COUNTABLY QUASI-SUPRABARRELLED SPACES

J.C. Ferrando and L.M. Sánchez Ruiz

In this paper we obtain some permanence properties of a class of locally convex spaces located between quasi-suprabarrelled spaces and quasi-totally barrelled spaces, for which a closed graph theorem is given.

1. INTRODUCTION

Throughout this paper the word "space" will stand for "Hausdorff locally convex topological vector space defined over the field \mathbb{K} of real or complex numbers". Let us recall a space E is quasi-suprabarrelled [1] if, given an increasing sequence of subspaces of E covering E, there is one which is barrelled; E satisfies condition (G) [4] if, given a sequence of subspaces of E covering E, there is one which is barrelled; E is quasi-totally barrelled [2] if, given a sequence of subspaces of E covering E, there is one which is barrelled and its closure has countable codimension in E; E is totally barrelled [12] if, given a sequence of subspaces of E covering E, there is one which is barrelled and its closure has finite codimension in E; E is unordered Baire-like [6] if, given a sequence of closed absolutely convex subsets of E covering E, there is one which is a neighbourhood of the origin; and E is suprabarrelled [9] ((bd) in [5]) if, given an increasing sequence of subspaces of E covering E, there is one which is barrelled and dense in E. The relationship among these classes of spaces is the following:

unordered Baire-like \Rightarrow totally barrelled \Rightarrow suprabarrelled \Rightarrow barrelled.

and

totally barrelled \Rightarrow quasi-totally barrelled \Rightarrow (G) \Rightarrow quasi-suprabarrelled

\Rightarrow barrelled.

In this paper we shall introduce a class of spaces located between quasi-totally barrelled spaces and quasi-suprabarrelled spaces, which enjoys good permanence properties, and satisfies a closed graph theorem.

Our notation is standard, so if A is a subset of a linear space, $\langle A \rangle$ will denote its linear span and if $\{E_i : i \in I\}$ is a family of spaces, $E = \Pi\{E_i : i \in I\}$ and J is a subset of I, $E(J)$ will denote the subspace of E consisting of those elements of support J.

Received 30 June 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 $\$2.00+0.00.
2. COUNTABLY QUASI-SUPRABARRELLED SPACES

Definition: We shall say a space E is countably quasi-suprabarrelled if, given an increasing sequence of subspaces $\{E_n: n \in \mathbb{N}\}$ covering E, there is one of them, say E_p, which is barrelled and its closure, $\overline{E_p}$, has countable codimension in E.

Clearly, quasi-totally barrelled \Rightarrow countably quasi-suprabarrelled \Rightarrow quasi-suprabarrelled, and suprabarrelled \Rightarrow countably quasi-suprabarrelled.

It is easy to check that if \mathfrak{c} is the cardinal of the continuum, \mathfrak{c} verifies condition (G) and, consequently, is quasi-suprabarrelled but not countably quasi-suprabarrelled, [2, Example 2]. On the other hand, φ is a non-suprabarrelled countably quasi-suprabarrelled space since every linear subspace of it has countable codimension. Moreover, if I is any index set, it follows from Theorem 1 below that φ^I is also a non-suprabarrelled countably quasi-suprabarrelled space, and, in general, each countably quasi-suprabarrelled space containing a complemented copy of φ is not suprabarrelled.

Examples. Countably quasi-suprabarrelled spaces which are not quasi-totally barrelled.

1. Let E be a locally convex space and $m_0(E)$ the space of the $2^\mathbb{N}$-simple functions defined over \mathbb{N} with values in E endowed with the uniform convergence topology. From [3] it follows that if E is nuclear and unordered Baire-like, then $m_0(E)$ is suprabarrelled and, consequently, countably quasi-suprabarrelled. If $\{A_n: n \in \mathbb{N}\}$ denotes the sequence of all the subsets of two different positive integers of \mathbb{N} and L_n is the linear subspace of $m_0(E)$ of all the $f \in m_0(E)$ which are constant on A_n, it is clear that each L_n is closed in $m_0(E)$, that $\{L_n: n \in \mathbb{N}\}$ covers $m_0(E)$ and that if $\dim E$ is uncountable, then each L_n has uncountable codimension in $m_0(E)$. Hence, if E is a nuclear unordered Baire-like space of uncountable dimension, $m_0(E)$ is a countably quasi-suprabarrelled space which is not quasi-totally barrelled.

2. Let E be a Banach space containing a sequence of closed linear subspaces $\{X_n: n \in \mathbb{N}\}$ of infinite dimension such that for each $n \in \mathbb{N}$, the closed linear hull of $\{X_m: m > n\}$ is a topological complement of $X_1 + \ldots + X_n$ and let E_n be the closed linear hull of $\{X_m: m \in \mathbb{N} \setminus \{n\}\}$. If \mathcal{U} is an ultrafilter in \mathbb{N} which contains the filter of all the subsets of \mathbb{N} whose complement has zero density, $L(\mathcal{U})$ the closure in E of the linear hull of $\bigcup\{X_n: n \in \mathbb{N} \setminus U\}$ for each $U \in \mathcal{U}$, and $L = \bigcup\{L(U): U \in \mathcal{U}\}$, then L is a suprabarrelled and dense subspace in E, [11, Proposition 12]. If each X_n has infinite dimension, then $E_n \cap L$ is a subspace of uncountable codimension in L. Finally, as each E_n is closed and $\{E_n \cap L: n \in \mathbb{N}\}$ covers L, we obtain that L is a countably quasi-suprabarrelled space which is not quasi-totally barrelled.

Clearly, the topological product of φ and any non-quasi-totally barrelled countably quasi-suprabarrelled space is an example of a countably quasi-suprabarrelled space.
which is neither suprabarrelled nor quasi-totally barrelled. On the other hand, a metrizable space E is countably quasi-suprabarrelled if and only if E is suprabarrelled. But, as we have mentioned above, there exist non-suprabarrelled countably quasi-suprabarrelled spaces. Next we shall show the following.

Proposition 1. Let E be a countably quasi-suprabarrelled space. If E is not suprabarrelled then E is not Baire-like either.

Proof: If E is not suprabarrelled, there exists an increasing sequence of linear subspaces $\{E_n: n \in \mathbb{N}\}$ of E covering E, such that no E_n is barrelled and dense at the same time. As E is countably quasi-suprabarrelled, we may suppose that each E_n is barrelled and its closure is of countable codimension. Hence E cannot be Baire-like since it may be covered by an increasing sequence of closed linear subspaces of infinite countable codimension.

3. **Properties of countably quasi-suprabarrelled spaces**

Next we shall obtain some permanence properties of countably quasi-suprabarrelled spaces.

Proposition 2. Let E be a countably quasi-suprabarrelled space. If F is a closed linear subspace of E then E/F is countably quasi-suprabarrelled.

Proof: Let $\{G_n: n \in \mathbb{N}\}$ be an increasing sequence of subspaces of E/F covering E/F. Let k be the canonical mapping of E onto E/F. Then $\{k^{-1}(G_n): n \in \mathbb{N}\}$ is an increasing sequence of subspaces of E covering E, so there must be some some $p \in \mathbb{N}$ such that $k^{-1}(G_p)$ is barrelled and $\text{cod}E_k^{-1}(G_p) \leq \aleph_0$. Now, $G_p = k(k^{-1}(G_p))$ is barrelled and if L is an algebraic complement of $k^{-1}(G_p)$ in E, then $G_p + k(L) = k(k^{-1}(G_p)) + k(L) \supset k(k^{-1}(G_p) + L) = k(E) = E/F$. Hence G_p has countable codimension in E/F.

Proposition 3. Let F be a dense linear subspace of E. If F is countably quasi-suprabarrelled then E is countably quasi-suprabarrelled.

Proof: Let $\{E_n: n \in \mathbb{N}\}$ be an increasing sequence of subspaces of E covering E. Since F is countably quasi-suprabarrelled there is some $p \in \mathbb{N}$ such that each $F \cap E_p$ is barrelled and $\text{cod}F_k F \cap E_p^F \leq \aleph_0$. Let L be a topological complement of $F \cap E_p^F$ in F. $F \cap E_p \oplus L$ coincides with E since it is closed and $F \subset F \cap E_p \oplus L$, so $E_p + L = E$ and $\text{cod}E_k E_p \leq \aleph_0$. Besides, $F \cap E_p \oplus_L L$ is a barrelled dense subspace of $E_p + L$. Hence E_p is barrelled.

Proposition 4. Let F be a countable codimensional subspace of E. If E is countably quasi-suprabarrelled then F is countably quasi-suprabarrelled.
PROOF: Let \(\{ F_n : n \in \mathbb{N} \} \) be an increasing sequence of subspaces of \(F \) covering \(F \). Let \(G \) be an algebraic complement of \(F \) in \(E \). As \(\{ F_n + G : n \in \mathbb{N} \} \) is an increasing sequence of subspaces of \(E \) covering \(E \), we may assume that every \(F_n \) is barrelled. On the other hand, as \(\{ F_n + G : n \in \mathbb{N} \} \) is also an increasing sequence of subspaces of \(E \) covering \(E \), we may assume that every \(F_n + G \) is barrelled. So, if \(L_n \) is a topological complement of \(\overline{F_n} \) in \(\overline{F_n + G} \), \(L_n \) is a closed subspace of \(E \) for every \(n \in \mathbb{N} \) and there must be some \(p \in \mathbb{N} \) so that \(F_p + G \), and consequently \(\overline{F_p} \), has countable codimension in \(E \). Hence \(\overline{F_p} \) has countable codimension in \(F \). \(\Box \)

PROPOSITION 5. The topological product of finitely many countably quasi-suprabarrelled spaces is countably quasi-suprabarrelled.

PROOF: Assume \(E_1 \) and \(E_2 \) are countably quasi-suprabarrelled and \(E = E_1 \times E_2 \). Let \(\{ F_n : n \in \mathbb{N} \} \) be an increasing sequence of subspaces of \(E \) covering \(E \). Then there exists a subsequence \(\{ F_{n_p} : p \in \mathbb{N} \} \) such that \(\text{cod}_{E_i} (F_{n_p} \cap \overline{E_i}) \leq \aleph_0 \), \(i = 1, 2 \). For each \(p \in \mathbb{N} \) let \(A_{p,i} \) be a cobasis of \(F_{n_p} \cap \overline{E_i} \) in \(E_i \), \(i = 1, 2 \). Set \(A := \bigcup \{ A_{p,1} \cup A_{p,2} : p \in \mathbb{N} \} \) and, for each \(p \in \mathbb{N} \), let \(L_p := (F_{n_p} \cup A) \). If some \(L_p \) were barrelled, \(F_{n_p} \) would be barrelled and the proof would be finished since \(E = E_1 \times E_2 = (F_{n_p} \cap \overline{E_1}) \times (F_{n_p} \cap \overline{E_2}) + (A_{p,1} \cup A_{p,2}), \) that is \(\text{cod} E (F_{n_p}) \leq \aleph_0 \).

Let us suppose that none of the \(L_p \) is barrelled. Then for each \(p \in \mathbb{N} \) there is a barrel, say \(T_p \), in \(L_p \) which is not a neighbourhood of the origin in \(L_p \). Now, since \(\{ L_p \cap E_i : p \in \mathbb{N} \} \) is an increasing sequence of subspaces of \(E_i \) covering \(E_i \), \(i = 1, 2 \), there must be some positive integer \(q \in \mathbb{N} \) such that \(L_q \cap E_i \) is barrelled. Therefore, setting \(V_q := \overline{T_q} \cap \overline{E_i} \cap \overline{L_q} \cap \overline{E_i} \) is a neighbourhood of the origin in \(L_q \cap E_i \).

On the other hand, \(L_q \cap E_i \) is dense in \(E_i \) since \(L_q \cap E_i \supset (F_{n_p} \cap \overline{E_i}) \cup (A_{q,i}) = E_i \). Therefore, \(V_q \cap L_q \cap \overline{E_i} \) is a neighbourhood of the origin in \(E_i \), \(i = 1, 2 \), and \(V_q \) is a neighbourhood of the origin in \(E \) since \(V_q \cap L_q \cap \overline{E_1} \times V_q \cap L_q \cap \overline{E_2} \supset V_q + V_q = 2V_q \). Hence \(T_q \) is a neighbourhood of the origin in \(L_q \), which is not possible. \(\Box \)

In order to show that this result is true for arbitrarily many spaces we shall need [1, Theorem 2] and [2, Proposition 4]:

Lemma 1. Let \(\{ E_i : i \in I \} \) be a family of spaces such that for every finite subset \(H \subset I \), \(E(H) \) is quasi-suprabarrelled. Then \(E = \prod \{ E_i : i \in I \} \) is quasi-suprabarrelled.

Lemma 2. Let \(\{ E_i : i \in I \} \) be a family of spaces and \(B \) a countable family of closed absolutely convex subsets of \(E = \prod \{ E_i : i \in I \} \) such that \(\text{cod} E(B) > \aleph_0 \) for each \(B \in B \). Suppose that \(\mathcal{F} := \{ (B) : B \in B \} \) covers \(E \) and let \(\mathcal{F}_i := \{ F \in \mathcal{F} : \text{cod}_{E_i}(F) \cap E(\{i\}) > \aleph_0 \} \). If for each \(F \in \mathcal{F} \) there is a finite subset \(J(F) \) of \(I \)
such that \(F \supset E(I \setminus J(F)) \), then there exists some \(j \in I \) such that \(F_j \) covers \(E(\{j\}) \).

Theorem 1. If \(\{E_i : i \in I\} \) is a family of countably quasi-suprabarrelled spaces, then \(E = \Pi \{E_i : i \in I\} \) is countably quasi-suprabarrelled.

Proof: By Lemma 1, \(E \) is quasi-suprabarrelled. So, if \(E \) is not countably quasi-suprabarrelled, there exists an increasing sequence of barrelled subspaces of \(E \) covering \(E \), \(\{F_n : n \in \mathbb{N}\} \), such that \(\text{cod}_{E} F_n^E > \aleph_0 \) for every \(n \in \mathbb{N} \). Then \(\{F_n : n \in \mathbb{N} \text{ and } F_n \supset E(I \setminus J_n) \) with \(J_n \) a finite subset of \(I \) \) is also an increasing sequence of barrelled subspaces of \(E \) covering \(E \), [12, Proposition 4].

Now, by Lemma 2, there exists some \(j \in I \) such that \(\{F_n : n \in \mathbb{N} \text{ and } \text{cod}_{E} \{j\} F_n^E > \aleph_0 \} \) covers \(E(\{j\}) \), which is not possible since \(E(\{j\}) \) is countably quasi-suprabarrelled. \(\square \)

Finally let us recall that a locally convex space \(E \) is a \(\Gamma_r \)-space if given any quasi-complete subspace \(G \) of \(E^*(\sigma(E^*, E)) \) such that \(G \cap E' \) is dense in \(E^*(\sigma(E', E)) \), then \(G \) contains \(E' \), and that \(\Gamma_r \)-spaces are the maximal class of locally convex spaces satisfying the closed graph theorem when barrelled spaces are considered as the domain, (see [8] and [10, Chapter 1, Section 6.2]). Moreover [8, Corolario 1.14] provides:

Lemma 3. Let \(f \) be a continuous linear mapping from a barrelled space \(E \) into \(F \). If \(F \) is a \(\Gamma_r \)-space then \(f \) has a continuous extension from the completion of \(E \) into \(F \).

Theorem 2. Let \(E \) be a countably quasi-suprabarrelled space and suppose \(\{F_n : n \in \mathbb{N}\} \) is an increasing sequence of subspaces of \(F \) such that on each \(F_n \) there exists a topology, \(\tau_n \), finer than the original one so that \(F_n(\tau_n) \) is a \(\Gamma_r \)-space. If \(f \) is a linear mapping from \(E \) into \(F \) with closed graph then either there is some \(p \in \mathbb{N} \) such that \(f(E) \subset F_p \) and \(f \) is continuous or there is a topological complement \(H \) of \(\varphi \) in \(E \) such that \(f(H) \subset F_p \), \(f \) being continuous.

Proof: The sequence of subspaces \(\{f^{-1}(F_n) : n \in \mathbb{N}\} \) of \(E \) is increasing and covers \(E \), so there must to some \(p \in \mathbb{N} \) such that \(f^{-1}(F_p) \) is barrelled and its closure, \(H \), has countable codimension in \(E \). Let \(L \) be a topological complement of \(H \) in \(E \). If \(\dim L < \aleph_0 \), then the restriction of \(f \) to \(L \) is continuous. If \(\dim L = \aleph_0 \), then \(L \cong \varphi \) and the restriction of \(f \) to \(L \) is continuous, too. Thus in order to see that \(f \) is continuous it is enough to show that the restriction \(f |_H \) of \(f \) to \(H \) is continuous. The restriction \(g \) of \(f \) to \(f^{-1}(F_p) \) has closed graph in \(f^{-1}(F_p) \times F_p(\tau_p) \) and thus is continuous. Now Lemma 3 allows us to extend \(g \) to a continuous linear mapping \(h : H \to F_p(\tau_p) \). Let us show that \(h = f|_H \). Given \(x \in H \), let \(\{x_i : i \in I\} \) be a net in \(f^{-1}(F_p) \) converging to \(x \) in \(H \). Then the net \(\{f(x_i) : i \in I\} \) converges to \(h(x) \) in \(F_p(\tau_p) \) and, consequently, in \(F \). Hence \(f(x) = h(x) \) since \(f|_H \) has closed graph in \(H \times F \).
As \(f(H) \subseteq F_p \), the proof is complete if \(\dim L = \aleph_0 \). If \(\dim L < \aleph_0 \), it is clear that there is some \(q \in \mathbb{N} \) so that \(f(L) \subseteq F_q \), and therefore \(r = \max\{p, q\} \) gives \(f(E) \subseteq F_r \).

REFERENCES

Departamento de Matemática Aplicada
Universidad Politécnica de Valencia
46071 Valencia
Spain