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Abstract. Almost simple (AS) minimal flows are defined and it is shown that any
factor map of an AS flow is, up to almost 1-1 equivalence, a group factor. An
analogous theorem for metric, regular, point distal extensions is proved. In particular
a theorem of Gottschalk is strengthened to show that any regular, point distal,
metric flow is equicontinuous. When the acting group T is commutative it is shown
that every proper minimal joining of an AS flow X and a minimal flow Y, is, up
to almost 1-1 extensions, the relative product of X and Y over a common factor
which is a group factor of X.

Introduction

An ergodic process (X, T, m), where X is compact metric and T a Borel one to
one measure preserving map of X into itself, is called (two-fold) simple, if every
ergodic self joining of (X, T, m) is either m X m or a measure of the form (Id x S$)A =
Ag where S is a Borel automorphism of (X, T, m) and A is the probability measure
on X x X defined by: | fdA = f(x, x) dm(x). The main result of [V2] is that for
a simple process every non-trivial factor (X, T, m) = (X', T', m') is a compact group
factor; i.e., there exists a compact group K of automorphisms of (X, T, m) such
that X'= X/K and m’, T' are the induced measure and measure preserving trans-
formation, respectively. The crucial device in proving this theorem is the following
easy version of a theorem of A. Weil [V2]

THEeOREM. If K is a Polish topological group admitting a left invariant Borel probability
measure, then K is compact.

Let (X, T, m) be (two fold) simple, [J-R], then A, its group of automorphisms
is a Polish topological group under the weak topology. If (X, T, m) = (X', T', m’)
is a factor map then simplicity of (X, T, m) implies that the subgroup K =
{S€ A: mo S =7} admits an invariant probability measure and by Weil’s theorem
is therefore compact. It then follows that 7 is K-extension.

When we look for a theorem analogous to that of Veech in topological dynamics,
we are faced with two problems. The first is to find an appropriate notion of
topological simplicity and the second is to find a substitute for Weil’s theorem. Our
starting point for the latter problem will be the following theorem of Gottschalk, [Go].
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THEOREM. Let (X, T) be a topologically ergodic metric flow, where T is an abelian
group. If the group Aut (X, T) acts transitively on X then (X, T) is equicontinuous.

As was observed by J. Auslander [A], Gottschalk’s theorem, for minimal flows,
can be reformulated as the statement that a metric distal regular T-flow for abelian
T is equicontinuous. In § 3 we shall show that the assumption of commutativity in
Gottschalk’s theorem is not necessary; any metric regular, flow is equicontinuous
(Proposition 3.1). (This was proved independently and earlier by J. Auslander [A1].)
In fact we shall show that moreover any regular, open, point distal homomorphism
of a metric minimal flow is necessarily a group extension (Theorem 4.7). We consider
these theorems as topological counterparts of Weil’s theorem.

Our definition for topological simplicity, which we call Almost Simple (AS), is
motiviated by A. del-Junco’s definition of topological almost minimal self-joinings
(AMSJ), [J]. We show that AS is an invariant of almost 1-1 extensions and that a
weak-mixing group extension of AMSJ is AS. Well known results imply now that
any non-trivial factor map X = Y of an AS flow X is necessarily point distal
(Proposition 1.7). In § 4 we get the stronger result that up to almost 1-1 extensions
7 is actually a group extension (Theorem 4.5). The main proposition for the proofs
of both Theorems 4.5 and 4.7 is proved in § 2 (Proposition 2.5). Actually, among
the assumptions in Proposition 2.5, we include one (that 7 is Bc) which we do not
have when we come to apply it in the proofs of Theorems 4.5 and 4.7. However,
in some special cases, namely when = is distal and when X is not weakly mixing,
this assumption does hold and in § 3 we do use Proposition 2.5 in proving the
corresponding results in these special cases (Propositions 3.1 and 3.2). In this way,
we hope, the main ideas and also the exposition are made clear and easier to follow.
Finally in § 4 we discuss the technical changes which we need to introduce into
Proposition 2.5 so that Theorems 4.5 and 4.7 can be deduced. This way of proof
necessitates a certain amount of repetition.

In [J-R] the following theorem is proved for ergodic measure preserving actions
(X, u, Ty and (Y, v, T).

THEOREM. If (X, w) is simple then every ergodic joining of (X, u) and (Y, v) which
is not product measure is the projection on X X Y of the relatively independent joining
of (X", u") and (Y, v) over (X/K)", for some compact subgroup K of C(X, u T)
and some factor map ¢: Y > (X/K)"°.

Here C(X, u, T) is the group of automorphisms of (X, u, T), X/K is the factor
of (X, p, T) corresponding to K and (X/K)"“is (X/K)"/S, where S, is the group
of permutations on the coordinates of (X/K)".

In § 6 we obtain, using Theorem 4.5 a topological analogue for this theorem.
Simple is replaced by AS and ergodic joining is replaced by minimal joining, i.e.,
a minimal subset of X x Y. We are not able to prove our theorem for general T and
have to restrict it to abelian T. Under these assumptions we prove (Theorem 6.1)
that any proper minimal joining Lc X x Y is, up to almost 1-1 extensions, the
relative product of X and Y over a common factor which is, up to almost 1-1
extensions, a group factor of X. The cases n>>1 in del-Junco Rudolph’s theorem
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cannot arise here since (X/K)"®, which is never minimal for n> 1, cannot occur
as a factor of the minimal flow Y.

In § 5 we prove some preliminary lemmas and in § 6 Theorem 6.1 and some
corollaries are proved.

In § 0 we introduce briefly our general setup and recall basic theorems from the
structure theory of minimal sets (see [E1], [B], [Gl] and mainly [V1]).

0. General background

Throughout this paper T is a fixed but arbitrary discrete group. Discreteness is not
as severe a restriction as it sounds, because first, most dynamical notions we deal
with do not depend on the topology of T and second, in those cases when the
topology is significant, one can use slight modifications to obtain the same results
for general topological groups.

We write BT for the Stone-Cech compactification of 7. M will denote a fixed
minimal ideal in BT. J is the set of idempotents in M and u is a fixed element of
J. The subset uM = G forms a subgroup of the semi-group M.

BT acts on every flow (X, T) and the orbit closure of a point x€ X is given by
o(x)={px: pe BT}. The point x € X is an almost periodic point iff 6(x) is minimal
iff 6(x)={px: pe M}. We make the convention that whenever we choose a base
point x, in a minimal flow X then ux,=x,. If (X, T) is any flow then the set of
almost periodic points in X is just JX ={vx: x€J, x€ X}; e.g. apoint (x, x')e X x X
is almost periodic iff v e J with v(x, x') =(x, x').

Whenever X = Y is a homomorphism of flows we denote by R, the subflow of
X x X given by

R, ={(x,x"): p(x) = o(x")}.
A homomorphism (or extension) X © Y of minimal flows is Bc (satisfies the
Bronstein condition) if JR, is dense in R,.

If (X, x,) is a pointed minimal flow, (i.e. a minimal flow with a distinguished

base point x,) its Ellis group is the subgroup
Y(X, xp)={a e G: axo=x,} of G.

A homomorphism (X, xo) & (Y, y,) of minimal flows is proximal iff 4(X, x,) =
4(Y, yo)-

If veJ then the sets {B"'AnvG: A, B< T, ve B} (closure in BT) form a basis
for a topology on vG called the r-topology. For any v, w € J, the groups vG and wG
are 7-homeomorphic. The groups of the form %(X, x,) are exactly the r-closed
subgroups of G. If F< G is a 7-closed subgroup of G then

F'=({r-cls(0): O a r-nbd of u in F}
is a normal subgroup of F and F/F' with the quotient r-topology is a compact
Hausdorff topological group. More generally if (X, T) is a minimal flow, ve J and
vx = x € X then the map vG - vX, va—vax defines a quotient topology on vX, also
called the 7-topology. A basis for the r-topology at x is given by the sets

O0=[U,B],=B"'UnuX,
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where B< T is such that ve BA M and U is a neighbourhood of x in X. If Fc G
is a r-closed subgroup, 9(X, x,) < F and x = vax, for a € G then () {r-cls(0): O
is a relative 7-nbd of x in vaFx,} = vaF'x,.

An extension Z = Y of minimal flows is an almost periodic extension if it is distal
and F'c B where F=94(Y, y,), B=%(Z, z,), p(zo) = y,. It is a group extension if
in addition B < F. In the latter case K = F/ B is a compact Hausdorff topological
group which acts on (Z, T) as a group of automorphisms, with Z/K =Y.

An extension X > Y of minimal flows is called weakly mixing if the flow (R,,, T)
is topologically ergodic, i.e. for every two non-empty open subsets U, Vin R, 3te T
with tU n V # . We have the following theorem (see [V1]).

THEOREM. Let X = Y be a Bc homomorphism of minimal sets then there exists a
commutative diagram

d

where p is almost periodic with B=F'A. Here B=94(Z, z,), F=%(Y, y,) and A=
%(X, xo). Z is the largest almost periodic extension of Y within X and p is trivial (i.e.
an isomorphism) iff = is weakly mixing.

Y

For the general structure theorems of minimal flows we refer to [V1]. One we
use here is the Veech-Ellis theorem which states the identity, for metric flows, of
point distal extensions and Al-extensions, i.e. those extensions which can be
described as a composition of almost 1-1 extensions, almost periodic extensions
and countable inverse limits. The almost 1-1 extensions arise in this theorem via
the following construction, called a shadow diagram by Veech.

If X % Z is a homomorphism of minimal flows then one can construct a commuta-
tive diagram of homomorphisms of minimal flows:

X(__é_.

|

Z 8

Nt —— M
Qe

where & is open and 6, 6 are almost 1-1. A concrete description using quasifactors
(i.e., minimal subsets of 2*) and the circle operation of BT on 2% is this:

Z={pooN(2):z€Z peM}, 0(poo'(2))=pz
X={(x,%):xeieZ}, 6(x %) =x,
and o(x, £) = Z. For details see, e.g. [Gl]. We say that two minimal flows are almost

1-1 equivalent if they have a common almost 1-1 extension. We recall that a minimal
flow (X, T) is called regular if for any almost periodic point (x, x’)€ X X X there
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exists ¢ € Aut (X, T) such that x'=¥(x). A homomorphism X 5 Y of minimal
flows is regular if the same holds for every almost periodic point in R,,.
If ¢: X > Y is a map we also write ¢(x, x') = (¢(x), ¢(x')) for (x, x')e X x X. If
Lc X xX and xe X then L[x]={x"e X :(x, x")e L}. If also K < X x X then
Lo K={(x,x"): dx" with (x,x")e L, (x',x")e K}.
With the exceptions BT and M all flows are assumed to be metric.

1. Almost automorphisms and almost simplicity

Let (X, T) be a minimal flow. A pair ¢, D is an almost automorphism if D is a
dense G; subset of X which is T-invariant and ¢ : D X is a continuous 1-1 map
such that Yot=toy VteT and ¢D is also a dense G; with ¢ ':y(D)> D
continuous. We sometimes refer only to ¢ and write D, for D.

LemMma 1.1. Let (X, T) be minimal and  an almost automorphism. Then for every
x € D, the point (x, y(x)) is an almost periodic point of (X?, T), and if L= 6(x, y(x))
then L[x]={y(x)}.

Proof. From Tx < D,, the continuity of ¢ on D, and the relations to y =y o tVte T,
we conclude that lim #,x = x for some net ¢; € T implies also lim f(x) =lim ¢(t,x) =
Y(x). If veJ is such that vx = x and lim t; = v in BT, then also vy (x) = (x). This
proves that (x, ¢(x)) is almost periodic. If (x, x") € L then for some sequence t; € T,
(x, x")=lim t;(x, ¢(x)) =lim (tx, Y(1:x)) = (x, Y(x)) by continuity of . Thus L[x] =
{¢(x)}. O

If ¢, D is an almost automorphism then, let D, = D ¢(D), D= D y(D,),...,
D,=Dny(D,_,) and Do=(,_, D,, then Do ={ze D:Vn3xeD,y"x=1z} is a
T-invariant dense G; subset of X and ¢ : D~ D, is an automorphism in the usual
sense.

ProposiTION 1.2. Let (X, T) be a minimal flow ¢ an almost automorphism. Then
there exists a minimal almost 1-1 extension ()?, T) = (X, T) and an automorphism
V¥ of ()2, T) such that

(i) 7 '(x)={X} is a singleton for every x € D.

(i) ¥%=9(x), Vxe Ds.

Proof. Choose x,€ Dy, and let

X =V (X, ¢"(x0))=0(. .., ¢ (x0), Xo, ¥(X),...) = XZ.

neZ

The proof of Lemma 1.1 shows that X,=(..., ¥~ '(xo), Xo, ¥(xo), ...) is an almost
periodic point in (X7, T) so that (X, T) is minimal. Let : X > X be the projection
on the zeroth coordinate. If y,e D, and X € X with w(X) = yo; choose t;€ T with
tXo>X=(...y_1, Yo, ¥1...). By continuity of ¢ on D, ¢"(txo) - ¢¥"(y,) and there-
fore y, =¥"(yo)VneZ. Thus = '(y,) ={x} and (i) is proved.

Let S be the shift on XZ. If we choose ¢, T with lim txo= ¥(x,) then clearly
lim t%,= S%,. Now Sot=to S (te T) and the minimality of X imply that SX = X.
Claim (ii) of the proposition now follows when we define ¥ = S| . O
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Motivated by [J] we now introduce

Definition. A metric minimal flow (X, T) is (two fold) almost simple (AS) if there
exists a T-invariant dense G; subset X* < X such that for every x, x'e X* either
d(x, x")= X x X or there exists an almost automorphism ¢ with x € D, = X* such
that (x)=x". (Since we can replace D, by ¢ '(¢(D)n X*) there is no loss in
generality if we assume also that ¢(D,) < X*.)

ProrosITION 1.3. Let (X, T) 2 (Y, T) be an almost 1-1 homomorphism of metric
minimal flows; (X, T) is AS iff (Y, T) is AS.

Proof. Let Yo={ye Y: w~'(y)is asingleton.}, Xo=m"'(Y,). Then Y, and X, are
T-invariant dense G; subsets of Y and X respectively, and 7: X,> Y, is a homeo-
morphism.

Suppose Y is an AS flow with Y*c Y as the required subset. Put X*=
7 (Y*NY,); then X* is clearly T-invariant dense G;. Let x, x’e X* and let
y=mu(x), y'=m(x"). If 6(y,y') =Y x Y then in particular 6(y, y') > Yy x Y,. Thus
6(x, x') © Xy, % X, and since the latter is dense in X x X we have o(x, x') =X x X.
If on the other hand 6(y, y') # Y X Y then by almost simplicity of Y there exists
an almost automorphism ¢ with D, Y* and ¢(y) = y’. Without loss of generality
we can assume that D, ¢(D,)<= Y*n Y,. Then #w ' ¢ o 7 restricted to = '(D,)
is an almost automorphism ¢ of (X, T) with D, =7"'(D,)< X* and ¢(x)=x".

Conversely assume (X, T) is AS with X * as the required set. Put Y*= #(X*n X;)
and it is now easy to see that with respect to Y* (Y, T) is AS. ]

Problem. 1s every AS flow almost 1-1 equivalent to a regular flow?

We say that a metric minimal flow (X, T) has (two fold) almost minimal self-joinings
(AMS]J) if there exists a T-invariant dense Gj subset X* of X such that for all
pairs x, x"€ X* either 6(x, x’)= X x X or x'=tx for some tc T. Again it is easy to
see that AMSJ is an invariant of the almost 1-1 equivalence relation. Clearly every
AMS]J flow is AS when T is commutative. We assume this is the next.

PrOPOSITION 1.4, Let (X, T) be a metric minimal weakly mixing flow, (X, T) > (Y, T)
a group extension and suppose that (Y, T) has AMSIJ; then (X, T) is AS.

Proof. Let Y*c Y be the subset ensuring AMSJ for (Y, T). Let K be the compact
group of automorphisms of (X, T) such that 7: X/K =Y. Let X*=7"'(Y*), then
X* is a T-invariant dense G; subset of X. Let x, x'€ X* and denote L=4(x, x’).
If #(L)# Y x Y then by AMSJ of Y, there exists 1€ T such that t7(x) = w(x') so
that ktx=x’ for some ke K and the AS requirement is satisfied with the global
automorphism kt. If w7(L)=Y X Y then

XxX=J{(kxk')L: (k,k')e K xK}.

Since X is weakly mixing there exists (z,z')e X x X with d(z,z)=XxX. If
(z,z)e(kx k)L then (k™'z, k’"'z’) is a point of L whose orbit is dense in X x X.
Thus L= X x X. O
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Since the Chacon minimal set has AMSJ, [J], it follows that every minimal metric
flow which is almost 1-1 equivalent to a weakly mixing group extension of the
Chacon minimal set is AS.

In the proof of the next lemma we use an idea of N. Markley [J, Proposition
3.11]. This will be used repeatedly throughout the paper.

A map X 5 Y is called semi-open if int (V) # & for every V< X open and
non-empty.

LEmMA 1.5. Let (X, T) be a minimal flow, X* a dense G; subset of X and W< X
a closed invariant subset. If the projection maps m;: W- X (j=1,2) are semi-open
then W*= W N (X*x X*) is dense G5 in W.

Proof. Let V< W be a non-empty open subset. By assumption int 7;( V) # &, whence
int (V) N X*# . Thus 7} (X *) is a dense G, subset of W (j =1, 2), and therefore
so is w7 (X *) N7 (X *) = W*, O

As observed by J. Auslander, when X is minimal every homomorphism X > Y
is semi-open.

LemMma 1.6. Let (X, T) be an AS flow X > Y an open homomorphism where Y is
not a point. Then the set of almost periodic points in R, contains a dense G5 subset.
In particular ¢ is a Bc-extension.

Proof. Let m;:R,~» X (j=1,2) be the projections on X. It is easy to check that
these also are open maps.

By Lemma 1.5 RY¥ =R, n(X™*x X™) is dense G; in R,. But if (x, x') € R¥ then
o(x, x)= R, # X x X and by the AS property x’ = y(x) for some almost automorphic
¢. By Lemma 1.1 (x, x') is almost periodic. O

PROPOSITION 1.7. Let (X, T) be an AS flow X 5 Y a homomorphism with non-trivial
Y. Then ¢ is an Al hence also a point distal extension.

Proof. Let X, % Y, be the canonical Al tower corresponding to ¢ then X as an
almost 1-1 extension of X is also AS and the extension ¢, is open. By Lemma 1.6
it is also a Bc-extension.

By maximality of Y, it follows that ¢, is weakly mixing (see [V1, Theorem
2.6.4]). Since both the set of points with dense orbit and the set (X*x X*)nR,,_
are dense G; in R,_, we conclude that R,_is minimal. Thus R, _=Ax_, ¢« is 1-1,
and Y, = X, is a strictly Al extension of Y. Since X is an almost 1-1 extension
of X it follows that ¢ is Al O

CoroLLARY 1.8. If (X, T) is AS and purely weakly mixing ({[E-G]), then (X, T) is ‘
essentially prime; i.e., every factor map of (X, T) is almost 1-1.

Proof. Suppose X %> Y is a factor. By Proposition 1.7 ¢ is a point distal homomorph-
ism and by definition of pure weak mixing ¢ is proximal hence almost 1-1. O

ProrosITION 1.9. If (X, T) is AS and X 5 Y is an almost periodic extension then
@ is a group extension.
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Proof. By [E1] there exists a commutative diagram

¥
1 X
b

such that ¢ is a group extension, say ¢ : X->X /K =Y where K is a compact group
of automorphisms of (X, T). Let Ko={ke K: A(Xpk) = A(X,) = x,} then A is not 1-1
iff K, is a non-normal subgroup of K. Assume k™ 'K,k # K, for some ke K and
choose ko€ K, with k" 'kok € K.
Let L= a(x,, x,) = 0(A(X,), A(X,k)). Choose a sequence f; € T such that lim #,x,=
Xoko, then
lim £(xg, x;) = lm A(6X,, txXok) = A(Xpko, Xokok)
=(xo, X2),
where x, = A (X,kok) = A (Xok(k™'kok)) # A(Xok) = x,. Since equality will imply by
equivariance of A that also A (X,) = A(Xok'kok), i.e., k 'kok € K,, a contradiction.
By Lemma 1.5 L*= L~ (X*Xx X*) is dense G; in L. Choose (x, x') € L¥*; by the
AS property x’ = (x) for an almost automorphism . Moreover, if (x, x") € L then
there exists a sequence f; € T with lim ¢,(x, x') = (x, x”). But t,x € X* and t;x > x imply
lim #;(x, x") =1lim (¢x, Y(t:x)) = (x, P(x)) =(x, x)
so that x'=x".
Finally choose a sequence t;€ T with lim #,x,= x then for j=1, 2 we have

lim ti(xo, ‘xj) =(x, lim tixj) eL.

So that lim; t;x, = lim; t;x,, i.e. x, and x, are proximal. Since L< R, and ¢ is a distal
extension this is impossible. Thus K, <1 K hence K,= e and ¢ is a group extension.
a

As an application of Proposition 1.2 here is an alternative proof for Proposition
1.9. Let A= %(X, x,), F = %(Y, y;) where y,= ¢(x,). It suffices to show that A < F.
Let ye F then a(x,, yx,) = N is minimal. Hence N*=Nn(X*n X*) is a dense
G5 subset of N (Lemma 1.5) and if (x, x") € N* then by AS, x'= ¢(x) for an almost
automorphism ¢. By Proposition 1.2 there exists an almost 1-1 extension X5 X
and an automorphism ¥ of ()~(, T) extending 6 'c o8 on D, D, n X,c X*
where X,={xe X: 07'(x) is asingleton}. If I'y={(X, ¥(X)): X¢€ X} then clearly
0(Ty) = N. Now 4(X,, yX,) is also a minimal set with 6(6(%,, yX,)) = N. Thus
07 '(x, x") = (%, X") ey N 6(X,, yX,) whence TI'y=0(%,, yX,). In particular yx,=
W (x,). Since 6 is proximal <g()2, Xo)=%4(X, x,)=A and for a€ A

ayXo= aW¥(x,) =V(ax,) = ¥(X,) = yX,
so that y 'ayX,=%, and y 'aye A. O

PrOPOSITION 1.10. Let (X, T) = (Y, T) be a regular, point distal homomorphism of
minimal flows. Then for every Y-distal point x € X, = '(y) = Ax where y = m(x) and
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A={yeAut (X, T): weo o =m}. In particular if (X, T) is a regular point distal flow
then Aut (X, T) is transitive on X and (X, T) is distal (hence also equicontinuous by
Proposition 3.1 when X is metrizable).

Proof. Let w(x')=y and choose veJ with vx’=x'. Then vy =y and since x is
Y-distal vx = x, so that (x, x’) is an almost periodic point of R,. The regularity of
7 implies that x’' = (x) for some € Aut (X, T) and necessarily ¢ € A. O

2. The existence of saturated orbit closures

LEMMA 2.1. Let X > Y be an open homomorphism of metric flows. Let V={V< X: V
open and ¢(V)=Y}. Then there exists a countable sub-collection {V;};., of V" such
that every element of V' contains some V..

Proof. Let Ve ¥ and for £>0 denote V., ={xe V:d(x, V°)=¢}. If for every n,
o(Vy,,) # Y, then there exist y, € Y\¢(V,,,). Let y,, = y; by assumption there exists
xe V with ¢(x)=y. Let 6 =d(x, V). Since ¢ is open we can find x, € X with
¢(x,,) = yn, such that x,, - x. But then x,, is eventually in V;,, and y,, € ¢(V;,,) a
contradiction. We proved: for every Ve ¥ there exists a closed subset L< V with
e(L)Y=Y. Let U ={U,};Z, be a countable basis for open sets on X, then a finite
subset {U,, ..., U,} covers L and satisfies U,’;, U, = V. Thus

K
°Vo={V=U U:U,e¥U and (V)= Y}

j=1

is the required countable sub-collection. O

Lemma 2.2. If

is a commutative diagram and o is open then o: R, - R, is also open.

Proof. Let R, 3(z;, z{)>(z,2’') and (x, x")e R, with a(x, x")=(z, z’). By openness

of o there exist sequences x;, x; € X suchthat o(x;) = z;, 0(x}) = z; and x; > x, x> x'.

Clearly then R, 3 (x;, x;) = (x, x') and o(x, x')=(z, ') so that o: R, > R, is open.
O

LEMMA 2.3. Let X > Y be a homomorphism of minimal flows. Let F = 4(Y, y,) and
A=9(X, x,) with yo= w(x,). Let (x, x") = (vax,, vBx,) where a, B G and ve J, be
an almost periodic point in R,,. Then for every neighbourhood V of (x, x') in R,, we have
(vaF'xy) X (vBF'xy)c T(VAJR,).

Proof. Let U, U’ be open subsets of X such that (x, x)e (U x U’)nJR,, < V. Since
v(x, x") = (x, x’) there exists a subset B< T such that ve B~ M (closure in 8T)
and Bx'c U’.

Theset O=[U, B], =B~ 'U nvr '7(x)is a r-neighbourhood of x in v7 ™' (x) =
vaFx,.
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If x; € O, there exists t € B with x,= tx, € U. Since 7(x;) = m(x) = w(x') we have
(%1, XY=t (x,, tx)e t (UxBxYnJR, < T(Ux UYNJR,).
Thus O x{x'}= T((Ux U’')n JR,) and therefore
r-cls(Ox {x' e T(UxU')nJR,).

Since O is an arbitrary basic T-neighbourhood of x in vaFx, we conclude that
M) 7-cls(O x {x'}) = (vaF’'x,) x{x'}= T(VNJR,).
o

Now (x, x")€ R,, implies '8 e F and F' < F. Thus for every ¥, 8€ F', a~'86 =
8'a”'B for 8'e F' and
(vayxo, vBEx,) = va(yxo, a”'Bbx,)
= va(yxy, 8'a ™' Bx,)
= vad'(8' " yx,, a ' Bxy)
=pad'a (ad' 'yx,, BX,)
€ (vad'a N[ (vaF'x,) x{x'}]
=T(VAJR,),
as claimed. a

LEmMMA 2.4. Let

be a commutative diagram of minimal flows such that 4(Z, z,) = F'A where F =
4(Y, y,), A= %(X, x,). Then for a non-empty relatively open U <JR,_ such that
o(U)=R, we have TU =JR,,.

Proof. Let W =(U,Xx U,) nJR, = U where U, (i=1,2) are open subsets of X. Let
(x,, x2) € W be an almost periodic point say v(x,, x;)) = (x,, x,) for v€ J. By Lemma
2.3 TW > (vaF'xo) X (VBF'x,) = (vo o (x,)) X (vo ™ 'or(x,)), where x,=vax,, x,=
vBx,. For any (x, x') € W choose (x;, x}) € W JR, say w;(x;, x]) = (x;, x}) such that
(x;, x1)>(x,x'). We can find a;, a,a;,a’e G, w,w,w el such that wa;> wa,
wia!—>w'a' and wax,=x;, wiaix,=x}, waxo=x, wa'xo=x". If vy, y'€ F’ then

TW 3 (wa;yxg, wia [y x0) > (waryxg, w'a'y'x,)

so that also TU > TW o (wa ‘o (x)) X (w'o'a(x")).

Now let (%, ') e JR,,; by assumption there is a point (x, x') e U with o(x, x') =
o(% %)=(z,2)eR,. If wx=x, wx'=x" for w,w eJ then by the above TU >
(wo ' (2))x(w'o"'(2')) hence also TU>(ve '(z))x(ve~'(z'))>(% %) where
v(X, %) = (%, '), ve J. Thus TU o JR, and finally TU = JR,,. C
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ProPoOSITION 2.5. Let

be a commutative diagram of homomorphisms of minimal metric flows such that = is
open Bc-extension and p is the maximal a.p. extension of Z inside X. Let

(@)

be the given diagram with a Veech shadow diagram for o attached. Thus 6 and 6 are
almost 1-1 and & is open. Suppose further that = happens to be a Bc-extension. Then
there exists a dense G subset S of R;; such that (X, X') € S implies Rz o 0(X, X') e Rz =
o(X, X'), i.e. the orbit closure of (X, X') is R; saturated.

Proof. Applying Lemma 2.2 to the diagram

s
Y

we see that ¢: R; > R; is an open homomorphism. From Lemma 2.1 we now deduce
the existence of a sequence {V;};2, of open subsets of R; such that for each iV,e ¥
and for every V€ ¥ there exists an i with V,< V. Here ¥"={V: V< R; is open and
(V)= R;}. Our assumptions that 7 is Bc and that p is the maximal a.p. extension
of Y inside X imply that F'A = 9(Z, z,) where F=%(Y, y,), A= 9(X, x,), [E1].
Since 6 and @ are almost 1-1, hence proximal, we also have A= ‘g()?, Xo) and
F'A=%(Z, 3,). Thus we can apply Lemma 2.4 to the diagram

* l Z~
5
Y
and conclude that TU = JR; for every relatively open U < JR; with 6(U) = R;.
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Since we also assumed that 7 is Bc, JR;=R; and TV =R, for every Ve ¥.
Baire’s theorem now shows that S’=ﬂf°=l TV, is a dense G; subset of R;. It also
follows that JR;= R; and hence the projections of R; on Z are semiopen. Let
Zo={z€Z: |07 (2)| =1}, Zo=0""(Z,).

Since R, consists of almost periodic points so does R; N Zyx Z, which by Lemma
1.5 is dense G, in R;. Put S=8'n¢ "(R;n Zyx Z,). Let (%, %) S and denote
L=6(x, X'). If there exists (Z,, 7,) € R; with ¢~ '(Z,) X 6 '(%,) < L then by minimality
of ¢(L) and openness of &

R5 oo R(; =L
and we are done. Otherwise, V= R;\L is an element of ¥ and choosing i with

V,c V we get a contradiction since by definition of S there exists te T with
H(x, x)e V,c V. O

3. Two special cases

PROPOSITION 3.1. Let (X, T) be a minimal metric flow and let X = Y be a regular,
distal homomorphism, then  is a group extension. In particular if (X, T) is a minimal
regular metric distal flow then (X, T) is equicontinuous.

Proof. Let Z > Y be the maximal almost periodic extension of Y within X so that
we have the commutative diagram

as in Proposition 2.5. Now o as a distal homomorphism is open so that the shadow

diagram in Proposition 2.5 degenerates (Z =Z, X = X, #=m, 6 = o) and we con-

clude that there exists (x, x’) € R, with

R,°d(x,x")o R, =d(x, x).

However, since 7 is distal (x, x') is an almost periodic point and by regularity of

m, 0(x,x")=T, for ¢y € Aut(X, T). Thus o is 1-1 and = is almost periodic. It is

easy to see that an almost periodic regular extension is necessarily a group extension.
O

ProPOSITION 3.2. Let (X, T) be an AS flow and suppose that (X, T) admits a non

trivial equicontinuous factor (e.g. this is the case when (X, T) is incontractible [G1]

and not weakly mixing). Then X is an almost 1-1 extension of an equicontinuous flow.

Proof. Let X = Z be the non trivial equicontinuous factor. By Proposition 1.7 o is
point distal. Thus X itself is a point distal flow. This implies that the almost periodic
points are dense in X x X. Taking Y to be the one point trivial flow we have a diagram
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satisfying the hypothesis of Proposition 2.5. Also when we attach the shadow diagram
of o to obtain

(@)

where & is open and 6, 6 almost 1-1, then X is also point distal and therefore #
is Bc and obviously open. Thus all the assumptions in Proposition 2.5 are satisfied
and we conclude that there exists a dense G; subset S< R:=X x X such that
(X,x") € S implies

R;°8(x,x")o Rz =a(x, X').
Since X is an almost 1-1 extension of X it is AS as well and we have a dense G;
subset X* < X which makes X AS.

Let (%, #)e S (X*x X*) and let L=4(%, %'). By the AS property of X there
exists an almost automorphism ¢ with ¢(X)=x". By Lemma 1.1 L[xX]={x'} and by
the definition of S, L[X]= ¢ '¢(X'). Thus & '¢(x)={x"} and & is both open and
almost 1-1, hence an isomorphism. This means that ¢ is almost 1-1, proving our
proposition. O

4. The topological versions of Veech’s theorem
The situation we consider here is described by the diagram

(@)
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where 7 is point distal open, p is the largest almost periodic extension of Y within

X, and the top square is the shadow diagram for o. Thus
Z={poo(z):peM}, 6(p°o(2))=pz
X={(x,2):xe5eZ}, O(x,7)=3 &(x2)=3

6, 6 are almost 1-1 and & is open.

Let Z,={ze Z: |07 (2)| =1}, Zo=0"Zo) < 2, Xo= 0" (Z,), Xo=0'(X,). Then
)20={(x, e X:ie Zo} and the sets Z,, Zo, X, and )?0 are all dense G; subsets of
the corresponding spaces.

Note that if U is an open subset of X then int 5( U)> 5()?00 U). To see this
suppose x€ Xon U and x;»x= 6(%). Then choosing x; € X with 6(%)=x, and
choosing any subsequence x; > x’ we have 5()’6’) = §(X). Hence %' = % and therefore
eventually x;€ U. Thus x; € 5( U) and we conclude that x € int 6(U).

LEMMA 4.1. Let X = Y be open and point distal, then the set of almost periodic
points in R, contains a dense G subset S, of R,,. In particular 7 is a Bc-extension.

Proof. By [E2] there exists a dense G; subset X, of X consisting of Y-distal points.
Since 7 is open the projection maps m;: R, > X (j=1,2) are open and by Lemma
1.5 S, =m (X))~ 75 (X,) is a dense G; subset of R,. If (x, x') € S, and vx = x for
ve J, then v(x, x') =(x, vx’) € R,.. Hence also (x’, vx’) € R,,.. But x’ is Y-distal hence
x'=vx’' so that (x, x') is in JR,,. C
LEMMA 4.2. The subset Sx = (XX Xy)n S, is a dense G, subset of R,,.

Proof. As in the previous lemma (X, X X,) " R,, is dense G5 in R,. and hence so is
Sx =(XoXXg) "R, NS =(XoXXo)N S;. O
Since p is almost periodic R, consists of almost periodic points and as above
Sz —ZOXZOmR is a dense G, subset of R,. Put Sz = _'(Sz) Sz =60""(Sx) and
=G7'(Sz). Note that S3< JR; and Sg = JR;; also Sgx < Sx.

LEMMA 4.3. Let V< R, be open with 5(V)=R;. Put U= VAIJR; then Un Sx is
dense in Vn 5}

Proof. Let (X, X')=((x, 2),(x',Z'))e Vn Sk, then there are open subsets U, U’ of X
with (X, x)e(UxU)nR;< V. Since (x,x)eX,xX, we have (x,x')e
[(int 6(U)) x (int 5(_U’))] N R,,. Therefore there are points (x;, x})->(x,x’) with
(x;, x}) € Sx A [(int 6(U)) x (int 6(U’))]. Hence also ((x, %), (x},7))~>((x,7),
(x',2)=(xX,X) with ((x;,Z),(x;,Z))eS3xnV=8SgnJR;nVcSzn U Here

((x;, 2.), (x}, 2})) are the unique points in R; above (x;, x}). 0
LeEMMA 4.4. With Vand U as in Lemma 4.3, if 6(V) = R; then
TU 2 JR;.

Proof. Let (X, x')eJR;, say vo(%,X')=(x,x') with veJ Denote (7 7')=
(X, x'),(z,2)=6(Z 2'), then there exists a sequence (z;, z}) € S, such that (z;, z}) »
(z, 2).

Let (%, Z}) € S5 be the unique point in R; with 6(Z;, £}) =(z, z}) and let (£, Z}) >
(%, Z,), then clearly v(Z,, Z}) = (Z, £'). By assumption there are points (X, X} V
with 6(X;, X)) = (2, 2}); let (X, X) > (X,, X}).
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Now (%, ¥/)e Sz~ V and by Lemma 4.3 we can find a sequence (X;, X)) e Sgn U
such that (X, X;) > (X,, X{). By Lemma 2.3
TU > (w,e '¢(%;)) x (wd '&(F,))
where w; € J satifies w;(X;, X{) = (X;, ). As in the proof of Lemma 2.4 we also have
TU > (w6 ™'6(X,)) x (w'd ™~ '6(X})) where w, w' eJ and wx,=%,, w'X,=x,. It now
follows that L
TU = (v6~'¢(%) x (v5 ' 6(X}))
= (057 (24)) x (v67'(2}))
=(v6 (£))x (v67(£)) 3 (%, &). O
We can now prove the main theorems of this section.

THEOREM 4.5. Let (X, T) be an AS flow and (X, T)= (Y, T) a non-trivial
homomorphism. Then up to almost 1-1 equivalence, m is a group extension.

Proof. Using a shadow diagram we can assume that = is open and by Proposition
1.7 it is point distal. Construct the diagram @.

Let ¥={V< R;: V open, ¢(V)=R;} and let {V;}{, be a basis for ¥. For each
i let U;=V,nJR;. Then by Lemma 4.4 TU, is an open dense subset of JR;. Put

S=) Ty,
i=1
then S is a dense G; subset of JR;. Now if Sx is the subset of JR, defined in
Lemma 4.2 and X* is a set which makes X AS, then S¥=(X*xXX*)nSx is a
dense Gj subset of JR, and 5":5§—>JR,; is a homeomorphism. Denote S’,";=
5_'(5",‘(), then S§ is a dense G; subset of JR; . To see this let (£, ¥') = ((x, ), (x, 7)) €
JR;,say v(X, X') = (X, X'). Then (x, x') € JR,. and there exists a sequence (x;, x|} € S%
converging to (x, x’). Let (X, X}) = ((x;, ), (x!, £})) € S% be the unique point of R;
above (x;,x{) and suppose (X, X])—>(X;,%])=((x, Z;)(x',Z])). Then clearly
v(%,, X1) = (% %'). Since (%,, %;)e S% and since the latter set is T-invariant and
closed it also contains (X, X’). Thus S% is dense G; in JR;; and therefore $% ~ S is
non-empty. Let (x, X') e S’,"? N S then X' = y(X) for an almost automorphism  and
in particular L= 6(%, ') is minimal. If there exists a (Z, ') € R; with
67 Y% 2L
then we have (by minimality of L and openness of &)
R;oLeR;c L

and L[x]={X}= R;[x’] so that & is both open and almost 1-1. Hence & is an
isomorphism and our theorem follows from Proposition 1.9. If no such (Z, ') exists
then V= R;\L is open and satisfies 6(V) = R;, i.e. Ve ¥. Choose an i with V,< V,
then 3te T with (X, X') € V,< V, a contradiction. This completes the proof. O

We actually proved the following version of Proposition 2.5.

PROPOSITION 4.6. Consider the diagram (@) where we now assume that w is open
point distal, p the maximal almost periodic extension of Y within X and & the open
shadow map of 0. Then there exists a dense G subset S of JR: such that for (X, X')e S
o(x, X') is R; saturated.
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THEOREM 4.7. Let (X, T) be a minimal metric flow and let X B Y be a regular point
distal, open homomorphism. Then w = p o o where p is a group extension and o almost
1-1. In particular a metric regular point distal flow is equicontinuous.

Proof. Construct the diagram (@) as in the proof of Theorem 4.5. Let ¥, {V,}i%,,
{U}, and S be defined in the same way. Let Sx be as in Lemma 4.2, put
Sz =671(Sy), choose (£, %')e Sxn S and let L= (%, %'). Since (X, #')e Sg, L is
minimal and 6(%, x') = (x, x') is an almost penodlc point in R,,. By regularity of ,
x'=(x) for some ¢ € Aut (X, T). Lifting ¢ to XO we have X' = ¢(X) and we finish
the proof as in Theorem 4.5. However, since our 7 was assumed to be open we
actually get that = = p o ¢ where p is a group extension and p is almost 1-1. The
last part of the theorem follows from Proposition 1.10. O

Problem. Does there exist an AS weakly mixing flow X which is an inverted tower
of group extensions. lLe., x5 X, is a group extension, R, >R, and U::, R,
is dense in X X X? Can any weakly mixing minimal flow have such a structure?
(See [G-W] for a weaker result.)

5. Preliminary lemmas
Our purpose in the rest of this paper is to deal with minimal joinings of AS flows.

LEMMA 5.1. Let X and Y be minimal flows and L< Y x X a minimal subset. There
exist an almost 1-1 extension Y > Y and a minimal subset L< Y x X projecting onto
L, such that the projection of L onto Y is an open homomorphism.

Proof Let w:L—->Y be the projection and let L[y]={xe X:(y, x)e L}. Since
7~ ': Y ->2" is an upper semicontinuous map it has a dense G, subset Yo Y of
continuity points. Choose y,€ Yo and let Fo=1""(yo) = {¥o} X LI yo) € 2". Define
Y =6(o) ={p°n'(yo):pe M}={{pyo} x (p° L[yo]): p& M}. We denote by ¢ the
canonical map of Y onto Y (projection on the first coordinate). Finally, let L=
{(F,x): (p(§), x)eje Y} N 3

If y;—> 7y is a convergent sequence in Y and (7, x) € L then (¢(y), x)€ y and by
the definition of the topology in 2" it follows that a sequence (yi, X;) € y; exists with
(yi, x:)= (¢(¥), x). This shows that the projection 7: L->Yis open.

For a point y € Y, and p € M with py, =y we have p({yo} x L[y,]) = {y} x L[y]= y.
It follows that ¢" “Y(y)={y} and ¢ is almost 1-1.

By definition Y is minimal. To see that L is minimal choose a point (y,, Xo) € yo =
{yo} X L[yo] so that (y,, xo) is an almost periodic point of Lif (yo, X) € Jo then
(y0, x) € L and there exists a sequence ¢, € T such that #,(y,, xo) > (¥o, X). By con-
tinuity of 7~ at y, also #,5, > y, s0 that (¥, x) € 6(Jo, Xo). If now (3, x) is an arbitrary
pomt of L, (¢(J),x) ey 1mp11es that a sequence t; € T exists that lim #y,=y and

=1im t,x; where (yo, X;) € yo.

Thus (, x) =1im t:(Jo, x;) € 3(Fo, Xo) and L < 6(F,, x,) is minimal. O

When L < Y x X is minimal and the projection 7: L Y is open, the map y—L[y]
from Y into 2%, is a homomorphism whose image {L[y]: y € Y} is a quasifactor of
X. If we change notation and call this quasifactor Y then we are at the situation
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assumed in the next lemma. This lemma is a version of a topological ‘Fubini theorem’
of the type proved by Kuratowski and Ulam. We follow Veech [V3, Proposition 3.1].

LEMMA 5.2. Let (X, T) be a minimal flow, Y < 2% a minimal quasi-factor such that
L={(y,x):xeyeY}c YxXX
is minimal. Let X* < X be a dense G; subset of X, then
Y*={ye Y:yn X, is dense G; in y}
is a residual subset of Y.

Proof. Let X*=(,_, V; where {V;}{2, are open dense subsets of X. Let {U,,}%o_,
be a basis for the topology on X. A point y€ Y is not in Y* iff there are m and /
such that y e C,,; where

Coi={zeY:¢#znU,< Vi}L

Denote E,,; =int ((:‘,,,,,) and suppose E, ;# . Let m; (i=1,2) be the projections
of L on Y and X respectively. Then V = 7| '(E,, ;) n 73'(U,,) is a non-empty open
subset of L because C,,; E,,, is dense in E,,, and ze€ C,,, implies zn U, # .

Since L is minimal int 7,( V) = U is an open non-empty subset of X. We claim
that U< Vj. This contradiction (we assumed V, is open dense) will show that
E,.;# < and it will follow that (Y*)‘ is of first category.

Let x€ U say x = m,(y, x), (¥, x) € V. Since C,,;n E,,; is dense in E,,;, w7 (Cpy D
E,.) is dense in 77 '(E,,,) (use again the minimality of L), and ;' (C,,, N E,.;) 0
m5'(U,) is dense in V. Thus we can find a sequence (y;, x;) > (y, x) such that
yi€ CpinE,y, x;€ U, and (y;, x;) € L. By definition of C,,, it follows that x;€ V;
and since the latter set is closed, also x € V|. We have shown that U < V| and the
proof is completed. O

Remark. The use we made of the group action here, was only to insure that the
maps m; (i =1, 2) are semi-open. Taking Y = 2* to be a closed subset and assuming
the semi-openness of 7; (i=1,2) our lemma becomes purely topological (no
dynamics is involved).
LEmMMa 5.3. Let Y be a quasifactor of X then the sets

Ymn={Fe V:jcic Y=>5=73)

Yon={fe Y:yoZec Y=>5=7}

and therefore also Y, = ~maxn f’min are dense Gj subsets of Y.

Proof. By Zorn’s lemma Y,,,, is non-empty; by minimality of Y and invariance it
is dense. Finally

F.={yeY:37¢Y, 25, d(i y)=¢}

is clearly closed so that
?max= m (Fl/n)c
n=1

is dense G;. The proof for ?min is analogous. O
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6. The joinings of an AS flow

We say that a property of minimal flows essentially holds if it holds up to almost
1-1 extensions. For example X is essentially an extension of Y if an almost 1-1
extension of X is an extension of Y. The flows X and Y have essentially no common
factor if no almost 1-1 extension of X and no such extension of Y have a non-trivial
common fctor. It is easy to see that X and Y are essentially disjoint iff they are
disjoint.

THEOREM 6.1. Suppose T is a commutative group. Let (X, T) be an AS flow, (Y, T)
a minimal flow and L< Y x X a minimal subset such that L# Y x X. Then up to
almost 1-1 equivalence L is the relative product of X and Y over a common factor
which is essentially a group factor of X.

COROLLARIES 6.2. For commutative T
(1) If (X, T) is AS and purely weakly mixing, then X is disjoint from every minimal
flow which is not an essential extension of it.
(2) If (X, T) is AS and (Y, T) minimal, then they are disjoint iff they have essentially
no common factors.
Proof of Theorem 6.1. Let L< Y XX be minimal and we assume L# Y x X, Let
m,:L->Y and m,: L—> X be the projections. By Lemma 5.1 we can assume that ,
is open. This implies that the map y: Y - 2* defined by y(y) = L[y], is a continuous
homomorphism. We denote by Y the quasifactor {L[y]): y € Y} which is the image
of y in 2%,
Define W={(x,,x,)e X*:Aye Y, (y,x)eL,i=1,2}. Welet L*=L (Y xX*),
W*=Wn(X*xX*), and ¥={¢y: ¢ is an almost automorphism of (X, T), D,,
¥(D,) = X* and for some x € D,, (x, ¢(x))e W*}.

LEMMA 6.3. For commutative T, W # X x X.

Proof If W=Xx X then forall te T and x€ X, (x, tx) e W so that given (y, x)e L
also (Ixt)(y,x)=(y, tx)€ L. Since L is minimal this implies (I xt)L=L Vte T
and since (X, T) is minimal we get L = Y X X contradicting our assumption. [J

LEMMA 6.4. If W # X x X then for every y € Y for which L*[y] # @ and every x € L*[y],
L*[y]1={¢(x): ¢ € ¥ and x € D,}. Thus for y,, y,€ Y with L*[y;]#0, i =1, 2, either
L*[y:]= L*[y.] or L*[y\1n L*[y,]=0.

Proof. Let x, x'e L*[y] then (x, x") € W* and since a(x, x')c W# X x X we have
by AS x’ = ¢(x) for an almost automorphism ¢ € ¥. Conversely, suppose ¢ € ¥ and
xe L*[y}n D,.

By definition of W there exists ¥ € D, with (%, ¢(x)) € W* so that for some y =Y,
(3, %), (7, ¥(X)) € L*. By minimality of L there exists t, € T with (y, x) =lim £,(, X).
Now

(3, ¥(x)) =TI x )y, x) = (I x ¢) lim £,(y, X)
=lim £,((I x ¢)(3, X)) =lim (3, $(X)) € L.
Since by assumption ¢(D,) < X™* we also have (y, ¢(x))e L*, i.e. ¢(x)e L*[y].
a
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LEMMA 6.5. Assume T is commutative, then the quasifactor Y= {L[y]: ye Y} of X,
is a factor of an almost 1-1 extension of X.

Proof By Lemma 5.2 the set ¥*={je ¥: 5~ X* is dense G; in } is dense G; in
Y. By Lemma 5.3 Y = Ymaxr\ Ym,,, is also dense G; in Y. Let Yo€ Y be such that
Llyol =7, is in Y*A Y,,. Let xo€ L*[yo], then (L[y,], Xo) = (Jo, X,) is an almost
periodic point of Y x X. In fact (yo, xo) € L implies that (y,, x,) is an almost periodic
point and if veJ is such that v(y,, Xo) = (¥o, Xo) then v(y,, xo) = (v o L[], xo) =
(L[ yo], x0) = (Jo, Xo), so that (¥,, x,) is also almost periodic. Define X= 0(¥o, Xo)
and A:L-> X by A(y, x) = A(pyo, pXo) =(p ° LLyo), pxo) = (L[y], x), where (y, x) =
P(yo, X0) (p€ M). Let ¢ : X > X be the projection on the second coordinate. Suppose
@(L[y], Xo) = xo, (L[¥], xo) € X. Then xo€ L*[y] and by Lemmas 6.3 and 6.4 L*[y] =
L*[y,]. Since yoe Y* we have L[y,] = L*[yo], thus L[y,]< L[y]. However o€ ¥, ..
and therefore L[y,] = L[y]. This shows that ¢ ~'(x,) = {($o, xo)} and @ is almost 1-1.
The projection 7 on the first coordinate is the required map from Xto Y. a

Under the assumptions of Theorem 1.1 and the additional assumption that
m,:L-> Y is open (we may assume this by Lemma 5.1) we obtained the following

diagram
YxX>oL
7 ﬂzl \
Y X —— X=YvX

e

Here ¢ is almost 1-1, vy is the map y—L[y], Y is the quasifactor {L[y]: y€ Y} of
X, 7 is the projection of X onto Y and A is the map defined by Ay, x)=(L[y], x)
in the proof of Lemma 6.5.

It is now clear that L is the relative product of Y and X over Y. By Theorem
4.5 7 is, up to almost 1-1 extensions, a group extension. This completes the proof
of Theorem 6.1. O

Corollaries 6.2.1 and 6.2.2 now follow from the definitions of the relevant notions.
We remark that the only place where the commutativity of T was used in the proof
of Theorem 6.1 is at the proof of Lemma 6.3, where we use the fact that each te T
defines an automorphism of (X, T). Thus for a general group T our theorem still
holds if we know that W # X x X.

Problem. 1s the assumption that T is abelian in Theorem 6.1 necessary?
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