EXTREMAL PROBLEMS FOR A CLASS OF FUNCTIONS OF POSITIVE REAL PART AND APPLICATIONS

V. V. ANH and P. D. TUAN
(Received 15 May 1984; revised 24 January 1985)
Communicated by J. Chabrowski

Abstract

In this paper we determine the lower bound on $|z|=r<1$ for the functional $\operatorname{Re}\{\alpha p(z)+$ $\left.\beta z p^{\prime}(z) / p(z)\right\}, \alpha \geqslant 0, \beta \geqslant 0$, over the class $\mathbf{P}_{k}(A, B)$. By means of this result, sharp bounds for $|f(z)|,\left|f^{\prime}(z)\right|$ in the family $\mathbf{S}_{k}^{*}(A, B)$ and the radius of convexity for $\mathbf{S}_{k}^{*}(A, B)$ are obtained. Furthermore, we establish the radius of starlikeness of order $\beta, 0 \leqslant \beta<1$, for the functions $F(z)=\lambda f(z)+(1-\lambda) z f^{\prime}(z),|z|<1$, where $-\infty<\lambda<1$, and $f(z) \in \mathbf{S}_{k}^{*}(A, B)$.

1980 Mathematics subject classification (Amer. Math. Soc.): 30 C 45.

1. Introduction

Let \mathbf{B} be the class of functions $w(z)$ regular in the unit disc $\Delta=\{z ;|z|<1\}$ and satisfying the conditions $w(0)=0,|w(z)|<1$ there. We denote by $\mathbf{P}(A, B)$, $-1 \leqslant B<A \leqslant 1$, the class of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ defined by

$$
p(z)=\frac{1+A w(z)}{1+B w(z)}, \quad z \in \Delta
$$

for some $w(z) \in \mathbf{B}$. We note that $\mathbf{P}(1,-1) \equiv \mathbf{P}$, the class of functions of positive real part in the unit disc.

Recently, Janowski [7] introduced the following general class of starlike functions: $\quad \mathbf{S}^{*}(A, B)=\left\{f(z)=z+a_{2} z^{2}+\cdots: \quad z f^{\prime}(z) / f(z) \in \mathbf{P}(A, B), \quad z \in \Delta\right\}$. This class reduces to well-known subclasses of starlike functions by special choices of $A, B ;$ for example, $\mathbf{S}^{*}(1-2 \alpha,-1)=\left\{f(z)=z+a_{2} z^{2}+\cdots\right.$:

[^0]$\left.\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>\alpha, 0 \leqslant \alpha<1, z \in \Delta\right\}, \mathbf{S} *(1,1 / M-1)=\left\{f(z)=z+a_{2} z^{2}\right.$ $\left.+\cdots:\left|z f^{\prime}(z) / f(z)-M\right|\langle M, \quad M\rangle \frac{1}{2}, z \in \Delta\right\}, \quad \mathbf{S}^{*}(\alpha, 0)=\left\{f(z)=z+a_{2} z^{2}\right.$
$\left.+\cdots:\left|z f^{\prime}(z) / f(z)-1\right|<\alpha, \quad 0<\alpha \leqslant 1, z \in \Delta\right\}, \quad \mathbf{S}^{*}(\alpha,-\alpha)=\{f(z)=z+$ $a_{2} z^{2}+\cdots:\left|z f^{\prime}(z) / f(z)-1 / /\left|z f^{\prime}(z) / f(z)+1\right|<\alpha, 0 \leqslant \alpha<1, z \in \Delta\right\}$.

Problems associated with $\mathbf{S}^{*}(A, B)$ may be transformed into those of minimising or maximising on $|z|=r<1$ functionals of the form $\operatorname{Re}\left\{F\left(p(z), z p^{\prime}(z)\right)\right\}$, where $F(u, v)$ is a given function regular in the v-plane and in the half-plane $\operatorname{Re} u>0$, and where $p(z)$ varies in $\mathrm{P}(A, B)$.

By means of a result due to Robertson, Janowski [7] found the lower bounds for the functionals $\operatorname{Re}\left\{p(z)+z p^{\prime}(z) / p(z)\right\}$ and $\operatorname{Re}\left\{z p^{\prime}(z) / p(z)\right\}$ on $|z|=r<1$, where $p(z) \in \mathbf{P}(A, B)$. However, the analysis is lengthy and rather involved. In this paper, we give an elementary solution to the more general problem

$$
\begin{equation*}
\min _{|z|=r<1} \operatorname{Re}\left\{\alpha p(z)+\beta z p^{\prime}(z) / p(z)\right\}, \quad \alpha \geqslant 0, \quad \beta \geqslant 0 \tag{1.1}
\end{equation*}
$$

where $p(z)$ varies in the class

$$
\mathbf{P}_{k}(A, B)=\left\{p(z)=1+\sum_{n=k}^{\infty} p_{n} z^{n} \in \mathbf{P}(A, B): k \geqslant 1, z \in \Delta\right\}
$$

Janowski's results correspond to the cases $\alpha=\beta=k=1$ and $\alpha=0, \beta=k=1$, respectively.

For some applications of (1.1) we shall consider the following problems.
(i) Distortion, covering, radius of convexity for functions in $\mathbf{S}^{*}(A, B)$ with missing coefficients, that is, for the class

$$
\mathbf{S}_{k}^{*}(A, B)=\left\{f(z)=z+\sum_{n=k}^{\infty} a_{n+1} z^{n+1}: z f^{\prime}(z) / f(z) \in \mathbf{P}_{k}(A, B), z \in \Delta\right\}
$$

(ii) Radius of starlikeness of order $\beta, 0 \leqslant \beta<1$, for the functions

$$
F(z)=\lambda f(z)+(1-\lambda) z f^{\prime}(z), \quad z \in \Delta
$$

where $-\infty<\lambda<1, f(z) \in \mathbf{S}_{k}^{*}(A, B)$.
The consideration of problem (ii) is motivated by recent investigations of Livingston [10], Bernardi [3], Goel and Singh [6]. Results of part (i) refine those given by Janowski [7] on functions of the class $\mathbf{S}^{*}(A, B)$.
2. The functional $\operatorname{Re}\left\{\alpha p(z)+\beta z p^{\prime}(z) / p(z)\right\}, \alpha \geqslant 0, \beta \geqslant 0$, over $\mathbf{P}_{k}(A, B)$

Let \mathbf{B}_{k} denote the class of regular functions of the form

$$
w(z)=b_{k} z^{k}+b_{k+1} z^{k+1}+\cdots
$$

such that $|w(z)|<1$ in Δ. In view of the general Schwarz lemma, we have $|w(z)| \leqslant|z|^{k}$; therefore, we may write

$$
w(z)=z^{k} \psi(z), \quad z \in \Delta
$$

where $\psi(z)$ is regular and $|\psi(z)| \leqslant 1$ in Δ. An application of Carathéodory's inequality (see Carathéodory [4, page 18]) that

$$
\left|\psi^{\prime}(z)\right| \leqslant \frac{1-|\psi(z)|^{2}}{1-|z|^{2}}, \quad z \in \Delta
$$

now yields

$$
\begin{equation*}
\left|z w^{\prime}(z)-k w(z)\right| \leqslant \frac{|z|^{2 k}-|w(z)|^{2}}{|z|^{k-1}\left(1-|z|^{2}\right)}, \quad w(z) \in \mathbf{B}_{k}, z \in \Delta \tag{2.1}
\end{equation*}
$$

Equality in (2.1) occurs for functions of the form $z^{k}(z-c) /(1-c z),|c| \leqslant 1$.
For every $p(z) \in \mathbf{P}_{k}(A, B)$, we have

$$
\begin{equation*}
p(z)=H(w(z)), \quad z \in \Delta \tag{2.2}
\end{equation*}
$$

for some $w(z) \in \mathbf{B}_{k}$, where $H(z)=(1+A z) /(1+B z)$. Consequently, an application of the Subordination Principle (see Duren [5, pages 190-191]) yields that the image of $|z| \leqslant r$ under every $p(z) \in \mathbf{P}_{k}(A, B)$ is contained in the disc

$$
\begin{equation*}
\left|p(z)-a_{k}\right| \leqslant d_{k} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=\frac{1-A B r^{2 k}}{1-B^{2} r^{2 k}}, \quad d_{k}=\frac{(A-B) r^{k}}{1-B^{2} r^{2 k}} \tag{2.4}
\end{equation*}
$$

It follows immediately from (2.3) and (2.4) that if $p(z) \in \mathbf{P}_{k}(A, B)$, then on $|z|=r<1$, we have

$$
\begin{equation*}
\frac{1-A r^{k}}{1-B r^{k}} \leqslant \operatorname{Re}\{p(z)\} \leqslant|p(z)| \leqslant \frac{1+A r^{k}}{1+B r^{k}} \tag{2.5}
\end{equation*}
$$

The inequalities are sharp for $p(z)=\left(1+A z^{k}\right) /\left(1+B z^{k}\right)$.
We are now ready to prove our main theorem.
2.1. Theorem. If $p(z) \in \mathbf{P}_{k}(A, B), \alpha \geqslant 0, \beta \geqslant 0$, then on $|z|=r<1$, we have
$\operatorname{Re}\left\{\alpha p(z)+\beta \frac{z p^{\prime}(z)}{p(z)}\right\} \geqslant\left\{\begin{array}{l}\frac{\alpha-[\beta k(A-B)+2 \alpha A] r^{k}+\alpha A^{2} r^{2 k}}{\left(1-A r^{k}\right)\left(1-B r^{k}\right)}, \\ \beta k \frac{A+B}{A-B}+2 \frac{(M N)^{1 / 2}-\beta\left(1-A B r^{2 k}\right)}{(A-B) r^{k-1}\left(1-r^{2}\right)}, \\ R_{k 1} \leqslant R_{k 2}, \\ R_{k 2} \leqslant R_{k 1},\end{array}\right.$
where $R_{k 1}=(M / N)^{1 / 2}, \quad R_{k 2}=\left(1-A r^{k}\right) /\left(1-B r^{k}\right), \quad M=\beta\left(1-k A r^{k-1}+\right.$ $\left.k A r^{k+1}-A^{2} r^{2 k}\right)$, and $N=\beta+[\alpha(A-B)-\beta k B] r^{k-1}-[\alpha(A-B)-$ $\beta k B] r^{k+1}-\beta B^{2} r^{2 k}$. The result is sharp.

Proof. From the representation formula (2.2) we may write

$$
\alpha p(z)+\beta \frac{z p^{\prime}(z)}{p(z)}=\alpha \frac{1+A w(z)}{1+B w(z)}+\beta \frac{(A-B) z w^{\prime}(z)}{[1+A w(z)][1+B w(z)]},
$$

$$
w(z) \in \mathbf{B}_{k}
$$

Applying (2.1) to the second term of the right-hand side, we find

$$
\begin{aligned}
\operatorname{Re}\left\{p(z)+\frac{z p^{\prime}(z)}{p(z)}\right\} \geqslant & \operatorname{Re}\left\{\alpha \frac{1+A \omega(z)}{1+B \omega(z)}+\frac{\beta(A-B) k \omega(z)}{(1+A \omega(z))(1+B \omega(z))}\right\} \\
& -\frac{\beta(A-B)\left(|z|^{2 k}-|\omega(z)|^{2}\right)}{|z|^{k-1}\left(1-|z|^{2}\right)|1+A \omega(z)||1+B \omega(z)|} .
\end{aligned}
$$

From (2.2), we also have, for $\omega(z) \in \mathbf{B}_{k}$, that

$$
\omega(z)=\frac{p(z)-1}{A-B p(z)}, \quad p(z) \in \mathbf{P}_{k}(A, B)
$$

Hence, in terms of $p(z)$, the above inequality becomes

$$
\begin{align*}
& \operatorname{Re}\left\{\alpha p(z)+\beta \frac{z p^{\prime}(z)}{p(z)}\right\} \tag{2.6}\\
& \geqslant \\
& \geqslant \beta k \frac{A+B}{A-B}+\frac{1}{A-B} \operatorname{Re}\left\{[\alpha(A-B)-\beta k B] p(z)-\frac{\beta k A}{p(z)}\right\} \\
& \quad-\beta \frac{r^{2 k}|A-B p(z)|^{2}-|p(z)-1|^{2}}{(A-B) r^{k-1}\left(1-r^{2}\right)|p(z)|}
\end{align*}
$$

Put $p(z)=a_{k}+u+i v$, let $|p(z)|=R$, and denote the right-hand side of (2.6) by $S(u, v)$. Then

$$
\begin{aligned}
S(u, v)=\beta k \frac{A+B}{A-B}+\frac{1}{A-B}\{[\alpha(A-B) & -\beta k B]\left(a_{k}+u\right)-\frac{\beta k A\left(a_{k}+u\right)}{R^{2}} \\
& \left.-\beta \frac{1-B^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)} \cdot \frac{d_{k}^{2}-u^{2}-v^{2}}{R}\right\}
\end{aligned}
$$

Now,

$$
\begin{equation*}
\frac{\partial S}{\partial v}=\frac{\beta}{A-B} \cdot \frac{v}{R^{4}} T(u, v) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{aligned}
T(u, v) & =2 k A\left(a_{k}+u\right)+\frac{1-B^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)}\left[2 R^{3}+\left(d_{k}^{2}-u^{2}-v^{2}\right) R\right] \\
& \geqslant 2\left(a_{k}+u\right)\left[k A+\frac{1-B^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)}\left(a_{k}-d_{k}\right)^{2}\right]
\end{aligned}
$$

(as $d_{k}^{2}-u^{2}-v^{2} \geqslant 0$, and $R^{3} \geqslant\left(a_{k}+u\right)\left(a_{k}-d_{k}\right)^{2}$). Therefore

$$
\begin{equation*}
T(u, v) \geqslant 2\left(a_{k}+u\right)\left[k A+\frac{1-B^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)} \cdot\left(\frac{1-A r^{k}}{1-B r^{k}}\right)^{2}\right] \tag{2.8}
\end{equation*}
$$

We want to show now that

$$
\begin{equation*}
\frac{1-B^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)} \geqslant k \tag{2.9}
\end{equation*}
$$

In fact,

$$
\frac{1-B^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)} \geqslant \frac{1-r^{2 k}}{r^{k-1}\left(1-r^{2}\right)} \geqslant k
$$

if and only if $1-r^{2 k} \geqslant k r^{k-1}\left(1-r^{2}\right)$, that is, if and only if

$$
F(k, r) \equiv 1+r^{2}+r^{4}+\cdots+r^{2(k-1)}-k r^{k-1} \geqslant 0 .
$$

If the following expressions are written out completely, it is seen that for k even, $F(k, r)=\left(1-r^{k-1}\right)^{2}+r^{2}\left(1-r^{k-3}\right)^{2}+\cdots+r^{k-2}(1-r)^{2}>0$, and for k odd, $F(k, r)=\left(1-r^{k-1}\right)^{2}+r^{2}\left(1-r^{k-3}\right)^{2}+\cdots+r^{k-3}\left(1-r^{2}\right)^{2}>0$. Hence, inequality (2.9) always holds. This inequality together with (2.8) imply that

$$
T(u, v) \geqslant 2 k\left(a_{k}+u\right)\left[A+\left(\frac{1-A r^{k}}{1-B r^{k}}\right)^{2}\right]
$$

Now $A\left(1-B r^{k}\right)^{2}+\left(1-A r^{k}\right)^{2}=(1+B)\left(1-A r^{k}\right)^{2}+(A-B)\left(1-A B r^{2 k}\right)$ >0. Thus $T(u, v)>0$, and it follows from (2.7) that the minimum of $S(u, v)$ on the disc $\left|p(z)-a_{k}\right| \leqslant d_{k}$ is attained when $v=0, u \in\left[-d_{k}, d_{k}\right]$. Setting $v=0$ in the expression for $S(u, v)$, we get
$S(u, 0)=\beta k \frac{A+B}{A-B}+\frac{1}{A-B}\left\{\left[\alpha(A-B)-\beta k B+\beta \frac{1-B^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)}\right]\left(a_{k}+u\right)\right.$

$$
\left.-\beta\left[k A-\frac{1-A^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)}\right] \frac{1}{a_{k}+u}-2 \beta \frac{1-A B r^{2 k}}{r^{k-1}\left(1-r^{2}\right)}\right\}
$$

which yields

$$
\begin{aligned}
& \frac{d S(u, 0)}{d u}=\frac{1}{A-B}\{\alpha(A-B)-\beta k B+\beta \frac{1-B^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)} \\
&\left.+\beta\left[k A-\frac{1-A^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)}\right] \frac{1}{\left(a_{k}+u\right)^{2}}\right\}
\end{aligned}
$$

We see that the absolute minimum of $S(u, 0)$ occurs at the point $u_{0}=(M / N)^{1 / 2}$ $-a_{k}$ if u_{0} lies inside $\left[-d_{k}, d_{k}\right]$. Its value is

$$
S\left(u_{0}, 0\right)=\beta k \frac{A+B}{A-B}+2 \frac{(M N)^{1 / 2}-\beta\left(1-A B r^{2 k}\right)}{(A-B) r^{k-1}\left(1-r^{2}\right)}
$$

We next want to show that $u_{0}<d_{k}$. Indeed, it is seen from (2.9) that

$$
\frac{1-B^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)}-k B \geqslant k(1-B) \geqslant 0,
$$

and similarly,

$$
\frac{1-A^{2} r^{2 k}}{r^{k-1}\left(1-r^{2}\right)}-k A \geqslant k(1-A) \geqslant 0 .
$$

Also,

$$
\begin{aligned}
N & =\beta\left(1-B^{2} r^{2 k}\right)+(\alpha(A-B)-\beta k B) r^{k-1}\left(1-r^{2}\right) \\
& \geqslant \beta\left(1-k B r^{k-1}+k B r^{k+1}-B^{2} r^{2 k}\right),
\end{aligned}
$$

as $\alpha(A-B) \geqslant 0$. Thus,

$$
\begin{aligned}
\left(a_{k}+u_{0}\right)^{2} & <\frac{1-k A r^{k-1}+k A r^{k+1}-A^{2} r^{2 k}}{1-k B r^{k-1}+k B r^{k+1}-B^{2} r^{2 k}} \\
& =\frac{k-A r^{k-1}}{k-B r^{k-1}}\left(\frac{1-k A r^{k-1}}{k-A r^{k-1}}+A r^{k+1}\right)\left(\frac{1-k B r^{k-1}}{k-B r^{k-1}}+B r^{k+1}\right)^{-1}
\end{aligned}
$$

Since $0<\left(k-A r^{k-1}\right) /\left(k-B r^{k-1}\right)<1$, and since the second and third factors are positive, the above inequality reduces to

$$
\begin{equation*}
\left(a_{k}+u_{0}\right)^{2}<\left(\frac{1-k A r^{k-1}}{k-A r^{k-1}}+A r^{k+1}\right)\left(\frac{1-k B r^{k-1}}{k-B r^{k-1}}+B r^{k+1}\right)^{-1} \tag{2.10}
\end{equation*}
$$

The right-hand side of (2.10) is less than or equal to $\left(1+A r^{k+1}\right) /\left(1+B r^{k+1}\right)$ if and only if

$$
\begin{aligned}
\frac{1-k A r^{k-1}}{k-A r^{k-1}}+ & (1-k)\left(\frac{1+A r^{k-1}}{k-A r^{k-1}}\right) B r^{k+1} \\
& \leqslant \frac{1-k B r^{k-1}}{k-B r^{k-1}}+(1-k)\left(\frac{1+B r^{k-1}}{k-B r^{k-1}}\right) A r^{k+1}
\end{aligned}
$$

that is, if and only if

$$
\begin{aligned}
{\left[(1-k) B r^{k+1}\right.} & \left.+(1-k) A B r^{2 k}+1-k A r^{k-1}\right]\left(k-B r^{k-1}\right) \\
& \leqslant\left[(1-k) A r^{k+1}+(1-k) A B r^{2 k}+1-k B r^{k-1}\right]\left(k-A r^{k-1}\right)
\end{aligned}
$$

This inequality is equivalent to

$$
\begin{equation*}
(k-1)\left[1+(A+B) r^{k+1}+A B r^{2 k}+k\left(1-r^{2}\right)\right] \geqslant 0 . \tag{2.11}
\end{equation*}
$$

Put $G(A, B, r)=1+(A+B) r^{k+1}+A B r^{2 k}$. Then

$$
\frac{\partial G}{\partial B}=r^{k+1}\left(1+A r^{k-1}\right)>0 .
$$

Thus,

$$
\begin{aligned}
G(A, B, r) & \geqslant G(A,-1, r)=1-r^{k+1}+A r^{k+1}\left(1-r^{k-1}\right) \\
& \geqslant\left(1-r^{k-1}\right)\left(1+A r^{k+1}\right)>0
\end{aligned}
$$

This implies that condition (2.11) is always satisfied. Consequently, in view of (2.10) and these intermediate steps, we have that -

$$
\left(a_{k}+u_{0}\right)^{2}<\frac{1+A r^{k+1}}{1+B r^{k+1}}
$$

Furthermore, it is clear that

$$
\frac{1+A r^{k+1}}{1+B r^{k+1}}<\frac{1+A r^{k}}{1+B r^{k}}<\left(\frac{1+A r^{k}}{1+B r^{k}}\right)^{2}=\left(a_{k}+d_{k}\right)^{2}
$$

Hence, $u_{0}<d_{k}$. However, u_{0} is not always greater than $-d_{k}$. For the case $u_{0} \leqslant-d_{k}$, that is, if $R_{k 1} \leqslant R_{k 2}$, the absolute minimum of $S(u, 0)$ occurs at the end-point $u=-d_{k}$, the value of which is

$$
S\left(-d_{k}, 0\right)=\frac{\alpha-[\beta k(A-B)+2 \alpha A] r^{k}+\alpha A^{2} r^{2 k}}{\left(1-A r^{k}\right)\left(1-B r^{k}\right)}
$$

To see that the result is sharp, we consider the functions

$$
\begin{gathered}
p(z)=\frac{1+A z^{k}}{1+B z^{k}}, \quad \text { for } R_{k 1} \leqslant R_{k 2} \\
p(z)=\frac{1+A w_{k}(z)}{1+B w_{k}(z)}, \quad \text { for } R_{k 2} \leqslant R_{k 1}
\end{gathered}
$$

where $w_{k}(z)=z^{k}\left(z-c_{k}\right) /\left(1-c_{k} z\right)$, with c_{k} such that $\operatorname{Re}\left\{\left[1+A w_{k}(z)\right] /[1+\right.$ $\left.\left.B w_{k}(z)\right]\right\}=R_{k 1}$ at $z=r e^{i \pi / k}$.

3. Some geometric properties of the class $\mathbf{S}_{k}^{*}(A, B)$

In this section we derive the sharp bounds for $|f(z)|$ and $\left|f^{\prime}(z)\right|$ in the family $\mathbf{S}_{k}^{*}(A, B)$ and the radius of convexity for $\mathbf{S}_{k}^{*}(A, B)$. Letting $r \rightarrow 1$ in the lower bound for $|f(z)|$, we obtain the disc which is covered by the image of the unit disc under every $f(z)$ in $\mathbf{S}_{k}^{*}(A, B)$.
3.1. Theorem. Let $f(z) \in \mathbf{S}_{k}^{*}(A, B)$. Then on $|z|=r<1$, we have

$$
r\left(1-B r^{k}\right)^{(A-B) / k B} \leqslant|f(z)| \leqslant r\left(1+B r^{k}\right)^{(A-B) / k B}, \quad \text { if } B \neq 0
$$

$$
\begin{equation*}
r \exp \left(-\frac{A r^{k}}{k}\right) \leqslant|f(z)| \leqslant r \exp \left(\frac{A r^{k}}{k}\right), \quad \text { if } B=0 \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{aligned}
& \left(1-A r^{k}\right)\left(1-B r^{k}\right)^{[A-(1+k) B] / B} \\
& \quad \leqslant\left|f^{\prime}(z)\right| \leqslant\left(1+A r^{k}\right)\left(1+B r^{k}\right)^{[A-(1+k) B] / B}, \quad \text { if } B \neq 0 \\
& \left(1-A r^{k}\right) \exp \left(-\frac{A r^{k}}{k}\right) \leqslant\left|f^{\prime}(z)\right| \leqslant\left(1+A r^{k}\right) \exp \left(\frac{A r^{k}}{k}\right), \quad \text { if } B=0
\end{aligned}
$$

Proof. Write $z f^{\prime}(z) / f^{\prime}(z)=p(z), p(z) \in \mathbf{P}_{k}(A, B)$. Then

$$
\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}=\frac{1}{z}[p(z)-1]
$$

Hence, on integrating both sides, we get

$$
\log \frac{f(z)}{z}=\int_{0}^{z}[p(\xi)-1] \frac{d \xi}{\xi}
$$

that is,

$$
\frac{f(z)}{z}=\exp \int_{0}^{z} \frac{p(\xi)-1}{\xi} d \xi, \quad p(z) \in \mathbf{P}_{k}(A, B) .
$$

Therefore,

$$
\left|\frac{f(z)}{z}\right|=\exp \left[\operatorname{Re}\left\{\int_{0}^{z} \frac{p(\xi)-1}{\xi} d \xi\right\}\right]
$$

Substituting ξ by $z t$ in the integral we have

$$
\left|\frac{f(z)}{z}\right|=\exp \int_{0}^{1} \operatorname{Re}\left\{\frac{p(z t)-1}{t}\right\} d t
$$

It follows from (2.5) that, on $|z t|=r t$, we have

$$
\operatorname{Re}\left\{\frac{p(z t)-1}{t}\right\} \leqslant \frac{(A-B) r^{k} t^{k-1}}{1+B r^{k} t^{k}}
$$

Hence, for $B \neq 0$,

$$
\left|\frac{f(z)}{z}\right| \leqslant \exp \int_{0}^{1} \frac{(A-B) r^{k} t^{k-1}}{1+B r^{k} t^{k}} d t=\left(1+B r^{k}\right)^{(A-B) / k B}
$$

The lower bound may be obtained similarly. The case $B=0$ is trivial. To prove (ii), we note that

$$
\left|f^{\prime}(z)\right|=\left|\frac{f(z)}{z}\right||p(z)|, \quad p(z) \in \mathbf{P}_{k}(A, B)
$$

Hence, by applying the above results and (2.5), the assertions follow.
All the bounds are sharp for the function

$$
\begin{aligned}
& f(z)=z\left(1+B z^{k}\right)^{(A-B) / k B}, \quad \text { if } B \neq 0 \\
& f(z)=z \exp \left(\frac{A z^{k}}{k}\right), \quad \text { if } B=0
\end{aligned}
$$

The corollary of Theorem 1 of Zawadzki [13] corresponds to the special case $A=1-2 \alpha, B=-1$.

Letting $r \rightarrow 1$ in the lower bound for $|f(z)|$ we obtain the covering theorem for $\mathbf{S}_{k}^{*}(A, B)$.
3.2. Corollary. The image of the unit disc under a function $f(z) \in \mathbf{S}_{k}^{*}(A, B)$ contains the disc of centre 0 and radius $(1-B)^{(A-B) / k B}$ if $B \neq 0$, and radius $\exp (-A / k)$ if $B=0$.

We now derive the radius of convexity of $\mathbf{S}_{k}^{*}(A, B)$. This radius is given by the smallest root in $(0,1]$ of the equation $\Omega(r)=0$, where

$$
\begin{aligned}
\Omega(r) & =\min \left\{\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}:|z|=r<1, f(z) \in \mathbf{S}_{k}^{*}(A, B)\right\} \\
& =\min \left\{\operatorname{Re}\left\{p(z)+\frac{z p^{\prime}(z)}{p(z)}\right\}:|z|=r<1, p(z) \in \mathbf{P}_{k}(A, B)\right\}
\end{aligned}
$$

An application of Theorem 2.1 with $\alpha=1, \beta=1$ gives $\Omega(r)$, and, upon solving the equation $\Omega(r)=0$, we obtain
3.3. Corollary. The radius of convexity of $\mathbf{S}_{k}^{*}(A, B)$ is given by the smallest root in $(0,1]$ of

$$
\begin{equation*}
1-[(2+k) A-k B] r^{k}+A^{2} r^{2 k}=0, \quad \text { if } R_{k 1} \leqslant R_{k 2} \tag{i}
\end{equation*}
$$

(ii) $-4+4 r^{2}+k[k(A-B)+4 A] r^{k-1}-2\left[\left(k^{2}-2\right)(A-B)+4 k A\right] r^{k+1}$

$$
+k[k(A-B)+4 A] r^{k+3}+4 A^{2} r^{2 k}-4 A^{2} r^{2 k+2}=0, \quad \text { if } R_{k 2} \leqslant R_{k 1}
$$

where $R_{k 1}, R_{k 2}$ are as given in Theorem 2.1.

The result previously obtained by Zmorovic [14] and Singh and Goel [12] corresponds to the case in which $k=1, A=1-2 \alpha$, and $B=-1$.

4. On Livingston's problem

Libera [8] showed that if $f(z) \in \mathbf{S}^{*} \equiv \mathbf{S}^{*}(1,-1)$ then the function

$$
\begin{equation*}
g(z)=\frac{2}{z} \int_{0}^{z} f(\xi) d \xi \tag{4.1}
\end{equation*}
$$

is also in \mathbf{S}^{*}. Livingston [10] studied the converse problem: namely, if $g(z) \in \mathbf{S}^{*}$, what is the radius of starlikeness of the function

$$
\begin{equation*}
f(z)=\frac{1}{2}\left[g(z)+z g^{\prime}(z)\right] ? \tag{4.2}
\end{equation*}
$$

Livingston showed that $f(z)$ is starlike in $|z|<\frac{1}{2}$. This result has been refined and generalised in different ways by many authors. Padmanabhan [11] proved that if $g(z) \in \mathbf{S}_{\alpha}^{*}, 0 \leqslant \alpha \leqslant \frac{1}{2}$, then $f(z)$, as defined by (4.2), is starlike of the same order in $|z|<\left[\alpha-2+\left(\alpha^{2}+4\right)^{1 / 2}\right] / 2 \alpha$. Libera and Livingston [9] extended Padmanabhan's result to include the range $\frac{1}{2}<\alpha<1$. These authors obtained the radius of the disc in which $f(z)$ is starlike of order β, where $f(z)$ is given by (4.2) with $g(z) \in \mathbf{S}_{\alpha}^{*}, 0 \leqslant \alpha<1$ and $\beta \geqslant \alpha$. The complementary case $0 \leqslant \beta<\alpha$ was studied by Al-Amiri [1] and Bajpai and Singh [2].

In another direction, Bernardi [11] found the radius of starlikeness of the functions $f(z)$ defined by

$$
\begin{equation*}
f(z)=\frac{1}{1+c}\left[c g(z)+z g^{\prime}(z)\right] \tag{4.3}
\end{equation*}
$$

where $c=1,2,3, \ldots$ and $g(z) \in \mathbf{S}^{*}$. Goel and Singh [6] extended and generalised Bernardi's result to the case in which c is any real number such that $c+\beta>0$ and $g(z)$ belongs to a more restricted family characterised by the condition

$$
\left|\left(\frac{z g^{\prime}(z)}{g(z)}-\beta\right) /(1-\beta)-\alpha\right|<\alpha, \quad 0 \leqslant \beta<1, \alpha>\frac{1}{2}
$$

We note that this class is a special case of $\mathbf{S}^{*}(A, B)$ with $A=[\alpha(1-\beta)+$ $(1-\alpha) \beta] / \alpha, B=(1-\alpha) / \alpha$. We further remark that for $1+c>0$, and for $\lambda=c /(1+c)$, equation (4.3) is equivalent to

$$
\begin{equation*}
f(z)=\lambda g(z)+(1-\lambda) z g^{\prime}(z), \quad-\infty<\lambda<1 \tag{4.4}
\end{equation*}
$$

The restriction $c+\beta>0$ in Goel and Singh's analysis corresponds to $\beta /(\beta-1)$ $<\lambda<1$.

In the following, as another direct application of Theorem 2.1, we determine the sharp radius of the disc in which every $f(z)$, as given by (4.4) with $g(z) \in \mathbf{S}_{k}^{*}(A, B)$, is starlike of order $\gamma, 0 \leqslant \gamma<1$. All the above-mentioned results are special cases of this result, with $k=1$, and with appropriately chosen values of A, B, γ.
4.1. Theorem. Let $f(z)=\lambda g(z)+(1-\lambda) z g^{\prime}(z)$, where $(A-1) /(A-B) \leqslant$ $\lambda<1$, and let $g(z) \in \mathbf{S}_{k}^{*}(A, B)$. Let $r_{k 1}$ be the smallest root in $(0,1]$ of the equation

$$
\begin{aligned}
(1-\lambda)(1-\gamma)+[(\lambda+\gamma(1-\lambda))(B+ & C)-k(1-\lambda)(C-B)-2 C] r^{k} \\
+ & {\left[C^{2}-(\lambda+\gamma(1-\lambda)) B C\right] r^{2 k}=0 }
\end{aligned}
$$

and let $r_{k 2}$ be the smallest root in $(0,1]$ of the equation

$$
\begin{aligned}
4(1-\lambda) & {[D-E+(1-\lambda) k C]-4(1-\lambda)[D-E+(1-\lambda) k C] r^{2} } \\
+ & {\left[D^{2}+4(1-\lambda) k C E\right] r^{k-1} } \\
+ & {\left[4(1-\lambda)^{2}(C-B)^{2}-2 D^{2}-8(1-\lambda) k C E\right] r^{k+1} } \\
+ & {\left[D^{2}+4(1-\lambda) k C E\right] r^{k+3} } \\
& +4(1-\lambda)\left[C^{2} E-C B D-(1-\lambda) k C B^{2}\right] r^{2 k} \\
& -4(1-\lambda)\left[C^{2} E-C B D-(1-\lambda) k C B^{2}\right] r^{2 k+2}=0,
\end{aligned}
$$

where $C=(1-\lambda) A+\lambda B, \quad D=[\lambda+\gamma(1-\lambda)](C-B)-k(1-\lambda)(C+B)$, and $E=C-B-k(1-\lambda) B$. Then $f(z)$ is starlike of order $\gamma, 0 \leqslant \gamma<1$, in

$$
|z|< \begin{cases}r_{k 1}, & \text { for } R_{k 1} \leqslant R_{k 2}, \\ r_{k 2}, & \text { for } R_{k 2} \leqslant R_{k 1},\end{cases}
$$

where $R_{k 1}, R_{k 2}$ are as given in Theorem 2.1 with A replaced by C, with $\alpha=1$, $\beta=1-\lambda$.

Proof. Since $g(z) \in \mathbf{S}_{k}^{*}(A, B)$, we may write

$$
\frac{z g^{\prime}(z)}{g(z)}=p(z), \quad p(z) \in \mathbf{P}_{k}(A, B) .
$$

Then, from the definition of $f(z)$, we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=p(z)+\frac{z p^{\prime}(z)}{p(z)+\mu}, \quad \mu=\frac{\lambda}{1-\lambda},-1<\mu<\infty . \tag{4.5}
\end{equation*}
$$

Put $q(z)=[p(z)+\mu] /(1+\mu)$. Then, in terms of functions of \mathbf{B}_{k}, we have

$$
q(z)=\frac{1+[(1-\lambda) A+\lambda B] w(z)}{1+B w(z)}, \quad w(z) \in \mathbf{B}_{k} .
$$

Hence $q(z) \in \mathbf{P}_{k}(C, B)$ and

$$
\begin{equation*}
\frac{z q^{\prime}(z)}{q(z)}=\frac{z p^{\prime}(z)}{p(z)+\mu}=\frac{(1-\lambda)(A-B) z w^{\prime}(z)}{[1+B w(z)][1+((1-\lambda) A+\lambda B) w(z)]} . \tag{4.6}
\end{equation*}
$$

It is clear from (4.6) that the function $z p^{\prime}(z) /[p(z)+\mu]$ may not be regular in Δ if $(1-\lambda) A+\lambda B>1$, that is, if $\lambda<(A-1) /(A-B)$. Hence we confine λ to the range $(A-1) /(A-B) \leqslant \lambda<1$ so that $z p^{\prime}(z) /[p(z)+\mu]$ is regular in the entire unit disc. Equation (4.5) may be rewritten as

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=-\frac{\lambda}{1-\lambda}+\frac{1}{1-\lambda}\left[q(z)+(1-\lambda) \frac{z q^{\prime}(z)}{q(z)}\right], \quad q(z) \in \mathbf{P}_{k}(C, B) . \tag{4.7}
\end{equation*}
$$

Now, the radius of starlikeness of order γ of $f(z)$ is determined by the equation

$$
\min _{f(z) \in S_{k}^{\prime}(A, B)} \min _{|z|=r<1} \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\gamma\right\}=0,
$$

or equivalently, from (4.7),

$$
\begin{equation*}
\min _{q(z) \in \mathbf{P}_{k}(C, B)} \min _{|z|=r<1} \operatorname{Re}\left\{-\gamma-\frac{\lambda}{1-\lambda}+\frac{1}{1-\lambda}\left[q(z)+(1-\lambda) \frac{z q^{\prime}(z)}{q(z)}\right]\right\}=0 . \tag{4.8}
\end{equation*}
$$

Hence an application of Theorem 2.1 (with A replaced by $C, \alpha=1$, and $\beta=1-\lambda$) to (4.8) will yield the equations which give the starlikeness of $f(z)$. The sharpness of the result follows from that of Theorem 2.1.

Theorem 1 of Bernardi [3] is recovered when we put $k=1, \gamma=0, A=1$, $B=-1$, and $C=1-2 \lambda$ in the above theorem. Theorem 3.2 of Singh and Goel [12] corresponds to the case in which $k=1, \lambda=1 / 2, \gamma=0, A=1-2 \beta$, $B=-1$, and $C=-\beta$.

Acknowledgements

The authors are grateful to the referees for their valuable comments.

References

[1] H. S. Al-Amiri, 'On the radius of β-convexity of starlike functions of order α ', Proc. Amer. Math. Soc. 39 (1973), 101-109.
[2] P. L. Bajpai and P. Singh, 'The radius of starlikeness of certain analytic functions', Proc. Amer. Math. Soc. 44 (1974), 395-402.
[3] S. D. Bernardi, 'The radius of univalence of certain analytic functions', Proc, Amer. Math. Soc. 24 (1970), 312-318.
[4] C. Carathéodory, Theory of functions of a complex variable, Vol. 2 (Chelsea Publishing Company, New York, 1960).
[5] P. L. Duren, Univalent Functions (Springer Verlag, New York, 1983).
[6] R. M. Goel and V. Singh, 'On the radii of univalence of certain analytic functions', Indian J. Pure Appl. Math. 4 (1973), 402-421.
[7] W. Janowski, 'Some extremal problems for certain families of analytic functions I', Ann. Polon. Math. 28 (1973), 298-326.
[8] R. J. Libera, 'Some classes of regular univalent functions', Proc. Amer. Math. Soc. 16 (1965), 755-758.
[9] R. J. Libera and A. E. Livingston, 'On the univalence of some classes of regular functions', Proc. Amer. Math. Soc. 30 (1971), 327-336.
[10] A. E. Livingston, 'On the radius of univalence of certain analytic functions', Proc. Amer. Math. Soc. 17 (1966), 352-357.
[11] K. S. Padmanabhan, 'On the radius of univalence of certain classes of analytic functions', J. London Math. Soc. (2) 1 (1969), 225-231.
[12] V. Singh and R. M. Goel, 'On radii of convexity and starlikeness of some classes of functions', J. Math. Soc. Japan 23 (1971), 323-339.
[13] R. Zawadzki, 'On some theorems on distortion and rotation in the class of k-symmetric starlike functions of order α^{\prime}, Ann. Polon. Math. 24 (1971), 169-185.
[14] V. A. Zmorovič, 'On bounds of convexity for starlike functions of order α in the circle $|z|<1$ and in the circular region $0<|z|<1^{\prime}$, Mat. Sb. 68(110) (1965), 518-526, English transl., Amer. Math. Soc. Transl. (2) 80 (1969), 203-213.

Department of Mathematics
Queensland Institute of Technology
P. O. Box 2434 Brisbane

Queensland 4001 Australia

First Interstate Bank of California
600 South Spring Street
Los Angeles, California 90014
U.S.A.

[^0]: © 1986 Australian Mathematical Society 0263-6115/86 \$A2.00 +0.00

