ON A FUNCTIONAL EQUATION FOR THE EXPONENTIAL FUNCTION OF A COMPLEX VARIABLE

by HIROSHI HARUKI

(Received 13 August, 1969)

1. Introduction. The following result is well known in the theory of analytic functions; see [1].

Theorem A. Suppose that $f(z)$ is an entire function of a complex variable z. Then $f(z)$ satisfies the functional equation

$$
\begin{equation*}
|f(z)|=|f(x)| \tag{1}
\end{equation*}
$$

where $z=x+i y$ (x, y real), if and only if $f(z)=a \exp (s z)$, where a is an arbitrary complex constant and s is an arbitrary real constant.

We consider the following functional equation which is an extension of (1).

$$
\begin{equation*}
|f(z)|^{2}+|g(z)|^{2}=|f(x)|^{2}+|g(x)|^{2} \tag{2}
\end{equation*}
$$

where $z=x+i y(x, y$ real $)$ and $f(z), g(z)$ are entire functions of a complex variable z.
The purpose of this note is to solve (2), i.e., to prove the following
Theorem. Let $f(z), g(z)$ be entire functions of a complex variable z. Then $f(z)$ and $g(z)$ satisfy (2) if and only if $f(z)=\alpha A \exp (p z)+\beta B \exp (q z), g(z)=\gamma A \exp (p z)+\delta B \exp (q z)$, where $A, B, \alpha, \beta, \gamma, \delta$ are complex constants, $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ is a unitary matrix and p, q are real constants.

To this end we shall use the following two lemmas:
Lemma 1. If $f(z), g(z)$ are regular in a domain D and $|f(z)|^{2}+|g(z)|^{2}>0$ in D, then we have in D

$$
\Delta \log \left(|f(z)|^{2}+|g(z)|^{2}\right)=\frac{4\left|f^{\prime}(z) g(z)-f(z) g^{\prime}(z)\right|^{2}}{\left(|f(z)|^{2}+|g(z)|^{2}\right)^{2}}
$$

where Δ stands for the Laplacian $\left(\partial^{2} / \partial x^{2}\right)+\left(\partial^{2} / \partial y^{2}\right)(z=x+i y, x, y$ real $)$.
Proof. See [3].
Lemma 2. If $f(z), g(z), h(z), k(z)$ are entire functions of a complex variable z and satisfy $|f(z)|^{2}+|g(z)|^{2}=|h(z)|^{2}+|k(z)|^{2}$ in $|z|<+\infty$, then there exists a unitary matrix $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ ($\alpha, \beta, \gamma, \delta$ are complex constants) such that

$$
h(z)=\alpha f(z)+\beta g(z) \quad \text { and } \quad k(z)=\gamma f(z)+\delta g(z)
$$

in $|z|<+\infty$.
Proof. See [2, 4].
2. Proof of the theorem. We may assume that $|f(z)|^{2}+|g(z)|^{2} \neq 0$ in $|z|<+\infty$. If we put

$$
\begin{equation*}
\varphi(x)=|f(x)|^{2}+|g(x)|^{2}(\geqq 0) \tag{3}
\end{equation*}
$$

we have in $|z|<+\infty$, by (2),

$$
\begin{equation*}
|f(z)|^{2}+|g(z)|^{2}=\varphi(x) \tag{4}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
\varphi(x)>0 \tag{5}
\end{equation*}
$$

in $-\infty<x<+\infty$.
If there exists a real number x_{0} such that $\varphi\left(x_{0}\right)=0$, then, by (4), we have in $-\infty<y<+\infty$

$$
\begin{equation*}
\left|f\left(x_{0}+i y\right)\right|^{2}+\left|g\left(x_{0}+i y\right)\right|^{2}=0 \tag{6}
\end{equation*}
$$

By (6) and by the identity theorem we have $f(z) \equiv 0, g(z) \equiv 0$ and hence $|f(z)|^{2}+|g(z)|^{2} \equiv 0$. This is contrary to our assumption that $|f(z)|^{2}+|g(z)|^{2} \neq 0$. Hence (5) holds in $-\infty<x<+\infty$.

Taking the logarithms of both sides of (4) and taking the Laplacians $\left(\partial^{2} / \partial x^{2}\right)+\left(\partial^{2} / \partial y^{2}\right)$ of both sides of the resulting equality, by (5) we have in $|z|<+\infty$

$$
\begin{equation*}
\Delta \log \left(|f(z)|^{2}+|g(z)|^{2}\right)=\frac{\varphi(x) \varphi^{\prime \prime}(x)-\varphi^{\prime}(x)^{2}}{\varphi(x)^{2}} \tag{7}
\end{equation*}
$$

By (7) and by Lemma 1 we have in $|z|<+\infty$

$$
\begin{equation*}
\frac{4\left|f^{\prime}(z) g(z)-f(z) g^{\prime}(z)\right|^{2}}{\left(|f(z)|^{2}+|g(z)|^{2}\right)^{2}}=\frac{\varphi(x) \varphi^{\prime \prime}(x)-\varphi^{\prime}(x)^{2}}{\varphi(x)^{2}} \tag{8}
\end{equation*}
$$

By (4), (8) we have in $|z|<+\infty$

$$
\begin{equation*}
\left|f^{\prime}(z) g(z)-f(z) g^{\prime}(z)\right|^{2}=\frac{1}{4}\left(\varphi(x) \varphi^{\prime \prime}(x)-\varphi^{\prime}(x)^{2}\right) \tag{9}
\end{equation*}
$$

Putting $y=0$ in (8) and using (9), we have in $|z|<+\infty$

$$
\begin{equation*}
\left|f^{\prime}(z) g(z)-f(z) g^{\prime}(z)\right|=\left|f^{\prime}(x) g(x)-f(x) g^{\prime}(x)\right| \tag{10}
\end{equation*}
$$

By (10) and by Theorem A, we have in $|z|<+\infty$

$$
\begin{equation*}
f^{\prime}(z) g(z)-f(z) g^{\prime}(z)=a \exp (s z) \tag{11}
\end{equation*}
$$

where a is a complex constant and s is a real constant.
By (9), (11) we have in $-\infty<x<+\infty$

$$
\begin{equation*}
\varphi(x) \varphi^{\prime \prime}(x)-\varphi^{\prime}(x)^{2}=4|a|^{2} \exp (2 s x) \tag{12}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\psi(x)=\exp (-s x) \varphi(x) \tag{13}
\end{equation*}
$$

by (12) we have in $-\infty<x<+\infty$

$$
\begin{equation*}
\psi(x) \psi^{\prime \prime}(x)-\psi^{\prime}(x)^{2}=4|a|^{2} \tag{14}
\end{equation*}
$$

Differentiating both sides of (14) with respect to x, we have in $-\infty<x<+\infty$

$$
\begin{equation*}
\psi(x) \psi^{\prime \prime \prime}(x)-\psi^{\prime}(x) \psi^{\prime \prime}(x)=0 \tag{15}
\end{equation*}
$$

By (5), (13) we have in $-\infty<x<+\infty$

$$
\begin{equation*}
\psi(x)>0 . \tag{16}
\end{equation*}
$$

By (15), (16) we have in $-\infty<x<+\infty$

$$
\begin{equation*}
\left(\frac{\psi^{\prime \prime}(x)}{\psi(x)}\right)^{\prime}=0 . \tag{17}
\end{equation*}
$$

Hence, by (17) we have in $-\infty<x<+\infty$

$$
\begin{equation*}
\psi^{\prime \prime}(x)=K \psi(x) \tag{18}
\end{equation*}
$$

where K is a real constant.
Taking (16) into account and solving (18), we have in $-\infty<x<+\infty$

$$
\begin{equation*}
\psi(x)=A_{1} \exp (h x)+B_{1} \exp (k x) \tag{19}
\end{equation*}
$$

where A_{1}, B_{1}, h, k are real constants with $A_{1} \geqq 0, B_{1} \geqq 0, A_{1}+B_{1}>0$. By (13), (19) we have in $-\infty<x<+\infty$

$$
\begin{equation*}
\varphi(x)=A_{1} \exp ((h+s) x)+B_{1} \exp ((k+s) x) . \tag{20}
\end{equation*}
$$

Since $\exp (x)=|\exp (z)|$ for every complex number $z=x+i y(x, y$ real), by (20) we have in $|z|<+\infty$

$$
\begin{equation*}
\varphi(x)=|A \exp (p z)|^{2}+|B \exp (q z)|^{2} \tag{21}
\end{equation*}
$$

where A, B are complex constants with $|A|^{2}=A_{1},|B|^{2}=B_{1}$ and p, q are real constants with $2 p=h+s, 2 q=k+s$. By (4), (21) we have in $|z|<+\infty$

$$
\begin{equation*}
|f(z)|^{2}+|g(z)|^{2}=|A \exp (p z)|^{2}+|B \exp (q z)|^{2} \tag{22}
\end{equation*}
$$

By (22) and by Lemma 2 we have in $|z|<+\infty$

$$
\begin{equation*}
f(z)=\alpha A \exp (p z)+\beta B \exp (q z), \quad g(z)=\gamma A \exp (p z)+\delta B \exp (q z) \tag{23}
\end{equation*}
$$

where $A, B, \alpha, \beta, \gamma, \delta$ are complex constants, $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ is a unitary matrix and p, q are real constants.

Conversely, since $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ is a unitary matrix and $|\exp (z)|=\exp (x)$ for every complex number z, direct substitution shows that (23) satisfies our original functional equation (2).

REFERENCES

1. E. Hille, A class of functional equations, Ann. of Math. 29 (1928), 215-222.
2. R. Nevanlinna und G. Pólya, Unitäre Transformationen analytischer Funktionen, Jber. Deutsch. Math.-Verein. 40 (1931), 80 (Aufgabe 103).
3. G. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis I, p. 94. Berlin-GöttingenHeidelberg, Springer Verlag, 1954.
4. H. Schmidt, Lösung der Aufgabe 103, Jber. Deutsch. Math.-Verein. 43 (1934), 6-7.

University of Waterloo
Ontario,
Canada

