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A NOTE ON UPPER BOUNDS FOR THE 
EIGENVALUES OF y'+tyy=Q 

BY 

RODNEY D. GENTRY 

The natural modes of a small planar transversal vibration of a fixed string of 
unit length and tension are determined by the eigenvalues and associated eigen-
functions of the differential equation 

(1) y"(x)+Ap(x)y(x) = 0 

subject to the boundary condition 

(2) XO) = y(i) = o 

where the non-negative function /? describes the mass distribution of the string. 
That the distribution of mass on the string influences the modes of vibration, may 
be reflected by observing that the eigenvalues determined by the system (1-2) 
may be considered functions of the density /?, An(/?), where K(p)<K(p)< It is 
thus a natural problem to investigate the restrictions imposed upon the eigen­
values Xn(p) when the density p is restricted to a specific class of measurable func­
tions. The main result which we derive is the establishment of an upper bound for 
the «th eigenvalue Xn(p) when/? is a class of functions E(M, h, H) which we define 
in the following. Our result is a generalization of results of Krein [11, Theorem 4] 
and Schwarz [12, Theorem 3]. Krein investigated the extremum of the eigenvalues 
hn{p) when p is restricted to the class of bounded measurable functions having 
total mass equal to a fixed constant, M, and Schwarz considered the restriction 
to piecewise continuous equimeasurable densities. Others [1, 2, 3, 4, 5] have ex­
amined bounds for the eigenvalue Àn(p) when the function/? is restricted to proper 
subclasses of the class of functions considered by Krein and when the density p 
is not necessarily bounded but satisfies restrictions on its form such as being 
convex, increasing, or $op(t) dt being concave. 

We consider a class of measurable functions defined on [0, 1] which is a natural 
extension of the class considered by Krein, E(M, h, H), defined for each choice of 
measurable functions h and H and constant M satisfying 

0 < h(x) < H(x) for * e [ 0 , 1], 
and 

f h(x) dx <M < f H(x) dx, 
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by 

E(M, h, H) = ip | h(x) < p(x) < H(x)9 f p(x) dx = M ) . 

For p G E(M, h, H) Xn(p) satisfies the inequalities K(H)<Kn(p)<XnQi), when 
hjâO as the eigenvalues of (1) are known to vary inversely as the density function 
varies pointwise [8]. Thus Xn(p) is bounded below for any choice of H and h. 
However, as h approaches the zero function the nth eigenvalue Àn(h) approaches 
+ oo. Thus the least upper bound for Xn{p) as/? varies over E(M, h, H) conceivably 
could increase to infinity if the function h were decreased to the zero function. 
That this is not the case, and that in fact there exists an upper bound for Xn(p) 
entirely dependent on the function H and independent of h is given by the 

THEOREM. Let 2,n(p) denote the nth eigenvalue of a vibrating string under unit 
tension, with fixed end points, and mass density given by the non-negative measur­
able function p. Ifp is in the class of functions defined on [0, 1] having total mass M 
and bounded pointwise above by a measurable function H and below by a non-negative 
measurable function h, then An(/?)<A* where A* is a function of H and n only. 

Before proving the Theorem we observe that if the upper boundary function H 
is bounded with Jt?=sup H(x)<co, xe [0, 1], then our result is contained in 
those of Krein [11, Th. 4] and Schwarz [12, Th. 3]. Explicitly Krein showed that 
in this case 

UP) < H(irnlMf. 

Thus the principle significance of our result lies in its application in the situation 
where the function H is not bounded. In this case it seems appropriate to comment 
on the existence of eigenvalues associated with the functions in E(M, h, H), the 
function H, and other functions derived from H in the following. Generally a 
solution of equation (1) is assumed to be a piecewise continuously differentiable 
function j which satisfies the equation (1) throughout the interval [0, 1]. However, 
since a measurable function/? is determined only up to a set of measure zero, it 
does not make sense to ask that (1) hold for all x e [0, 1]. Thus instead of requiring 
a solution to satisfy (1) we ask that d=yp1/2 satisfy the equivalent integral equation 

(3) 0(x) = lj*G(x9 f)(X*))1/2(KI))1/2^) dS 

where G is the Greens function of the system — y"(x)=0, j ( 0 ) = j ( l ) = 0 . In this 
sense, since the equation (3) is of Fredholm type with a symmetric L2 kernel, 
the system (1-2) will have a sequence of eigenvalues and associated eigenfunctions 
possessing the same properties as those obtained in the usual sense when p is 
assumed continuous. (See Tricomi [13, section 3.13].) In particular, as noted by 
Krein [11, (1.1)], for any non-negative measurable density/? defined on [0, / ] , 

https://doi.org/10.4153/CMB-1975-063-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-063-9


1975] EIGENVALUES OF / + A / y = 0 349 

the first eigenvalue of (1) on [0, /] subject to zero boundary conditions is given by 

(4) h(p) = n^(^W)]1 dx/jj\x)p(x) dx} 

where C1 is the class of continuously differentiable functions ip defined on [0, /] 
and satisfying ^ ( 0 ) = ^ ( / ) = 0 . 

Proof. Let p be a function in E(M, h, H) and denote by un the «th eigenfunction 
of the system (1-2) with/?=/>. The function un partitions the interval [0, 1] into n 
nodes determined by its zeros 0 = x 0 < x 1 < - • - < x w = l . There exists at least one 
choice of the index i such that the interval I=(xi9 xi+i) satisfies the inequality 
J j p(x) dx>Mjn. We then denote by / , the largest subinterval of /, (xi9 Xi+S) 
such that jj p(x) dx^Mjn. The «th eigenvalue Xn(p) of the system (1-2) wi thp=p 
is then the first eigenvalue of the equation (1) with the boundary conditions j ( 0 ) = 
y(xi+1—xt)=0 andp(x)=p(xi+x). By further constraining the problem we cannot 
decrease the eigenvalues and thus we have 

h(p) < MA>) 

where pip) denotes the first eigenvalue of the equation (1) subject to the con­
ditions y(0)=y(S)=0, and p0(*)=/>(*<+*)j Courant [8, p. 408]. 

Denote by />J the symmetrically increasing rearrangement of p0 on the interval 
[09 S]. (See Beesack and Schwarz [7] and [10].) We next invoke a Theorem due to 
Beesack and Schwarz [7, Th. 2] to obtain the inequality 

M/>o) < Kpo)-
We note that Beesack and Schwarz stated their Theorem 2 for continuous densities, 
but utilizing the characterization (4) and noting that the Theorem 378 of [10] which 
they employed in their proof is applicable to measurable functions, their proof 
extends to measurable densities as considered here. 

We next let H+ denote the symmetrically increasing rearrangement of the function 
H over the interval [0, 1]. Let tn denote the least value of t such that Jo H+(x) dx= 
M\2n. We then have 

yt ftn (*Xi+2tn fXi+2tn 

— = 2 H+(x) dx > H(x) dx ^ p(x) dx. 
n J° Jo* Jxi 

Consequently, if we had 2tn>S, it would then follow from the above that 

M ^ [Xi+S , w M — > p(x) dx — — . 
n Jxi n 

Hence 2tn<S and we can define the symmetric function H0 over [<9, S] by 

(H+(x)9 if OKx^tn, 

ffo(*)=Jo, if tn<x^SI29 

Uo(S-x), if S/2<x<S. 
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Since p(x)<H(x) for x e J we have 

PÎ(x)£H0(x) for xe[0,tn]u[S-tn,S] 

and clearly pt(x)>H0(x) for x e (tn9 S—tn). Consequently we may apply Theorem 
III of Beesack [6] to the functions H0 and />- on the interval [O, S] to obtain the 
inequality 

KPo) < M#o). 

Again, although Beesack stated his Theorem III for continuous densities, his proof 
extends to cover the case of measurable densities as considered here by utilizing the 
characterization (4) and noting that Beesacks Theorem II, utilized in his proof 
of Theorem III, applies to measurable functions. 

Finally, we denote by A* the first eigenvalue of the system 

u\x)+X*nH
+{x)u(x) = 0, x e [0, tn] 

( 5 ) ii(0) = u'(tn) = 0. 

Then, due to the symmetry of H0, we have 

Combining the above we obtain our result 

Kip) < K-
The number A* is not dependent on the choice of p and since tn is a monotone 
decreasing function of n, we see that to increase n tends to further constrain the 
system (5) and thus A* is monotone increasing in n. 

The bound A* given in the above theorem will not generally provide a sharp 
upper bound for An(p) as/? varies over E(M, A, H) unless n= 1 and H is symmetri­
cally decreasing. However the apriori existence of such a bound, valid for any 
choice of the function h, allows the application of Theorems 3 and 4 of Gentry 
and Banks [9]. These theorems then assert that for any differentiable function 

/ (*! , x2i... , xn)9 the functional F(p)=f(À1(p), X2{p),... , Xn(p)) will actually 
assume its supremum on the class E(M, h, H) at a density p which is itself extremal 
in the sense that p(x) is equal to either H(x) or h{x) for each x e [0, 1]. This 
generalizes the results of Krein [11, Th. 5]. 
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