proof. By Zorn's lemma Ymax is non-empty; by minimality of Y and invariance it
is dense. Finally

FF = {y e Y: 3f e Y, z z> y, d(z, y) ̂  e}

is clearly closed so that

Ymax= n (Fl/ny
n = 1

is dense Gs. The proof for Ymin is analogous. •
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6. The joinings of an AS flow
We say that a property of minimal flows essentially holds if it holds up to almost
1-1 extensions. For example X is essentially an extension of Y if an almost 1-1
extension of X is an extension of Y. The flows X and Y have essentially no common
factor if no almost 1-1 extension of X and no such extension of Y have a non-trivial
common fetor. It is easy to see that X and Y are essentially disjoint iff they are
disjoint.

THEOREM 6.1. Suppose T is a commutative group. Let (X, T) be an AS flow, (Y, T)
a minimal flow and L <=• Y x X a minimal subset such that L^ YxX. Then up to
almost 1-1 equivalence L is the relative product of X and Y over a common factor
which is essentially a group factor of X.

COROLLARIES 6.2. For commutative T
(1) If (X, T) is AS and purely weakly mixing, then X is disjoint from every minimal

flow which is not an essential extension of it.
(2) If (X, T) is AS and (Y, T) minimal, then they are disjoint iff they have essentially

no common factors.

Proof of Theorem 6.1. Let L c Y x X be minimal and we assume L¥> YxX. Let
77,: L-* Y and v2: L-*X be the projections. By Lemma 5.1 we can assume that IT,
is open. This implies that the map y: Y-» 2X defined by y(y) = L[y], is a continuous
homomorphism. We denote by Y the quasifactor {L[_y]: y e Y} which is the image
of y in 2X.

Define W = {(xux2)eX2: Bye Y,(y,Xi)eL, « = 1,2}. We let L* = Ln(YxX*),
W*= Wn(X*xX*) , and ¥ = {<A: </» is an almost automorphism of (X, T), D+,
</»(£>*) c X* and for some x e D^,, (x, «/»(*)) e W*}.

LEMMA 6.3. For commutative T, VW X x X.

Proof If W = X x X then for all t e T and xeX, (x, tx) e W so that given (y, x)eL
also ( / x t)(y, x) = (y, tx) e L. Since L is minimal this implies (Ixt)L = L VteT

and since (X, T) is minimal we get L= Y x X contradicting our assumption. •

LEMMA 6.4. IfW^X xX then for every ye Yfor which L*[y] #0 and every xe L*[y],
L*[y] = {il/(x): i / r e * W x £ D j . Thus for yu y2e Y with L*[yt] *0, i = 1, 2, either
L*[y>] = L*[y2] or L*[yx] n L*[y2] = 0.
Proof. Let x, x'eL*[y] then (x,x')e W* and since o(x,x')<= V^^XxX we have
by AS x' = tlf(x) for an almost automorphism if/ e^. Conversely, suppose i/> e ¥ and
xeL*[y]nDf

By definition of * there exists x e D^ with (x, i/K*)) e W* so that for some y = Y,
(y, *)> (P, </K*)) € L*. By minimality of L there exists f, € T with (y, x) = lim tt(y, x).
Now

(y, 0(x)) = (/ x 4,){y, x) = (lx </,) lim /,(£ x)

= lim (,((/ x $)(y, x)) = lim /,(£ «/Kx)) e I~

Since by assumption t/>(D,/,)<= X* we also have (>», «/»(x))€ L*, i.e. (/»(x)e L*[y]-
D
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LEMMA 6.5. Assume Tis commutative, then the quasifactor Y = {L[y~\: ye Y} of X,
is a factor of an almost 1-1 extension ofX.

Proof. By Lemma 5.2 the set Y* = {ye Y: ynX* is dense Gs in y} is dense Gs in
Y. By Lemma 5.3 Ym = Ym a xn Ymin is also dense Gs in Y. Let yoe Y be such that
L[yo] = y~o is in Y* n Ym. Let xo€L*[^o], then (L[j0] , xo) = (j?o, ^o) is an almost
periodic point of Y x X. In fact (y0, x0) e L implies that ( j 0 , *o) is an almost periodic
point and if v e J is such that v(y0, x0) = (y0, x0) then v(y0, xo) = (v° L[y0], x0) =
(L[y0], xo) = (yo,xo), so that (yo,xo) is also almost periodic. Define X = d(yo,xo)
and A : L-> X by \(y, x) = \(py0, px0) = (p ° L[y0], px0) = (L[y], x), where (y, x) =
p(y<>, xo)(pe M). Let ̂  : X -» X be the projection on the second coordinate. Suppose
<p(L[y], x0) = JC0, (L[y], x0) € X. Then xoe L*[y] and by Lemmas 6.3 and 6.4 L*[_y] =
L*[y0]. Since yoe Y* we have L[y0] = L*[y0], thus L[y0] <= L[y]. However i^oe Ymax
and therefore L[y0] = L[y]. This shows that (p~'(^o) = {(9o, x0)} and <p is almost 1-1.
The projection T? on the first coordinate is the required map from X to K •

Under the assumptions of Theorem 1.1 and the additional assumption that
77-,:L-» Y is open (we may assume this by Lemma 5.1) we obtained the following
diagram

YxX^L

X <—̂  X = Y v X

Here <p is almost 1-1, y is the map y~^L[y], Y is the quasifactor {L[y]: y&Y} of
X, TT is the projection of X onto Y and A is the map defined by \(y, x) - (L[y], x)
in the proof of Lemma 6.5.

It is now clear that L is the relative product of Y and X over Y. By Theorem
4.5 TT is, up to almost 1-1 extensions, a group extension. This completes the proof
of Theorem 6.1. D

Corollaries 6.2.1 and 6.2.2 now follow from the definitions of the relevant notions.
We remark that the only place where the commutativity of T was used in the proof
of Theorem 6.1 is at the proof of Lemma 6.3, where we use the fact that each teT
defines an automorphism of (X, T). Thus for a general group T our theorem still
holds if we know that W^XxX.

Problem. Is the assumption that T is abelian in Theorem 6.1 necessary?

Acknowledgment. I wish to thank N. Markley and J. Auslander for their helpful
comments on a first draft of this paper.

https://doi.org/10.1017/S0143385700005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005691


482 E. Glasner

REFERENCES

[A] J. Auslander. Endomorphisms of minimal sets. Duke Math. J. 30 (1963), 605-614.
[Al] J. Auslander. Minimal Flows and Their Extensions. Math. Studies 153, North-Holland: Amster-

dam, 1988.
[B] I. U. Bronstein. Extensions of Minimal Transformation Groups. Sijthoff & Noordhoff: 1979.
[El] R. Ellis. Lectures on Topological Dynamics. Benjamin: New York, 1969.
[E2] R. Ellis. The Veech structure theorem. Trans. Amer. Math. Soc. 186 (1973), 203-218.
[E-G] R. Ellis & S. Glasner. Pure weak mixing. Trans. Amer. Math. Soc. 243 (1978), 135-146.
[Gl] S. Glasner. Proximal flows. Lecture Notes in Math. 517. Springer Verlag: New York, 1976.
[G-W] S. Glasner & B. Weiss. A weakly mixing upside down tower of isometric extensions. Ergod.

Th. & Dynam. Sys. 1 (1981), 151-157.
[Go] W. H. Gottschalk. Transitivity and equicontinuity. Bull. Amer. Math. Soc. 54 (1948), 982-984.
[J] A. del Junco. On minimal self-joinings in topological dynamics. Ergod. Th. & Dynam. Sys. 7

(1987), 211-227.
[J-R] A. del Junco & D. Rudolph. On ergodic actions whose self-joinings are graphs. Ergod. Th. &

Dynam. Sys. 7 (1987), 531-557.
[VI] W. A. Veech. Topological Dynamics, Bull. Amer. Math. Soc. 83 (1977), 775-830.
[V2] W. A. Veech. A criterion for a process to be prime. Monat. Math. 94 (1982), 335-341.
[V3] W. A. Veech. Point-distal flows. Amer. J. Math. 92 (1970), 205-242.

https://doi.org/10.1017/S0143385700005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005691

