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We investigate scalings of turbulence dissipation and turbulence length/time scales in the
fullydeveloped turbulentchannelflowregionofwalldistancesywhere the ratioof turbulence
productiontoturbulencedissipationoscillatescloseto1.First, westudyaveragesoverbothtime
andwall-parallelstreamwise(x) and spanwise (z)planesaty.Turbulentchannelflowdatawith
friction velocity uτ , and global Reynolds number Reτ ranging from 550 to 5200, suggest that
the integral length scales of streamwise fluctuating velocities along the streamwise direction,
and of wall-normal fluctuating velocities along the transverse direction, tend towards scaling
with y, and that the respective turbulence dissipation coefficients tend towards being constant
with increasingReτ .However, thedata for integral lengthsof transversefluctuatingvelocities
in the transverse direction suggest that these lengths obey an asymptotic scaling

√
δy (where

δ is the channel half-width) with increasing Reτ . The corresponding turbulence dissipation’s
scaling seems to tend towards

√
Reτ /Reλ, which is reminiscent of the non-equilibrium

turbulence dissipation scaling found in boundary-free turbulent flows, Reλ being a y-local
Taylor-length-based Reynolds number. The data do not exclude minor corrections from these
asymptotic scalings, and in fact, suggest finite Reynolds number deviations to them. Second,
we remove time averaging and study time-fluctuating averages over wall-parallel planes
at y. We find that the time fluctuations of the turbulence dissipation coefficients and the
Taylor-length-based Reynolds number are very strongly anti-correlated at all wall distances
y considered, reflecting a dominance of turbulent kinetic energy fluctuations at the lower
frequencies, but a dominance of both turbulent kinetic energy and turbulence dissipation at
the higher frequencies. In the case of the turbulence dissipation coefficient corresponding to
the integral length of the wall-normal velocity along the transverse direction, it is possible to
determine the cross-over frequency f ∗

c between these two behaviours, and we find f ∗
c ∼ uτ /y

for Reτ = 950, but f ∗
c ∼ uτ /δ for Reτ = 2000, where there is evidence of very-large-scale

motions.
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1. Introduction

Modelling turbulence dissipation is fundamental for turbulence modelling. Turbulence
models that aim to predict spatio-temporal variations of turbulent flow fields, such as large
eddy simulations, ideally require non-homogeneous and dynamic models of the turbulence
dissipation. This makes relations such as

ε = CεK3/2/L (1.1)

very relevant, particularly if such a relation can capture space and/or time variations of
the turbulence dissipation rate ε, and of related quantities such as a turbulent kinetic
energy K, and an integral length scale L characterising the largest, energy-containing,
eddies. According to Kolmogorov’s equilibrium cascade for homogeneous turbulence,
the dimensionless dissipation rate coefficient Cε is constant at a large enough Reynolds
number, i.e. independent of time, space and Reynolds number. Even though this is true
in statistically stationary forced homogeneous turbulence after averaging over time, it
is not true generally. There are significant variations of Cε both in space and in time
in a variety of turbulence flows with close to −5/3 power-law energy spectra, and
these variations obey well-defined laws. For example, in three qualitatively different
turbulent wake flows generated by pairs of side-by-side square prisms, Chen et al. (2021)
showed that the dissipation rate coefficient of the incoherent turbulence varies along the
cross-stream direction as (

√
ReC/Reλ)3/2, where ReC is a Reynolds number based on

the characteristic size and energy of the large-scale coherent structures, and Reλ is a
local Taylor-length-based Reynolds number. These are cases of spatial variations of the
dissipation rate coefficient after averaging over time, but similar conclusions have been
reached for time variations after averaging over space. For example, it has been shown
by Goto & Vassilicos (2015, 2016a) that the time fluctuations of Cε are anti-correlated
with those of the Taylor-length-based Reynolds number in forced homogeneous/periodic
turbulence. In fact, for high enough Reynolds numbers, they showed that these time
fluctuations closely follow Cε ∼ (

√
ReG/Reλ)n (where ReG is a global Reynolds number,

and Reλ the local (in time) Taylor-length-based Reynolds number) with n = 1, and
they demonstrated that this relation characterises non-equilibrium (i.e. non-Kolmogorov)
cascades. Such a relation is also present in various decaying turbulent flows, such as
decaying periodic turbulence simulated by direct numerical simulations (DNS) (Goto &
Vassilicos 2016b) where the turbulence decays in time, but also in turbulent flows where
the turbulence decays along the streamwise direction, such as grid-generated turbulence,
turbulence jets and various turbulent wakes of bluff bodies; see Vassilicos (2015), Cafiero
& Vassilicos (2019) and Chongsiripinyo & Sarkar (2020). Ortiz-Tarin, Nidhan & Sarkar
(2021) exceptionally found n = 4/3 for the turbulent wake of a slender rather than bluff
body because of an important difference in large-scale coherent structures compared to the
bluff bodies of the previous studies.

With the exception of Nedić, Tavoularis & Marusic (2017) and Obligado et al. (2022),
there has been little work to date on the spatio-temporal variations/fluctuations of
turbulence dissipation, and in particular Cε and Reλ, in wall-bounded flows. In view of
the general importance of turbulence dissipation dynamics and profiles for turbulent flow
modelling, it is essential to study them in a wall-bounded turbulent flow. In this paper,
we focus on the fully developed statistically stationary turbulent channel flow, specifically
in the region of the flow where there is approximate time-average equilibrium between
production and dissipation. Similarly to forced statistically stationary and homogeneous
turbulence, this channel flow is also a forced statistically stationary turbulent flow, and
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Scalings of turbulence dissipation in space and time

similarly to the DNS of forced periodic turbulence of Goto & Vassilicos (2015, 2016a),
one expects dissipation rate coefficients and the local (in time) Reynolds numbers to
also fluctuate in time in DNS of statistically stationary turbulence channel flow. Do they
fluctuate in a similarly anti-correlated way as in forced homogeneous turbulence where
these fluctuations result from the turbulence cascade? DNS of statistically stationary
fully developed turbulent channel flow is a natural next step from DNS of statistically
stationary periodic turbulence as they have two rather than three periodic directions
and one wall-normal direction, which is non-homogeneous. One can therefore use DNS
of such a flow to study the scalings of turbulence dissipation rate both in time, as
already mentioned, and also in a cross-stream direction along which the turbulence is
non-homogeneous, namely the turbulent channel flow’s wall-normal direction. Are the
wall-normal variations of turbulence dissipation rate and of local (in space) Reynolds
number somehow related, and does such a relation have some commonalities to the way
they are related in other non-homogeneous turbulent flows? These are universal questions
that can be asked for any turbulent flow as they concern spatio-temporal variations of
turbulence dissipation, turbulent kinetic energy and various length scales. These questions
are central for future developments of turbulence subgrid modelling approaches, and in
this paper, we ask them for turbulent channel flow.

In the next section, we present the DNS data of statistically stationary fully developed
turbulent channel flow used in this study. Then, in § 3, we study the cross-stream
variations of the time- and wall-parallel plane-average values of Cε and Reλ in the average
equilibrium layer where turbulence production rate approximately balances dissipation
rate. In § 4, we remove the time-averaging operation and study the time dynamics of the
wall-parallel plane-average values of Cε and Reλ. Finally, we conclude in § 5.

Note that the notation used in the remainder of this paper has some subtle differences
from the notation used in this Introduction, where it has been possible to include only
summary descriptive sketches of previous results.

2. DNS data

Our analysis is comprised of two parts. In the first part, we analyse the mean profiles of
various quantities in the wall-normal direction (i.e. functions of wall-normal coordinate
y) for a turbulent channel flow. Our primary database consists of the DNS data of Lee &
Moser (2015) for four cases with Reτ = 550, 1000, 2000 and 5200 (Reτ ≡ uτ δ/ν, where ν

is the kinematic viscosity, δ is the channel half-width, and uτ is the skin friction velocity
obtained by averaging over time and over streamwise coordinate x and spanwise coordinate
z at the channel’s solid wall y = 0). The Navier–Stokes equations have been solved by
integrating the evolution equations in terms of the wall-normal vorticity and the Laplacian
of the wall-normal velocity for an incompressible fluid. The spatial discretisation in the
wall-parallel directions used the Fourier spectral method, whereas a B-spline collocation
method was used in the wall-normal directions. For the time advancement, a third-order
Runge–Kutta method for the nonlinear terms and a Crank–Nicolson method for the viscous
terms were selected. The domain size is Lx = 8πδ and Lz = 3πδ.

For our second part, we focus on the time dynamics of turbulence again in a channel
flow, and therefore we use the DNS data of Lozano-Durán & Jiménez (2014) for
Reτ = 932 and 2003, where the full velocity field is available with a time resolution
of dt+ ≈ 8 for Reτ = 932 and total number of time steps Nt = 3151, and dt+ ≈ 25
for Reτ = 2003 with Nt = 462, while the domain size for both simulations is Lx =
2πδ and Lz = πδ (the superscript + refers to non-dimensionalisation with wall units).
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Name Reτ Lx/δ Lz/δ Δx+ Δz+ Ny dt+ Nt

LM550 544 8π 3π 4.5 3.1 192 — —
LM1000 1000 8π 3π 10.9 4.6 512 — —
LM2000 1994 8π 3π 12.2 6.1 768 — —
LM5200 5186 8π 3π 12.7 6.4 1536 — —
LJ950 933 2π π 11.5 5.7 385 8 3151
LJ2000 2009 2π π 12.3 6.2 633 25 462

Table 1. DNS databases.

The numerical methodology is similar to that of Lee & Moser (2015), except for the spatial
discretisation in the wall-normal direction. For Reτ = 932, Chebyshev polynomials were
used, while Reτ = 2003 used a seven-point compact finite difference scheme. Finally, a
third-order semi-implicit Runge–Kutta method with Courant–Friedrichs–Lewy coefficient
0.5 was chosen for time advancement. A detailed comparison of the two datasets can be
found in table 1, along with the naming convention that will be followed in the following
sections.

3. Time-averaged turbulence dissipation scalings

In this section, we analyse the dataset of Lee & Moser (2015). All the quantities have
been averaged over the two homogeneous directions, i.e. over the x, z plane, and over time.
We therefore look at profiles in the wall-normal direction y. Townsend (1961) proposed
that for high Reynolds numbers, there is an inertial layer δν � y � δ (δν ≡ ν/uτ ) where
production rate and dissipation rate (both averaged over the homogeneous plane at a fixed y
and over time) are in equilibrium. This idea received support from the asymptotic analysis
of Brouwers (2007), which, however, started from the assumption that the mean flow
profile is logarithmic in that region. In figure 1(a), we plot the ratio between turbulent
kinetic energy production rate P̄ ≡ −〈uv〉(dU/dy) (where 〈uv〉 is the Reynolds shear
stress obtained by averaging over the x, z plane at y at time t, and (U, 0, 0) is the mean
flow obtained by averaging over that plane and time) and dissipation rate ε̄ (where ε is the
turbulence dissipation rate averaged over that same plane, and the overline represents an
average over time). We observe that this ratio oscillates gently around 1 over an increasing
wall distance range with increasing Reτ . Our analysis is focused on the region above
the buffer layer, starting from y/δν ≡ y+ ≈ 60 where P̄/ε̄ displays a local minimum
irrespective of Reynolds number, and ending at the wall distance y+ ≈ 0.5Reτ where the
ratio of production over dissipation suddenly drops fast for all Reτ cases. In this region,
there is also a local maximum of P̄/ε̄ that appears relevant for the y-range of validity of
some of our results in the following subsections. This local maximum may either be a
finite Reynolds number effect or indicate that the location of the local maximum of P̄/ε̄

is a fundamental differentiating factor in the physics of wall turbulence. Either way, it is
important to analyse the entire y-region where P̄/ε̄ oscillates close to 1, and distinguish
subregions within it. In § 3.1, we examine wall-normal profiles of the Taylor length because
of its relation to turbulent kinetic energy and turbulence dissipation rate, and because it
is the length scale used to define the Taylor-length-based Reynolds number. In § 3.2, we
study wall-normal profiles of integral length scales, and in § 3.3, we bring our length
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Figure 1. Mean profiles of: (a) production rate over dissipation rate of turbulent kinetic energy, P̄/ε̄; (b) Taylor
length λ normalised with δν ; (c) ratio between −f K̄/〈uv〉, where f ( y+, Reτ ) = P̄/ε, and the indicator function
β( y+) = y+(dU+/dy+); (d) Taylor-length-based Reynolds number Reλ ≡

√
K̄λ/ν. Colours indicate Reτ =

544 (black lines), Reτ = 1000 (blue lines), Reτ = 1994 (green lines), and Reτ = 5186 (orange lines). The thick
part of a line corresponds to the region 60 ≤ y+ ≤ 0.5Reτ , while the dots represent the local maximum of P̄/ε̄.

scale observations together and look at how dissipation rate coefficients scale with local
Taylor-length-based Reynolds number along the wall-normal direction and, equivalently,
how ratios of integral to Taylor length scales vary with normalised wall normal distance
y+ (which is also a local Reynolds number).

3.1. Taylor length

Figure 1(b) shows the Taylor length, defined as λ ≡
√

10νK̄/ε̄, versus normalised
wall distance y+ (where K = K( y, t) is the turbulent kinetic energy averaged over the
horizontal x, z plane, and K̄ is K averaged over time). As Reτ grows, λ tends towards
λ ∼ √

δνy (in dimensionless form, λ+ ∼ √
y+) from the local minimum until the local

maximum of P̄/ε̄, while after that local maximum, it starts to deviate slightly from
this scaling. From the definition of the Taylor length, this corresponds to a scaling
ε̄ ∼ K̄uτ /y for the turbulence dissipation. Similar results have been obtained by Dallas,
Vassilicos & Hewitt (2009), who predicted λ ∼ √

δνy on the basis of the number density
of fluctuating velocity stagnation points, which scales as 1/y+ in the region where
production approximately equals dissipation. It is worth noting here that the scaling of
λ, and subsequently of ε̄, has far-reaching consequences, even for statistics as basic as the
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mean velocity profile U( y). In general, we can write

P̄
ε̄

= f ( y+, Reτ ),

−〈uv〉dU
dy

= f ε̄ = f
10νK̄
λ2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

Using λ ∼ √
δνy, following our observation in figure 1(b), which suggests it to be

increasingly the case as Reτ increases, we obtain

dU
dy

∼
[

10f K̄

−〈uv〉

]
uτ

y
(3.2)

in the very high Reτ limit. Therefore, the consequence of λ ∼ √
δνy is that the quantity in

brackets in (3.2) should vary with y+ in the same way as the indicator function β( y+) =
y+(dU+/dy+). In figure 1(c), we plot the ratio between −10f K̄/〈uv〉 and the indicator
function. The ratio tends to become constant from y+ ≈ 60 until the maximum of P̄/ε̄

with increasing Reynolds number. This offers a different way to examine the extent to
which the Taylor length’s scaling remains valid, but also illustrates its relation to the mean
shear scalings.

Another consequence of λ ∼ √
δνy is that the eddy turnover time τ ≡ K̄/ε̄ scales as

τ ∼ y/uτ in the inertial layer where production and dissipation are in approximate local
equilibrium. It may be puzzling that τ scales with 1/uτ rather than 1/

√
K̄, as this eddy

turnover time is often linked to the energy cascade. In § 4, we investigate turbulence
dissipation time scales by lifting the time-average operation to study time scales in actual
time fluctuations of quantities involving turbulent kinetic energy and dissipation.

3.2. Integral length scales
The integral length scale is the correlation distance of a fluctuating velocity component
in a specific direction. It is typically interpreted as the size of the biggest eddies in a
turbulent flow. In wall turbulence, due to the anisotropy imposed by the wall, these length
scales have different magnitudes depending on the velocity component and direction of
correlation. We calculate the integral length scales from (Tennekes & Lumley 1972)

Euiui(kj = 0) = 2〈u2
i 〉

π
Lui,xj, (3.3)

which relates the one-dimensional energy spectra to the integral length scales: i = 1, 2, 3
correspond to the three velocity components (u1 ≡ u, u2 ≡ v, u3 ≡ w) in the streamwise,
wall-normal and spanwise directions, respectively, and j = 1, 2, 3 correspond to the
three directions (x1 ≡ x, x2 ≡ y, x3 ≡ z) along which correlations are measured. For
example, for i = 2 and j = 3, we have Lv,z representing the integral length scale of
the wall-normal velocity in the spanwise direction, computed from the one-dimensional
energy spectrum Evv(kz). To invoke (3.3), the energy spectra must be well converged
and present a plateau at the lowest wavenumbers. The one-dimensional energy spectra
from the Lee & Moser (2015) dataset have such a plateau for Evv(kz) and Eww(kz)
for all four Reynolds numbers and across the channel as shown in figures 2(d, f ). The
Evv(kx) one-dimensional energy spectra in figure 2(b), associated with the streamwise
structures, present a low-wavenumber plateau at all y+ only for the lowest Reynolds
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Scalings of turbulence dissipation in space and time

number (Reτ = 550). For Reτ ≥ 1000, the energy spectra remain constant at the lowest
wavenumbers only up to a certain height above the wall, specifically up to y+ ≈ 200, 300
and 500 for Reτ = 1000, 2000 and 5200, respectively. This behaviour may be associated
with the progressive appearance of very-large-scale motions (VLSMs) (Kim & Adrian
1999; Smits, McKeon & Marusic 2011) as Reynolds number increases. Therefore, our
analysis is focused on the three integral length scales Lv,x, Lv,z and Lw,z, treating carefully,
however, the results for Lv,x above the y+ limits just mentioned. Figures 2(a,c,e) show these
integral length profiles in the wall-normal direction from y+ ≈ 60 up to y+ = 0.5 Reτ .
Here, Lv,x tends towards a linear scaling with distance from the wall as Reτ increases,
especially for locations closer to the wall, where the spectra are constant at the lower
wavenumbers. Also, Lv,z shows very close to linear scaling with y, the exponent 0.9
indicating perhaps that it has not yet reached its asymptotic value, which may require
higher Reτ . Approximately, however, the present data provide some support for scalings
of the type

Lv,x ∼ Lv,z ∼ y (3.4)

at high enough Reτ . These scalings are consistent with the attached eddy hypothesis of
Townsend (1976), where wall-normal fluctuations are dominated by eddy sizes comparable
to the distance y to the wall because of impermeability. The two integral length scales Lv,x
and Lv,z seem to follow this scaling, and therefore may serve as characteristic dimensions
of wall-attached eddies. Looking at figure 2(e), Lw,z seems to scale with the square root of
the distance from the wall, and the different Reynolds number curves show some tendency
to collapse if we divide L+

w,z by the square root of Reτ , resulting in

L+
w,z∼

√
Reτ y+ ⇒ Lw,z ∼

√
δy i.e. Lw,z/δ ∼

√
y/δ, (3.5)

which suggests that Lw,z depends on y and δ. The scaling (3.5) is also in agreement
with Townsend’s phenomenology, in which eddies of size y contribute to v motions,
whereas all eddy sizes equal to and larger than y (up to δ) contribute to u and w motions
(Townsend 1976; Perry, Henbest & Chong 1986). The scaling (3.5) is new and, to the
authors’ knowledge, has not yet been derived from Townsend’s phenomenology or in any
other way. (But see the last paragraph of § 3.3 below.)

3.3. Range of scales for inertial energy cascade

In figures 3(a,c,e), we plot dissipation rate coefficients C
ui,xj
ε̄ ≡ ε̄/(K̄3/2/Lui,xj) as

functions of the local Taylor-length-based Reynolds number Reλ ≡
√

K̄λ/ν. Both C
ui,xj
ε̄

and Reλ are based on statistics obtained by averaging over both time and x, z planes, and
their values vary as we move across the wall-normal direction y, in particular within the
average equilibrium layer 60 ≤ y+ ≤ Reτ /2; see figure 1(d). We observe in figures 3(a,c)
that Cv,x

ε̄ and Cv,z
ε̄ tend to a constant independent of Reλ as Reτ increases, even though

Reλ varies over an increasing range of values across the average equilibrium layer as Reτ

grows (figure 1d). This is different from the cross-stream non-homogeneous behaviour in
turbulent wake flows generated by pairs of side-by-side square prisms where Chen et al.
(2021) found a −3/2 power-law dependence of a dissipation rate coefficient similar to
Cv,x

ε̄ on local Taylor-length-based Reynolds number. The cross-stream non-homogeneity
scalings of turbulence dissipation seem, therefore, to be very different in the presence or
absence of a wall.

The dissipation rate coefficient is, by definition, the ratio of the dissipation rate at
the smallest scales to a rate K̄3/2/Lui,xj characterising energy loss by the largest eddies.
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Figure 2. (a,c,e) Integral length scales normalised with δν as a function of wall distance for different Reτ ;
dots indicate the location of the local maximum of P̄/ε̄. (b,d, f ) Corresponding energy spectra normalised
with u2

τ for different y+ and Reτ . Plots show: (a) L+
v,x versus y+, where the dashed line indicates a linear

scaling Lv,x ∼ y; (b) Ev,v/u2
τ versus kx; (c) L+

v,z versus y+, where the dashed line shows a scaling L+
v,z ∼ y+0.9

;
(d) Ev,v/u2

τ versus kz; (e) L+
w,z/

√
Reτ versus y+, where the dashed line indicates a square root scaling Lw,z ∼√

δy; ( f ) Ew,w/u2
τ versus kz. Darker to lighter colours correspond to increasing wall distances.

For Cv,x
ε̄ and Cv,z

ε̄ , this ratio approaches a constant value in the average equilibrium range
60 ≤ y+ ≤ Reτ /2 as Reτ increases, suggesting that the large-scale loss rate is the same
fraction of dissipation rate at all these wall distances. For Cw,z

ε̄ , however, the situation is
radically different. The time and wall-normal plane-averaged values of Cw,z

ε̄ and Reλ vary
with wall distance y, but they do so in an opposite way. Whilst Reλ grows with y, Cw,z

ε̄

decreases with increasing y, and this is expressed by an approximate power-law scaling
of a form close to Cw,z

ε̄ ∼ Re−1
λ . If Cw,z

ε̄ is independent of viscosity, then Cw,z
ε̄ ∼ Re−1

λ

would require Cw,z
ε̄ ∼ √

Reτ /Reλ, which is reminiscent of the non-equilibrium dissipation
scaling mentioned in the Introduction, Reτ being a global Reynolds number and Reλ
being a local-in-y Reynolds number. However, our data support a different, though close,
relation Cw,z

ε̄ ∼ Re0.35
τ /Reλ, with a departure from Re−1

λ at the higher wall distances; see
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Figure 3. (a,c,e) Dissipation rate coefficients C
ui,xj
ε̄ computed with different integral length scales versus Reλ.

(b,d, f ) Wall-normal profiles of ratios Lui,xj/λ. Plots show: (a) Cv,x
ε̄ as a function of Reλ; (b) Lv,x/λ versus y+,

dashed line y+0.5
; (c) Cv,z

ε̄ as a function of Reλ; (d) Lv,z/λ versus y+, dashed line y+0.5
; (e) Cw,z

ε̄ as a function
of Reλ, with inset Cw,z

ε̄ premultiplied with Re−0.35
τ ; ( f ) Lw,z/λ versus y+, with inset Lw,z/λ premultiplied with

Re−0.35
τ . Dots indicate the location of the local maximum of P̄/ε̄.

figure 3(e). This departure may be related to VLSMs. It cannot be known with the present
data if the exponent 0.35 tends to 0.5 or not with increasing Reτ .

In homogeneous turbulence, the ratio of integral scale to Taylor length characterises the
range of scales where the inertial energy cascade occurs (e.g. see Obligado & Vassilicos
2019; Meldi & Vassilicos 2021). In a turbulent channel flow, the anisotropy imposes
different integral length scales in different directions, and even though all ratios Lui,xj/λ

can be defined in principle, it is not fully clear how each one of them may relate to a
cascade mechanism. Even so, in figures 3(b,d, f ) we plot the wall-normal profiles of Lv,x/λ,
Lv,z/λ and Lw,z/λ. From the asymptotic scalings λ ∼ √

δνy and Lv,x ∼ Lv,z ∼ y suggested
by our analysis in the previous section, we expect

Lv,x/λ ∼ Lv,z/λ ∼
√

y/δν (3.6)
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in the high Reτ limit. This is indeed consistent with what we observe in figures 3(b,d),
in particular for higher Reτ as the integral length scales and the Taylor length have not
reached their asymptotic values for the small and medium Reτ considered here. Note also
that it is harder to compute Lv,x accurately at the higher wall-normal locations, perhaps due
to the potential emergence of large-scale motions as Reτ increases. Relation (3.6) suggests
that the range of eddy sizes where an inertial energy cascade affecting the wall-normal
turbulence fluctuations is a priori conceivable, and increases with local Reynolds
number y+.

By doing the same analysis for Lw,z/λ, i.e. from the asymptotic scalings λ ∼ √
δνy and

Lw,z ∼ √
δy, we obtain

Lw,z/λ ∼
√

Reτ (3.7)

in the high Reτ limit. Unlike Lv,x/λ and Lv,z/λ, which are proportional to the square
root of the local Reynolds number y+, Lw,z/λ is proportional to the square root of the
global Reynolds number Reτ = δ+. Looking at figure 3( f ), we do indeed see approximate
independence of y and an increase of this constant with increasing Reτ . However, the
different Reτ curves collapse if we premultiply them with Re−0.35

τ (inset of figure 3 f )
rather than Re−0.5

τ as suggested by (3.7). Again, this discrepancy may be attributed to
the low Reynolds numbers available here, making it difficult to see the correct asymptotic
values of the quantities of interest. Nevertheless, it remains possible to argue that the range
of scales contributing to w fluctuations remains approximately constant with increasing
distance from the wall in a significant portion of the approximate average equilibrium
range of wall distances.

It is worth noting that (3.7), which is equivalent to Cw,z
ε̄ ∼ √

Reτ /Reλ, has significant
predictive power. Using the facts that Lw,z and λ are, in all generality, functions of y, δ

and δν , and that we may expect λ to be independent of δ, and Lw,z to be independent of
viscosity in an approximate average equilibrium range, we can write Lw,z = √

δy fL( y/δ)
and λ = √

δνy fλ( y/δν), where fL and fλ are dimensionless functions of dimensionless
arguments. From (3.7), it then follows that fL( y/δ)/ fλ( y/δν) is independent of y, which,
given that fL is independent of δν , and fλ is independent of δ, is possible only if both fL
and fλ are constants. Hence λ ∼ √

δνy and Lw,z ∼ √
δy, which demonstrates the predictive

power of (3.7).

4. Non-equilibrium time-dependent dissipation scalings

Motivated by the eddy turnover time τ ≡ K̄/ε̄, which can be expected to scale as τ ∼ y/uτ

because λ ∼ √
δνy at high Reτ , and by the fact that this time scale is important for the

scalings of the dissipation rate coefficients and the length scale ratios in the previous
subsection, we now study fluctuations in time. We therefore lift the time averaging
and study, at various wall-normal locations y, the time fluctuations of plane-averaged
quantities, i.e. quantities averaged over the homogeneous directions in space (x, z) but not
over time. The purpose of this investigation is to find whether characteristic time scales
exist in the time fluctuations themselves.

4.1. Time dynamics of dissipation rate coefficient Cε

For the second part of this work, we use the DNS data of Lozano-Durán & Jiménez (2014)
where full velocity fields have been stored for a large number of time steps; see § 2. For
these data, integral length scales Lui,xj are obtained for i = 1, 2, 3 and j = 1, 3 (we do
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Scalings of turbulence dissipation in space and time

not consider j = 2) by first calculating autocorrelation functions where averages are in x, z
planes, and then integrating these autocorrelation functions up to the first zero crossing.
These integral length scales are therefore functions of wall-normal distance y and time t,
unlike the integral scales Lui,xj obtained from energy spectra in the previous section, which
are functions of y but not of time t. Fluctuating dissipation coefficients are now defined as
C

ui,xj
ε ≡ ε/(K3/2/Lui,xj), where ε and K are also functions of y and t, and not functions of

y only. Note the difference between the fluctuating dissipation coefficients C
ui,xj
ε (functions

of y and t) and the non-fluctuating dissipation coefficients C
ui,xj
ε (functions of y but

not t). Similarly, we define a fluctuating Taylor length Λ ≡ √
10νK/ε and a fluctuating

Taylor-length-based Reynolds number ReΛ ≡ √
KΛ/ν, which, unlike λ ≡

√
10νK̄/ε̄ and

Reλ ≡
√

K̄λ/ν, are also functions of both y and t.
We plot in figure 4 the three fluctuating dissipation coefficients Cv,x

ε , Cv,z
ε and Cw,z

ε

normalised by their standard deviation against the fluctuating local Reynolds number
ReΛ, also normalised by its standard deviation, for Reτ = 950 at y+ = 193, and for
Reτ = 2000 at y+ = 325. For all three dissipation coefficients, we observe an apparently
quasi-periodic behaviour consisting of turbulence-building periods, where the dissipation
coefficient decreases and ReΛ grows, alternating with turbulence-declining periods,
where the dissipation coefficient grows and ReΛ decreases. We must emphasise that this
behaviour is not transient; indeed, it persists for the entire time duration of our data and
it can also be found at all wall-normal locations in the range 60 ≤ y+ ≤ 0.5 Reτ . This
observation is similar to that made by Goto & Vassilicos (2016a), who attributed it to
the turbulence cascade and the resulting time lag between the forcing’s energy build
up and the dissipation’s energy decrease in their DNS of periodic turbulence. Here, the
role of the forcing is replaced by the mean shear, which creates large-scale turbulence,
therefore increasing ReΛ. The nonlinear cascade transfers energy towards the small scales,
where turbulence activity is increased, thus increasing dissipation. These remarks raise
the question of which time scale(s) govern these apparent quasi-periodicities, which we
address in § 4.2.

We quantify our observations by calculating the two-time correlation coefficients
between C

ui,xj
ε and ReΛ, which are given by

ρ
[C

ui,xj
ε ,ReΛ]

( y, Δt) = 〈Cui,xj′
ε ( y, t) Re′

Λ( y, t + Δt)〉t√
〈Cui,xj′2

ε ( y, t)〉t

√
〈Re′2

Λ( y, t)〉t

, (4.1)

where C
ui,xj′
ε ≡ C

ui,xj
ε − C

ui,xj
ε and Re′

Λ ≡ ReΛ − ReΛ are the fluctuating components
of C

ui,xj
ε and ReΛ, respectively. Figure 5 confirms, for both Reynolds numbers, the

anti-correlation at zero time lag (Δt = 0) between C
ui,xj
ε and ReΛ for i = 2, j = 1 (Cv,x

ε ),
i = 2, j = 3 (Cv,z

ε ), and i = j = 3 (Cw,z
ε ). For Cv,z

ε , we find a nearly perfect anti-correlation,
around −0.9, between the two signals with zero time lag; Cw,z

ε has slightly smaller but
still very strong values of anti-correlation at Δt = 0, roughly −0.8, which strengthens
towards negative values below −0.8 with increasing y+; finally, Cv,x

ε produces the weakest
anti-correlation with Reλ, but it remains significant at −0.5 and even lower negative values.
As the time lag Δt moves away from 0, the anti-correlation decreases sharply.

Such strong anti-correlation between the fluctuating dissipation coefficient and
the fluctuating Taylor-length-based Reynolds number has already been observed in
homogeneous/periodic turbulence (Goto & Vassilicos 2016a) where it was linked with
the existence of a non-equilibrium cascade characterised by a time lag between the
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Figure 4. Fluctuations in time of turbulence dissipation rate coefficients C
ui,xj
ε and ReΛ, for (a,c,e) Reτ = 950

and y+ = 193, and (b,d, f ) Reτ = 2000 and y+ = 325. Grey lines in all figures show the time signal of ReΛ,
black lines in (a,b) show the time signal of Cv,x

ε , blue lines in (c,d) show the time signal of Cv,z
ε , and green lines

in (e, f ) show the time signal of Cw,z
ε .

turbulent kinetic energy (dominated by the largest scales) and the turbulence dissipation
rate (occurring mainly at the smallest scales). In figure 5(g), we observe a slight correlation
between the turbulent kinetic energy and the dissipation rate in the Reτ = 950 case,
but without a time lag. The situation is less clear and less conclusive for Reτ = 2000
(figure 5h), where statistics are undoubtedly less well converged (see numbers of time
steps Nt in table 1). There is a critical difference between turbulent channel flows and
the homogeneous/periodic turbulence of Goto & Vassilicos (2016a). Their homogeneous
turbulence is forced at a specific large scale, and there is a well-defined unique cascade
time for energy to cascade down to the smallest scales where it can be dissipated. In
turbulent channel flow, however, the wall and the mean flow impose multiple and different
coherent structures with different sizes that depend on the distance from the wall, hence
different cascade times. The dissipation rate at a given distance from the wall results
from the cascade breakdown of all turbulent eddies larger than this distance, each with
different underlying time lags to reach dissipative scales. Hence a clear well-defined time
lag between turbulent kinetic energy and dissipation rate cannot be observed (at least in the
absence of VLSMs when our argument makes sense) even though clearly there is a strong
anti-correlation between fluctuating dissipation coefficients and ReΛ. We now investigate
the origin of this anti-correlation in turbulent channel flow.

By definition, C
ui,xj
ε is a ratio of turbulence dissipation rate to a characteristic rate of

large eddy energy loss, and ReΛ = K/
√

νε is the ratio of the total turbulent kinetic energy,
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Figure 5. Contours of two-time correlation coefficient ρ[X,Y] versus wall distance y+ and time lag Δt+:
(a,c,e,g) correlations for Reτ = 950; (b,d, f ,h) correlations for Reτ = 2000. Plots show: (a,b) ρ[Cv,x

ε ,ReΛ], (c,d)
ρ[Cv,z

ε ,ReΛ], (e, f ) ρ[Cw,z
ε ,ReΛ], (g,h) ρ[K,ε].
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K, to a characteristic energy of the dissipative scales,
√

νε. The time fluctuations of C
ui,xj
ε

are therefore a function of those of K, ε and Lui,xj , while the time fluctuations of ReΛ are
a function of those of K and ε only. In figures 6 and 7, we plot the correlation coefficients
of C

ui,xj
ε with K and Lui,xj , as well as those of ReΛ with K and ε, across the channel

and for both Reτ = 950 and Reτ = 2000. We omit (for economy of space) the correlation
between C

ui,xj
ε and the dissipation rate, because it is nearly zero for all time lags, as is

the correlation of ReΛ with ε shown in figures 7(g,h). (This is quite clear for Reτ = 950,
though much less conclusive at small and large wall distances for Reτ = 2000, where
statistics can be expected to be less well converged – see Nt values in table 1 – and where
a qualitative difference in the flow, such as the gradual appearance of VLSMs,may be
introducing different dynamics; we discuss VLSM effects in the next subsection.)

Figures 6(g,h) show a perfect instantaneous (i.e. Δt = 0) correlation between ReΛ

and K at both global Reynolds numbers Reτ , with lower correlations for non-zero time
lags Δt, indicating that the local Reynolds number’s time dynamics are dictated mainly
instantaneously by those of the turbulent kinetic energy. In figures 6(a,b) and 7(a,b), we
see the same levels of anti-correlation ρ[Cv,x

ε ,K] ≈ −0.6 and correlation ρ[Cv,x
ε ,Lv,x] ≈ 0.6,

with lower levels of the latter for Δt �= 0 (though again, the Reτ = 2000 data are less
conclusive on this point). Figures 6(a,b) may suggest a stronger anti-correlation ρ[Cv,x

ε ,K] at
non-zero positive time lags for some wall distances, in a different way for the two different
Reτ values, but it is mostly at or near zero time lags that this anti-correlation is strongest.
These observations suggest that the time fluctuations of Cv,x

ε are influenced equally by
those of the integral length scale Lv,x and by those of the turbulent kinetic energy K, and
that both influences are mostly instantaneous.

For Cv,z
ε , the strong instantaneous (Δt = 0) anti-correlation ρ[Cv,z

ε ,K] ≈ −0.8 is clear
throughout the channel and is stronger than for all non-zero time lags Δt (see figures 6c,d).
It is also much stronger, across the channel, than the correlation ρ[Cv,z

ε ,Lv,z] which is ≈0.5
at its highest values, which are at Δt = 0 for Reτ = 950 (see figures 6c,d and 7c,d).
Once again, results may be less converged for Reτ = 2000 in figure 7(d), or there may
be an effect of VLSMs (see next subsection), and figure 7(d) is more complex and less
conclusive. These observations suggest that the instantaneous influence of the turbulent
kinetic energy is more significant in the evolution of Cv,z

ε than that of Lv,z. We observe
similar behaviour for Cw,z

ε in figures 6(e, f ) and 7(e, f ).
All in all, the results of figures 5, 6 and 7 suggest that the dominant link between the

time dynamics of the dissipation rate coefficients and ReΛ is the turbulent kinetic energy (a
large-scale quantity), mostly instantaneously (i.e. Δt = 0) at least for Reτ = 950 if not also
Reτ = 2000 to some significant extent. The integral length scales, however, weaken this
connection between them. Specifically, the fluctuations of Lv,z contribute the least to those
of Cv,z

ε , which, being dominated by K, have a nearly perfect anti-correlation with ReΛ,
which is also dominated by K. On the other hand, Lv,x makes a significant contribution to
the fluctuations of Cv,x

ε and acts to weaken their correlation with the fluctuations of ReΛ.
Having shed some light on the connection between the dissipation coefficients and ReΛ,

we now look for a simple algebraic relation between them that may capture most of their
anti-correlation. Using their definitions and rearranging, we obtain

C
ui,xj
ε (t) ∼ Re−3/2

Λ (t)
Lui,xj(t)

η(t)
. (4.2)

If the ratio of large- to small-scale turbulent kinetic energies (represented by ReΛ)
fluctuates more widely than the range of large to dissipative scales Lui,xj(t)/η(t), and if
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Figure 6. Contours of two-time correlation coefficient of C
ui,xj
ε and ReΛ with K versus wall distance y+

and time lag Δt+: (a,c,e,g) correlations for Reτ = 950; (b,d, f ,h) correlations for Reτ = 2000. Plots show:
(a,b) ρ[Cv,x

ε ,K], (c,d) ρ[Cv,z
ε ,K], (e, f ) ρ[Cw,z

ε ,K], (g,h) ρ[ReΛ,K].
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Scalings of turbulence dissipation in space and time

the fluctuations of the two ratios representing these two ranges are uncorrelated, then
we can expect C

ui,xj
ε (t) ∼ Re−3/2

Λ (t) to be a good algebraic approximation to the closely
anti-correlated fluctuations of C

ui,xj
ε and ReΛ. Figure 8 shows scatter plots of C

ui,xj
ε (t) and

ReΛ(t) for different distances from the wall and for our two global Reynolds numbers Reτ .
The dashed lines correspond to best power-law fits of the form Cε(t) ∼ Re−p

Λ (t). The values
of the positive exponents p across the channel along with their 95 % confidence interval
are shown in figures 8(g,h). Evidently, p takes values between 1.0 and 1.6 for Reτ = 950,
while for Reτ = 2000, the scatter in p-values, and also the uncertainty, are bigger due to
coarser time resolution and smaller statistical sample. The exponent p that is closest to
1.5 for all wall distances is the one that corresponds to Cv,z

ε , in particular for Reτ = 950.
For the same Reτ = 950, the exponent p that corresponds to Cw,z

ε appears to increase from
slightly above 1 to a little above 1.5 as y+ increases in the average equilibrium region
60 ≤ y+ ≤ Reτ /2, and Cv,x

ε appears to meander without clear trend between 1 and 1.5.
For Reτ = 2000, the values of p do not show any trend, but they are also mostly between
1.0 and 1.5 across the channel. As explained at the start of this paragraph, (4.2) shows
that the deviation of p from 3/2 is attributable to the fluctuations of the range of scales
Lui,xj/η. These deviations are most significant for Cv,x

ε and Cw,z
ε , and less for Cv,z

ε , which
is the turbulence dissipation coefficient defined in terms of Lv,z, the only one of the three
integral lengths considered here that is expected to depend mainly, if not mostly, on eddies
of size commensurate to the distance to the wall.

4.2. Time dynamics of filtered dissipation coefficients
The approximate quasi-periodic behaviours of the fluctuating dissipation coefficients and
ReΛ observed in the previous subsection raises the question of whether a prevailing
time scale, responsible for the non-equilibrium behaviour between C

ui,xj
ε and ReΛ, exists.

Therefore, the final step of our analysis is to investigate this question. We apply high- and
low-pass filters to the time signals of Cv,x

ε , Cv,z
ε , Cw,z

ε and ReΛ, in this way separating the
fast and slow time scale behaviours. The filtering process is done in the time domain
using a least squares fifth-order spline filter, which has been shown by Li (2013) to
have excellent filtering properties. The filter width δt is the time interval between two
consecutive sampling times where the spline is interpolated, which corresponds to a cutoff
frequency given approximately by fc ≈ T/(2δt), where T is the signal’s total duration.

We plot the time signals of Cv,z
ε and ReΛ for Reτ = 950 at y+ = 193 in figure 9(a), and

for Reτ = 2000 at y+ = 325 in figure 9(b), followed by corresponding low- and high-pass
signals in figures 9(c– f ). The anti-correlated behaviour of Cv,z

ε with ReΛ, highlighted in
the previous section, is clearly present in the low-pass signals. Interestingly, though, in
figures 9(e, f ), we see that the high frequencies of the dissipation and Reynolds number
signals are also very well anti-correlated with zero time lag. To make these observations
more quantitative, we compute correlation coefficients of the type given in (4.1) but for
the filtered signals. We first present representative results for particular cutoff frequencies,
and then investigate the influence of varying the filter a few paragraphs below.

Using the low-pass filtered C
ui,xj<
ε and Re<

Λ, with a cutoff frequency fc = 10δ/Uc for
Reτ = 950, and fc = 21δ/Uc for Reτ = 2000 (Uc being the mean centerline velocity), we
see in figure 10 that their correlations are similar to those of the non-filtered respective
dissipation coefficients and Reynolds numbers in figure 5, but with higher levels of
anti-correlation values. These anti-correlations are also accountable to the turbulent
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Figure 8. Plots of C
ui,xj
ε (t) against ReΛ(t) in time for different wall-normal locations, shown here as different

colours. For a single y+, and therefore for a single colour, each circle represents a different time instant: (a,c,e,g)
Reτ = 950, (b,d, f ,h) Reτ = 2000. The dashed lines indicate the best power-law fit Cε(t) ∼ Re−p

Λ (t) for a single
y. Plots show: (a,b) Cv,x

ε (t) as a function of ReΛ(t); (c,d) Cv,z
ε (t) as a function of ReΛ(t); (e, f ) Cw,z

ε (t) as a
function of ReΛ(t); (g,h) evolution of the positive exponent p across the channel along with the 95 % confidence
interval for each C

ui,xj
ε . Blue lines for Cv,x

ε , orange lines for Cv,z
ε , and green lines for Cw,z

ε .
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Figure 9. (a,b) Time evolution of Cv,z
ε and ReΛ for Reτ = 950 at y+ = 193 and Reτ = 2000 at y+ = 325.

(c,d) Low-pass filtered signals at same wall distance, with cutoff frequency fc ≈ 10δ/Uc for Reτ = 950, and
fc ≈ 21δ/Uc for Reτ = 2000. (e, f ) High-pass filtered signals at same wall distance, with cutoff frequency
fc ≈ 151δ/Uc for Reτ = 950, and fc ≈ 81δ/Uc for Reτ = 2000.

kinetic energy in the time signals of C
ui,xj
ε and Reλ, as can be seen in figure 11, which

is similar to figure 6 and shows that the slow time scales are dominated by K.
In figure 12, correlations are plotted for the high-pass filtered signals, including

correlations with the fluctuating turbulence dissipation rate that are no longer negligible.
Instead of isocontours for different wall-normal locations as in previous plots, we select,
for clarity, only one location to show the correlations, because the behaviour is very
similar across the channel (with only small differences close to the wall that are not
part of this study). We observe that the anti-correlations between C

ui,xj>
ε and Re>

Λ have
dropped significantly but remain stronger than −0.5 at zero time lag for all three integral
length scales. The turbulent kinetic energy remains significant but is not the dominant
quantity in the high-frequency dynamics of the dissipation rate coefficient and the local
Reynolds number. We now also see significant correlations of C

ui,xj>
ε with the dissipation

rate, and also significant correlation (in the opposite sense) of Re>
Λ with the dissipation

rate. (By ‘opposite sense’, we mean that for a given time lag, these two correlations have
opposite signs.) Such correlations are effectively absent in the full and low-pass filtered
signals. Furthermore, the integral length scales dominate in terms of correlations with the
dissipation rate coefficients, causing a drop in the levels of correlation between dissipation
coefficients and Re>

Λ.
The influence of the fluctuations of the turbulence dissipation rate, a small-scale

quantity, to the high-frequency dynamics of the turbulence dissipation coefficients and
ReΛ might suggest a change of dependence on wall-normal distance compared to the
low-frequency dynamics where turbulence dissipation fluctuations play no significant
role. We test this on power-law scalings of the form C>

ε ∼ Re>−p
Λ for the high-pass
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Figure 10. Contours of two-time correlation coefficient for low-passed filtered signals of C
ui,xj<
ε and

Re<
Λ versus wall distance y+ and time lag Δt+: (a,c,e) correlations for Reτ = 950 with fc = 10δ/Uc;

(b,d, f ) correlations for Reτ = 2000 with fc = 21δ/Uc. Plots show: (a,b) ρ[Cv,x<
ε ,Re<

Λ], (c,d) ρ[Cv,z<
ε ,Re<

Λ],
(e, f ) ρ[Cw,z<

ε ,Re<
Λ].

filtered signals. Figure 13 shows best-fit positive exponents p across the channel. For
Reτ = 950, it is clear that the exponents p oscillate around 1.5 without an obvious trend
as y+ varies, in contrast to Cw,z

ε in figure 8(g), which increases with y+. For Reτ = 2000,
the coarser time resolution makes it difficult to distinguish a clear trend, and p oscillates
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Figure 11. Contours of two-time correlation coefficient of C
ui,xj<
ε and Re<

Λ with K< versus wall distance y+
and time lag Δt+: (a,c,e,g) correlations for Reτ = 950 with fc = 10δ/Uc; (b,d, f ,h) correlations for Reτ = 2000
fc = 21δ/Uc. Plots show: (a,b) ρ[Cv,x<

ε ,K<], (c,d) ρ[Cv,z<
ε ,K<], (e, f ) ρ[Cw,z<

ε ,K<], (g,h) ρ[Re<
Λ,K<].
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Figure 12. (a– f ) Two-time correlation coefficients of high-passed filtered signals of C
ui,xj>
ε with Re>

Λ (black
lines with circles), C

ui,xj>
ε with K> (blue lines), C

ui,xj>
ε with L>

ui,xj
(green lines), and C

ui,xj>
ε with ε> (orange

lines). (g,h) Two-time correlation coefficients of high-passed filtered signals of Re>
Λ with K> (blue lines) and

with ε> (orange lines). Plots use: (a,c,e,g) Reτ = 950 with y+ = 193 and fc = 151δ/Uc; (b,d, f,h) Reτ = 2000
with y+ = 325 and fc = 81δ/Uc.

quite violently between about 1 and about 2, around an average value of 1.5. This is not
too different from figure 8(h). Perhaps surprisingly, the power-law relations around which
the dissipation rates and ReΛ fluctuate do not appear to be too dissimilar between the full
signals and the high-pass filtered signals.
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Figure 13. Best-fit positive exponent p versus normalised wall-normal distance y+ for C>
ε (t) ∼ Re>−p

Λ (t):
(a) Reτ = 950 and fc ≈ 151δ/Uc; (b) Reτ = 2000 and fc ≈ 81δ/Uc. Blue lines for Cv,x

ε , orange lines for Cv,z
ε ,

and green lines for Cw,z
ε .

The maximum absolute correlation values in figures 10 and 12 occur for zero time lag.
We therefore investigate the effects of varying cutoff frequency on the correlations at zero
time lag. In figure 14, we plot instantaneous correlation coefficients (Δt+ = 0) of filtered
signals of C

ui,xj
ε and ReΛ as a functions of cutoff frequency fc. We do this for our two

global Reynolds numbers Reτ and various wall distances. In figures 14(a,c,e,g,i,k), we
plot the zero time lag correlation coefficient for low-pass filtered signals, and observe
that the slow time scales have almost perfect anti-correlation for all three integral length
scales. As the cutoff frequency increases and faster time scales are included in the time
signal, the anti-correlation drops slightly before stabilising at a constant equal to the
unfiltered correlation seen in figure 5. Similarly, in figures 14(b,d, f ,h, j,l), we observe
that the high absolute value anti-correlations drop very significantly at first as the cutoff
frequency of the high-pass filter is increased and then increases again or stabilises as
the cutoff frequency is increased further. This initial drop followed by a regaining of
anti-correlation with increasing fc is apparent most clearly for Cv,z>

ε . It suggests the
existence of a cross-over cutoff frequency f ∗

c where the anti-correlation is at a minimum.
In figures 15(a,b), we plot f ∗

c versus y/δ for the anti-correlation between Cv,z>
ε and Re>

Λ.
Two distinct behaviours can be seen for the two Reynolds numbers. For Reτ = 950, f ∗

c is
inversely proportional to the distance y from the wall, whereas for Reτ = 2000, f ∗

c appears
to be essentially independent of y at a value similar to f ∗

c at y/δ ≈ 0.5 for Reτ = 950.
To make these observations dimensionally correct, we write f ∗

c ∼ uτ /y for Reτ = 950,
and f ∗

c ∼ uτ /δ for Reτ = 2000. For Reτ = 950, f ∗
c scales as the local (in y) inverse eddy

turnover time τ defined at the end of § 3.1. For Reτ = 2000, f ∗
c scales as τ−1 at the upper

end of the range 60 ≤ y+ ≤ Reτ /2, i.e. at y ≈ δ/2.
We have already shown that the turbulence dissipation plays no role in the

anti-correlation between Cv,z
ε and ReΛ at frequencies smaller than f ∗

c , but that it does
play a significant role in their anti-correlation at frequencies larger than f ∗

c . It may be that
at frequencies higher than f ∗

c , the dissipation dynamics are not particularly dependent on
energetic flow structures, and that these high-frequency dissipation fluctuations therefore
create their own direct link between Cv,z>

ε and Re>
Λ, whereas at frequencies below f ∗

c ,
the energetic flow structures dominate in anti-correlating Cv,z

ε and ReΛ. The observation
that f ∗

c ∼ uτ /y for Reτ = 950 might therefore suggest that these energetic flow structures
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Figure 14. Correlation coefficient (Δt+ = 0) for filtered low- and high-pass filtered signals of C
ui,xj
ε and ReΛ

as a function of the cutoff frequency fc premultiplied with δ/Uc, for (a,b,e, f ,i, j) Reτ = 950, and (c,d,g,h,k,l)
Reτ = 2000. Plots show: (a–d) Cv,x

ε , (e–h) Cv,z
ε , and (i–l) Cw,z

ε . Finally, (a,c,e,g,i,k) show correlations of the
low-pass filtered signals, while (b,d, f ,h, j,l) show correlations of the high-pass ones. Different colours represent
different wall-normal distances.

have size proportional to y in this case, but that they have size of the order of δ in the
Reτ = 2000 case, where our observations are rather in line with f ∗

c ∼ uτ /δ.
This can be confirmed by looking at the premultiplied one-dimensional energy spectra

of the streamwise velocity fluctuations in the streamwise direction in figures 15(c,d), where
a significant structural difference between the two Reynolds numbers can also be observed.
For Reτ = 950, we see a peak that moves progressively from high to low wavenumbers as
the wall distance increases, suggesting that the size of the energy-containing fluctuations
increases with y, which agrees with the idea that f ∗

c should be inversely proportional to y.
For Reτ = 2000, however, this local-in-y behaviour is eclipsed by a large concentration of
energy at the smallest wavenumbers irrespective of wall distance y, which is attributed to
the appearance of VLSMs (not evident at Reτ = 950), carrying large amounts of turbulent
kinetic energy (Marusic et al. 2010). The presence of such structures is felt throughout the
channel, and we expect their time dynamics to be relatively slow; this is consistent with our
result in figure 15(b), where the frequency where the turbulent kinetic energy stops being
the correlating factor is seen to be small and effectively independent of wall distance y.
These results paint a picture where the non-equilibrium behaviour between C

ui,xj
ε and ReΛ
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Figure 15. (a,b) Wall-normal evolution ( y/δ) of the cross-over cutoff frequency f ∗
c (premultiplied with δ/Uc)

where ρ[Cv,z>
ε ,Re>

Λ]Δt+=0
has a global minimum in terms of anti-correlation: (a) Reτ = 950, (b) Reτ = 2000.

(c,d) Premultiplied one-dimensional streamwise energy spectra as functions of the normalised streamwise
wavenumber kxδ for different wall-normal distances: (c) Reτ = 950, (d) Reτ = 2000.

is present at all time scales, irrespective of the structural properties of the flow (whether
VLSMs exist or not).

5. Conclusions

The DNS data of fully developed turbulent channel flow that we used in this paper support
the view that at high enough Reτ , both Lv,x and Lv,z tend to scale like y in the range
60 ≤ y+ ≤ Reτ /2. This is in agreement with the wall-blocking aspect of Townsend’s
attached eddy hypothesis, according to which turbulent eddies of size y determine these
two integral lengths. Townsend’s attached eddy hypothesis also suggests that Lw,z is
determined by turbulent eddies of size equal to and larger than y, but does not provide a
way to predict the scalings of Lw,z. The DNS data used here suggest that Lw,z tends towards
a
√

δy scaling in the region 60 ≤ y+ ≤ Reτ /2 as Reτ increases. The turbulence dissipation
coefficient Cw,z

ε̄ defined in terms of Lw,z appears to tend towards Cw,z
ε̄ ∼ √

Reτ /Reλ in that
region for increasing Reτ . This scaling is reminiscent of the non-equilibrium dissipation
scaling mentioned in the Introduction, as Reτ is a global Reynolds number and Reλ is a
local-in-y Taylor-length-based Reynolds number. Interestingly, Cw,z

ε̄ ∼ √
Reτ /Reλ can be

shown to imply Lw,z ∼ √
δy. This turbulence dissipation scaling is therefore consistent

with Townsend’s attached eddy hypothesis and even helps to predict the scalings of Lw,z
with y and δ. Furthermore, Cw,z

ε̄ ∼ √
Reτ /Reλ can also be shown to imply λ ∼ √

δνy,
where λ is the Taylor length. This Taylor length formula is in fact the same as the one
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predicted by Dallas et al. (2009) from their stagnation point arguments. The DNS data used
here support this Taylor length scaling at the higher Reτ . The DNS results for Cw,z

ε̄ , Lw,z
and λ are therefore consistent, but it must also be stressed that the data do not exclude small
corrections from these asymptotic scalings, and in fact suggest finite Reynolds number
deviations. The same is true for Lv,z ∼ y and Lv,x ∼ y, as well as for Cv,z

ε̄ and Cv,x
ε̄ , which

seem to tend towards a constant independent of y in the region 60 ≤ y+ ≤ Reτ /2 as Reτ

increases. Constant turbulence dissipation coefficients are reminiscent of equilibrium or
balanced non-equilibrium dissipation scalings (Goto & Vassilicos 2016b).

To delve further into the non-equilibrium turbulence energy and dissipation dynamics
hiding behind the average equilibrium region 60 ≤ y+ ≤ Reτ /2 where the time-averaged
turbulence production and the time-averaged turbulence dissipation more or less balance,
we have looked at time fluctuations of quantities averaged over x, z wall planes but not
over time. We have found that the time fluctuations of C

ui,xj
ε (t) (for i = 2 and j = 1, i = 2

and j = 3, and i = j = 3) and ReΛ(t) are strongly anti-correlated at all wall distances
considered. In fact, our low- and high-pass filtering operations have revealed that this
anti-correlation is strong for both low and high frequencies, but for different reasons.
For the low frequencies, the link between the anti-correlated fluctuations is the turbulent
kinetic energy, whereas for the high frequencies, the fluctuations of both K and ε are
important. In the case of Cw,z

ε (t), it has been possible to determine the cross-over frequency
f ∗
c between these two behaviours, and we have found f ∗

c ∼ uτ /y for Reτ = 950, but f ∗
c ∼

uτ /δ for Reτ = 2000. This f ∗
c difference between these two Reynolds numbers appears

to reflect the fact that whereas very large scale motions are present in the Reτ = 2000
flow, they do not show similar signs of presence in the Reτ = 950 flow. Irrespectively,
though, the non-equilibrium dissipation scaling persists in both cases, suggesting that it is
not affected by the structure of the flow but has a general validity that may prove useful in
the future for better dynamical models for dissipation.
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Appendix

In figure 14, we looked at the zero time lag correlation between filtered signals as a function
of the cutoff frequency. The choice of constraining Δt+ = 0 is motivated by observing
figures 10 and 12, where we see the maximum absolute value of the correlation happening
predominately at Δt+ = 0. To support this choice, we plot in figure 16 the location
of the maximum absolute value correlation between the filtered signals for different
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Figure 16. Plots of the time lag where the maximum of the absolute value of the two-time correlation
occurs for low- and high-pass filtered signals of C

ui,xj
ε and ReΛ against cutoff frequency fc premultiplied with

δ/Uc: (a,b,e, f ,i, j) Reτ = 950, (c,d,g,h,k,l) Reτ = 2000. Plots show: (a–d) Cv,x
ε , (e–h) Cv,z

ε , (i–l) Cw,z
ε . Finally,

(a,c,e,g,i,k) show the maximum absolute value correlations of the low-pass filtered signals, while (b,d, f ,h, j,l)
show the high-pass ones. Different colours represent different wall-normal distances (15 in total).

wall-normal locations as a function of fc. For the high-pass filtered signals, it is evident
that the maximum absolute value correlation happens at zero time lag for Reτ = 950
and all C

ui,xj
ε (figures 16b, f, j), and similarly for Reτ = 2000 (figures 16d,h,l) except

some particular fc and wall-normal locations, without, however, indicating a persistent
behaviour, and perhaps as a result of the low time resolution. The low-pass correlations
shown in figures 16(a,e,i) for Reτ = 950, and figures 16(c,g,k) for Reτ = 2000, support the
argument that maximum anti-correlation happens at zero time lag, except for Reτ = 2000
and Cw,z<

ε , where we see that for increasing wall-normal locations, Δt+ increases as well,
without, however, moving too far away from 0, where significant values of anti-correlation
also exist.
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