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Abstract

In this paper a class of optimal control problems with distributed parameters is considered.
The governing equations are nonlinear first order partial differential equations that arise in
the study of heterogeneous reactors and control of chemical processes. The main focus
of the present paper is the mathematical theory underlying the algorithm. A conditional
gradient method is used to devise an algorithm for solving such optimal control problems.
A formula for the Frgchet derivative of the objective function is obtained, and its properties
are studied. A necessary condition for optimality in terms of the Fr6chet derivative is
presented, and then it is shown that any accumulation point of the sequence of admissible
controls generated by the algorithm satisfies this necessary condition for optimality.

1. Introduction

In this paper, a conditional gradient technique is used to develop and study a computa-
tional method for a class of optimal control problems with distributed parameters. The
partial differential equations involved form a system of nonlinear first order partial
differential equations that arise in the study of heterogeneous reactors and control of
chemical processes (cf. [5], [8]). In [4] we have studied the existence and uniqueness
of Lp-solution, norm and pointwise estimates, as well as the stability of this class of
partial differential equations. The problem of developing computational algorithms
for solving optimal control problems with distributed parameter has been the subject
of a number of recent studies (cf. [3], [7], [11], [13]).

Pontryagin-type necessary conditions for optimality of the control process con-
sidered in this paper have been obtained in [12] and by the author in [2].

In the present study we impose control constraints but no state or terminal state
constraints. The approach of this paper is motivated by those of [6], [9], [10], [11]
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262 Mohammad A. Kazemi [2]

and [13]. As will be seen from the presentation, the technique employed here is by
no means particular to the governing equations (see also [11]). What is required is a
rather thorough understanding of the governing equations.

In Section 2, we describe the optimal control problem, notation, and the hypotheses
required. We will also recall certain results from [4] that are required in subsequent
developments. In Section 3, the adjoint system of equations (the linear conjugate
problem) is introduced. In Section 4 we obtain an integral representation of the
increment of the functional as well as a bound on the remainder term. In Section 5
the properties of the objective function are studied, in particular, it is shown that the
cost functional is Fre"chet differentiable, and its Fr6chet derivative is found. Finally,
in Section 6, we describe the algorithm and study its convergence properties.

2. Problem statement

In the rectangular region G := [a, a + h] x [b, b + k], we consider a controlled
process described by a system of first order partial differential equations of the form

— = f(s,t,x(s,t),y(s,t),u(s,t)), a.e. (s,t)eG,

% <2»
— = g ( s , t , x ( s , t ) , y ( s , t ) , u ( s , t ) ) , a.e. (s,t)eG,
at

x(a, t) = (p{t) b<t <b + k,
y(s,b) = \fr(t) a<s<a + h ,

where z(s, t) := (x(s, /) , y(s, 0 ) e K"1+"2, u(s, t) = (M,, U2, ..., um) e Rm are the
state and control of the system, respectively; <p{t) and \(r(s) are given vector functions
in the respective intervals.

Let U be a fixed compact and convex subset of W", and let Q be defined by

fi := {« € LOO(G, Km) | ii(5, t)eU for all (s, 0 e G). (2.3)

Any function in £2 will be called an admissible control.

The optimal control problem consists of finding a control u e Q that minimizes

the cost functional

P(s,y(s,b + k))ds+ R(t,x(a + h,t))dt, (2.4)
Jb

where z(s, t) := (x(s, t), y(s, t)) is the solution of (2.1)—(2.2) corresponding to u.

NOTATION. For the vector X = (X, , . . . , Xn) e K", we write |X| :- £"= 1 |X,|; for
a matrix M = (/w,7), we write \M\ := £(. . |ffj,;|. For z e LP(G), 1 < p < oo,
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\\z\\p denotes the usual Lp norm, in particular, \\z\\oo := ess sup|z|. As usual,
LP(G, R") will denote the Banach space of n-vector functions F(s, t) = ( F , , . . . , Fn)
such that Ft e LP(G). For such a function, we write | |F | | P := Yl"=\ ll^;llp
Fp := ( F i ^ , . . . , Fnp-) for the generalized derivatives of F with respect to /J.

We require the following assumptions:

A{: The vector functions <p(t) = (<p,,. . . , <?„,), VCO = (V î, . . . , ^rni) belong to
Lp for some p, 1 < p < 00.

A2: For fixed z and w, the functions f(s, t, z, «) and g(s, t, z, w) are measurable
in G. For each u e ft, the functions / i ( i , /) := / ( s , t,0, u(s,t)),gi(s, t) :=
g(5, /, 0, u(s, 0 ) belong to LP(G) with p as in (A^.

A3: The partial derivatives of / and g with respect to z, u exist and furthermore
there are constants K\, K2 such that on G x R" x Rm,

, s, z, 11) - / , ( / , s, f, w)| <

5, z, u) - gd(t, s, f, w)| < AT2{|z - f I + |« - W |} ,

where fd denotes any of the derivative matrices fz := (//Z;), /„ := (fiUj).
Similarly for gd.

A4: The function P(s, y) is measurable in s for fixed y and twice continuously
differentiable in y for fixed s; R(t, x) is measurable in t for fixed x and twice
continuously differentiable in x for fixed f.

We require the following results, proved in [4]. Let X denote the subspace of
LP(G, K"1"1""2) consisting of all vector functions z(s, t) = (x(s, t), y(s, t)) for which
the generalized derivatives xs and y, exist and belong, respectively, to LP{G, K"') and
LP(G, K"2).

THEOREM 2.1. Under assumptions (Ai)-(A3),for each « e ^ ( G , K"), the system of
partial differential equations (2.1)-(2.2) has a unique solution z := Z(M) in X.

Let u, v € LX(G, Km) and let z(u), z{v) be the corresponding solutions of (2.1)—

(2.2). For z(u)(s, t) := (* (K) ( J , 0 , ?(«)(*. 0 ) , we set

K,vf(s, t) := f(s, t, z(u)(s, t), v(s, 0) - f(s, t, z(u)(s, t), u(s, t))

with similar definition for Avug(s, t).

THEOREM 2.2. Under the assumptions (A\)-(A-i), there exists a nonnegative constant
C such that
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\x(v)(s, t) - x(u)(s, O| <C\J \Av,uf(a, t)\da+

(\Av,uf(a, p)\ + \Av,ug(a, P)\) dadfi\,

\y(v)(s, t) - y(u)(s, t)\ < c\ j \Av,ug(s, P)\dp+

/ ( a , /3)\ + \Av,ug(a,

REMARK. Under the assumption (A4), it follows from Theorem 2.2 that the cost
functional / defined in (2.4) is well-defined and bounded.

3. The adjoint equations

To obtain the adjoint system of equations (the linear conjugate problem) for the
optimal control problem, we first linearize the state equations (2.1) around a fixed pair
(M, Z(«)) , find the adjoint linear operator corresponding to the linearized differential
system, and then introduce suitable boundary conditions using (2.2) and (2.3). We
omit the details. The resulting adjoint equations are:

dk dH,
— = ——(s,t,z{u)(s,t),u{s,t),k(,s,t),n(s,t)),
ds dx (3 1)
— = -—-(s,t,z{u)(s,t),u(s,t),k(s,t),fi(s,t)),
at ay

oR{t,x{u){a+h,t)) dP(s,y(uKs,b+k))
ht) ix(s b + k)h,t) = , ix(s, b + k) ,

ox dy
(3.2)

where
H ( s , t, z , u, k, (M) :=k- f ( s , t,z,u) + i x - g ( s , t, z , u).

It follows from Theorem 2.1 that for a given pair u, z(u), the linear system of
equations (3.1H3.2) has a unique solution (k, //,) e LP(G, R"1+"2).

4. Integral representation of the increment

In order to find the gradient of the cost functional and study its properties for later
developments, we need an integral representation of the increment.
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Thus let (u, Z(W)) and (u, z(u)) be two admissible pairs, and let k = X(M), /J, =
, be the solution of (3.1)—(3.2) corresponding to (M, Z(M))- Then

/

a+h

[P(s, y(v)(s, b + k))- P(s, y(u)(s, b + *))] ds

/

b+k

[R(f, x(v)(a + h, 0) - R(t, x(u)(a + h, t))] dt

[Py(s, y(u)(s, b + k)- (y(v) - y(ii))(i, b + k)] ds•L a
b+kf

+ / [Rx(t, x(u)(a + h, t)) • (JC(W) - x(u)Ka + h, t)] dt
Jb

(3.3)

where Ax := x(v) — x(u), A_y := y(v) — y(u).
In what follows we will also use the following notations. We use k(s, t) :=

k(u)(s, t), (i(s, t) := /j,(u)(s, t); we write AvuH(s, t) for the difference

H{s, t,z(u)(s, t),v(s, OMs, t),n(s, 0) -H(s, t,z(u)(s, t),u(s. OMs, t),/j.(s, t)),

and denote by r\ the remainder term

Jf [Hz(s, t, z(s, t), v(s, t), \(s, t), n(s, 0)

- Hz(s, t, z(u)(s, t), u(s, t), k(s, t), ix(s, t))] dsdt,

where z := z(u) + 0(s, t){z(y) - z(u)), for some 0(s, t) e (0, 1). Using (3.1)-(3.2),
integration by parts and boundary conditions (2.2), we continue (3.3):

J(v) — J(u) = I I [/A, • Ay + ix • Ay,] ds dt
J JG

+ f f [ks • Ax + k • Axs] ds dt + o(| AJC|) + o(| Ay\)

= [ I Av,uH{s,t)dsdt

+ H2(s, t, z(s, t), v(s, t), k(s, t), /x(5, t) • Az ds dt

z(u)(s, t), u(s, t), k(s, t), n(s, t) • Az ds dt-fl™-'-
Av,uH(s, t)dsdt + T) + o(| AJC|)

G
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The remainder term rj can be estimated as

|J?| = / / \Hz(s, t,z, v,n)- Hz(s, t,z(u),u,k,fi)\\Az\dsdt

< I \Hz(s,t,z,v,k,n) - Hz(s,t,z(u),v,k,(M)\\Az\dsdt

+ \H2(s, t, Z(M), v, k, n) - Hz(s, t, z(u), u, k, yu)j|Az| ds dt.

Using (A3), and noting that \z—z(w)| < \z(v)—z(u)\, we continue the above estimate:

I>?I<C If \z{v) - z(u)\2 ds dt + f f \v-u\\z(v)-z(u)\dsdt\

<C f f \z(v) - z(u)\2 ds dt + \\v - u\\«, f I \z(v)-z{u)\dsdt\.

Now the estimates of Theorem 2.2, the mean value theorem, and the boundedness of
l/J, |gu | in(A3)yield

\i\ < K\\v — MIÎ Q.

Note also, from Theorem 2.2, that o(| Ax \ and o(| Ay |) can be replaced by o(| v—u |).
In conclusion, we have the following integral representation of the increment of

the cost functional

J(v) - J(u) = jf Av,uH(z(.u)(s, t)) dsdt + r, (3.4)

where, for some nonnegative constant C,

\r>\ < C\\v - uWl. (3.5)

5. Properties of the cost functional

In this section we show that the cost functional / is Fr6chet differentiable, find its
Fr6chet derivative and study its properties.

We first recall the definition of Fr6chet differentiability.

DEFINITION 5.1. A functional / : LTO(G, Km) -> K is said to be Fr6chet differ-
entiable at «° € Loo(G, Km), if there exists a continuous linear functional J'(u) :
Loo(G, OC) -*• K such that

lim W ^ ^ C ^ | = f t
[|«-«°lloo-»0 Il"-«°)lloo

The linear functional J'(u°) is called the Fr6chet derivative of / at u° e L^G, Km).
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THEOREM 5.1. The cost functional J : L^G, Km) ->• IR defined in (2.4) is Frechet
differentiate everywhere on L^G, W"). Furthermore, the derivative of J at u° 6
Z>oo(G, Rm) is given by

J'(u°) = JJ [k(u°)(s, t) • fu(s, t, z(u°Ks, t), u\s, 0)

+ix(u°)(s, t) • gu(s, t, z(u°)(s, t), u°(s, t))]u(s, t) ds dt. (5.2)

PROOF. Let«, u° e L^G, \SC). Using (3.4H3.5), we have

/(«) - /(H°) - /'(ll°)(ll - «°)

= JJ [Au,uo//(Z(H°)(5, 0) - H(Z(U°)(.S, 0 ) • (« - M ° ) ] ^ ^ + IJ.

Applying the mean value theorem to the term AUiUoH(z(u°)(s, t)) in the above integral
we obtain

\J(u)-J(uo)-nu°)(u-u°)\

< / / |//u(5, f,z(M°)(5, r),A.(5,0,At(5,0,"(5,0)

-//„(.$, /, Z(M°)(S, 0 , k(s, t), n(s, t), u°(s, t)\ \u(s, t) - u°(s, t)\ ds dt

where u(s, t) :=u°(s, t) + 6(s, t)(u(s, t) - H ° O > 0 ) . for s o m e 6(s, t ) , 0 < 6(s, t)<l.
Using assumption (A3), and noting that \u(s, t) — u°(s, 01 < \u(s, t) — u°(s, t)\, we
have

\J(U) - J(U°) - /'(«)(!! - «°)| < C'||H - «°«L,

from which the theorem follows.

We next investigate the continuity of the derivative / ' («). We will require this
property in establishing the convergence of the algorithm, to be presented in the next
section.

LEMMA 5.1. Let fd : L^G, (Rm) -> L^G, Knxr) be defined by

fAu):=fA;-,z(u)(;-),u(-,)). (5.3)

Then
ll/*(«)lloo < K, for all u € L^G, Rm), (5.4)

where K is a nonnegative constant independent ofu and z(u). Furthermore, f<t(u) is
uniformly continuous on LX(G, Knxr).
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REMARK. The same statement as in Lemma 5.1 holds for gd.

PROOF OF LEMMA 5.1. The estimate (5.4) is an immediate consequence of assump-
tion (A3). To prove the second part of the lemma, note from assumption (A3) that for
u, v e L^iG, 0T),

\fd(s, t, z(v){s, t), v(s, 0) - fd(s, t, z(u)(s, t), u(s, 0)1
< K2(\z(v)(s, t) - z(u)(s, 01 + \v(s, t) - u(s, 01).

Using Theorem 2.2,

\z(vKs,t)-z(u)(s,t)\<K3\j \Av,uf(a,t)\da + J \Av,ug(s,

In view of assumption (A3), we have

\Av,uf(s, 01, \Av,ug(s, 01 < C\v(s, 0 - u(s, 01 < C\\v - I I | U

for almost all (s, t) e G. Therefore, for almost all (s, t) e G,

\fAs, t, z(v)(s, 0, v(s, 0) - fAs, t, z(«)(j, 0, u(s, 0)1 < C\\v - iiHoo,

where C denotes a nonnegative constant depending only on the dimensions of the
rectangular region G. Finally, it follows from the last inequality that

\\fAv)-fAu)\\<C\\v-u\\oo,

completing the proof of the lemma.

Recall from (3.1)—<3.2) that the adjoint variables X and \i depend on u. In the
following lemma we shall prove the uniform boundedness and uniform continuity of
A. and /x with respect to u.

LEMMA 5.2.

(a) ||A(H)||OO < K, ||M(«)IIOO < K for some constant K, and for all u € LX(G, Km).
(b) k(u) and ix(u) are uniformly continuous on L^G, Rm).

PROOF. Note from (3.1)-(3.2) that (X, /J,) is the unique solution of a linear system
of partial differential equations of the same form as (2.1)-(2.2). Thus Theorem 2.1
applies to the system (3.1)—(3.2). Noting in this case that fx = 0, gi = 0 (see (A2)
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[9] Gradient technique for optimal control 269

for definitions of f and g{), Theorem 2.1 shows that the pointwise norms of k and fi
depend on the norms of Py and Rx. Thus (a) follows from assumption (A4).

To see the uniform continuity of A and fi with respect to u, apply Theorem 2.2
(along with assumption (A3)) to the adjoint system (3.1)—(3.2), which is a linear
version of (2.1)-(2.2). This completes the proof of the lemma.

Let us finally check the uniform continuity of the derivative J'(u) on Loo(G,
Km). Let u, v G Loo(G, 0T). Then it follows from Theorem 5.1 that, for any

\J'(vXw)-J'(u)(w)\ < fj [\X(v)(s, t) • /„(*, t, z(v)(s, t), v(s, 0)

- \(u)(s, t) • fu{s, t, z(u)(s, t), u(s, 0) |

s, t) • gu(s, t, z(v)(s, 0, v(s, 0)

, t) • gu(s, t, z(u)(s, t), u(s, 0)|]llw||oo^ dt.

Using assumption (A3) and Lemma 5.2, we have

- J'(u)(w)\ < ||ii;||

where C\ and C2 are constants independent of u, v, and w. It then follows that

\\J'(v)(w) - f(u)(w)\\ < C,[||A.(w) - MH)||OO + ||/i(w) - M(«)lloo]

+C2 [|| A,,,/,Ho,, + IIA^ftlU], (5.5)

where

||/'(w)-7'(«)ll := sup — .
ueLcdCR") Halloo

Applying Lemmas 5.2 and 5.3 to the above estimate (5.5) we can state the following

THEOREM 5.2. The derivative / '(«) of the cost functional /(«), which maps
Loo(G, Km) into its dual space L*X(G, Rm) is uniformly continuous on L^G, W").

6. The algorithm

Based on the analysis of the previous section, following the lines of the algorithm
devised in [11, pages 148-149] we can now devise the following conditional gradient
algorithm for the optimal control problem (2.1)-(2.4).
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STEP 1: Choose a j e (0, 1), and let u° e Q be an initial control. Set k = 0.
STEP 2: Solve (2.1H2.2) for z(uk), and (3.1) for k(uk), /X(M*). Using (5.2), compute

/'(«*).
STEP 3: Find a control M* such that

[Huk)(s, t) • fu(s, ?, z(uk)(s, 0 , «*(*, 0)
+ iM(uk)(s, t) • gu(s, t, z(uk)(s, t), uk(s, t))]uk(s, t)

< [Huk)(s, t) • fu(s, t, z(uk){s, t), uk(s, 0)
+ n(uk)(s, t) • gu(s, t, z(uk)(s, t), uk(s, t))]uk(s, t)

(6.1)
for all M e S2 and for a.a. (s, t) e G.

STEP 4: If J'(uk)(Uk - «*) = 0 then set uk+l := uk for / = 1, 2 , . . . , and stop;
otherwise go to the next step.

STEP 5: Choose am to be the first element in the sequence 1, a, a2,..., such that

J(uk + ak(uk - u*)) - J(uk) < akpj'(uk)(JIk - uk). (6.2)

STEP 6: Set uk+l := uk + ak(uk - uk). Go to Step 2 with k = k + 1.

Our next aim is to show that the above algorithm is well-defined. Steps 1 and 2
are well-defined. In Lemma 6.1 below we will prove the existence of a control
function uk defined in Step 3. Recall that Q is convex and so for any 0 < 9 < 1,
uk + 9(uk - u) e n. We have

lim[/(u* + 0(77* - «*)) - J(uk)]/0 = J'(uk)(uk - uk).
0->O

Thus there does, in fact, exist ak satisfying (6.2). (Note from (6.1) that terms on both
sides of (6.2) are negative.) Finally, Step 6 is well-defined by the convexity of £2, that
is, uk+l € fi.

LEMMA 6.1. For each u € £2, there exists a control u e £2 that minimizes the linear
functional /'(«)(•)•

PROOF. Proof is based on the Fillipov implicit function theorem, cf. [ 11, Lemma 4.6.1 ].

The following theorem gives a necessary condition for optimality of the optimal
control problem (2. l)-(2.4), in terms of the derivative of the cost functional.

THEOREM 6.1. Let u e ft be an optimal control for problem (2.1)-(2.4). Then

J'(u)u < f(u)u, for all u e Q. (6.3)
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PROOF. Let u e J2 and a e (0, 1]. We have (1 - a)u + au e Q, and so / ( I - a)~u +
ctu) > J(u), from which we have [/((I — QT)M +a«) — J(u)]/a > 0. Letting a —> 0,
we obtain J'(u)(u — u)>0. This completes the proof.

In the following theorem, we establish a convergence property of the algorithm.

THEOREM 6.2. Let {uk} be a sequence of admissible controls generated by the above
algorithm. If u* is an accumulation point of {«*}, then u* satisfies the optimality
condition (6.3).

PROOF. The proof is similar to the one given for [11, Theorem IV.6.2]. If, for some
k, uk satisfies the optimality condition (6.3), then by Step 4 of the algorithm, we have
uk+l = uk, i = 1, 2 , . . . . In this case, the theorem is obvious. We thus assume
that J'(uk)(u — uk) =£ 0 for all k = 1, 2, . . . . Since u* is an accumulation point of
the sequence {uk}, there is a subsequence of it, again denoted by {«*}, converging to
u* in the norm of L^iG, Rm).

According to (6.2),

ctkP\J\uk)(u - uk)\ < \J(uM) - J(uk)\, (6.4)

and by the definition of ak,

* ^ k ( ) • / V ) ( " * ~ "*>' ( 6 5 )

whenever ak < 1. Applying the mean value theorem to the left hand side of (6.5), we
have

J'(uk)(uk - uk) - J'(uk)(uk - uk) >(fi- l)J'(uk)(Mk - uk), (6.6)

or

0 < /'(«*)(«* - «*) < —L-1/'(«*) - /V)||M* - Uk\
1 - fi

2C
< y—jj I/'(«*)-/'(«*) I. (6.7)

where C is an upper bound for the set {||M||OO : u e Q).
Noting that {J(uk)} is a bounded decreasing sequence, we have

J(uk) - J(uk+>) -+0, as k -»• oo. (6.8)
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It thus follows from (6.8) and (6.4) that

akJ'(uk)(uk-uk)->0, ask-^oo. (6.9)

To complete the proof, we can show as in Theorem IV.6.2 that

J'(uk)(uk - uk) -+ 0, as k -> oo. (6.10)

Thus by the uniform continuity of /'(•) and the fact that \\uk — u*^ ->• 0, we have
/'(«*)(«*) -* /'("*)("*)• Thus by (6.9),

lim /'(«*)(«*) = /'(«*)(«*)• (6.H)
t->00

By the definition of uk given in Step 3, we have J'(uk)(uk) < J'(uk)(u) for all u € £2.
Thus it follows from (6.11) that J'{u*)(u*) < J'(u*)(u) forallw e ft. In other words,
M* satisfies the necessary condition for optimality, and the proof is complete.

REMARK. Theorem 6.1 assumes that the generated sequence of admissible controls
{uk} has an accumulation point in the strong topology of L^G, U). However, there is
no guarantee of the existence of such an accumulation point. In order to improve upon
Theorem 6.2, one can introduce (as in [11, Chapter V]) the notion of relaxed controls.
The topology associated with the space of relaxed controls is a more natural one in
the sense that it is weak enough to ensure the existence of accumulation points for
any infinite sequence. Yet it is strong enough to ensure that the accumulation points
satisfy a meaningful necessary condition for optimality of the associated relaxed
optimal control problem. For details, we refer the reader to [11].
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