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Abstract

In this paper we determine the lower bound on |z]=r <1 for the functional Re{ap(z) +
Bzp'(2)/p(2)}, a >0, B > 0, over the class P, (A, B). By means of this result, sharp bounds for
17(2D)), |f'(2)} in the family S¥(4, B) and the radius of convexity for S}(A4, B) are obtained.
Furthermore, we establish the radius of starlikeness of order B, 0 < B <1, for the functions
F(z) = Af(z) + (1 — A)zf'(2), |z| < 1, where ~o0 < A < 1, and f(z) € S}(A4, B).

1980 Mathematics subject classification (Amer. Math. Soc.): 30 C 45.

1. Introduction

Let B be the class of functions w(z) regular in the unit disc A = {z; |z|] < 1} and
satisfying the conditions w(0) = 0, |w(z)| <1 there. We denote by P(A4, B),
-1 < B < 4 <1, the class of functions p(z)=1+ p,z + p,z2 + --- defined
by
1+ Aw(z)
p(z)= 1+ Bw(z)’
for some w(z) € B. We note that P(1, ~1) = P, the class of functions of positive
real part in the unit disc.

Recently, Janowski [7] introduced the following general class of starlike func-
tions: S*(4,B)= {f(z)=z+ ayz?+ ---: zf(2)/f(z) € P(4,B), z €A}.
This class reduces to well-known subclasses of starlike functions by special
choices of A, B; for example, S*(1 — 2a,-1)= {f(z)=z + ayz*+ ---:

z€EA,
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Re{zf(2)/f(2)}>a, 0<a <1, z€ A}, S* A, 1/M — )= {f(2) = z + a,z?

+ ot |2f(2)/f(2) - MKM, M)}z € A}, S*a,0) = (f(2) =z + a2’
+ - qzf(2)/f(2) -l <a, O0<axglzeA}, S¥a,-a)={f(z)=z+
ay2? + -1 |2f'(2)/f(2) = W (2)/f(2) + 1| < a0 < @< 1,z €A).

Problems associated with S*( 4, B) may be transformed into those of minimis-
ing or maximising on |z| = r < 1 functionals of the form Re{ F(p(z), zp'(2))},
where F(u,v) is a given function regular in the v-plane and in the half-plane
Reu > 0, and where p(z) varies in P(A4, B).

By means of a result due to Robertson, Janowski [7] found the lower bounds
for the functionals Re{ p(z) + zp’(z)/p(z)} and Re{zp’(z)/p(z)}on |z| = r < 1,
where p(z) € P(A4, B). However, the analysis is lengthy and rather involved. In
this paper, we give an elementary solution to the more general problem
(1.1) min Re{ap(z) + Bzp'(z)/p(z)}, a>0, B>0,

|z]=r<1

where p(z) varies in the class

[o o]

P.(A4,B) = {p(z) =1+ Y pz"e€P(4,B):k>1,z¢€ A}.
n=k

Janowski’s results correspond to thecasesa = 8=k =1landa=0,8=k =1,

respectively.

For some applications of (1.1) we shall consider the following problems.

(i) Distortion, covering, radius of convexity for functions in S*(A4, B) with
missing coefficients, that is, for the class

[+ o}
S¥(4,B) = {f(z) =z+ Y a,,,2"": zf'(2)/f(z) e P,(4,B), z € A}.
n=k
(i1) Radius of starlikeness of order 8, 0 < B8 < 1, for the functions
F(z)=Af(z) +(1 = N)zf'(2), z €A,

where —00 < A < 1, f(2) € S}(A4, B).

The consideration of problem (ii) is motivated by recent investigations of
Livingston [10], Bernardi [3], Goel and Singh [6]. Results of part (i) refine those
given by Janowski [7] on functions of the class S*( 4, B).

2. The functional Re{ap(z) + Bzp’(z)/p(z)}, a > 0, B > 0, over P,(4, B)

Let B, denote the class of regular functions of the form
w(z) =bzk+ by 2¥ P + -
such that |w(z)] <1 in A. In view of the general Schwarz lemma, we have
[w(2)| < |z|¥; therefore, we may write

w(z) = z%y(z2), z €A,
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where {(z) is regular and |$(z)| <1 in A. An application of Carathéodory’s
inequality (see Carathéodory [4, page 18]) that

2
vl T ces,
now yields
(21)  |zw'(2) - kw(z)|\w, w(z) € B, z € A.

|21 (1 - 2]")

Equality in (2.1) occurs for functions of the form z%(z — ¢)/(1 — ¢z), |c| < 1
For every p(z) € P,(A4, B), we have

(2.2) p(z)=H(w(z)), z€A,

for some w(z) € B,, where H(z) = (1 + Az)/(1 + Bz). Consequently, an appli-
cation of the Subordination Principle (see Duren [5, pages 190-191)) yields that
the image of |z| < r under every p(z) € P,(4, B) is contained in the disc

(2.3) |p(2) - a,|< d,,
where

1 — ABr** (4 - B)r*
(24) TRy T gy

It follows immediately from (2.3) and (2.4) that if p(z) € P, (4, B), then on
jz| = r <1, we have
1— Ark 1+ Ark
< RC V4 V4 < .
[ g <Relr(2)} <lp()l< =
The inequalities are sharp for p(z) = (1 + 4z¥)/(1 + Bz*).
We are now ready to prove our main theorem.

(25)

2.1. THEOREM. If p(z) € P (A, B), a > 0, B > 0, thenon |z| = r < 1, we have

a —[Bk(A — B) +2aA]r* + ad’r?
(1 — Ar*)(1 — Br¥) ’
zp (z)} Ry < Ry,
{ap(z) t8 p(2) | pAtE 2(MN)V2 — B(1 — ABr?v)
A-B (4-B)r*'(1-r%
sz Rkl’

where R,, = (M/N)? R,,=(1— Ar*)/(1 — Br¥), M =B — kAr¥ 1 +
KArk*' — 422y and N = B + [a(A — B) — BkB]r*~! — [a(A — B) -
BkB]r¥*1 — BB?r?k The result is sharp.
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PrOOF. From the representation formula (2.2) we may write
zp'(z) 1+ Aw(z) (A — B)zw'(z)
+ = ,
ap(2) + B 0N = T Bw(z) T AT F An(DI [ + Bw(2)]

w(z) € B,.

Applying (2.1) to the second term of the right-hand side, we find

zp'(z) 1+ Aw(z) B(A — B)kw(z)
Re{ p(5) + 2050 > R"{ T+ Bu(z) T (1 + 4a(2)(1 +Bw(z))}

_ BU-B)(lzf" -le(2)[) '
121711 = 12")1 + dw(z)| 1 + Bu(z)|

From (2.2), we also have, for w(z) € B,, that

_p(z)-1
w(z) A= Bp(2)’ p(z) € P(4, B).
Hence, in terms of p(z), the above inequality becomes

(2.6) Re{ap(z) + le,:(( ))}

> Bkj 1_ g + Y _1_ BRe{[a(A — B) — BkB] p(z) —%}

A= B[ -1p(z) 1]
(4 - B)r*'(1 - r?)| p(2)|
Put p(z) = a, + u + iv, let | p(z)| = R, and denote the right-hand side of (2.6)
by S(u, v). Then

S(u,v) = Bkj+g+AIB{[a(A—B)-—BkB](ak+u)—

BkA(a, + u)
R2

B 1- B di-—u-0?
rk1(1 = r?) R )
Now,
aS v
(2.7) Pl A—%'FT(u,v),
where
1 B2r2k
T(u,v) = 2kA(a, + u) + _k—lTl—__)[st +(d? — u? - v?)R]
1- B2r2k 2
> 2a, +u)|k4d + m(ak -d,)
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(asd? — u?> — v?> > 0,and R® > (a, + u)(a, — d,)?). Therefore
p k

1- B2 [1- 4rk\?
(2.3) T(u,v) > 2(a, + u) kA+r"‘1(1—r2) .(1—Br") }
We want to show now that
1 — B?r2k
(2.9) =) > k.
In fact,
1 — B2r2k 1 — p2
k-1 2y T k-1 2 2 k
rk7l =) 1 - r?)
if and only if 1 — r2*f > kr*¥=1(1 — r?), that is, if and only if
Flkyr)=1+r2+r4+ - 78D — fpk=1 5 0.
If the following expressions are written out completely, it is seen that for k even,
Fk,r)=Q = r* 1)’ +r2Q = r¥3)2 + .- +r¥21 = r)* > 0, and for k
odd, F(k,r)=QQ —r*"H2 + 20 — r*=3)2 + ... +r¥731 ~ r2)? > 0. Hence,
inequality (2.9) always holds. This inequality together with (2.8) imply that
1— Ark\?
1- Brk)
Now A(1 — Br¥)2 + (1 — 4r¥)> = (1 + B)(1 — Ar¥)? + (4 — B)(1 — ABr?*)
> 0. Thus T(u, v) > 0, and it follows from (2.7) that the minimum of S(u, v) on
the disc | p(z) — a,| < d, is attained when v = 0, u € [-d,, d,]. Setting v = 0 in
the expression for S(u, v), we get

S(u,0) = Bkj+g+AlB{[a(A B) — BkB + p—

T(u,v) > 2k(a, + u)[A +

BZ 2k

k 1(1 )
_B{kA_ 1—A2r2"] Lo 1~ABr2")}’

jl(ak +u)

r"_l(l —r2)ja,tu rk1(1 - r?
which yields
as(u,0) 1 — B
A= {a(A B) - ,BkB+,B 1= )

e 1
kA — .
+B[ f"_l(l—rz)](ak+u)2}

We see that the absolute minimum of S(u,0) occurs at the point u, = (M/N)'/?
— a, if u lies inside [-d,, d,). Its value is

A+B MN)Y? = B(1 — ABr?*
S(uo,0) = Bk rat (A)— B)r"'(l(l —rg) )
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We next want to show that u, < d,. Indeed, it is seen from (2.9) that
1 — BZer

—————~— kB> k(1 -B) >0,
rk=1(1 - r?) ( )

and similarly,
1 —A2r2"
—————— kA > k(1 —4)>0.
rk1(1 - r?) ( )
Also,

N =801 - B**) +(a(4 — B) — BkB)r*~1(1 — r?)

> B(1 — kBr*~! + kBrk*! — B?r2k),
as a(A — B) > 0. Thus,
1 — kArk=' + kArk+' — A%
1 — kBr*~' + kBrk+! — B2p2k

— — — -1
_k—art 1(1—kAr" ! +Ark+1)(1—kBr" Ly opee]
k — Br¥=1\ k — Ark? k — Brk-1

Since 0 < (k — Ar¥~1)/(k — Br¥~') < 1, and since the second and third factors
are positive, the above inequality reduces to

— kArk-1 — rpek-1 -1
(2.10) (a, + uy)’ < (}k_—k;%? +Ark+1)(17__k33%_+ Brk+l) _

The right-hand side of (2.10) is less than or equal to (1 + Ar¥*1) /(1 + Br¥+1) if

(ap + “o)2 <

and only if
1 — kAr*? 1+ Ark-l)
———+(1 - k)| ——— | Br**!?
k — Arét ( )(k—Ar"’1
1 — kBrk-! (1 + Br"“)
S ———+(1 — k)| ——— | Ar¥*!,
k — Br¥-1 ( ) k — Brk-1

that is, if and only if
[(1 — k)Brétt +(1 = k) ABr2* + 1 — kar*=Y](k — Br*~?)
< [(1 = k)Ar®* Y +(1 — k) ABr** +1 — kBr*~](k — Ark™1).

This inequality is equivalent to
(2.11) (k=D[1 +(4 + B)r**' + 4Br* + k(1 - r?)] > 0.

Put G(4,B,r)=1+ (A + B)r**! + ABr**. Then

g—g =rk*(1 + Ark7h) > 0.
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Thus,
G(A,B,r)> G(A,-1,r)=1—rk*1 4+ Ar*+1(1 — p*71)
> (1 _ rk—l)(l + Ark+1) > 0.

This implies that condition (2.11) is always satisfied. Consequently, in view of
(2.10) and these intermediate steps, we have that-
2 1+ Arkt?
a, +u <.
(a ) 1+ Brk+!

Furthermore, it is clear that

1+ Ark*? 1 + Ark < (1 +Ar")2 — (g +d,).
1+ Br**' 1+ Br¥ 1+ Br*
Hence, u, < d,. However, u, is not always greater than -d,. For the case
uy < —d,, that is, if R,; < R,,, the absolute minimum of S(u,0) occurs at the
end-point ¥ = -d,, the value of which is
a —[Bk(A — B) + 2ad]r* + ad?r?
(1 — 4r%)(1 - Br¥) '

To see that the result is sharp, we consider the functions

§(-d,,0) =

1+ AzF
=——— forR,; < R,,,
p(z) 1+ B+ K k2
1+ Aw,(z)
P(z)=-lT:(z)’ for R;, < Ry,

where w,(z) = z%(z — ¢;)/(1 — c,z), with ¢, such that Re{[1 + 4w, (2)]/[1 +
Bw,(2)]} = R, at z = re'"/*,

3. Some geometric properties of the class S¥( 4, B)

In this section we derive the sharp bounds for |f(z)| and |f'(z)| in the family
S%(A, B) and the radius of convexity for S}(4, B). Letting r — 1 in the lower
bound for |f(z)], we obtain the disc which is covered by the image of the unit
disc under every f(z) in S}(4, B).

3.1. THEOREM. Let f(z) € S§(A, B). Then on |z| = r < 1, we have

r(1 — Bro)Y = P% 8 < f(2) | < r(1 + Br¥)YP7*E irB %0,

® rexp( -4 ) <11(2)] < rewp 4 ), /B =0;
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(1-4r9(1 - Brk)[A’(1+k)B]/B
(ii) <If(2)|< (1 + Ar*)(1 + Br*) A~ 0 BVE  yrp 4 g,

(- Ark)exp(_i‘,:—k) <If(2)]< (1 + Ar")exp(-A—]Z—k), if B = 0.

PROOF. Write zf'(z)/f'(z) = p(2), p(z) € P,(4, B). Then
L2 11 -1

flz) 2

Hence, on integrating both sides, we get

gl = [*[p(6) - 1%,

that is,
z -1
f(ZZ) =expj(; ”—(“’é—dg, p(z) € P,(4, B).
Therefore,

f(z)

-] [ P ]|

Substituting § by z¢ in the integral we have
L)) o [ ef 2L =1,

It follows from (2.5) that, on |zt| = rt, we have
- _ kgk—1
Re{p(zt) 1} < (A - B)r*t .

t 1+ Brit*
Hence, for B # 0,

1+ Br¥*
The lower bound may be obtained similarly. The case B = 0 is trivial. To prove
(i), we note that

|f(2)]= lp(z)|,  p(z) € P(4, B).

Hence, by applying the above results and (2.5), the assertions follow.
All the bounds are sharp for the function

f(z) =z(1 + BzX)""P/*8 i g x 0,

f(z) = zexp(ATzk), if B=0.

_ kok—1
<ep [’ A= B)r 2 (14 Bty Ao/,
0

(2)
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The corollary of Theorem 1 of Zawadzki [13] corresponds to the special case
A=1-2a, B=-1.

Letting » — 1 in the lower bound for | f(z)| we obtain the covering theorem for
Sk(A, B).

3.2. COROLLARY. The image of the unit disc under a function f(z) € S}(A, B)
contains the disc of centre 0 and radius (1 — B)YA~5/kB if B % 0, and radius
exp(-A/k) if B = 0.

We now derive the radius of convexity of S¥( A4, B). This radius is given by the
smallest root in (0, 1] of the equation (r) = 0, where

Q(r) = min{Re{l + ’;,';(zz))}: Izl=r <1, f(2) € S,’:(A,B)}

= min{Re{p(z) + _z%} lz|=r<1, p(z) € Pk(A,B)}.

An application of Theorem 2.1 with a = 1, 8 = 1 gives £(r), and, upon solving
the equation Q(r) = 0, we obtain

3,3. CorOLLARY. The radius of convexity of S¥(A, B) is given by the smallest
root in (0,1) of
(1) 1-[(2+k)A — kB]r* + A%, =0, ifR,; < Ry,,
(i) -4+ 4r*+ k[k(A4 — B) + 44]r* 1 — 2[(k? - 2)(A4 — B) + 4kA]r*+!
+k[k(A — B) + 44 r**3 + 44%r% — 44%r?%*2 =0, ifR,, < Ry,
where R, R,, are as given in Theorem 2.1. .

The result previously obtained by Zmorovi¢ [14] and Singh and Goel [12]
corresponds to the case in which k =1, A =1 — 2a, and B = 1.

4. On Livingston’s problem

Libera {8] showed that if f(z) € S* = S*(1, -1) then the function
2 rz
(41) g(2) =2 [ 1(8) at

is also in S*. Livingston [10] studied the converse problem: namely, if g(z) € S*,
what is the radius of starlikeness of the function

(4.2) f(2) = 3[g(2) + 2g'(2)]?
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Livingston showed that f(z) is starlike in |z| < 4. This result has been refined
and generalised in different ways by many authors. Padmanabhan [11] proved
that if g(z) € S*, 0 < a < 3, then f(2), as defined by (4.2), is starlike of the
same order in |z| < [a — 2 + (a? + 4)1/2]/2a. Libera and Livingston [9] ex-
tended Padmanabhan’s result to include the range } < a < 1. These authors
obtained the radius of the disc in which f(z) is starlike of order 8, where f(z) is
given by (4.2) with g(z) € S¥, 0 < a <1 and B > a. The complementary case
0 < B < a was studied by Al-Amiri [1] and Bajpai and Singh [2].

In another direction, Bernardi [11] found the radius of starlikeness of the
functions f(z) defined by

(43) f(z) = T leg(2) + zg/(2)],

where ¢ = 1, 2, 3,... and g(z) € S*. Goel and Singh [6] extended and gener-
alised Bernardi’s result to the case in which ¢ is any real number such that

¢+ B >0 and g(z) belongs to a more restricted family characterised by the
condition

< a, 0<B<1l,a>}.

2g'(2)
B - B)/(l -B)-a
Fe :
We note that this class is a special case of S*(4, B) with 4 =[a(1 — B) +
(1 - a)B)/a, B=(1 — a)/a. We further remark that for 1 + ¢ > 0, and for
A = ¢/(1 +¢), equation (4.3) is equivalent to

(4.4) f(z)=Ag(z) +(1 = N)zg'(z), -o0o<A<1.

The restriction ¢ + 8 > 0 in Goel and Singh’s analysis corresponds to 8/(8 — 1)
<A<l

In the following, as another direct application of Theorem 2.1, we determine
the sharp radius of the disc in which every f(z), as given by (4.4) with
g(z) € S¥(A, B), is starlike of order y, 0 < y < 1. All the above-mentioned
results are special cases of this result, with k = 1, and with appropriately chosen
values of 4, B, vy.

4.1. THEOREM. Let f(z) = Ag(z) + (1 — N)zg’(z), where (A — 1)/(4A — B) <
A <1, and let g(z) € S}(A, B). Let r,; be the smallest root in (0,1] of the
equation

A=A -9)+[(A+yQ =A))B+C)-k(1 =A)(C - B)-2C]r*
+[C? (A + y(1 = N))BC]r¥k =0,
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and let r,, be the smallest root in (0, 1] of the equation
41 -N)[D-E+(1-A)kC]-4(1 =A)[D - E+(1 — A)kC]r?
+[D? + 4(1 — N)kCE]r¥?
+[4(1 = A)*(C - B)* - 2D* - 8(1 — A)kCE| r**

+[D? + 4(1 — NKCE]r¥+?
+4(1 = A)[C2%E — CBD —(1 — A\)kCB?] r*
—4(1 — A)[C%E - CBD — (1 — A\)kCB?|r¥**2 =,

where C=(1 —A)A+AB, D=[A+y1 —-M)(C—-B)—k(1 —A)XC+ B),
and E = C — B — k(1 — N)B. Then f(z) is starlike of order v,0 < y <1, in
2| < {rkl’ for Riy < Ryy,
ra»  for Ryy < Ry,

where R,,, R,, are as given in Theorem 2.1 with A replaced by C, with a =1,
B=1-A.

PROOF. Since g(z) € S§(4, B), we may write

g—(‘)—) =p(z),  p(z)€P(4,B).

Then, from the definition of f(z), we have

O & S W
& I AT Frii I = S

Put g(z) = [ p(z) + p]/(1 + ). Then, in terms of functions of B,, we have
1+[(1-2A)A4 +AB]w(z)

q(z) = 1+ Bw(2) , w(z)eB,.
Hence ¢(z) € P,(C, B) and
2q'(z) _ _zp'(z) _ (1 —A)(4 - B)zw'(z)

(4.6)

g(z)  p(2)+p [1+Bw(2)][1+((1 = N)4 +AB)w(z)]

It is clear from (4.6) that the function zp’(z)/[ p(z) + p] may not be regular in A
if(1—A)A+ AB> 1, thatis, if A < (4 — 1)/(4 — B). Hence we confine A to
the range (4 — 1)/(A — B) < A < 1 so that zp'(z)/[ p(z) + p] is regular in the

entire unit disc. Equation (4.5) may be rewritten as
(4.7)

Z;;(ZZ)) =71 i N 1 ‘I(Z) +(1 - }\)zq(( )) q(z) € P,(C, B).
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Now, the radius of starlikeness of order y of f(z) is determined by the equation

o il

min min Re{
f(2)ESIA,B) |z|=r<1

or equivalently, from (4.7),
(4.8)

) . A 1 zq’(z)]}
min min Re{-y— —— + —— +(1-A)—/—/——=|}y=0.
9(2)€P(C,B) |z{=r<1 { Y 1-A 1-A [q(z) ( ) ‘I(Z)

Hence an application of Theorem 2.1 (with A4 replaced by C, a =1, and
B =1 - X&) to (4.8) will yield the equations which give the starlikeness of f(z).
The sharpness of the result follows from that of Theorem 2.1.

Theorem 1 of Bernardi (3] is recovered when we put k=1, y=0, 4 =1,
B = -1,and C =1 — 2X in the above theorem. Theorem 3.2 of Singh and Goel
{12} corresponds to the case in which k=1, A=1/2, y=0, A=1-28,
B=-1,and C = -8.
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