OBSERVATIONS OF THE J=6 TO 5 LINE OF OCS IN SGR B2

KENJI AKABANE, MASAKI MORIMOTO, and KIYOSHI NAGANE Tokyo Astronomical Observatory, Tokyo, Japan

and

NORIO KAIFU

University of Tokyo, Tokyo, Japan

Abstract. The J=6 to 5 line of OCS at 72.9768 GHz was detected in Sgr B2 with antenna temperature 0.3 K, velocity $+62 \text{ km s}^{-1}$, and velocity half width of $\sim 25 \text{ km s}^{-1}$.

The J=6 to 5 line of OCS (72.9768 GHz) was detected in Sgr B2 with an antenna temperature of 0.3 K, centered at +62 km s⁻¹ with a half width of about 25 km s⁻¹. This is the first detection of this line in celestial sources. The line strength gives a column density of OCS molecules around 10^{15} cm⁻², similar to that given by Jefferts *et al.* (1971) from their observations of the J=9 to 8 line, and the peak velocity also agrees well. However, our observations give twice as large a line width as given by

Fig. 1. Profiles of J=9 to 8 (from Jefferts *et al.*, 1971) and J=6 to 5 lines of OCS. Ordinates denote the line of sight velocity, and the abscissa the antenna temperatures.

Jefferts *et al.*, which may be due to the large beamwidth of our observations. A large beam tends to pick up emission from the outer part of the source where the velocity can be different from the inner part, giving rise to a larger line width.

In this search we detected $1_{01} - 0_{00}$ line of para-formaldehyde in Ori A and Sgr B2 but failed to detect the OCS line in Ori A, to a limit of 0.2 K peak to peak. Results of a search for other lines are summarized in Table I.

TABLE I Negative results				
$H_2CO \\ l_{01} \rightarrow 0_{00}$	72.8381	IRC + 10216	0.4	7.0
		W51	0.4	8.2
		Heiles cloud 2	0.5	
		Heiles cloud 4	0.5	
OCS	72.9768	Ori A	0.2	15.3
6→5		IRC+10216	0.4	7.0
		W51	0.4	8.2
HCCCN 8→7	72.7851	W51	0.3	4.2
$\begin{array}{c} \mathrm{SO}_2\\ 6_{06} \rightarrow 5_{15} \end{array}$	72.7583	IRC + 10216	0.4	1.8

A fuller account of this work will be published in the Publications of the Astronomical Society of Japan.

Reference

Jefferts, K. B., Penzias, A. A., Wilson, R. W., and Solomon, P. M.: 1971, Astrophys. J. Letters 168, L111.

Kenji Akabane Masaki Morimoto Kiyoshi Nagane Tokyo Astronomical Observatory, Mitaka, Tokyo, Japan

Norio Kaifu Department of Astronomy, University of Tokyo, Tokyo, Japan