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SEMIGROUPS OF HIGH RANK
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1. Introduction

By the rank r(S) of a finite semigroup S we shall mean the minimum cardinality of a
set of generators of S. For a group G, as remarked in [3], one has r(G)^log2|G|, the
bound being attained when G is an elementary abelian 2-group. By contrast, we shall
see that there exist finite semigroups S for which r(5)^|S| —1. In the hope that it will
not be considered too whimsical, we shall refer to a finite semigroup S of maximal rank
(i.e. for which r(S) = |S|) as royal; a semigroup of next-to-maximal rank (i.e. for which
r(S) = |S | - l ) will be called noble.

It is possible to extend these ideas to infinite semigroups by defining S to be royal if
(S\{s})cS (properly) for all s in S. Equally, S is said to be noble if (S\{s1,s2}}<=S for
all st^s2 in S, but there exists z in S such that <S\{z}> = S. The element z featuring in
this definition will be called a superfluous element.

The structure of royal semigroups, which are necessarily bands, is given by Theorem
2.2. A noble semigroup S is defined as singly or doubly noble according as 5 has exactly
one or exactly two superfluous elements. (As is shown in Theorem 3.7, there are no
other possibilities.) The main part of this paper is devoted to an elucidation of the
structure of singly noble semigroups. These need not be bands, but the description in
Section 4 of singly noble bands turns out to be a major step in understanding the
structure of singly noble semigroups in general. The main results are Theorems 4.11,
4.14, 4.15, 5.6 and 5.10.

Unexplained terms in semigroup theory will be found in [2].

2. Royal semigroups

Let S be a royal semigroup. If a=f=a2 in S then S\{a2} generates S, contrary to
assumption. Hence S is a band and so by the Clifford-McLean Theorem [1, 4, 2] is a
semilattice Y of rectangular bands £a (a e Y):

We now have a lemma which applies also to noble bands.

Lemma 2.1. Let S = Sf[Y;{Ex:ae 7}] be a royal or noble band. Then each Ex is either
a left zero or a right zero semigroup.
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14 EMILIA GIRALDES AND JOHN M. HOWIE

Proof. Denoting the class of right zero semigroups by RZ and the class of left zero
semigroups by LZ, let us suppose by way of contradiction that some £a does not belong
to RZ u LZ. Then £a contains a copy {en,e12,e21,e22} of the 2 x 2 rectangular band, in
which

Since e12 = elle22
 anc* e 2 i = e 22 c n >l is c ' e a r t n a t S\{e12,e21} generates S, contrary to

hypothesis.

The next observation is that if S = £f[Y;{Ea:(xe 7}] is royal then Y is a chain. For if
Y has a branch-point y, i.e. a point for which there exist oc,/?>y such that a.ji = y, then
ExEp^Ey and so there exists at least one element z of Ey having an expression z = xy
with x in Ea, y in Ep and so certainly with x^z, yj^z. Thus S\{z} generates 5, contrary
to assumption.

In stating the first main theorem it is convenient to use the symbol £2 to denote the
class of all non-zero cardinal numbers. We shall also use the symbols R, L to stand for
right and left, in a way that will be clear.

Theorem 2.2. Let (Y, ̂ ) be a chain and let M: Y->Q, H: Y-*{R,L} be maps. For each
a in Y let Ea be a set with cardinality Af(oc), endowed with the structure of a right zero
or a left zero semigroup according as H(a) = R or H(a) = L. Define a multiplication on
S=\J{Ex:<xe Y} by the rule that

xy = yx = y {xeEa,yeEp,a>P).

Then S = Roy( Y, M, H) is a royal semigroup.
Conversely, every royal semigroup is isomorphic to one constructed in this way.

Proof. For the direct part, it is a routine matter to show that the multiplication on
S = (J{£a:oceY} is associative and that S is royal. As regards the converse, we have
already seen that a royal semigroup S must be a chain Y of semigroups £a in RZ u LZ.
We may therefore define (for each a in Y)

For any x,y in S we must have either xy = x or xy = y, since otherwise S\{x_y} would
generate 5. So if we now take a > p, x e £„, y e Ep we know that

and so the only possibility is

xy = yx = y.
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SEMIGROUPS OF HIGH RANK 15

Remark. It is easy to verify that every subsemigroup and every homomorphic image
of a royal semigroup is royal. The class Roy of royal semigroups is not, however, a
variety, since a direct product of royal semigroups need not be royal. The class Roy is
contained in the variety \_x2 = x, axya = axaya] of regular bands. See Petrich [5] for
information on varieties of bands.

3. Noble semigroups: preliminaries

Let S be a noble semigroup, generated by S\{z}. As in the introduction, we refer to z
as a superfluous element. It is clear that for all s in S\{z}

s2 = s or s2=z; (3.1)

for any other value for s2 would imply that S\{s2, z] generates S. More generally, and
for the same reason,

st = s or st — t or st = z (3.2)

for all s, t in S\{z}.
Also trivial is

Lemma 3.3. Let S be a noble semigroup, generated by S\{z}. Then there exist g,h in.
S\{z} such that gh = z.

Proof. Otherwise S\{z} is closed under multiplication and does not generate S.

The next result is not quite so obvious:

Lemma 3.4. Let S be a noble semigroup, generated by S\{z}. Then z2 = z.

Proof. Suppose by way of contradiction that z2 = g(e S\{z}). Then

gz = zg( = zi) (3.5)

If S = {g,z} is of order 2 then g2 = z by Lemma 3.3 and either gz = zg=g or gz = zg = z.
In the former case

g2z = z2=g, g(gz)=g2 = z,

which contradicts associativity; in the latter case associativity again fails, since

z2g=g2 = z, z(zg) = z2=g.

Accordingly, suppose that | S | ^3 , and let heS\{g,z}. By (3.1) we have either h2 = z or
h2 = h. In fact we must have h2 = h, for h2 = z implies that h4=g and hence that S\{g,z}
generates S. Thus all elements of S\{g,z} are idempotent.
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16 EMILIA GIRALDES AND JOHN M. HOWIE

Continuing with our supposition that z2=g we now consider two cases: (1) g2=g; (2)
g2 = z. In case (1) we consider the expression gig1 for z. Such an expression must exist
(with g1,g2eS\{z}) by Lemma 3.3. If both g^,g2 are distinct from g then

implies that S\{z,g} generates S. Hence we have either

z=gg2 or z=gyg. (3.6)

In the former case we get

gz=g{gg2) =g2g2=gg2 = z

and hence

z2 = zgg2 =gzg2 = zg2 = (gg2)g2 =gg\ =gg2 = z, by (3.5)

a contradiction to the assumption that z2=g. A similar contradiction arises if we
assume at (3.6) that z=g^g. Thus case (1) cannot arise.

In case (2) it follows by (3.5) that

(gz)2=g2z2 = zg=gz

and so gz, being idempotent, must be distinct from both g and z. This implies that
S\{z,gz} generates S and so again gives a contradiction. Thus case (2) cannot arise
either. We have now shown as required that z2 = z.

Next, we have

Theorem 3.7. Let S be a noble semigroup. Then either there is a unique superfluous
element or there are precisely two such elements. In the latter case S must be a band.

Proof. Suppose that S\{z} generates S. We'consider two cases:

(1) there exists g in S\{z} such that g2 = z;
(2) g2 =g for a\\g in S\{z}.

In case (1) the superfluous element z must be unique. For suppose that t (^z) is also
superfluous; then t2 = t by Lemma 3.4 and so t±g; hence g,zeS\{t} with g2 = z and so g
and t violate condition (3.1).

In case (2) we note that by Lemma 3.4 the semigroup S is a band. We now show that
S cannot have more than two superfluous elements. By Lemma 3.3 we have

z=gh (3.8)

where g, heS\{z}. In fact g and h must be distinct since S is a band. It follows that

gz = z = zh. (3.9)
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The only possible candidates for alternative generating sets are S\{g} and S\{/i}; for if
s£{z,g, h} then S\{s} must contain all three of z,g, h and so by (3.8) must violate (3.2).
Let us now suppose that S\{g}, S\{h} are both generating sets; we shall see that this
leads to a contradiction. By Lemma 3.3 we have

where x,)>e,S\{g}. If x,y are both in S\{z} we can immediately deduce that S\{z,g}
generates S, in contradiction to our supposition that 5 is noble. Hence either

g = zy or g = xz, (3.10)

where x,yeS\{z,g}. Suppose first that g = zy. Then if y±h the equation g = zy (in which
g,z,yeS\{h}) violates condition (3.2) for the generating set S\{h}. Hence y = h. By the
same token, if we assume that g = xz in (3.10) we find that x = h. Hence we can refine
(3.10) to

g = zh or g = hz.

In fact g=zh is impossible because of (3.9), and so g = hz. But then (3.9) gives

z=gZ = hz2 = hz=g,

which is again a contradiction. The only conclusion is that S\{g} and S\{h} cannot
simultaneously be generating sets. This completes the proof of Theorem 3.7.

It is convenient now to define a noble semigroup S as singly noble if it has a unique
superfluous element, and doubly noble if it has precisely two such elements. We shall not
discuss doubly noble semigroups in this paper. Such semigroups do, however, exist, as
the following example makes clear.

Example. (3.11) Let S = {a1,a2,z1,z2}£^"({1,2,3,4}), where

' 1 2 3 4'

z, =

1 2 3 4
1 1 4 4 /

1 2 3 4'

3 3 3 3 /

a, = 2 2 3 3/'

1 2 3 4
4 4 4 4

Then S has Cayley table

a2

Zl

z2

«i

<*i

«i

z2

z2

«2

a2
a2

Zl

Zl

Zl

Zl

Zl

Zl

Zl

z2

z2
z2
z2
z2
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18 EMILIA GIRALDES AND JOHN M. HOWIE

and is clearly doubly noble, generated by either S\{zx} or S\{z2} but not by any subset
of cardinality 2.

4. Singly noble bands

A singly noble semigroup need not be a band, but, as will be clear in Section 5, the
major step in understanding the structure of singly noble semigroups in general is the
study of singly noble bands. We begin with what at first seems to be a very particular
example.

Let A be a right zero semigroup and let Z be a left zero semigroup, where | 4 | ^ 1 ,
|Z| ̂ 2 . Let P be a subset of Z such that |P| ̂ 2 and let zj be a fixed element of P. Define
a multiplication on the disjoint union S = A u Z by the rules

az =

za = z (zeZ,aeA)

(aeA,zeP)
z {aeA,zeZ\P)

(4.1)

It is possible to check directly that this is an associative multiplication. It is easy also to
see that S is a singly noble band, with superfluous element zx and with two ̂ -classes,
namely A and Z. The semigroup is in fact determined by the sets A, Z and P and by the
fact that A and Z are respectively in RZ and LZ. To draw attention to these facts and
also to the unique superfluous element zt we write

= SNB«(A,Z;P;z1). (4.2)

The dual semigroup, in which the upper ^-class is left zero and the lower ,/-class is
right zero, is denoted by

SNBL(A Z' P' z ) (4 3)

In a very similar way we construct a singly noble band in the case where A and Z are
both in RZ, where P is a subset of Z such that |P|^2 and where zleP. Here the
specification is

az = z (asA,zeZ)

! (aeA,zeP)
z (aeA,zeZ\P).

We write

S = SNB«(A,Z;P;zl).

The dual semigroup, in which both ^/-classes are in LZ, is written

(4.4)

(4.5)

(4.6)
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SEMIGROUPS OF HIGH RANK 19

We can now prove the following theorem:

Theorem 4.7. Let S be a singly noble band with superfluous element zt and with two
/-classes. Then (for some A,Z,P,zx) S is isomorphic to exactly one of the semigroups
listed in formulae (4.2), (4.3), (4.5) and (4.6).

Proof. By Lemma 2.1 the ^/-classes of S are both in R Z u L Z . They form a two-
element chain and it is clear that zl must be in the lower ^/-class. Denote the ^-classes
by A,Z, with

/4ZSZ, ZA^Z.

If \Z\ = 1 the semigroup is simply a right or left zero semigroup A with a zero element
zl adjoined, and such a semigroup is royal rather than noble. Hence |Z|^2.

There are now four cases, according to whether A and Z are in RZ or in LZ, but
because of duality it will not be necessary to consider more than two. Suppose first that
AeRZ, ZeLZ. Thus

ad = a', zz' = z

for all a,a' in A and all z,z' in Z. The product zxa must be in Z and cannot be z^zlt

since then S\{z} would generate S. Hence

for all z in A, and it now follows easily that for all z in Z

za = (zzl)a = z(zla) = zz1 =z.

Now by the same argument as we used for zya we must have

aZl=z, (4.8)

for all a in A. Since S\{zi} generates S there must exist a0 in A and z0 (^z t ) in Z such
that

aozo = zl. (4.9)

We now show that for each z (^Z l ) in Z we have the implication

(4.10)

For suppose that a'z = zl for some a! in A. Then for all a in A we have aze{z,z{}. If
az = z then

z = az = (a'a)z = a'(az) = a'z = zl,
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20 EMILIA GIRALDES AND JOHN M. HOWIE

which is a contradiction. Hence az = z± for all a in A. We have proved the implication
(4.10).

It follows that Z divides into two complementary subsets P and Z\P given by

= {zeZ:z±zltAz =

By (4.8) and (4.9) z1 and z0 belong to P. Hence \P\ ^2 .
We have in fact shown that

Suppose now that the /-classes A and Z are both in RZ, so that

aa' = a!, zz' = z'

for all a,a' in X and all z,z' in Z. Then as before we must have az1=z1a = z1 for all a in
A and so

for all a in A and z in Z. Again there exist z0 (^z^ in Z and a0 in ,4 such that

and once again we can show that for each z=^z{ either zA = {zl) or Z/4 = {z}. Thus again
we find

with zo,zi G-P. Thus

Note. In (4.2), (4.3), (4.5) and (4.6) we are insisting that P properly contains {zj . If
we allow P = {zl} then the semigroup in each case becomes royal. We shall sometimes
want to allow this degenerate case.

We have effectively described all singly noble bands with two /-classes. Let us now
consider an arbitrary singly noble band
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SEMIGROUPS OF HIGH RANK 21

generated by S\{z}. As pointed out in the paragraph preceding the statement of
Theorem 2.2, at any branch-point y of the semilattice Y there must be at least one
element in £, expressible as a product of two elements distinct from itself. In the case of
a royal semigroup the effect of this observation was to conclude that Y must be a chain.
Here we conclude that Y can have at most one branch-point, and that the branch-point
(if any) must be at the ^/-class containing z. Whether or not a branch-point occurs it
will be useful to refer to the ,/-class containing z as the pivotal ./-class. The element z
itself will be called the pivot. If Y is a chain we shall say that 5 is a catenary singly
noble band.

Let us first consider the catenary case and denote the pivotal ,/-class by Eo; then 0 is
not the maximum element of the chain Y. The structure of Ea u £^(a > j8) must be that of
a royal semigroup if /? ̂  0. The structure of Ea u Eo (a > 0) is either that of a royal
semigroup, or for some PsE0 with |P|^2 is the appropriate SNB(Ea,E0;P;zi). We thus
have a good deal of information about the global structure of S.

In fact we can be still more specific. Suppose that a>/?>0 and suppose for
definiteness that

Ea,EpeRZ, £oeLZ.

Suppose now that

EauE0 = SNBf(Ea,E0;P;zl),

with |P|,|Q|^ 2. Since

(with M(a) = \Ea\,M(P) = \E0\, H(a) = H(P) = R) we have that

ab = ba = b

for all a in Ea, b in E0. Hence, by (4.1), for b in Ef and z in P,

It follows that zeQ, and so P^Q. The same result applies to other mixtures of right
and left zero semigroups.

We can now state the following theorem. As in Theorem 2.2, Q denotes the class of
all non-zero cardinal numbers.

Theorem 4.11. Let (Y, ^ ) be a chain and let 0 be a fixed non-maximal element of Y.
Let M.Y^O. and H:Y^{R,L} be maps and suppose that M(0)^2. For each a in Y
suppose that £a is a set with M(a) elements having right or left zero semigroup structure
according as //(a) is R or L. Let zl be a fixed element of £0.
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22 EMILIA GIRALDES AND JOHN M. HOWIE

For each <x>0 let P(a) be a subset of Eo, and suppose that

(i) Z!6P(a)/or all oc>O,
(ii) 0<a^^P(a)=>PO?),

(iii) \P(<x)\^2 for some tx>0.

Define a multiplication on £a u £„ (a > /? ̂  0) by the ru/e that

£a u E, = Roy({a, /?}, M|{a, j5}, tf|{a, J?})

and on £a u £0 (a > 0) by fne rule that

Ea u £0 = SJVBg$ (£„ £0; P(a); Zl).

Then the disjoint union S = (J{£a:ae Y} is a catenary singly noble band.
Conversely, every catenary singly noble band is isomorphic to one constructed in this

way.

Proof. In effect we have already established the more difficult converse half of this
result, provided we make as in the proof of Theorem 2.2 the convention that H(ct) = R
(say) whenever |£a| = l. The condition PsQ obtained just before the statement of the
theorem translates into property (ii) of the function P. If |P(a)| = 1 for any a (giving
|P(/?)| = 1 for all j?^a) then the corresponding

reduces simply to Roy({a,0},M|{a,0},//|{a,0}), in accordance with the Note preceding
this theorem. The condition (iii) merely ensures that the entire semigroup S is not royal.

As regards the direct half of the theorem, the only issue is whether the multiplication
on S is associative. Let ae£ a , beEp ceE If a = )3 = y then {ab)c = a(bc) by associativity
within a right or left zero semigroup. If |{<x,/?,y}| = 2 then {ab)c = a(bc) by associativity
within a royal or singly noble semigroup with two ^/-classes. If a, jS, y are all distinct
then all cases are automatic by the properties of royal semigroups except

)3>0>a,

y>a>0, a>O>y, y>0>a,

, y>P>0,

This is a tedious verification and it will suffice to give an example. Suppose that
a > P > 0 and that H(a) = H(fi) = R, H(0) = L. Then £a, Ep are right zero semigroups, while
£0 is left zero. If aeEa, beEp, zeE0 then P(a)sP(y?) and we have

if

if
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On the other hand

z, if zeP(p)
if

if

if

since z£P(fi) certainly implies z£P(<x). Thus {ab)z = a(bz) as required. Other cases are
either similar or easier.

The singly noble band described in the theorem will be denoted by

S = SNB(Y;M,H;P). (4.12)

Remark. If we drop condition (iii) in the statement of the theorem we may have
P(a) = {z1} for all a>0. In this case S reduces to Roy(^M,tf).

In order to study singly noble bands that are not catenary we require some more
terminology. A singly noble band will be called feminine if the pivotal </-class consists of
a single element, and masculine otherwise. (The feminine bands have narrower waists.)
Theorem 4.11 indicates that all catenary singly noble bands are masculine, but we shall
see that this need not be so for the non-catenary case.

Let S=y[y ;{£ a : aeF}] be a singly noble band in which Y is not a chain. Denote
the unique branch-point of Y by 0 and the pivot by zl (e £0). We shall in fact limit
ourselves to the case where S is arboreal, i.e. where the underlying semilattice Y is a
tree. The more general case would not be impossible to describe, but the details might
be tedious and in order to keep this paper to a reasonable length we shall not tackle it
here.

In effect the restriction to the arboreal case means that {a £ Y: a. ̂  0} is the union of
chains Z, (i 6 /), with

Since Y is not a chain we must have | / | ^2 .
Suppose now that S is both masculine and arboreal. We define M: 7->Q by M(a) = |£a

and note that M(0)^2. Also, we define H: Y->{R,L] by the rule that

H(a\J
R if *

1 ' \L if £«eLZand |£ , |> l .

For each i in / the structure of the catenary singly noble (or royal) band S( = \J{Ex: aeZ,}
determines a map P,-: Z,—»^(£0) satisfying conditions (i) and (ii) of Theorem 4.11: that
is, zy ePi(a) for all a in Z;; and for all a,/? in Z(
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24 EMILIA GIRALDES AND JOHN M. HOWIE

Then

S, =<SJVB(Z,;M|Z,,tf|Z,;P,),

the case where S, is royal being covered by the eventuality that P,(a) = {z1} for all a. in

In fact the functions P, (ie/) are not independent. To see this, let us look at a in Z;,
P in Zj (with i =/= j) and let us suppose for definiteness that

H(ot) = R,

Then Ea u £0>
 Ep u ^o a r e respectively

SNB* {Ea, Eo; P,(a); z,)

For aeEx, beEp we must have

since EaEf, EpEx £ £0 and since zt is the unique superfluous element of S. Hence for all z
in £0

while

z, if
z if

i if
j . otherwise.

Thus associativity fails unless

P,(a)uPJ(j?) = £0 (4.13)

for all i^j and all a in Z;, /? in Zj.
We have therefore proved the converse half of the following theorem:

Theorem 4.14. Let Y be a tree with a single branch-point 0 and suppose that
{a e Y: a ̂  0} is a union of chains Z( (i e /), with

| / | ^2 , |Z, |^2 (isI), Z , n Z J = {0}

Let

(iel)
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be a catenary singly noble or royal band with ^-classes Ea (aeZi), pivotal,/-class Eo and
pivot z1; and suppose that

SinSJ=E0

Suppose also that for all i=fcj and all <x in Z,, /? in Z},

Let ?={aEY:oc<0} and let

T = Roy(Y,M,H)

be a royal band, where T n St=^for all i in I.
Define a multiplication on

by the rule that

(Si\E0)(Sj\E0) = {z1}

xy=yx = y whenever xeSit yeT.

Then S is an arboreal masculine singly noble band.
Conversely, every arboreal masculine singly noble band is isomorphic to one of this kind.

Proof. Here the verification of associativity (which is all that remains to be proved)
is much easier than in Theorem 4.11 and is omitted altogether.

For feminine singly noble bands we obtain the following theorem:

Theorem 4.15. Let Rt (iel) be non-trivial royal bands intersecting in a common
minimum ^-class {z}, where | / | ^ 2 . Let Ro be a royal band whose maximum J*-class is
{z}. Let

and define a multiplication on S by

yo (xeRt,ieI, yoeRo).

Then S is an arboreal feminine singly noble band.
Conversely, every arboreal feminine singly noble band is isomorphic to one constructed

in this way.
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Proof. The verification that S is associative is trivial. Also S is singly noble,
generated by S\{z}, and is feminine since the pivotal ,/-class consists of a single element
z. It is arboreal, since the underlying semilattice has one branch-point at 0 from which
at least two chains diverge upwards.

To establish the converse half, suppose that S = £f\_Y;{Ex:oie 7}] is an arboreal
feminine singly noble band. We know from Theorem 4.11 that a catenary singly noble
band must be masculine; hence Y has a branch-point, and this must be at the pivotal
./-class £0 = {z}. In our previous notation, write {aeY:a^0} as (J{Z,:ie/}, where the
Z, are chains and where Z, n Zj = {0} if i i= j . Then for each i in / the catenary
subsemigroup

cannot be singly noble (since it is feminine) and so must be royal. This applies also to

The result is now clear.

5. Singly noble semigroups

In addition to singly noble bands we have two very obvious sources of singly noble
semigroups. First, it is clear that Z2, the two element group, is singly noble, and that it
is the only group with this property. Secondly, any null semigroup N, with N2 = {z}, is
singly noble. It turns out that the structure of singly noble semigroups can be described
in terms of singly noble bands, copies of Z2 and null semigroups.

Let S be a singly noble semigroup, generated by S\{z}. We saw in Section 3 that z2 = z
and that for each g in S\{z} either g2 =g or g2 = z. In fact we have

Lemma 5.1. Let S be a singly noble semigroup, generated by S\{z}, and let B =
{seS:s2 = s}. Then B is a subsemigroup of S and is either a royal band or a singly noble
band.

Proof. Let b,ceB. Then

and so B is a subsemigroup. The result is now clear.

Lemma 5.2. Let S be a singly noble semigroup, generated by S\{z}, and suppose that
|C|^2, where C = {seS:s2 = z}. Then C is a singly noble subsemigroup of S.

Proof. As above, if s, (e C then

st e {s, t,z}^C
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and so C is a subsemigroup. Being contained in a singly noble semigroup, it must be
either royal or singly noble, but since it is not a band it cannot in fact be royal.

Let us now look a little more closely at C. For each c in C we have c2 = z and so

cz = zc ( = c3).

Hence C — G<uN, where

G = {ceC:cz = zc = c},

N = {c e C: cz — zc = z},

and GnN = {z}. Then G is closed under multiplication, since c,dsG implies

(cd)z = c(dz) = cd, z(cd) = (zc)d = cd,

and in fact G is a group with identity z, with c^c'1 for all c in G. It must be singly
noble or royal, being a subsemigroup of a singly noble semigroup, and hence |G|^2.
That is, either G = {z), or G={z,c], with cz = zc = c, c2 = z2 = z.

Next, we examine N. If c,dsN\{z} then cde{c,d,z). If cd = c then

c = cd = (cd)d = cd3 = cz = z,

a contradiction, and we similarly get a contradiction from the assumption that cd = d.
Hence cd = z and so AT is a null semigroup with z as zero element.

We have thus proved

Theorem 5.3. Let S be a singly noble semigroup, generated by S\{z}. Then there exist
a royal or singly noble band B, a group G of order not greater than 2 with identity z, and
a null semigroup N with zero element z such that

and S = BvGuN.IfBis royal then at least one of G,N is non-trivial.

Probing more deeply into the fine structure of S, let us now suppose that B is
masculine, i.e. that the ,/-class of z in B contains at least one other element z2. Let us
suppose (without essential loss of generality) that the ./-class {z,z2,...} is in RZ, so that

ZZ2 = Z2, Z2Z = Z.

Suppose now that G = {g,z}, of order 2. Then
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and gz2e{g,z2>z}. We show that each of the three possibilities leads to a contradiction.
First, gz2= g gives

which is not the case. Secondly, gz2 = z2 gives

and thirdly, gz2 = z gives

g = Zg = (gZ2)g = g(Z2g) =g2=Z.

Our conclusion is as follows.

Theorem 5.4. / / in Theorem 5.3 the band B is masculine then the group G is trivial.

It may help in explaining our remaining results if we introduce some additional
terminology. We shall say that a singly noble semigroup 5, generated by S\{z}, is dexter
if the pivotal </-class Jz is a right zero semigroup containing at least two elements,
sinister if Jz is a left zero semigroup containing at least two elements, feminine if Jz = {z},
and balanced if Jz = {z,g], a group of order 2. It follows from our investigations so far
that these are the only possibilities. Notice that the masculine singly noble bands
investigated in Theorems 4.11 and 4.14 have either the dexter or the sinister property.

Before stating the next theorem we require a further definition. Let Y be a semilattice
with a single branch-point 0 and let Y+ = {<xe Y:oc>0}. A subset C of Y+ will be called
a positive chain filter if

(i) [ae C, 0>«]=>/*eC, j
(ii) [a € C, fi not comparable with a] >/?^CJ

Such subsets exist: the empty set is one such, and so is every set [a, ) = {/?e 7./?^ a}. Let
<& denote the set of all positive chain filters in Y.

Theorem 5.6. Let B = Sf\_Y;{Ea:oceY}~\ be a dexter singly noble band, generated by
B\{z} and with pivotal /-class Eo. Let N be a null semigroup with zero element z but
otherwise disjoint from B. Let

be mappings from N\{z] into the set ^ of positive chain filters of Y. Define a multiplication
on S = BKJ N by the rules that

Nbx = bxN = {ba} if baeEa, <x<0,
(5.7)

xbo = bo, box = z if xeN, boeEo,
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while ifxeN\{z}, baeEa, a>0,

x if a e <&r{x)
z if a £ <Pr(x),

x if aeO, (x )

z if a ^ <J>r(x).

TTien S is a dexter singly noble semigroup.
Conversely, every dexter singly noble semigroup is isomorphic to one constructed in this

way.

Proof. For the direct part of the theorem the only issue is whether S is a semigroup.
Once that is established, the additional properties are clear. The verification of
associativity falls into six main cases, labelled (in an obvious notation)

BNN, NBN, NNB, BBN, BNB, NBB.

For the first three cases it is helpful to look separately at

z<0} and Eo.

Since N2 = {z} and B+N,NB+ EN we see that in cases B+NN,NB+N and NNB+ both
products (pq)r and p(qr) must equal z. In case B~NN the rules give

(pq)r = p(qr) = p,

and cases NB~N, NNB~ are equally straightforward. In cases E0NN and NE0N it is
easy to see that

{pq)r = p(qr) = z,

while in case NNE0 we have

(pq)r = p(qr) = r.

For the case BBN, and indeed in a similar way for each of the remaining cases, it is
necessary to consider the products (bc)x and b(cx) (with beEfi, ceEy, xeN) case by
case as follows:

(iv) p>O>y, (v) y>O>p, (vi) 0>p>y,
(\ii)O>P = y, (Vm)0>y>p, (ix) 0>y = O,
(x) y>j? = O, (xi) O = p>y, (xii) 0 =

(xiii) j? = y = O.
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This is a tedious procedure and we shall record only a couple of cases where there is
special interest. First, in case (i) we have

fx if ye<Pr(x)
(foc)x = ex = <

[z otherwise,

while

fox if ye Q>r(x)

bz otherwise

x if ye$r(x)
z otherwise,

since fi>y and ye®r(x) gives /?e<&r(x) by (5.5). Thus (foc)x = fo(cx).
In case (x) we note that foce{fo,z}. Hence (bc)x e {bx, zx} and so by (5.7) (foc)x = z. For

the other product, note that cx = x if ye<J>r(x) and is otherwise equal to z. Hence
fo(cx) 6 {fox, foz} and so, by (5.7) and the right zero property of Eo,

fo(cx) = z.

None of the 39 cases is harder than these, and most are easier.
Turning now to the converse part, we know from Theorems 5.3 and 5.4 that if S is a

dexter singly noble semigroup generated by S\{z} then S = B u N, where B is a dexter singly
noble band with z as pivot, N is a.null semigroup with zero element z, and B n N = {z}.
The structure of B = 6^\_Y;{Ex\aeY}'] is given by Theorem 4.14. Denote the pivotal
,/-class of B by £0 = {z,z2,...}. We now show that the multiplication rules in BKJN
must be as listed in the statement of the theorem.

First, let xeiV\{z} and suppose that baeEx, a<0. Then xbxe{x,bx,z}. If xfoa = x then

in contradiction to the multiplication rules in B; if xfo, = z then again we have a
contradiction, since

z = xfoa = xbl = (xba)bx = zbx-

hence xba = bx. Thus Nba = {ba}, and similarly baN = {bx}.
Next, let xeN\{z} and suppose that foos£o\{z}. Then xfoo£{x, foo,z}. If xfoo = x then

the right zero property of Eo gives

a contradiction; if xfo0 = z then we again have a contradiction, since

z = xbo = xbl = (xko)fro = zb0 = b0;
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hence we must have

xbo = bo.

Turning now to box, which also belongs to {x,bo,z}, we see that box = x gives

x = box = (xbo)x = x(box) = x2 = z,

a contradiction. If we assume box = b0 we obtain

b0 = box = b0x
2 = boz = z,

again a contradiction. Hence box = z.
Suppose now that xeAf\{z} and that b^eE^,, a>0. Then bax = {b9,x,z}. If bIx = ba

then

a contradiction to the multiplication properties of B; hence

bax = x or bxx = z.

For a given x in N\{z} there are now just two possibilities: either bx = z for all b in
(J{£a,a>0}, in which case we define

<Dr(x) = 0,

or there exists <5>0 and bseEg for which bsx = x. Suppose that the latter event occurs,
and let cteEd. Then caxe{x,z}. If csx = z we obtain a contradiction: if EseRZ we have

z = csx = cd{bsx) = (cdbs)x = bdx = x;

while if Es e LZ we have

x = bsx = (b6cs)x = bs(csx) = bsz = z.

Hence csx = x.
If as before we write

We can deduce from the result just proved that the set {beB+:bx = x} is a union

{J{Ea:aeC}

of ./-classes, where C^Y+. We now show that C is a positive chain filter.
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First, let aeC and let /?>a. Then for all cfi in Ep

Cpx = cfi(bax) (where bx e Ex)

Hence
Next, let a e C and suppose that /? is not comparable with a. Then £a£^ = {z} and we

must have cfsx = z for all Cy, in E, since c/,x = x (the only other possibility) implies

x = bax (where baeEa)

= ba{cpx) = {bxcp)x = zx = z,

a contradiction. Hence /? ̂  C.
The conclusion is that for a given x in N\{z} either frx = z for all b in B+, giving

<J>r(x) = 0

as already remarked, or there exists a unique non-empty positive chain filter C such that

In this case we define <I>r(x) = C.
In exactly the same way we can consider xb and obtain a mapping Q>l:N\{z}-*'% such

that

This completes the proof.

We also have a dual theorem, in which dexter is replaced by sinister throughout and
(5.7) becomes

xbo = z, box = bo if xeN,boeEo. (5.8)

The case of a feminine singly noble semigroup is also effectively dealt with: in Theorem
5.5 simply replace dexter by feminine throughout and replace (5.7) by

xz = zx = z if xsN. (5.9)

(In this case Eo = {z}.)
The remaining case, that of a balanced singly noble semigroup, is now disposed of

fairly easily.
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Theorem 5.10. Let F = BuN, with B = 9>\Y;{E^.aeY}\ be a feminine singly noble
semigroup, with pivotal /-class E0 = {z}, and let g be an element not in F. Define a
multiplication on S = F u {g} by the rules that

gEtz = Elxg = g if a > 0 ,

gb = bg = b if beEa, a < 0 .

Then S is a balanced singly noble semigroup. Conversely, every balanced singly noble
semigroup is isomorphic to one of this kind.

Proof. Again the direct part of the proof is a routine associativity verification, but
this time the verification is much easier and we omit the details.

As regards the converse part, suppose that S is a balanced singly noble semigroup
with {g,z} as pivotal ./-class. By Theorem 5.3 we have S = 8 u N u {g}, where F = B<uN
is a feminine singly noble semigroup with {z} as pivotal ./-class. We now show that the
multiplication rules on F u {g} must be as listed in the theorem. We know of course
that

gz = zg=g, g2=z.

Now let xeJV\{z}. Then gxe{g,x,z}. If gx = x then

z = x2=gx2=gz=g,

a contradiction; if gx = z then

z = zx=g2x=g(gx) = gz=g,

again a contradiction; hence

gx=g,

and similarly xg=g. Thus

Next, let beEa, <x>0. Then since Jgb^Jg = J2<Jb we must have that

gbe{g,z).

However, gb = z implies

z = z2= (gb)z = g(bz) =gz=g,
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a contradiction, and so in fact gb=g. A similar argument establishes that bg=g. Thus

Finally, let beEx, <x<0. Then since gbe{g, b,z} and

we must in fact have gb = b. By the same argument bg = b. This completes the proof.
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